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Summary. We propose a statistical emulator for a climate-economy deterministic inte-

grated assessment model ensemble, based on a functional regression framework. Infer-

ence on the unknown parameters is carried out through a mixed effects hierarchical model

using a fully Bayesian framework with a prior distribution on the vector of all parameters.

We also suggest an autoregressive parameterization of the covariance matrix of the er-

ror, with matching marginal prior. In this way, we allow for a functional framework for the

discretized output of the simulators that allows their time continuous evaluation.

Keywords: Bayesian Statistics; Functional Regression; Hierarchical Modeling; Mixed

Effects Model; Uncertainty Quantification.

1. Introduction

Climate change is, by far, the biggest and most life-threatening challenge of the present

time. Its consequences have the potential to change our society and to threaten the very
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existence of humankind on this planet. Due to its complex nature, climate change is, at

its core, a multidisciplinary problem. It involves many different disciplines, in the nat-

ural, human and social sciences, specifically physics, chemistry, engineering, economics

and sociology.

Due to this intrinsic multidisciplinary nature, and to properly simulate and under-

stand the complexities in the interaction between the different systems that constitute

our society, and climate, a special class of models has been devised. To analyze climate

change, in the last years the scientific community has implemented several integrated

assessment models (IAMs), which are deterministic computer models, i.e. simulators,

that, given the same inputs, produce the same outputs every time a run is repeated.

These models are complex simulations that are able to take into account the multidisci-

plinary nature of the problem, and consequently mix the numerous ingredients coming

from different fields. These kind of large scale computer simulations are widely used in

modern scientific research to investigate, among others, physical phenomena that are too

expensive or impossible to replicate directly (Fan et al., 2009; Textor et al., 2005). Often,

the research interest is focused on quantifying how uncertainty in the input arguments

propagates through the simulator and produce a distribution function over one or many

outputs of interest, as well as how much uncertainty is introduced via the modelling

effort.

Generating the same outputs with several IAMs (namely, creating a model ensemble)

allows to quantify both parametric and model uncertainty. Parametric uncertainty refers

to the variability induced by how much are we uncertain with respect to the right

set of model input parameters, while model uncertainty refers to the ability of each

IAM to model correctly only a part of the reality, and to the differences in the model

implementation and modelling choices. It is of paramount importance to disentangle

the key drivers of uncertainty in emissions projections because this understanding can

help design better climate hedging strategies. Moreover, IAMs diagnostics is a relatively

nascent field that is growing in importance to help validate these kind of computational

models.

To properly address the fundamental parameter uncertainty in climate change mod-
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elling, the scientific community has adopted a scenario approach. Indeed IAMs use, as

inputs, a set of so-called Shared Socio-economic Pathways (SSPs). Scenarios showing

future greenhouse gas emissions are needed to estimate climate impacts and mitigation

efforts required for climate stabilization. SSPs are part of a new framework that the

climate change research community has adopted to facilitate the integrated analysis of

future climate impacts, vulnerabilities, adaptation, and mitigation. Further information

about the scenario process and the SSP framework can be found in Moss et al. (2010),

Van Vuuren et al. (2014), O’Neill et al. (2014), Kriegler et al. (2014). An SSP consists in

the discretization of a continuous plane of mitigation (i.e. reducing the modification in

climate induced by human activitiy) and adaptation (i.e. how we adapt to the changing

climate) to climate change (Riahi et al., 2017) as in Figure 1.

Fig. 1. SSPs plane on adaptation and mitigation, based on Figure 1 from O’Neill et al. (2014)

5 SSP scenarios have been identified. Three of them belong to the main diagonal,

describing futures where the challenges for both climate change adaptation and mitiga-

tion are low (SSP1), intermediate (SSP2) and high (SSP3). In addition there are two

asymmetric scenarios that do not belong to the main diagonal. In fact SSP4 has high

challenges for adaptation combined with low challenges for mitigation, while the contrary

holds for SSP5. We focus on the same application as in Marangoni et al. (2017), from

which we take the data. As in Marangoni et al. (2017) we use only the SSP belonging

to the main diagonal of the matrix represented in Figure 1.

The IAMs output consist in projections of several variables, and the one that we

consider here are the carbon dioxide emissions, since this is the most studied variable

affecting the climate. For this reason data consist of 23 × 5 CO2 global emission (ex-
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pressed in GtCO2) profiles. Each CO2 profile is time dependent, discretized with a

ten-year frequency, to ease the computational burden of the IAMs. In fact, these mas-

sive simulations are expensive and demanding, and a higher frequency in the output

could increase the general cost of the computation, as well as the time needed to run the

model. Those emissions have been computed as the output of 5 different IAMs, using

as input the same combinations of SSP variables, such as gross domestic product and

fossil fuel availability.

Learning from O’Hagan (2006), an important feature of this context that is worth

stressing is that, the output of a simulator (in our case an IAM), which is a computer

prediction of the real phenomenon, will inevitably be imperfect. Statistical analysis

should be able to incorporate the model biased representation of the real process. It is

of great interest to have one single fast statistical emulator (i.e. a model emulating the

unknown outputs from the simulator) able to capture all the variability induced by the

simulators (Kennedy and O’Hagan, 2001; Santner et al., 2003). In particular, there are

certain aspects of CO2 simulation scenarios, that can never be known with certainty,

since we cannot run each model for an infinite length of time or with an infinite number

of possible starting values of the simulations. Part of the uncertainty is also due to

the inability to run the model for every possible choice of the input parameters. The

aforementioned issues are those inducing uncertainty on the data coming from the runs

performed. The quantification of uncertainty in this context, performing a run with all

the combinations of the inputs variable in order to learn the input-output map, could be

too expensive. Conversely, choosing the parameters from a sparse grid could be useless

in learning key features. Ultimately, the weaknesses of this approach mainly originates

by the model simplifications.

