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Thanks to the rising focus on deep-space exploration and exploitation, the de-
mand for sustainable and efficient navigation approaches has become crucial. Stan-
dard ground-based radiometric tracking, while accurate, is expensive and resource-
intensive, posing long-term sustainability challenges. Therefore, enhancing spacecraft
autonomy is crucial to avoid ground station saturation. Autonomous onboard guid-
ance, navigation, and control (GNC) offer cost reduction and expand interplanetary
exploration opportunities. Among various navigation alternatives, vision-based
navigation (VBN) stands out for its cost-effectiveness, ground independence, and
applicability to different spacecraft classes. Ground testing campaigns are crucial
to ensure accurate and robust vision-based navigation algorithms for interplanetary
missions. However, obtaining real interplanetary sky-field images for validation
is challenging due to limited successful missions and datasets. To overcome these
limitations, high-fidelity rendering engines and hardware-in-the-loop (HIL) simula-
tions are necessary to generate image datasets for testing. This work presents the
development of a procedure for on-ground testing and validation of autonomous
navigation algorithms for interplanetary cruises using Jena Optronik’s Optical Sky
Stimulator (OSI) at the DLR GNC Department in Bremen. The proposed paper
includes preparation activities, calibration and compensation procedures, and final
hardware-in-the-loop simulations.

I. Introduction
As we approach a new era of interplanetary exploration and utilization, it is becoming increasingly

important to adopt sustainable and efficient navigation methods. Although traditional ground-based

radiometric tracking is accurate and reliable, it is an expensive and resource-intensive paradigm that cannot

be sustained in the long term due to the dependence on limited resources such as ground stations and

dedicated teams [1]. Therefore, improving the autonomy level of spacecraft is a critical objective for future

deep-space missions to prevent ground station saturation. Additionally, autonomous guidance, navigation,

and control (GNC) solutions onboard spacecraft can reduce the cost of space entry, thereby expanding

deep-space exploration and utilization to new and private players. Among the various navigation alternatives

for spacecraft, including autonomous X-ray pulsar-based [2], semi-autonomous radio-based navigation [3],

and autonomous vision-based navigation (VBN), the latter is often preferred due to its reduced implementation

cost, full ground independence, and applicability to different spacecraft classes [4]. In addition, VBN is an

approach compatible with all mission phases toward celestial bodies: cruise [5–8], mid-range [9–12], and
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close proximity [13], including landing [14, 15]. VBN allows probes to determine their state by observing

celestial bodies on images taken by optical sensors and has already been adopted by various missions [16].

However, VBN solutions for interplanetary exploration have only undergone onboard testing, beginning with

the Deep-Space 1 (DS1) mission in 1998 [5]. Nevertheless, in recent years, there has been growing interest

in VBN algorithms for interplanetary exploration, particularly for CubeSat missions [6].

To ensure that the VBN algorithms are both accurate and robust enough to be deployed onboard a

spacecraft during an interplanetary mission, it is essential to conduct testing campaigns in a representative

environment [17]. These campaigns aim to analyze the performance of the navigation algorithm when real

mission conditions and hardware characteristics are introduced in the simulation. However, real mission

databases are scarce in number and they are constrained to the operational orbit covered by the spacecraft.

This limitation is particularly relevant in the context of far-range navigation since the majority of available

images have been acquired for the science phase in proximity to planets, moons, and asteroids. Consequently,

these images cannot be effectively employed to feed deep-space VBN filters due to the resolved nature of

celestial bodies. Moreover, the few available deep-space images acquired during a cruise rarely contain

information about planets or other celestial bodies. These images are typically taken for different purposes,

such as on-orbit camera calibration, making them unsuitable for optical navigation. Other optical sensors

intensively adopted during a cruise are star trackers. Nevertheless, they do not usually provide the acquired

image as output. Hence, it is clear that exploiting real mission images to entirely assess the functionality of

VBN algorithms is unfeasible. If high-fidelity rendering engines [18–21] can partially overcome this problem,

the errors from external and internal sources are still applied with an approximated model. Therefore, to

obtain images with a more realistic error representation, the exploitation of real hardware becomes necessary

inside the image generation step. At this aim, optical facilities that include a real optical sensor can be

exploited [17, 22–24].

In this framework, the goal of this work is to develop a procedure to test and validate autonomous

navigation algorithms for interplanetary cruises through the exploitation of the Optical Sky Stimulator (OSI)

by Jena Optronik present at the DLR GNC Department in Bremen∗. In particular, this paper presents a

detailed pipeline that includes preparation activities, optical facility calibration, compensation procedures to

take care of the warping introduced by the optical facility, and final hardware-in-the-loop (HIL) simulations

to analyze and validate the performances of the optical navigation algorithm.

This document is subdivided as follows: Sec. II defines the preliminary tasks to be performed for hardware

selection and simulation setup; Sec. III presents a static analysis of the hardware performances, where some

initial considerations related to the chosen hardware are given; Sec. IV describes the calibration procedure

adopted to model the distortion introduced by the OSI and the upstream compensation pipeline to correct

them; Sec. VI presents the approach adopted to render sky-field images on the OSI screen, and Sec. VII

introduces the autonomous VBN algorithm and describes how static and dynamic HIL simulations are

performed.

II. Hardware Setup
The optical facility adopted to validate the VBN algorithms is Jena Optronik’s OSI. It consists of an

optical head (OH), which comprehends a high-resolution micro-display, on which sky-field images are

rendered, and a collimating lens to place the observed objects at infinity. Note that the term optical system
will be adopted to address the camera–lens system, whereas the term optical facility is used to address the

optical system–OSI assembly.

