
AMLLIBRARY: AN AUTOML APPROACH FOR
PERFORMANCE PREDICTION

Bruno Guindani
Department of Electronics,

Information and Bioengineering
Politecnico di Milano

Milano, Italy

Marco Lattuada
System Research and Applications

STMicroelectronics
Cornaredo, Italy

Danilo Ardagna
Department of Electronics,

Information and Bioengineering
Politecnico di Milano

Milano, Italy

Abstract—aMLLibrary is an open-source, high-level Python
package that allows the parallel building of multiple Machine
Learning (ML) regression models. It is focused on performance
modeling and supports several methods for feature engineer-
ing/selection and hyperparameter tuning. The library implements
fault tolerance mechanisms to recover from system crashes, and
only a simple declarative text file is required to launch a full
experimental campaign for all required models. Its modular
structure allows users to implement their own plugins and model-
building wrappers and easily add them to the library. We test
aMLLibrary on building the performance models of neural
networks and image processing applications, with the best model
produced often having less than 20% prediction error.

I. INTRODUCTION

The ability to predict with fair confidence the execution
time or other performance metrics of software is crucial in
many software-related activities. For instance, in any indus-
trial context in which Service Level Agreements (SLA) on
software are established with customers, being able to allocate
appropriate resources based on the expected workload holds
the utmost importance. This is also the case for many other
tasks such as job scheduling and cluster capacity planning,
in which performance modeling enables providers to manage
effectively data center infrastructures at runtime.

However, the complexity of modern software and underly-
ing models is ever-increasing, with major examples being big
data and High-Performance Computing (HPC) applications,
which often have many software layers and run on multiple
cluster nodes. The impact of input configurations and settings
on performance metrics is not straightforward, preventing the
use of analytical methods to study the performance. For this
reason, an approach that does not require any knowledge of
the internal details of the system is preferred. We generally
refer to such approaches as black-box techniques. In partic-
ular, Machine Learning (ML) is the prominent category of
black-box approaches for performance analysis (Didona and
Romano, 2015). ML models attempt to infer the input/output
relationships that map application and system characteristics
onto the target performance indicators and encode such rela-
tionships via, e.g., statistical models.

In this paper, we introduce aMLLibrary, a Python pack-
age for the automated building and selection of ML regression
performance models. aMLLibrary implements an autoML

solution, i.e., it performs training of multiple regression mod-
els and automatically selects the most accurate one. It features
parallelization of computation and fault tolerance mechanisms
to recover from system crashes, as well as several plugins for
data pre-processing and feature engineering which are most
useful in performance modeling. Executing a data analysis
campaign is as easy as writing a simple configuration text
file with the list of chosen ML models and all needed specifi-
cations. The library can also leverage Bayesian Optimization
(BO) to perform hyperparameter tuning.

We validate aMLLibrary by building performance models
for neural network and edge computing applications, with
several experimental campaigns for each one. The best models
produced often have prediction errors smaller than 20%.

The paper is organized as follows. In Section II we survey
the state of the art for performance prediction via ML. Section
III presents a description of aMLLibrary and its usage. In
Section IV we show results to validate the effectiveness of the
library. Finally, we close the discussion in Section V.

II. RELATED WORK

ML has been widely applied to predict the performance
of several kinds of Information and Communications Tech-
nology (ICT) systems. A first example is video streaming
network platforms, which attempt to infer the actual quality
of service starting from measurements of some Quality of
Delivery (QoD) metrics (Izima et al., 2021). Other domains in
which ML models are commonly leveraged for performance
prediction include cloud systems, Artificial Intelligence (AI)
models, communicating networks, and Functions as a Service
(FaaS) systems. For instance, Maros et al. (2019) examine the
performance of several ML models in carrying out predictions
of execution times of Apache Spark jobs with different types
of workloads. Their results outperform models used by Spark
creators. Mustafa et al. (2018) propose an ML-based prediction
platform for Spark SQL queries and ML applications, which
exploits features related to each stage of the Spark application,
as well as previous knowledge of the application profile.
Nawrocki and Osypanka (2021) employ several ML models
alongside anomaly detection to properly configure a cloud-
based Internet of Things (IoT) device manager while respect-
ing Quality of Service (QoS) constraints. Lattuada et al. (2022)

aMLLibrary

Feature EngineeringData Management Data Validation

Cross-Validation Extrapolation

Feature Selection

Sequential
Feature

Selection
XGBoost

Hyperparameter Tuning

Grid Search Hyperopt

Regression Module

Decision Tree Non-Negative
Least Squares Random ForestLR Ridge Stepwise Support Vector