Here by statistical emulator we mean a statistical model representing data which are

the output of different IAMs. For the aforementioned issues concerning huge computer

simulations, this work proposes a statistical emulator, treating the IAMs models as black

boxes in order to model the uncertainty in a non-intrusive way. An effective emulator

is one that provides good approximations to the computer code output for wide ranges

of input values, and accurate quantification of the emulation uncertainty (see Francom
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et al., 2018). In fact, one of the biggest advantages of this approach is the possibility,

after having emulated the process, of evaluating outputs with given inputs different from

the one used to fit the model (Busby, 2009). Furthermore, the emulator will allow to have

error intervals at unseen input, completing, in this way, basic requirements desired for

uncertainty quantification. In simple words, an emulator is a stochastic representation

of a computer model that generates a prediction for the output of a computer model

at any setting of the model parameters and reports a measure of uncertainty for that

prediction (Williamson and Blaker, 2014). Here we follow the Bayesian approach, that is

to assume all the parameters, in the statistical model, as random distributed according to

a prior density. One of the most recent works involving Bayesian emulation is Francom

et al. (2019), where they proposed a method based on adaptive splines in order to model

simulations about the spread of radioactive particles through the atmosphere.

Mathematically speaking, a computer model is a function of a possibly large num-

ber of parameters. From a mathematical perspective IAMs are simulators that can be

considered as functions. More precisely, given an input x ∈ X ⊆ Rp, a simulator is a

function f : X 7→ Rq such that y = f(x), with the output represented by y ∈ Rq (Conti

and O’Hagan, 2010). Because of the high complexity of the computer model, f is taken

as a black box; hence proper statistical modelling assumptions will be needed in order

to estimate it.

To statistically emulate these deterministic simulators, the framework in which we

decide to set the problem is Function-on-Scalar Regression (FOSR), a context that is

the extension to functional responses of the classic linear regression, where the response

can be either a scalar or a vector. The functional approach is a useful way to represent

easily the temporal dependence, and making inference or predicting in between the time

units (in our case decades). For more details see Ramsay et al. (2005). Applications of

FOSR are wide and interesting: examples include blood pressure profiles during preg-

nancy (Montagna et al., 2012), longitudinal genome-wide association studies (Barber

et al., 2017; Fan and Reimherr, 2017) and analysis of actigraphy data to investigate the

association between intraday physical activity and responses to a sleep questionnaire

(Kowal and Bourgeois, 2020). FOSR has many features in common with multivariate
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regression - estimation and inference for the regression coefficients, and prediction of new

responses - carrying on additional modeling challenges. Within-function dependence of

functional data requires careful modeling of the covariance structure, which may be

complex or require further assumptions (i.e. a parametric structure), with implications

for model flexibility, computational complexity and scalability. Moreover, the regression

coefficients in FOSR are function themselves, which complicates estimation, inference

and interpretation.

As we said and motivated before, here we assume a Bayesian approach for our analy-

sis and data, which are CO2 emission profiles. We use a Bayesian multilevel hierarchical

model, estimating the coefficients of the basis expansions of the regression coefficients,

a method from FDA that allow to represent a function through some basis. Bayesian

random effects models, also known as hierarchical models, for longitudinal data are very

popular. Relevant references on the topic are Daniels and Pourahmadi (2002) and Shen

and Liu (2020). The model we assume is similar to the one proposed by Goldsmith and

Kitago (2016) where the authors focused on functional representation of the trajectories

of the arm of patients affected by stroke. The main difference we introduce is the form

of the parametric covariance structure for the within-function correlation for computa-

tional ease and predictive purposes. The Bayesian approach to statistical inference has

several benefits, such as the ability to incorporate multiple sources of information and

uncertainty of the parameters, and a greater flexibility to build complex model struc-

tures. Concerning hierarchical modeling, it is a natural framework in which different

kind of grouped data can be described, such as multilevel data of many subjects, as in

our application. In our case the group will be the combination of SSPs input for the

IAMs, because we are interested in assessing how the input of the simulations affects

the outputs. In the Bayesian hierarchical models the usual prior distribution for all the

group specific parameters is such that it allows borrowing information from the largest

groups in order to give better estimates of parameters from the smallest ones. This

type of Bayesian model is particularly appropriate in our application, since it allows

to discover how scenarios are affecting the gas emissions during this century and more

deeply what is the contribution of the various IAMs and SSPs. Moreover our approach
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is fully Bayesian, meaning that we assume a joint prior for all models unknown param-

eters and we compute the relative posterior inference, describing the new uncertainty

of the parameters “after having seen the data”. One of the advantage of the Bayesian

approach is the probabilistic interpretation of the results obtained. In fact, through the

Bayesian approach we do not obtain punctual estimates but rather an entire distribu-

tion estimate, easing in this way the assessment of uncertainty quantification through

the credibility intervals. One of the main advantages of this approach, consists in pro-

viding joint inference on parameters and predicted variables. This is quite a novelty in

the Climatic simulations framework, since past works in literature mainly focused on

frequentist Functional Data Analysis.

We propose a five-fold original contribution in the present work

• The proposal of a Bayesian model to make inference for CO2 simulated emissions,

an approach that is new for this type of simulator data;

• the choice of the Bayesian model (i.e. likelihood and prior)

• the understanding of the results we have obtained through a probabilistic perspec-

tive. In particular we have given a probabilistic measure of how much in the IAMs

each SSP contributes to the output. Moreover we have written Stan (Stan Develop-

ment Team, 2019) and R (R Core Team, 2017) codes to run the MCMC simulations

for computing the posterior inference.