In this section, the preliminary tasks needed to prepare the simulation framework are defined. In particular,

they are subdivided into hardware selection, where the optical system is chosen, and mechanical alignment,

where a procedure to align manually the screen and the camera reference frame is described. For the hardware

selection, two compatibility criteria have been followed:

1) Ensuring that the lens image circle is greater than the image sensor to avoid mechanical vignetting

2) Ensuring the match between the OSI and the optical system FoVs

From the datasheet, OSI has a 20° circular FoV. To select the most suited optical system, the angular diagonal

FoV (AFoVD) is evaluated for all the matches camera–lens available at the DLR. The results are reported in

Table 1. The AFoVD is not evaluated for the pairs camera–lens that do not respect the first compatibility

criterion.

∗https://www.dlr.de/irs/en/desktopdefault.aspx/tabid-11074/
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Table 1 AFoVD for the available matches camera–lens

GC1350 GC1380H GE1900 GT2050NIR

Xenoplan 1.4/17 25.80° 35.20° - -

Cinegon 1.9/10 42.96° 57.82° 79.38° 79.38°
Cinegon 1.8/4.8 82.98° 106.34° - -

Stilar 2.8/8 51.93° 69.26° 93.38° 93.38°
LM8HC 54.92° 73° 97.82° 97.82°

The combination GC1350–Xenoplan 1.4/17 is selected as its corresponding AFoVD is the closest to

the OSI one. However, a mechanical vignetting will be still present as the optical system AFoVD is greater

than 20°. To prevent this effect, a lens with a longer focal length can be adopted to reduce the AFoVD of

the optical system. In the absence of that, a region of interest (ROI) in the captured image can be defined

during the post-processing. Once the optical system is selected, it must be placed on top of the OSI optical

head. Yet, the originally available baffle mount has been developed to hold the Jena Optronik’s AstroAPS

star tracker. Therefore, a new adaptor is modeled to allow the exploitation of the chosen optical system. Fig.

1a shows the CAD model of the adaptor, whereas Fig. 1b shows the complete hardware configuration.

(a) CAD model of the adaptor (b) Complete configuration

Fig. 1 Hardware setup

Once the optical facility, i.e., OSI and the optical system, are in place, a manual alignment of the camera

and screen reference frames is performed. Fig. 2a is rendered in full screen on the OSI display. The image

acquired by the camera is shown in Fig. 2b. The size of the camera image is 1360×1024. The mechanical

vignetting present in the image validates the assumptions previously made.

By observing the camera image, a manual alignment is performed to center and align the camera reference

frame with the screen reference frame as precisely as possible. The remaining misalignment will be later

estimated by the calibration. At this point, a ROI of the acquired image is selected to cut the black borders.

The enumeration of the screen pixels along the screen horizontal and vertical directions in the acquired image

is adopted to determine correctly which portion of the screen is contained inside the ROI selected. This is of

paramount importance for the next steps of the simulation since the image rendered on the screen will be

constrained inside this region. In this case, the selected camera ROI is an 1100×880 window, which results in

a screen ROI of 580×465. Therefore, the camera FoV is shrunk to 16°× 13°. Fig. 2c shows the selected

ROI. Note that the ratio between the resolution of the camera and the screen ROI is 1.89 in both vertical and

horizontal directions.
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(a) Pattern displayed on the screen of the OSI facility
(800×600) (b) Pattern acquired by the camera (1360×1024).

The blue cross represents the camera center.

(c) ROI selected

Fig. 2 Pattern adopted for the mechanical alignment

III. Static Analysis of the Hardware Performances
By analyzing the selected hardware, some preliminary considerations can be made regarding the

performance of the simulation. In particular, the OSI optical head consists of a micro-display (800× 600

pixels, 𝑑pixs
= 15𝜇m), collimating optics ( 𝑓coll = 30 mm), and a control box. From these information, the

screen pixel angular dimension (𝛿screen) as a function of the camera boresight offset (𝛼offset) is found as [17]

𝛿pixs
= tan−1

(
tan𝛼offset +

𝑑pixs

2 𝑓coll

)
− tan−1

(
tan𝛼offset −

𝑑pixs

2 𝑓coll

)
(1)

This value represents the minimum angular displacement between two adjacent features on the screen. If

the separation has a lower value, the two feature positions will fall inside the same pixel, and they will

approximate to coincide with the pixel center. Indeed, the maximum error resulting in position approximation

is ±𝛿pixs
/2, and it is uniformly distributed throughout the pixel. In other terms, 𝛿pixs

represents the apparent

angular size of the screen pixel.

For medium-small FoV (small value of 𝛼offset), as in this case, Eq. 1 can be approximated to [25]

𝛿pixs
= 2 tan−1

𝑑pixs

2 𝑓coll
≈ 103 arcsec (2)

In this case, at the boresight, 𝛿pixs
is 103 arcsec along the screen pixel horizontal and vertical directions,

and about 145 arcsec along the screen pixel diagonal direction. Fig. 3 represents the minimum angular

displacement curves as a function of the off-boresight angle. Note that the variation of the values is limited.

The apparent angular size of the camera pixel can be computed as well as

𝛿pixc
= 2 tan−1

𝑑pixc

2 𝑓
≈ 54 arcsec (3)
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Fig. 3 Minimum angular displacement between two adjacent screen pixels as a function of the
off-boresight angle

Note that the ratio between the screen and the camera pixel apparent size is 1.9:1 in both the horizontal and

vertical directions, confirming what is found in the mechanical alignment procedure in Sec. II. This means

that 1 pixel of the screen corresponds to 4 pixels of the camera, i.e. 2 along 𝑋 and 2 along 𝑌 . On one side,

the obtained ratio is not ideal for representing a continuous world with a screen and a camera, which would

require instead a 1:4 ratio [17]. Yet, on the other side, the defocus obtained at the camera level mimics the

defocusing procedure adopted by modern star trackers to get sub-pixel accuracy. Thus, this hardware setup

can still represent a valid testing environment.