Regression XGBoost

Inverse Logarithm

Validity Check Polynomial
Products

Runtime Support

Fault Tolerance Parallel
Training

Normalization

Column
Selection

One-Hot
Encoding

Row Selection Hold-Out Interpolation

Prediction
Module

Fig. 1. Block Diagram of the aMLLibrary Components

explore performance prediction of training times of GPU-
deployed neural networks starting from software-hardware
specifications, by using ML techniques and feature selection
methods. Kirchoff et al. (2019) compare some popular ML
techniques applied to a workload prediction analysis on HTTP
servers, showing that these techniques all achieve good pre-
dicting capabilities. The Schedulix framework (Das et al.,
2020) uses linear models to estimate execution latencies of
serverless applications in a public cloud FaaS setting. Finally,
Ibrar et al. (2021) propose the PrePass-Flow technique for
the context of hybrid Software-Defined Networking (SDN)
architectures, where a failure of legacy network nodes is
communicated with a delay. Their framework uses ML models
such as logistic regression and Support Vector Machine (SVM)
to predict such failures before their occurrence.

III. AMLLIBRARY

In this section, we present aMLLibrary and describe
its features and design choices. In Section III-A, we give
an overview of the library and describe its user interface.
Section III-B provides details on the library modules, e.g., for
data pre-processing. In Section III-C, we focus on the usage
of BO to conduct hyperparameter tuning.

A. Overview and usage

aMLLibrary is a high-level Python package that allows
the training of multiple performance models, supporting fea-
ture selection and hyperparameter tuning. The source code is
available at https://github.com/aMLLibrary/aMLLibrary under
the Apache 2.0 license. aMLLibrary is based on the scikit-
learn toolkit, and uses supervised ML techniques to generate
regression models which can be used to predict applications
performance. Overall, the library implements an autoML so-
lution, i.e., it performs training of multiple regression models

and automatically selects the most accurate one. The execution
of the library is controlled by a configuration text file, or
equivalently, a Python dictionary. The following is a basic
example of a configuration file:

[G e n e r a l]
t e c h n i q u e s = [’ LRRidge ’]
h p s e l e c t i o n = KFold
f o l d s = 5
v a l i d a t i o n = HoldOut
h o l d o u t r a t i o = 0 . 2
y = e x e c t i m e

[D a t a P r e p a r a t i o n]
i n p u t p a t h = p a t h / t o / d a t a s e t . c sv
p roduc t max deg ree = 2
n o r m a l i z a t i o n = True

[LRRidge]
a l p h a = [0 . 0 1 , 0 . 1 , 0 . 5 , 1 , 5]

The file includes general settings for the campaign configu-
ration, including the types of ML models to be built and the
methods for hyperparameter selection and validation, which
we will describe in the next section. It also reports the data
pre-processing steps (if any) and the input dataset, which must
be in comma-separated tabular format.

We show the high-level architecture of aMLLibrary in
Fig. 1. The library has several useful perks for the effort-
less building of performance models. Individual analyses can
compare in a single run multiple alternative ML methods,
and parallel processing of the training phase of the models
is supported. In particular, the user can specify the number
of parallel cores to be used, and the library automatically
distributes the training experiments evenly among the par-
allel workers, even if the underlying scikit-learn models are
limited to single-thread execution. Furthermore, the library

https://github.com/aMLLibrary/aMLLibrary

implements a fault tolerance mechanism by saving incremental
progress checkpoints. If the experimental campaign is inter-
rupted, e.g., because of a failure of the server the library is
running on, it can recover the previous results and resume from
there. The library currently supports the following ML models:
Decision Tree (DT), Non-Negative Least Squares (NNLS),
Random Forest (RF), Ridge Linear Regression, Stepwise (a
linear regression model which integrates the Draper-Smith
feature selection technique, see Draper and Smith (1998)),
Support Vector Regression (SVR), and XGBoost (Chen and
Guestrin, 2016).

The main strengths of aMLLibrary are its ease of use,
customizability, and extensibility. A simple configuration text
file is required to launch a full experimental campaign for all
implemented models, without the need of writing a single line
of Python code. Default settings for hyperparameter tuning
are general enough to allow the library to find the appropriate
parameter values without further input by the user, which is
most useful for those inexperienced with ML. At the same
time, the user has full control over the experimental campaign
thanks to the many configuration options and flags available.
Finally, extensibility is a major advantage for advanced users
who wish to implement new data pre-processing techniques
or new regression models in the aMLLibrary environment.
One can simply write a plugin or a model-building wrapper
and add it to the library while exploiting or building on the
existing features.