• modeling the variability of the single SSPs combinations induced by the different

IAMs, giving a credible interval for a new IAM simulator;

• giving a continuous framework to the discretized output of the simulations, as to be

able to evaluate emission at any time other than the one ouput by the simulation.

This manuscript is organized as follows: Section 2 describes the data we consider in

our analysis, Section 3 the Bayesian model we have considered. In Section 4 we show

the application of our approach to the data and the findings. The article concludes with

a discussion and further developments in Section 5. In the end, Supplementary Material

contains some details on hyper-parameters choice, sensitivity analysis and complemen-

tary images that were omitted from the main manuscript.
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2. Data

Data were taken from the work by Marangoni et al. (2017). Further information and

details on SSPs are available at the International Institute for Applied System Analysis

(IIASA) site. We consider the output of 5 IAMs. Each IAM outputs 23 different time

series, corresponding to 23 different inputs, with a ten year frequency, of the CO2 global

emission (expressed in gigatonnes of carbon dioxide - GtCO2). More precisely, an input

given to an IAM is a combination of future projection scenarios concerning the follow-

ing SSP variables: population (POP), gross domestic product per capita (GDPPC),

energy intensity improvements (END), fossil fuel availability (FF), low-carbon energy

technology development (LC). In each of the 23 combination the scenarios describing

the variables belong to one of the three levels described in Section 1: SSP1, SSP2, SSP3.

While SSP variables do represent temporal pathways of given numerical inputs for an

IAM, we adapt the same experimental strategy as in Marangoni et al. (2017), thus map-

ping a given pathway to a specific level of the corresponding SSP variable. In other

words, for our purposes, SSP variables are not functions, but scalars. Recall that the

SSP plane is continuous (see Figure 1), and the SSP levels are taken from the discretized

version of that plane (as explained in Section 1). Their representation consists in scalar

variables indicating to which scenario the variable belongs. For example the combina-

tion in which GDPPC takes value 1 and all the other variables takes value 2 means

that GDPPC in that case follows the SSP1 pathway and all the others the SSP2 one.

The choice of treating the variables as continuous instead of discrete-valued, is princi-

pally motivated by the chance of making prediction on scenarios that are, for example,

half-way between two levels (i.e. GDPPC = 2.5).

The data we consider have the following structure:

yij =
[
yij(t1), yij(t2), ..., yij(tD)

]
wi =

[
1, wi1, ..., wip

]T
j = 1, ..., J, i = 1, ..., I

where J = 5 and I = 23 are, respectively, the number of IAMs and SSPs combinations,

{t1, t2, ..., tD} = {2020, 2030, ..., 2090} with D = 8. Here wi represent the i-th combi-

nation of SSP variables, including an intercept term, with p = 5; yij is the CO2 profile

emission, in logarithmic scale, produced by the i-th SSP combination within the j-th
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IAM. The total number of data is N = I × J . Each of the five panels in Figure ?? in

the Supplementary Material, associated to a different IAM, shows 23 different emission

profiles. The plots help understanding how different IAMs produce very different pro-

jection ranges across time. This is principally due to the differences in the assumptions

and in the implementation of the IAMs, and we are going to model those differences in

our modeling approach.

Figure 2 shows, for each of the 23 combinations of the SSP variables, the 5 curve

corresponding to different IAMs. Within each panel, it is clear that the associated IAM

curves are correlated. For this reason in the next section we will model this dependence

through random effects.
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Fig. 2. CO2 emissions profiles in logarithmic scale grouped by SSP combination; each panel

displays the 5 output from the same SSP combination.

Figure 3 shows box-plots of the emissions per decades comparing the output of the

five IAMs. Note that for each decade the boxplots are different across the IAMs.
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Fig. 3. Boxplots of CO2 emissions (in the log scale) by IAMs for each decade. The range of the

y-axis is the same.

3. Bayesian Functional Model

In Section 2 we have introduced notation for our data, i.e. yij(td) as the logarithm of

the CO2 emission at time td produced by the j-th IAM given the i-th SSP combination

as input, and wi =
[
1, wi1, ..., wip

]T
as the vector describing the i-th SSP combination,

with p = 5. We assume, for any fixed t, for each SSPs combination i = 1, ..., I and for

each IAM j = 1, ..., J :

yij(t) = wT
i β(t) + ci(t) + εij(t) (1)

where εij(t) is a Gaussian random error with 0 mean and β(t) =
[
β0(t), β1(t), ..., βp(t)

]

is the corresponding regression parameter at time t. Here ci(t) is the i-th SSP com-

bination specific random effect coefficient function, that models the internal variability

of the combination and induce correlation between observations with the same SSPs

combination as input.

We rely on functional representation of the data since we assume the CO2 emission

simulations as a continuous phenomenon in time, that we can reasonably assume to

be smooth, and whose temporal downscaling is of great interest. Here, by temporal

downscaling, we mean the ability to assess and evaluate the output of the IAM for any
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time instant, and not only for those at which the IAMs output were produced. Recall

that the IAMs, for a matter of computational cost, provide output only at the decades.

For this reason, we believe that the functional approach could be very useful in the

temporal downscaling (see Section 4.2).

Hence we consider a FOSR model for the response curves {yij(t)}, expanding all the

regression parameters
{
βk(t), k = 0, 1, ..., p

}
and random effects

{
ci(t), i = 1, ..., I

}
via

a truncated B-spline basis expansion with K components (for more details, see Ramsay

et al., 2005). More explicitly, we assume that

βk(t) =

K∑

l=1

blkθl(t) k = 0, 1, ..., p (2)

where
{
θl(t), l = 1, ...,K

}
is the B-spline basis and

{
blk, l = 1, ...,K

}
are the unknown

scores of the functional parameters βk(t) expansion. Similarly we assume

ci(t) =

K∑

l=1

dliθl(t) i = 1, ..., I (3)

where
{
dlk, l = 1, ...,K

}
are the unknown scores of the functional random effect ci(t)

expansion.