IV. Calibration Procedure
Before exploiting the OSI facility for HIL simulations, it is necessary to compensate for the effects

introduced by the optical facility that would not be present in orbit. The alignment between the OSI and

the camera reference frame is manually performed with the procedure explained in Sec. II. Thus, a residual

misalignment will be always present. In addition, the light emitted by the OSI miniaturized display is warped

by the collimator and camera lenses. Therefore, the image captured by the camera is distorted with respect

to the one rendered on the display, and it is not more representative of the real sky. It is of paramount

importance to elaborate a procedure to evaluate the distortion model that represents the effect of the optical

facility on the screen points, and, eventually, to compensate for this effect. The first step of the procedure is

defined calibration, whereas, the latter is referred to as compensation [17]. The optical system is calibrated

by comparing the images rendered on the OSI screen with the ones delivered by the camera. In this work,

the camera is not calibrated independently but this should be object to future investigations. This last step

would decouple the optical errors due to the camera lens from the optical and mechanical errors due to the

OSI optical head and its misalignment with the camera. Being the camera independently calibrated, the

following correction procedure would not compensate for the camera optical errors. This strategy allows a

more realistic representation of the mission scenario since the camera optical effects, which are due to the

camera lens, would also appear on real sky images acquired by the same optical sensor during a deep-space

cruise.

The calibration procedure applied in this work consists of the following:

• Rendering multiple grid patterns on the OSI screen

• Acquiring the rendered patterns with the camera

• Evaluating the centroids of the camera and screen images

• Determining the calibration coefficients
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A. Grid Patterns Rendering and Acquisition
Once the screen ROI is obtained (Sec. II), images containing highlighted pixels are rendered on the

screen and acquired by the camera. At this aim, a set of grid patterns is generated by shifting the positions of

the dots rigidly in the horizontal and vertical directions. It is important to cover evenly the desired screen

region to allow the calibration to capture the distortion most accurately. Particular attention has to be paid to

the corner points whose positions are the ones most subjected to deformation. Figs. 4a and 4b represent one

of the grids displayed on the OSI screen and acquired by the camera, respectively. As has been previously

mentioned, the bright dots in the acquired images are bigger in angular size and they appear as defocused with

respect to their screen counterpart. Moreover, the pincushion distortion introduced by the OSI collimating

optics is well visible.

(a) Grid displayed on the OSI screen (b) Grid acquired by the camera

Fig. 4 Grid patterns

B. Centroids Computation
Once the images are acquired, the bright dots centroids are extracted from the camera and the screen

images. First, Niblack’s thresholding method [26] is adopted to remove the background noise to connected

portions of the image delimited by squared windows with a margin of one pixel on each side. Hence, the

centroid of the object is computed by applying an intensity-weighted center of gravity algorithm considering

the pixels inside the associated squared windows [27]. An additional check is performed inside the procedure

concerning the camera centroids evaluation. If a window has a dimension of only one pixel, the bright dot

inside is rejected. This is done to avoid acquiring bright pixels due to camera noise.

C. Calibration Coefficients Determination
To represent the deformation introduced by the optical facility, the direct (D) and inverse (D−1) distortion

models shall be defined. The direct distortion model describes the warping applied by the optical assembly

to the screen points. Whereas, the inverse model defines the deformation that is necessary to apply to

compensate for the effect introduced by the optical assembly. The distortion flow is shown in Fig. 5. Instead,

a representation of the warping applied from the direct and inverse deformation to the screen points is shown

in Figs. 6a and 6b, respectively. The inverse distortion model applies to the screen points a barrel deformation,

which is opposite to the pincushion one introduced by the hardware.

To compensate for the effect introduced by the optical assembly, the inverse distortion model is computed.

In this work, this latter is represented by two polynomial equations of the 7th order that map how the angular

coordinates of the 𝑖-th camera point (𝛼𝑖 , 𝛽𝑖) are warped into its associated pixel coordinates (𝑥𝑖 , 𝑦𝑖) in the

2D screen reference frame S [22]:

S𝑥𝑖 =
7∑

𝑘=0

7∑
𝑗=0

𝑎𝑘, 𝑗𝛼
𝑘
𝑖 𝛽

𝑗
𝑖

S𝑦𝑖 =
7∑

𝑘=0

7∑
𝑗=0

𝑏𝑘, 𝑗𝛼
𝑘
𝑖 𝛽

𝑗
𝑖 (4)

where 𝑎𝑘, 𝑗 and 𝑏𝑘, 𝑗 are the unknown coefficients of the vectors 𝒂 and 𝒃 of the two polynomial equations. To

retrieve them, the centroids of the 𝑁 grid points extracted from the camera and screen images are exploited in
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Fig. 5 Distortion flow

(a) Direct distortion effect (b) Inverse distortion effect

Fig. 6 Graphical representation of the distortion effects

the least square method such as:

𝒂 = (𝑴�𝑴)−1𝑴� S𝒙sc 𝒃 = (𝑴�𝑴)−1𝑴� S𝒚sc (5)

where S𝒙sc,
S𝒚sc are the vectors contained the 𝑥 and 𝑦 coordinates of the 𝑁 screen grid points and 𝑴 is a

matrix 𝑁 × 64 defined exploiting the angular coordinates of the 𝑁 camera grid points as:

𝑴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
7∑

𝑘=0

7∑
𝑗=0

𝛼𝑘
𝑖 𝛽

𝑗
𝑖

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
for i= 1, ..., N (6)

Once the coefficient vectors of the inverse distortion model are found, they can be exploited to compensate

for the distortion introduced by the optical facility. The pixel coordinates of the compensated camera points

in the 2D screen reference frame are evaluated as

S𝒙̂cam = 𝒂�𝑴� S 𝒚̂cam = 𝒃�𝑴� (7)

The errors between the position of the screen grid points and the compensated camera grid points in the

2D screen and camera reference frame are represented in Fig. 7.
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(a) Screen reference frame (b) Camera reference frame

Fig. 7 Error distribution of the grid points position obtained from the inverse calibration procedure

V. Compensation Procedure
Once the distortion model is defined, the compensation procedure, whose goal is to compensate for the

warping effect introduced by the optical assembly, is started. The compensation can be applied at the screen

level, thus, before the image is acquired by the camera (upstream compensation), or at the camera level, thus,

after the image is taken (downstream compensation). The upstream compensation is usually preferred over

the downstream since the latter requires performing an additional step during the image post-processing

which would not be present in an algorithm applied to an actual mission scenario. Instead, the upstream

compensation does not require a modification of the image processing procedure of the autonomous navigation

algorithm, allowing true test-as-you-fly verification of the optical sensor. The downstream compensation

flow is shown in Fig. 8. At first, a different set of grid images is rendered on the OSI screen and acquired by

Fig. 8 Downstream compensation flow

the camera. Afterward, the centroids of the camera bright points are exploited to evaluate the matrix 𝑴 of

Eq. 6, and, eventually, the compensated camera points in the 2D screen camera frame are found by applying

Eq. 7. The error distribution between the nominal screen points and the resulting camera points is shown

in Figs. 9a and 9b in the 2D screen and camera reference frame, respectively. The upstream compensation

flow is graphically represented in Fig. 10. Also in this case a new set of grids is projected on the OSI screen,

acquired by the camera, and the associated centroids are extracted from the camera and screen images. Then,

the compensation is performed by applying Eq. 7 after having computed the matrix 𝑴 for the screen grid

points. The resulting compensated screen points (S𝒙̂scr,
S 𝒚̂scr) are then approximated with the closest pixel

center. Fig. 11 represents the error distribution between the starting, non-compensated, screen points and the

ones extracted from the camera images in the 2D screen and camera reference frame, respectively. The error

is uniformly distributed inside the screen pixel with a variation of ±53 arcsec along both directions, which

verifies the preliminary assumptions made in Sec. III.

To lower the centroiding error and reach sub-pixel accuracy, the light emitted by one pixel of the screen

can be spread over more pixels. This approach consists of switching other three pixels near the original one

by following the scheme reported in Fig. 12a with (Δ𝑋,Δ𝑌 ) the distance between the compensated screen

centroid and its closest pixel center, i.e., (𝑋∗ − 𝑋𝑐, 𝑌∗ − 𝑌𝑐) labeled in Fig. 12b.

The digital count value associated with each one of the four pixels is proportional to the portion of the

area of the square with edge 𝑟 = 0.5 and center in the compensated screen centroid (see Fig. 12b) that is

8



(a) Screen reference frame (b) Camera reference frame

Fig. 9 Error distribution of the grid points position during the downstream compensation

Fig. 10 Upstream compensation flow

(a) Screen reference frame (b) Camera reference frame

Fig. 11 Error distribution of the grid points position during the upstream compensation

contained inside the pixel itself, such as:

𝐷𝐶𝑖 = 255
𝐴𝑖

𝑟2
(8)

By referring to Fig. 12b, the four portions of the square area are evaluated as:

𝐴1 = (𝑟 + Δ𝑋𝑒∗)(𝑟 + Δ𝑌𝑒∗) (9)

𝐴2 = (𝑟 − Δ𝑋𝑒∗)(𝑟 + Δ𝑌𝑒∗) (10)

𝐴3 = (𝑟 + Δ𝑋𝑒∗)(𝑟 − Δ𝑌𝑒∗) (11)

𝐴4 = (𝑟 − Δ𝑋𝑒∗)(𝑟 − Δ𝑌𝑒∗) (12)
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(a) Scheme to select the four pixels (b) Scheme to evaluate the four areas

Fig. 12 Definition of the procedure to get sub-pixel accuracy

where

Δ𝑋𝑒∗ = | |𝑋𝑒 − 𝑋∗ | | Δ𝑌𝑒∗ = | |𝑌𝑒 − 𝑌∗ | | (13)

and the point (𝑋𝑒, 𝑌𝑒) is defined following the logic in Table 2.

Δ𝑌 > 0 Δ𝑌 < 0

Δ𝑋 > 0
𝑋𝑒 = 𝑋𝑐 + 0.5 𝑋𝑒 = 𝑋𝑐 + 0.5

𝑌𝑒 = 𝑌𝑐 + 0.5 𝑌𝑒 = 𝑌𝑐 − 0.5

Δ𝑋 < 0
𝑋𝑒 = 𝑋𝑐 − 0.5 𝑋𝑒 = 𝑋𝑐 − 0.5

𝑌𝑒 = 𝑌𝑐 + 0.5 𝑌𝑒 = 𝑌𝑐 − 0.5

Table 2 Definition of the point (𝑋𝑒, 𝑌𝑒)

Eventually, the effect on the 2D error distribution resulting from the application of the point spread

procedure is shown in Fig. 13. Note that the error now is almost confined inside the camera pixel.