Eq. (1) becomes, in a vectorized form, the following

yij = wT
i β + zTi c + εij , εij |Σ iid∼ ND(0,Σ) (4)

where β =
[
βk(td)

]
k,d

is the unknown (p+1)×D matrix whose rows are the regression

coefficients functions evaluated at the time grid, zi is the I×1 vector indicating the SSP

scenario combination with all 0 elements but a 1 in the i-th position, c =
[
ci(td)

]
i,d

is the

unknown I×D matrix of subject random effects and εij =
[
εij(t1), εij(t2), ..., εij(tD)

]T

is the D-dimensional error vector.

Expanding
{
βk(t)} and {ci(t)

}
as in (2) and (3) respectively, the matrices β and c

in (4) assume the following form:

β = [ΘBW ]T c = [ΘBZ ]T (5)

with Θ =
[
θl(td)

]
d,l

being the known D ×K cubic B-splines evaluation matrix. Here

BW =
[
bl,k
]
l,k

is the K × (p + 1) matrix whose columns contain the fixed effects basis
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scores vector to be estimated and BZ =
[
dl,i
]
l,i

is the K × I matrix whose columns are

the random effects basis scores vector to be estimated as well.

With the basis expansion described in (5), model (4) is equivalent to the following:

yij = wT
i BT

WΘT + zTi BT
ZΘT + εij εij

iid∼ ND(0,Σ) (6)

for i = 1, ..., I and j = 1, ..., J .

For a more efficient MCMC sampling performance, the model is hierarchically cen-

tered as in Gelfand et al. (1995), that is, for i = 1, ..., I and j = 1, ..., J :

yij = zTi BT
ZΘT + εij with εij

iid∼ ND(0,Σ) (7)

with centered marginal

BZ,i|BW , σ
2
Z

ind∼ NK(BWwi, σ
2
ZP−1) σ2

Z ∼ IG(aZ , bZ) i = 1, ..., I

BW,k|σ2
W,k

ind∼ NK(0, σ2
W,kP

−1) σ2
W,k

ind∼ IG(aW,k, bW,k) k = 0, 1, ..., p

(8)

where aZ , bZ , aW,k and bW,k are fixed hyperparameters.

Model (7)-(8) is very similar to the model in Goldsmith and Kitago (2016), but as it

will be clear in a while, we introduce a different covariance structure on the error. In (8)

we assume the K ×K matrix P = αP0 + (1 − α)P2 as a penalization matrix which is

constructed as a weighted sum of two different matrices concerning shrinkage (i.e. P0)

and smoothness (i.e. P2). Further details on the construction of the components of P

are present in Eilers and Marx (1996).

We assume an autoregressive configuration for the covariance matrix Σ of the errors

Σ =




σ2 σ2ρ . . . . . . σ2ρD−1

σ2ρ
. . .

...
...

. . .
...

...
. . . σ2ρ

σ2ρD−1 . . . . . . σ2ρ σ2




(9)

In a first version of this work (Aiello, 2020) we have assumed Σ as a full matrix and

given it an IW prior distribution. However, posterior computations were much heavier

and the associated inference gave evidence to the autoregressive assumption (9).
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We complete the prior specification assuming prior independence among σ2, ψ and

ρ, and:

σ2 ∼ IG
(
ν

2
,
ν

2
ψ

)
ψ ∼ Γ

(
ν0

2
,
ν0

2

1

ψ0

)
ρ ∼ N (0, 1) (10)

where ν, ν0 and ψ0 are fixed hyperparameters.

Observe that (9) is a first order autoregressive covariance structure over time. The

correlation between two successive decades is assumed homogeneous over time in (9)

and denoted by ρ. This parameterization for Σ will result particularly convenient for

computing predictions at times not included in the IAMs output.

Through model (7)-(10) we reduced the infinite dimensional problem to a finite di-

mensional one.

4. Application

In this section we apply the model described in Section 3, specifically (7)-(10), to data

from the IAM model ensemble described in Section 2. Remember that each SSP combi-

nation wi is a 6-dim vector input, including the intercept term, having multiple curves

associated with it (one for each IAM).

We fix the number of B-spline basis to K = 8, and the adjusting parameter be-

tween shrinkage and smoothness to α = 0.01 in P = αP0 + (1 − α)P2 in order

to give more weight to smoothness. We fixed aW,k = 4 for all k = 0, ..., p, bW =

[0.51, 0.0002, 0.002, 0.001, 0.0005, 0.0001]T , aZ = 92, bZ = 0.0038 (see (8) for definition

of these hyperparameters), ν = 7, ν0 = 2 and ψ0 = 0.047 (see (10)). See Section ?? in

Supplementary Material for details on this choice.

Posterior inference is obtained through Stan (Stan Development Team, 2019; Hoffman

and Gelman, 2014), an open-source, general purpose programming language for Bayesian

analysis, and rstan for interfacing with R (R Core Team, 2017). The codes are available

in the Supplementary Material, Section ??.

Four chains were ran in parallel by Stan, each one with 20, 000 iterations, discarding

the first 15, 000. Hence, the total final sample size is equal to 20, 000. Details on

sensitivity analysis associated with hyperparameters and convergence diagnostics plots,

can be found in the Supplementary Material, Section ??.
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4.1. Regression coefficient functions

We report here the estimate of the functional regression parameters
{
βk(t), k = 0, 1, ..., p

}
.