Fig. 13 Error distribution of the grid points position in the 2D camera frame after the application of
the sub-pixel procedure
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VI. Sky-field Rendering Engine
To validate the autonomous optical navigation algorithm through HIL simulations, deep-space images

need to be rendered on the OSI screen. At this aim, high-fidelity rendering engines can be exploited to

generate sky-field images representative of the analyzed mission scenario. In this work, an extended version

of the deep-space rendering engine described in [18] is adopted. In general, the simulator can operate in two

modes: software-simulation mode and hardware-in-the-loop-simulation mode. In the former, the rendering

engine incorporates the camera model, which considers factors like the camera Point Spread Function, the

conversion from photons to electrons, the sensor response, and internal error sources, such as shot noise,

amplifier noise, reset noise, pattern noise, and discretization noise. The rendering engine can also simulate

streaks caused by celestial objects in the image due to rapid spacecraft slew, as well as external noise sources

like light time, light aberration, and the impact of cosmic rays. The output of the rendering engine in

software-simulation mode is an image as it would be taken by the modeled sensor in deep space and whose

intensity is expressed in pixel digital count according to the camera bit depth.

On the contrary, the second mode foresees the rendering of deep-space scenes to project them on the

screen of an optical facility. To be representative of a real deep-sky scene taken with the optical sensor

employed in the HIL simulation, the image projected on the optical facility screen must have the resolution of

the screen and the FoV of the camera. Moreover, the rendered image is warped through the application of the

upstream compensation by taking into account the calibration coefficients obtained during the calibration

of the optical assembly. Additionally, the procedure detailed in Sec. V can be applied to obtain sub-pixel

accuracy during the centroids extraction step. For what concerns the noises, only the effects created by the

external environment are modeled since internal errors are already embedded in the simulation due to the

physical presence of the camera. The output of this mode is a raw image matrix to be projected on the optical

facility screen whose intensity is representative of the illuminance of the displayed stars and celestial bodies.

Note that the bright objects illuminance is evaluated through the following similarity equation by knowing

that the illuminance value of a star with 𝑚 = −14.2 is 1 lm/m2 †:

𝐸 = 10(−(𝑚+14.2)/2.5) (14)

where 𝑚 is the absolute magnitude of the bright object [23].

A. Relation between pixel illuminance and pixel digital count
To have a perfect matching between the real star radiometric signal and the signal emitted by the screen

pixel in which the star is projected, an accurate radiometric calibration of the facility would be needed.

Indeed, it is not possible to predict in advance at the rendering level which is the digital count of each screen

pixel since these values depend on the screen radiometric setting. To radiometrically calibrate the facility, a

powermeter needs to be placed in correspondence with the camera entrance pupil to measure the irradiance

received by the camera when pixels with different digital count values are switched on [28]. In the absence

of a powermeter, the procedure described in [23] can be adopted. This consists of a pipeline that can be

applied to evaluate the pixel digital counts by computing the maximum representable illuminance level of

the images projected on the screen, over which the pixel is assumed to be saturated. To define this value, in

the absence of technical specification, as the maximum luminance of the screen, the following approach is

employed. Firstly, a deep-sky image is generated by the high-fidelity rendering engine in the software mode

considering the optical sensor characteristics. The image obtained is considered as the true representation of

reality. Therefore, it is adopted to tune the maximum representable illuminance value of the images to be

projected on the screen. In particular, the tuning is performed by comparing the true image and the image

output of the optical assembly obtained by varying the maximum representable illuminance value until a

correspondence is found. At this point, the pixels with an illuminance greater or equal to the maximum

representable illuminance level found are switched on with the maximum digital count. Instead, the other

illuminance levels are linked to a digital count value linearly.

In this work, the maximum representable illuminance value selected is the one associated with an absolute

magnitude equal to 5.5. The validity of the selection is confirmed by the fact that usually, a miniaturized

camera has a magnitude threshold limit of around 7/8.

† https://stjarnhimlen.se/comp/radfaq.html#7, Last access on October 16, 2023.
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VII. Validation of the Autonomous Navigation Algorithm through HIL Simulations

A. Autonomous Vision-Based Navigation Algorithm for Interplanetary Cruises
During an interplanetary cruise, the probe can determine its position by observing the movements of

celestial bodies such as planets and asteroids, which appear as unresolved bright dots in images taken by

optical sensors. Since the celestial bodies light falls within a single pixel of the image, the only exploitable

information to estimate autonomously the probe state onboard are the LoS directions. If the LoS directions of

two or more reference beacons are simultaneously available, they can be adopted to statically triangulate the

probe position [8, 29]. However, if only one reference beacon is visible, a dynamic estimation method is

required. In particular, this work investigates the validation of an autonomous VBN algorithm applied to

CubeSats, which brings the enforcement of some constraints that make the navigation problem even more

challenging than for standard probes. In general, CubeSats differ from traditional spacecraft due to their

lower production costs, achieved also by utilizing commercial-off-the-shelf components, and their smaller

size. Consequently, the optical sensor, such as a star tracker or camera, on the CubeSat must be compact and

cost-effective, resulting in limited light detection capabilities. Typically, a miniaturized optical sensor has a

threshold magnitude of 7, allowing only brighter celestial bodies like planets to be exploited for navigation,

while asteroids are too faint to be observed [30]. Given that observations are limited to the positions of

the planets and that these latter are greatly sparse in space, it is unlikely to have more than one visible

celestial body in an image. Therefore, the probe to localize itself has to track the first planet for a certain

amount of time, and then perform a slew maneuver to point to the successive planet to observe. Thus, to

determine the CubeSat state, a dynamical estimator is needed. In this work, a non-dimensionalized EKF fed

by asynchronous planet measurements is selected for the development of the optical autonomous navigation

strategy thanks to its better numerical stability and computational performance analyzed in [7]. Furthermore,

another crucial aspect to take into account in deep-space navigation consists of the shift induced by light

effects, such as light-time and light aberration, on the position of celestial bodies in the images [7, 31].

When estimating the probe state, it is important to correct the displacements caused by these factors to avoid

biases. The main aspects of the VBN algorithm tested through HIL simulations are detailed in the following

paragraphs.

1. Dynamics and Measurement Models
The adopted dynamics model of the algorithm is an extension of the one detailed in [7]. The state vector

𝒙 is defined as

𝒙(𝑡) = [𝒓 (𝑡), 𝒗(𝑡), 𝜼(𝑡)]� (15)

where 𝒓 and 𝒗 are the inertial probe position and velocity, respectively, and 𝜼 is a vector of Gauss–Markow

(GM) processes accounting for unmodeled terms: a 3-dimensional residual accelerations 𝜼R and the stochastic

component of the Solar Radiation Pressure (SRP) 𝜼SRP; that is, 𝜼 = [𝜼R, 𝜼SRP]
�. The process is modeled

using the following equation of motion

�𝒙(𝑡) = 𝒇 (𝒙(𝑡), 𝑡) + 𝒘 (16)

where 𝒇 is the vector field embedding the deterministic part, while 𝒘 is the process white noise:

�𝒙(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝒗

𝒂Sun + 𝒂SRP + 𝒂pli

−𝜉𝜼R

−𝜉𝜼SRP

⎤⎥⎥⎥⎥⎥⎥⎥⎦︸���������������������������������︷︷���������������������������������︸
𝒇

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

03𝑥1

𝜼R + 𝜼SRP

𝒘R

𝒘SRP

⎤⎥⎥⎥⎥⎥⎥⎥⎦︸�����������������������︷︷�����������������������︸
𝒘

(17)

and

𝒂Sun = −𝜇Sun
𝒓

𝑟3
(18)

𝒂SRP = 𝐶R

𝑃0𝑅
2
0

𝑐

𝐴s

𝑚s

𝒓

𝑟3
(19)

𝒂pli = 𝜇𝑖
( 𝒓pli − 𝒓

| |𝒓pli − 𝒓 | |3
−

𝒓pli

| |𝒓pli | |
3

)
(20)
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The terms that describe the SRP are [32]: 𝐶R the coefficient of reflection, 𝑃0 the solar power, 𝑅0 the Sun

radius, 𝐴s the cross-section area of the probe, and 𝑚s its mass. The third-body perturbation of the Earth-Moon

barycenter, Mars, and Jupiter is included. In the Langevin equations that govern the GM processes the

coefficient 𝜉 defines the reciprocal of the correlation time, while 𝒘R and 𝒘SRP are the process noises of

the GM parameters with 𝜎R and 𝜎SRP standard deviations, respectively [33]. The process noise covariance

matrix is 𝑸:

𝑸 = diag(03𝑥3,𝑸𝑎,𝑸R,𝑸SRP) (21)

with 𝑸R = 𝜎2
R
𝑰3𝑥3, 𝑸SRP = 𝜎2

SRP
𝑰3𝑥3, and 𝑸a = (𝑸R + 𝑸SRP)/(2𝜉).

Instead, the measurement model selected for the VBN algorithm gives a representation of the planet

position projection affected by the light-time and light-aberration effects in pixel coordinates in the 2D camera

reference frame [7]:
C

ℎ 𝒓pl = 𝒉(𝒙𝑘) = 𝑲cam 𝑨𝒍aberr
pl/sc (22)

where

𝒍aberr
pl/sc = 𝒍pl/sc + 𝒍pl/sc ×

(
𝜷sc × 𝒍pl/sc

)
(23)

with 𝜷sc =
𝒗

𝑐
, and 𝒍pl/sc defined as

𝒍pl/sc =

(
𝒓pl (𝑡 − Δ𝑡) − 𝒓 (𝑡)

)� (
𝒓pl (𝑡 − Δ𝑡) − 𝒓 (𝑡)

)������ (𝒓pl (𝑡 − Δ𝑡) − 𝒓 (𝑡)
)� (

𝒓pl (𝑡 − Δ𝑡) − 𝒓 (𝑡)
) ������ (24)

is equal to the planet LoS direction from the spacecraft position at time 𝑡, i.e., the epoch at which the light is

received by the spacecraft, to the planet position at time 𝜏, i.e., the epoch at which the light is emitted by the

planet, where Δ𝑡 = 𝑡 − 𝜏. Eventually, the measurement error covariance matrix is:

𝑹 =

[
𝜎2

errX
0

0 𝜎2
errY

]
(25)

where 𝜎erri is the 1-𝜎 standard deviation of the measurement error along the 𝑖-th directions of the 2D camera

reference frame C.

2. Image Processing Pipeline for the Measurement Acquisition
The observable used to correct the probe state estimation in the navigation filter is the projection of the

planet position C𝒓pl onto C. To extract this information from the deep-space image, an image processing

(IP) algorithm specifically designed for interplanetary cruises is employed [34, 35]. The main objective

of this procedure is to identify the centroid in the image that corresponds to the planet projection and to

obtain information about the planet location in the image. The IP pipeline follows a three-step process: 1)

Determining the probe attitude, 2) correcting the light aberration of the stars centroids, and 3) identifying

the planets in the image. The first step is performed differently if the planet is acquired for the first time or

not. In the former situation, a lost-in-space (LIS) algorithm is applied to determine the spacecraft attitude

without any previous knowledge of the probe pose. In particular, the pyramid star identification algorithm

[36] bulked up by a RANSAC procedure to reject outliers is exploited [37]. When the planet is not observed

for the first time, a recursive attitude determination method can be applied to recover the probe orientation

since the information about the estimated attitude at the previous step is available. A RANSAC algorithm

is always applied at the end of the procedure to reject possible false matches. When the recursive attitude

determination fails, the spacecraft orientation at the following image acquisition will be determined again

with the LIS method. Vice versa, when the LIS algorithm succeeds in determining the probe orientation, the

recursive attitude determination algorithm will be adopted in the following image acquisition.