More precisely, having access to the simulated posterior values of BW =
[
bl,k
]
l,k

, the

estimates of the regression coefficient functions can be computed as:

E
[
βk(t)|data

]
=

1

R

R∑

r=1

Θ(t)B
(r)
W,k k = 0, 1, ..., p (11)

where R is the number of MCMC simulations (here R = 20000), Θ(t) =
[
θl(t)

]
l

is the

vector containing the basis functions and B
(r)
W,k is the current MCMC value of the column

vector BW,k in the MCMC (see (5)).

Figure 4 shows the estimated regression coefficient functions computed, as in (11),

over a fine grid of values t in the continuous interval [2020, 2090], along with their 95%

posterior credibile bands. The plots also show, in grey shading, the time points in which

each 95% credibility interval does include zero. This is a useful tool to interpret and

assess the “significance”of the regression coefficients depending on time. More precisely,

we consider the time interval in which zero is not included in the credibility band as the

time interval in which the variable is significantly different from zero.

βFF(t) βLC(t)

βGDPPC(t) βEND(t)

β0(t) βPOP(t)

2020 2040 2060 2080 2020 2040 2060 2080
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Fig. 4. Estimates of the regression coefficient βk(t), obtained via B-spline basis expansion. The

estimate is obtained as the posterior mean (11) and denoted as solid red line.

The continuous framework of model (1), through a functional data approach makes

possible estimation, visualization and assessment of the regression coefficient functions.
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This is important since it allows to assess the time intervals in which the effect are strong

and those in which such effect is null or negligible. Furthermore, the variation through

time of each βk(t) is another important we are going to discuss here below.

The posterior credibile bands of coefficients corresponding to GDPPC and END

exclude 0 from about 2040 and 2020, respectively, and this gives evidence to consider

them as the principal driving fixed effects in the IAMs simulations. In addition, they

are also the coefficients more deviating from zero, indicating that their effect magnitude

is quite large. Concerning the sign of the regression coefficient functions, GDPPC has

a negative effect, while all the others have a positive effect. This negative effect can be

explained since scenario SSP1 assumes that the world is richer than in SSP3. Typically a

richer population will consume and pollute more than a poorer one. Covariates FF and

POP become significant after 2050 and 2070 respectively, and, although the magnitude

of the associated coefficients is not as big as the one relative GDPPC and END, they

can also be considered significant ad well. Variable LC does not seem to be significant.

See Section ?? of the Supplementary Materials for an alternative assessment of the

significance of the coefficients.

4.2. Emission curve estimation

As mentioned in the Introduction, one of the big advantages of having estimated, to-

gether with the other parameters, the expansion score matrix BZ , is that we now can

estimate the parameters which represent the conditional expectation of yij(t) in (7).

We compute the posterior mean of the functional random effects parameters ci(t) in (1)

through representation (7). Specifically we compute E
[
ci(t)|data

]
for i = 1, ..., I through

the MCMC output, similarly as in (11) starting from posterior draws of BZ . This pos-

terior estimate represent the Bayesian estimates of the logarithm of the CO2 emission at

any time point t in the interval [2020, 2090]. Figure 5 displays the ci(t) posterior means

along with the 95% credibility intervals.

To better understand the estimates in Figure 5 we have plotted, in Figure 6, for

the SSPs combinations that take the same value in each SSP variable (i.e. wi1 =

(1, 1, 1, 1, 1, 1)T , wi2 = (1, 2, 2, 2, 2, 2)T and wi3 = (1, 3, 3, 3, 3, 3)T ), the mean and the
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Fig. 5. Posterior mean of ci(t) corresponding to the 23 combination of SSPs in the study with

95% credibility bands associated; points are the observed outputs given by the IAMs.

95% credible bands over time of the posterior distribution of ci(t) together with the

min-max data range (i.e. the grey shading). Differently from the standard approach for

uncertainty quantification of computer simulators, usually followed for the IAMs, here, in

a probabilistic way, we account and give a measure for their uncertainty. In fact we have

computed the full posterior distribution of the IAMs output mean given by SSPs specific

input. This has enormous advantages in terms of interpretation of the estimates, since we

can give true probabilistic interpretation of these estimates. Nowadays the uncertainty

quantification of IAMs is carried out through an empirical evaluation of the output of

different simulators.

From Figure 6 it is clear that the popular empirical approach uses only deterministic

ranges (the grey bands in Figure 6), which does not take into account any variability

in the process. Our estimates, instead, use the proper posterior distribution on the

emissions at unobserved data points, thanks to the functional framework. It is worth to

specify that this is a novelty in the IAMs framework since, as we mentioned before, the

uncertainty quantification of IAMs is principally carried out through the evaluation of

the empirical ranges of different models. As a matter of fact, not only we are representing

the uncertainty hidden into the multi-IAM framework, but, through the emulation of

the IAM, we are also providing a probabilistic meaning to the parameters estimates, a



CO2 Projections Emulation 17

POP=GDPPC=END=FF=LC=SSP1 POP=GDPPC=END=FF=LC=SSP2 POP=GDPPC=END=FF=LC=SSP3

2020 2030 2040 2050 2060 2070 2080 20902020 2030 2040 2050 2060 2070 2080 20902020 2030 2040 2050 2060 2070 2080 2090

3.6

4.0

4.4

Time

 lo
g(

C
O

2)
  e

st
im

at
e

Estimates and data ranges for references scenarios

Fig. 6. Mean estimation on the reference scenarios taking the same value in each SSP variable.

novelty for this kind of simulations.

There was very little difference in terms of posterior predictive MSE under our model

and the MSE derived through empirical estimates, computed following Chapter 13 of

the book by Ramsay et al. (2005), since our model MSE is 0.016 and the frequentist

one is 0.014. Although it is slightly better the frequentist one we are more satisfied

with our model since it benefits from all of the Bayesian advantages that we have listed

throughout the paper. In Supplementary Material, Section ??, Figure ?? shows three

estimates comparison between the two approaches.