The second step of the IP consists of the correction of the shift caused by the light aberration on the

stars centroids. The procedure applied to correct the effect applies to planets in [31]. Eventually, the probe

orientation is recomputed with the corrected stars centroids.

The final step is the identification of the planets in the image and the extraction of their position projections,

which will be used to correct the state estimation by the filter. The recognition is performed through the

evaluation of the statistical momenta associated with the planet position projection, which defines the Gaussian

probability to find the planet in that portion of the image, i.e., its expected position and the associated
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uncertainty ellipse. The no-stellar object contained in the 3𝜎 ellipse is identified as the planet position

projection Crpl. If multiple no-stellar objects are located within this ellipse, the object closest to the expected

planet position is considered to be the planet itself, as it is most likely the true projected position of the planet.

If the IP algorithm fails, two procedures are implemented depending on the failure type: 1) when the

attitude is not determined or the planet measurement is not extracted from the image, the state vector and its

error covariance matrix are simply propagated until the next step; 2) when the planet is wrongly determined,

a course outlier detection method is applied to reject false positives [38].

3. Filtering Scheme
The filtering scheme adopted by the non-dimensionalized EKF is described in Table 3.

Table 3 Filtering Strategy

System State Space �𝒙 = 𝒇 (𝒙(𝑡), 𝑡) + 𝒘

𝒚𝑘 = 𝒉(𝒙𝑘) + 𝝂𝑘
�𝑷 = 𝑭𝑷 + 𝑷𝑭� + 𝑸

Propagation Block 𝒙𝑝𝑘 = 𝒙𝑐𝑘−1
+
∫ 𝑡𝑘
𝑡𝑘−1

𝒇 (𝒙(𝑡), 𝑡)d𝑡 𝒙𝑐0
= 𝐸 [𝒙0]

𝑷𝑝𝑘 = 𝑷𝑐𝑘−1
+
∫ 𝑡𝑘
𝑡𝑘−1

�𝑷d𝑡 𝑷𝑐0
= 𝐸 [𝒙0𝒙

�
0
]

Correction Block 𝑲𝑘 = 𝑷𝑝𝑘𝑯
�
𝑘 (𝑯𝑘𝑷𝑝𝑘𝑯

�
𝑘 + 𝑹𝑘)

−1

𝒙𝑐𝑘 = 𝒙𝑝𝑘 + 𝑲𝑘 [𝒚𝑘 − 𝒉(𝒙𝑝𝑘 )]

𝑷𝑐𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑝𝑘 (𝑰 − 𝑲𝑘𝑯𝑘)
� + 𝑲𝑘𝑹𝑘𝑲

�
𝑘

Here, 𝒙𝑝𝑘 is the predicted state vector with error covariance matrix 𝑷𝑝𝑘 at epoch 𝑘 , 𝑲𝑘 the Kalman

gain, 𝒙𝑐𝑘 the corrected state vector with error covariance matrix 𝑷𝑐𝑘 , 𝑭 the Jacobian of the dynamics model

equation, 𝒉 the measurement model equation with Jacobian 𝑯𝑘 , 𝝂𝑘 the measurement white noise, and 𝒚𝑘 the

external measurement vector.

B. Static Hardware-In-the-Loop Simulations
Firstly, static simulations are executed to analyze the performance of the IP algorithm, which is the step

most challenging in the HIL simulation. A Monte Carlo run is performed for 1000 images generated with

random spacecraft pose values to test the IP performance. The IP algorithm has a success rate in attitude

determination greater than 98.5% when the LIS procedure is employed, which is coherent with the results

reported in the state-of-the-art [36]. Furthermore, this result shows that the calibration procedure has been

properly performed since the errors in the centroids position do not substantially worsen the performance

of the attitude determination step. In this simulation, the attitude is not determined for less than 1% of the

cases, and it is wrongly determined for 0.5%. When an attitude value is found, a total of 1293 planets are

detected in the images. Among these, 5 are false positives (< 0.5%). This happens always when the planet is

close to the image border or it is too faint to be detected. No false negatives are found. Figure 14 shows the

Probability Density Function (PDF) of the errors obtained during the evaluation of the planet centroids. The

errors are below the screen pixel size, validating the procedure adopted to get sub-pixel accuracy. In addition,

Fig. 15 shows the histograms of the attitude errors along the pointing axis and the orthogonal axes to the

pointing direction, respectively.
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Fig. 14 Planet centroid error

Fig. 15 Attitude determination error

To understand how much the calibration error affects the attitude determination performance, the same

Monte Carlo campaign is performed again on a new set of images generated with the rendering engine in

software mode by considering the same probe poses and camera characteristics. Therefore, no calibration

error is present since no optical assembly is involved in the image generation. In 99.5% of the cases, the

attitude is determined correctly, in the 0.4% the attitude is not determined, and in the 0.1% the attitude

is wrongly determined (error > 1°). Over the 1313 planets found when the attitude is determined, 2 are

false positive (0.15%). As could be foreseen, the success rate in attitude determination is higher when no

calibration errors that shift the position of the stars centroids are introduced. Nevertheless, it is important to

underline that even the performances obtained with the hardware-in-the-loop are comparable to the ones

evidenced by the state of the art.

Eventually, the static simulations are repeated to test the performance of the recursive attitude determination

algorithm. The success of the algorithm rises to 100% when an attitude value perturbed of 20 arcsecs with

respect to the nominal one is given in input to the IP algorithm.

C. Dynamic Hardware-In-the-Loop Simulations
Once the performance of the IP pipeline is verified, the navigation algorithm is tested on a high-fidelity

interplanetary trajectory leg between Earth–Mars. At the beginning of each navigation leg, the optimal

selection approach detailed in [39] is adopted to determine which couple of planets is best to track to obtain

the highest filter performances. Starting from the initial time 𝑡0, the spacecraft tracks the first planet of the
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optimal pair for 60 minutes. Then, it performs a slew maneuver of 30 minutes to point to the second planet to

be observed. Eventually, the state is propagated for 10 days, where no external observations are acquired.

This navigation cycle graphically shown in Fig. 16 is repeated until the end of the analyzed trajectory leg.

Fig. 16 Navigation concept of operations

Whenever a planet is observed, a deep-space image corresponding to the mission scenario is generated,

rendered on the OSI screen, and acquired by the camera. Fig. 17 shows the workflow followed at each

time step of the simulation when a planet is observed. The state vector is propagated from the epoch 𝑡𝑘 to

Image
Processing

Pipeline

Correction Step
at time 

Propagation Step
from  to  

Fig. 17 HIL simulation workflow

𝑡𝑘+1. Then, the estimation is corrected with the external observation, i.e., the planet position projection C𝒓pl,

extracted from the image captured by the camera placed on the top of OSI.

The filter performances are studied through a Monte Carlo analysis conducted on 100 samples. The initial

uncertainties of the state are reported in Table 4.

Table 4 Accuracy of the state components at 𝑡0

𝜎r [km] 𝜎v [km/s] 𝜎SRP [km/𝑠2] 𝜎R [km/𝑠2]

105 10−1 10−10 10−10

Whereas, the measurement error covariance matrix 𝑹 has been accurately defined before the dynamic

simulation by evaluating the standard deviation of the planet centroids error in the images adopted by the first

Monte Carlo sample. Therefore, the obtained 𝑹 is:

𝑹 =

[
0.372 0

0 0.452

]
px2 (26)

The resulting position and velocity error profiles are shown in Figs. 18. Here, the black dashed line

represents the 3𝜎 filter covariance bound, whereas the blue line represents the error profile of a sample. At

the end of the trajectory leg, the filter estimates the spacecraft position and velocity with a 3𝜎 accuracy

of 8600 km and 1.6 m/s, respectively. The degradation in performance is strictly tied to the features

measurement uncertainty in the facility images, surpassing three times the magnitude observed in their
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(a) Position error profiles

(b) Velocity error profiles

Fig. 18 Estimated state error profiles with related 3𝜎 bounds.

synthetic counterparts. This increase in uncertainty is, here, specifically driven by the size of the OSI

screen iFoV, which is greater than the camera one. Instead, in a real operational scenario, the measurement

uncertainty would be influenced by the camera iFoV. Consequently, being this latter smaller in size, the

navigation algorithm would compute the spacecraft state with heightened precision. The navigation filter

performance obtained in this simulation is conservative compared to what would be achieved in a real scenario

where the same camera is used. Instead, the obtained performance could be attributed to a scenario in which

a camera with lower resolution is employed, and its iFoV is comparable to that of the OSI screen.

Eventually, to verify that the filter is well-tuned, the innovation profiles are computed [40]. The innovation,

i.e. the difference between the observation extracted at epoch 𝑡𝑘 and the measurement model evaluated at
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epoch 𝑡𝑘 , must be a zero-mean stochastic process with a covariance equal to 𝑯𝑘𝑷𝑝𝑘𝑯
�
𝑘 + 𝑹𝑘 . If the filter

sample innovations respect these criteria, the parameters of the filter are well-tuned. Figures 19a and 19b

show a closeup of the innovation profiles over the second observation window along the 𝑋-direction and

𝑌 -direction of the 2D camera reference frame C. In particular, the green line represents the 3𝜎 innovation

filter covariance profile, the dashed black line the 3𝜎 innovation sample covariance profile, and the red line

the mean of the innovation samples. It is possible to notice that the criteria are almost respected, ensuring the

proper tuning of the filter.

(a) Innovation along 𝑋-direction in C

(b) Innovation along 𝑌 -direction in C

Fig. 19 Innovation Profiles over the Second Observation Window

VIII. Conclusion
The goal of this work consisted of the development of a procedure for the HIL validation of an optical

autonomous navigation algorithm for interplanetary cruises through the exploitation of Jena Optronik’s OSI.

At this aim, a calibration and compensation pipeline is presented to correct the effects introduced by the

presence of the hardware. Furthermore, the sky-field rendering engine adopted to display images on the

OSI screen is described. Eventually, the autonomous navigation algorithm is validated through static and

dynamic simulations to assess its performance with an actual camera in the loop. At the end of the Earth-Mars
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trajectory, the filter estimates the spacecraft position and velocity with an accuracy of about 8600 km and 1.6

m/s respectively, which are values greater than the ones found when the rendering engine in software mode

generated synthetic deep-space images.

Future analysis should better refine the calibration procedure by decoupling the camera calibration from

the OSI one. Moreover, to increase the simulation fidelity, a more rigorous radiometric calibration of the

facility has to be performed with the adoption of a powermeter. Eventually, to validate the suitability of the

algorithm to be run on a CubeSat onboard processor, the VBN filter should be deployed on a miniaturized

processor whose computational capabilities are representative of an onboard computer.
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