4.3. Temporal kriging

In order to properly perform predictive temporal downscaling, we adopt a kriging ap-

proach, tailored on our purposes. More precisely, here we want to predict the values of

the emissions at any mid-decade (i.e, at years 2025, 2035, ...,2085) for each IAM and

for each SSP combination. Then, we adopt an augmented data approach, so that we

consider, as response variables:

ỹij =
[
yij(t1), yij(t2), ..., yij(tD̃)

]

where, in this case, t1 = 2020, t2 = 2025, t3 = 2030, t4 = 2035, ..., tD̃ = 2090 with

D̃ = 15. The model for these augmented data is exactly the same as in (7) where
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matrices Θ̃ and Σ̃ are defined as Θ and Σ, respectively, with the proper changes of

dimensions. Specifically, we assume:

ỹij |BZ , Σ̃
ind∼ ND̃(zTi BT

ZΘ̃T , Σ̃)

Here we distinguish between observed emissions at full decades, and non-observed data,

i.e., the emissions at years 2025, 2035, ...,2085. In case of missing observations, the

Bayesian approach allows them to be treated as (random) parameters. In practice, we

include them in the state space of the MCMC and simulate from their posterior predictive

distribution. Specifically, we draw MCMC samples from the following distribution, i.e.

L(ypred
ij |yobs) =

∫

Φ
L(ypred

ij , dφ|yobs) =

∫

Φ
L(ypred

ij |φ,yobs)π(φ|yobs)dφ (12)

where ypred
ij =

[
yij(t1), yij(t3), ..., yij(tD̃)

]
, yobs contains all the observed data, π(φ|yobs)

is the posterior of the vector of all the parameters of the model and Φ is the space of all

the model parameters. The distribution L(ypred
ij |φ,yobs) can be computed from the joint

distribution of ypred and yobs, which is a D̃-dim Gaussian density. From straight-forward

computations we derive that

ypred
ij |BZ , Σ̃,y

obs
ij ∼ NDpred

(µ̄ij , Σ̄)

where

µ̄ij = ΘpredBZzi + Σpred,obsΣobs(y
obs
ij −ΘobsBZzi)

Σ̄ = Σpred,pred −Σpred,obsΣ
−1
obs,obsΣobs,pred

with Σpred,pred, Σobs,obs, Σpred,obs and Σobs,pred are the matrices relative to the predicted

points covariance, to the observed points covariance, and to the covariance between ob-

served and predicted points. Moreover, Θpred is the submatrix of Θ̃ relative to the

predicted points respectively. Figure 7 displays, for three curves of IAM 1, the distribu-

tion in (12), i.e. the temporal kriging, represented by bigger dots and the shades (the

95% credible band), and the associated observed data by smaller dots.

The plot shows that the IAM observed data lie inside the 95% credibility intervals of

the estimated mean curves. Recall that, in general, computer models, such as the IAMs,

are very expensive to run, and hence, they are ran only with a small amount of input
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Fig. 7. Temporal kriging for three reference scenarios of IAM 1

points. In this perspective, our procedure is an interesting tool that can help refining

the temporal grid, in order to lighten up the computational burden of the simulators.

Moreover, it also allow researchers to draw conclusions based on few run multiple IAMs

giving as output projections with decade frequencies.

5. Conclusions

Climate change is one of the most difficult challenges humanity has ever faced (Pachauri

et al., 2014). Decreasing greenhouse gases emissions, especially CO2, is the most impact-

ing action that, as a global society, we can do. For this reason, several computational

models have been proposed by the scientific community in recent years, in order to simu-

late CO2 emission profiles over this century, or other climatic variables. These simulators

are complex models, which, generally, are very expensive to run. This implies that only

a small number of runs, each with few different input parameters, can be performed. In

the last decades, statistical emulators, i.e., statistical models, have gained attention as

they emulate the behaviour of a simulator, using a few numerical outputs as data points

to build inference.

Our work propose a Bayesian hierarchical model for simulator outputs. The model

allows great flexibility and randomness in the model parameters. The Bayesian approach

intrinsically offer a tool for uncertainty quantification, that is very important in this
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context. In fact, by computing the joint posterior distribution of all parameters, we

are able to compute also interval estimates based on a probabilistic model. In this

way, we quantify the posterior probability that a parameter θl belongs to an interval

(a, b). The continuous representation of the IAMs output is obtained thanks to the

functional framework. This modelling choice is is justified mainly because we assume

that the IAM emissions are produced as ”simulated” output of a smooth phenomenon

in time and space and, hence, it is convenient to treat them as a continuous function

of time. Finally, the hierarchical structure of the model allows for more flexibility by

introducing new parameters other than the global ones. As a matter of fact, in order

to deal with nested data we needed group-specific parameters and hierarchical priors to

share information between different groups to help parameter estimation. This is the so

called ”borrowing of informations” of these kind of Bayesian models.

We have assumed a AR(1) covariance structure for the likelihood. This choice is

particularly useful to decrease the computational burden and increase the ability of

parameters interpretation. Other modeling choices could have been adopted, such as

time series models or multivariate regression. However, AR(1) covariance structure is

particularly convenient when considering temporal downscaling.

The posterior analysis has showed that the most important factors are the GDPPC

and END. This result emphasizes the need of far-sighted and “integrated”policies that

includes changes,with respect to what has been done until now, in crucial fields such as

the economic and energetic policies. We have also found that the the availability of fossil

fuel is, statistically significant to predict the CO2 emissions, although less important than

other factors. In addition, posterior evidence shows that the variable describing the

development of low carbon technologies does not influence the CO2 simulated emissions

almost at all. This may indicate that the decrease of the consumption and any change in

western lifestyle can impact than the development of low carbon technologies in order to

mitigate climate change. Finally, this work underlines the need of wide multi-disciplinary

policy strategies that include all of the variables that have been found to be statistically

significant. It stands out that it is fundamental to concentrate the mitigation efforts on

the key drivers of climate change, and that without a broad strategy, a great cut of the
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emission is much more difficult to achieve.

In conclusion, deterministic models, that produce forecasts coming from different

research group, are important tools that could allow policy makers to better understand

the processes they are called to make decisions on. As a matter of fact, none of the

existing IAMs is a perfect model for future projections, but each of them capture different

key features of the phenomenon. In this work we have modeled the intrinsic variability

when considering several IAMs outputs with identical inputs. This variability represents

the uncertainty that the different modelling assumptions and settings induce on the CO2

emission processes.

In the end, we believe that we have provided a new insight into the Bayesian uncer-

tainty quantification of computer simulated (i.e. via the use of IAMs) future projections

of climate variables such as CO2 emissions. This is crucial because, not only it allows

to have uncertainty intervals with a probabilistic meaning, but also immediate interpre-

tation of the results that are obtained. Our work built a model able to give a unified

IAMs framework to the policy makers, giving the chance to climate scientist to emulate

several computer models at once, with one statistical emulator. We did this by taking

advantage of the progresses made in Bayesian inference for functional data, in completely

unrelated applications compared to ours.
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1 The Choice of Hyper-parameters and predic-

tive comparison

We use here the empirical Bayes approach to select weakly informative prior in

(??) in the manuscript. We follow the idea described in Goldsmith and Kitago

(2016). The values are chosen according to the following formulas:

aZ =
I ·K

2
bZ =

1

2
tr

{[
(BOLS

Z )T −W(BWLS
W )T

]T
P
[
(BOLS

Z )T −W(BWLS
W )T

]}

aW,k =
K

2
bW,k =

1

2
(BWLS

W,k )TP(BWLS
W,k )

where BOLS
Z and BWLS

W are respectively the frequentist Ordinary Least Squares

and Weighted Least Squares estimates obtained by

min
BZ

(Y − ZBT
ZΘT )T (Y − ZBT

ZΘT )

min
BW

(BZ −WBT
W )TP(Y −WBT

W )

Different choices of hyper-parameters will be compared via predictive goodness of

fit indexes.
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For model (??)-(??) described in the manuscript we have compared three dif-

ferent choices of the hyper-parameters. More precisely, we compared the following

configurations

Reference Alternative 1 Alternative 2

aW,k 4 3 5

bW [0.51, 0.0002, 0.002, 0.001, 0.0005, 0.0001]T [2, 3, 4, 5, 6, 7]T [2, 4, 6, 8, 10, 12]T

aZ 92 2 4

bZ 0.0038 6 7

ν 7 11 20

using two well known predictive goodness of fit indexes, the widely applicable infor-

mation criterion (WAIC Watanabe, 2013) and the log pseudo marginal likelihood

(LPML Geisser and Eddy, 1979).

Reference Alternative 1 Alternative 2

LPML 1362.296 1257.146 1255.931

WAIC -2534.813 -2642.834 -2642.104

Recall that the best model is the one with greatest LPML and with the smallest

WAIC. From the LPML it seems that the reference set of the hyper-parameters is

the best choice while WAIC suggests that one of the alternative choices is better.

Interpreting predictive performance indexes is not an easy task but in this situation

we can assume that our model is stable with respect to the choice of the hyper-

parameters.

2
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Figure 1: CO2 emissions profiles in logarithmic scale grouped by IAM; each panel
displays the 23 output from the same IAM.
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Figure 2: Comparison between Bayesian estimate (solid line + CI band) and the
frequentist estimate (dashed line)
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Figure 3: Traceplots of the regression coefficient expansion scores regarding POP
variable
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Figure 4: Autocorrelation of the regression coefficient expansion scores regarding
POP variable
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3 Regression coefficient function significance

In order to give a statistical evaluation of the significance of the regression coef-

ficient functions, other than the evaluation of the credible bands over time, we

compute the posterior probability over time of βk(t) being “significantly”different

from 0. This is another way to assess the estimates shown in Figure ?? of the

manuscript.

Of course computing the posterior probability that βk(t) 6= 0 is pointless be-

cause βk(t) has a continuous posterior distribution. Kruschke and Liddell (2018)

proposed the use of a region of practical equivalence (ROPE) around the interested

value (in this case 0). In this way every time a value falls inside such interval, it

can be considered equal to the value on which the interval is centered. For the

purposes of this work, we consider, for each t and k = 0, 1, ..., p, an arbitrarily

small interval centered around 0 such as (0 − δk(t), 0 + δk(t)), with δk(t) equal

to the posterior variance of βk(t). Because of (??) from the main manuscript we

have:

δk(t) = Var
[
βk(t)|rest

]
= Var

[
Θ(t)BW,k|rest

]
= Θ(t)Var

[
BW,k|rest

]
Θ(t)T

where Var
[
BW,k|data

]
can be estimated from the posterior MCMC.

Therefore, for t ∈ {2020, 2021, ..., 2090} and k = 0, 1, ..., p, Figure 5 displays

the following probability:

π0,k(t) = P
(
|βk(t)| > δk(t)|data

)
(1)

for k = 0, 1, ..., p. Following the ROPE principle, the computation of this probabil-

ity is practically equivalent to the probability of the coefficients of being different

from zero.

The black dotted line at level 0.9 denotes the threshold set to assess the sig-

nificance of the variables. Coherently with the conclusion drawn from Figure ??

of the manuscript we see that GDPPC and END are the variables that have

the longest influence on the output of the model. They have similar behaviour,

confirmed by the corresponding π0,k(t), with opposite effects as we have shown

(respectively negative and positive). The first one surpass 0.9 about in 2040 while
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Figure 5: Plot of the π0,k(t) = P(|βk(t)| > δk(t)) (in solid red) referring to βk(t)
for each k = 0, 1, ..., 5.

the second does it almost immediately after 2020. Concerning FF, it is not as fast

as the first two in exceeding 0.5 and it surpass 0.9 around 2050. Although βFF (t)

does not deviate from zero as much as GDPPC and END, it is clearly differ-

ent from zero after 2050. These considerations on SSP variables are, somehow,

analogous to those obtained in a frequentist framework by Fontana et al. (2019).

4 Stan Code

functions {

matrix cov_matrix_ar1_obs(real ar , real sigma , int nrows)

{

matrix[nrows , nrows] mat;

vector[nrows - 1] gamma;

mat = diag_matrix(rep_vector(sigma , nrows));

for (i in 2: nrows) {

gamma[i - 1] = pow(ar, 2*(i - 1) -1);
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for (j in 1:(i - 1)) {

mat[i, j] = sigma*gamma[i - j];

mat[j, i] = mat[i, j];

}

}

return mat;

}

matrix cov_matrix_ar1_full(real ar , real sigma , int nrows)

{

matrix[nrows , nrows] mat;

vector[nrows - 1] gamma;

mat = diag_matrix(rep_vector(sigma , nrows));

for (i in 2: nrows) {

gamma[i - 1] = pow(ar, (i - 1));

for (j in 1:(i - 1)) {

mat[i, j] = sigma*gamma[i - j];

mat[j, i] = mat[i, j];

}

}

return mat;

}

}

data {

int <lower=0> I; // number of SSPs

int <lower=0> J; // number of IAMs for each SSP

int <lower=0> IJ; // total number of observations

int <lower=0> p; // number of fixed effects

int <lower=0> Kt; // number of spline basis functions

int <lower = 0> D_obs;

int <lower = 0> D_pred;

int <lower = 1, upper = D_obs + D_pred > d_obs[D_obs];

int <lower = 1, upper = D_obs + D_pred > d_pred[D_pred ];

vector[p] W[IJ]; // fixed effect design matrix

vector[I] Z[IJ]; // random effect design matrix
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vector[D_obs] Y_obs[IJ]; // outcome matrix

matrix[D_obs + D_pred ,Kt] THETA; // B-spline evaluation

matrix

cov_matrix[Kt] PenMat; // prior penalty matrix for

spline effects

real <lower=0> aw; // first hyper -parameter for the

prior on sigma_B_W

vector[p] bw; // second hyper -parameter for

the prior on sigma_B_W

real <lower=0> az; // first hyper -parameter for the

prior on sigma_B_Z

real <lower=0> bz; // second hyper -parameter for

the prior on sigma_B_Z

real <lower=0> v; // hyper -parameter for the

diagonal of covariance

}

transformed data {

int <lower = 0> D = D_obs + D_pred;

vector[Kt] mu_B_W; // prior mean for spline effects

for (k in 1:Kt) {

mu_B_W[k] = 0;

}

}

parameters {

matrix[p,Kt] B_W; // matrix of fixed effect spline

coefficients

matrix[I,Kt] B_Z; // matrix of random effect

spline coefficients

vector <lower=0>[p] sig2_B_W; // tuning variance

real <lower=0> sig2_B_Z; // tuning variance for

random effect

real <lower=0> sigma; // residual variances

real <lower=0> psi;
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real <lower=-1,upper=1> phi; // autoregressive effects

}

transformed parameters {

vector <lower=0>[p] tau2_B_W; // tuning parameter for the

variances of B_W

real <lower=0> tau2_B_Z; // tuning parameter for the

variances of B_Z

cov_matrix[D_obs] SIG;

for(k in 1:p) {

tau2_B_W[k] = pow(sig2_B_W[k], -1);

}

tau2_B_Z = pow(sig2_B_Z ,-1);

SIG = cov_matrix_ar1_obs(phi ,sigma ,D_obs);

}

model {

// Prior for variance components controlling smoothness in

beta

for (k in 1:p) {

sig2_B_W[k] ~ inv_gamma(aw,bw[k]);

}

// Prior for variance components of the random effects

sig2_B_Z ~ inv_gamma(az,bz);

// Prior for spline coefficients for beta

for (k in 1:p) {

(B_W[k])’ ~ multi_normal_prec(mu_B_W , tau2_B_W[k] *

PenMat);

}

// prior for the spline coefficients for c

for (i in 1:I) {

(B_Z[i])’ ~ multi_normal_prec ((B_W) ’* W[i], tau2_B_Z *

PenMat);

}

// Prior for covariance matrix of the residual
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phi ~ normal (0,1);

sigma ~ inv_gamma(v/2,v*psi/2);

psi ~ gamma (1 ,0.75);

// Outcome likelihood

for (n in 1:IJ) {

Y_obs[n, ] ~ multi_normal ((THETA[d_obs ,] * B_Z ’)*Z[n,],

SIG);

}

}

generated quantities {

matrix[D_pred ,IJ] Y_pred; // augmented data vector

including missing ones

cov_matrix[D] SIG_full;

SIG_full = cov_matrix_ar1_full(phi ,sigma ,D);

for (n in 1:IJ)

Y_pred[,n] = multi_normal_rng (( THETA[d_pred ,] * B_Z ’) *

Z[n,] + SIG_full[d_pred ,d_obs] * inverse_spd(SIG_full

[d_obs ,d_obs ]) * (Y_obs[n,] - (THETA[d_obs ,] * B_Z ’)

* Z[n,]),SIG_full[d_pred ,d_pred] - SIG_full[d_pred ,

d_obs] * inverse_spd(SIG_full[d_obs ,d_obs ]) *

SIG_full[d_obs ,d_pred ]);

}
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