B. Modules and plugins

aMLLibrary includes plugins for several data pre-
processing techniques, such as data normalization and one-hot
encoding for discrete features, as well as other convenient tools
such as row selection and data validity checks. It also supports
automatic feature engineering, in the form of computation of
logarithms, inverse values, and feature products/polynomial
expansion up to a given degree. These tools can be useful
to unearth potentially relevant information hidden in the input
features, such as quadratic dependencies and interaction terms.
Feature selection techniques are also supported, including
forward Sequential Feature Selection (SFS) (Ferri et al., 1994)
and importance weight selection by using the XGBoost regres-
sion model.

Hyperparameter tuning of the implemented models is an
integral part of the building process. In aMLLibrary, it
can be performed either via grid search by specifying the
lists of values to be tested, and/or automatically via Bayesian
Optimization (BO). (See Section III-C for a quick summary
on BO.) If choosing BO, the user must provide the appropriate
flag in the configuration file, as well as prior probability
distributions on the hyperparameters.

The user can choose among several validation methods
based on the Mean Absolute Percentage Error (MAPE) of a
model, which is computed as:

MAPE(y, ŷ) =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣

where y is the vector of true values and ŷ is the vector of
predicted values by the ML model. The validation methods
include classical ones such as train-test splitting and Cross-
Validation (CV), and other methods often used in ICT settings
to build custom test sets, such as interpolation and extrapola-
tion. Here, interpolation means keeping some feature values
within the feature space out of the training set, and placing
them in the test set, in order to check the ability of the model to
“fill in the blanks” of the feature space. The goal of such type
of validation is to verify whether it is possible to reduce the
dimension of the training set, therefore conducting a profiling
campaign with a coarser granularity (e.g., varying a cluster
size by 8 cores instead of 2 or 4 cores). On the contrary,
extrapolation means keeping an entire area of the search
space out of the training set, in order to test the predicting
capabilities of the model in an unexplored part of the feature
space. This is useful, e.g., in contexts where the size of the
processed dataset increases incrementally, as is often the case
with big data analyses and AI application training.

After the validation phase, the best model is chosen accord-
ing to the smallest validation MAPE found and is saved to a
binary file. This way, it can be used for further inference, e.g.,
to estimate the performance of a given application component
for design-time state space exploration (Filippini et al., 2022).

Finally, the library has a prediction module that can be used
to make interpolation and extrapolation with an already-trained
regression model.

C. Bayesian Optimization tuning

aMLLibrary is integrated with the Hyperopt package
(Bergstra, Yamins, et al., 2013) to perform hyperparameter
tuning via BO for its several types of ML models. BO
is an iterative method based on the Bayesian approach to
statistics, which approximates the minimum of a given black-
box objective function f(·) by using as few iterations as
possible. Strong assumptions on f(·) or on the minimization
domain A are not required, and BO algorithms are derivative-
free (Frazier, 2018). In our case, a BO algorithm is used to find
the model hyperparameters which maximize the CV R2 score.
In particular, Hyperopt uses Tree Parzen Estimators (Bergstra,
Bardenet, et al., 2011) to model the probability distributions of
parameters. This also allows the library to seamlessly handle
discrete and conditional parameters.

BO proves particularly useful in this context, because of the
significant time cost to train a potentially complex ML model
multiple times in a row. The algorithm allows us to find an
optimal or near-optimal hyperparameter configuration in few
iterations, the maximum number of which is set by the user.
According to our experience, using BO as the tuning technique
of choice significantly improves the accuracy and the training
time of the model with respect to the grid search approach, as
we will show in Section IV-B.

IV. EXPERIMENTS

For the experimental validation of aMLLibrary, we
tackle two performance prediction scenarios. One involves the

VGG16 and VGG19 neural networks, and the other involves
the Stereomatch edge computing application. We cover them
in Sections IV-A and IV-B, respectively.

A. VGG neural networks

We attempt to predict the execution times of the layers
of two Deep Neural Networks (DNNs), namely VGG16 and
VGG19 (Simonyan and Zisserman, 2015) in their TensorFlow
implementations, using several inference approaches. Specif-
ically, we collect the data to be used for the regression by
running these networks on two different ARM-based edge
devices:
• the Odroid N2 is a single-board computer with 6 processors

and 4 GB memory. It runs the Ubuntu 18.04 OS and
TensorFlow Lite Interpreter 2.10;

• the NVIDIA TegraX2 is a high-performance automotive
processor which has 6 cores and 8 GB RAM, running
Ubuntu 18.04 and TensorFlow-GPU version 1.4.

The VGG16 and VGG19 networks have a total of 22 and
25 layers, respectively. Most of them are convolutional layers
(16 and 19, respectively), while a few in-between layers are
max pooling layers and the last three are dense layers. In
this work, we only focus on the performance prediction of
the convolutional layers, ignoring all others. This is because
such layers represent the overwhelming majority of the total
computation time of the network (Gianniti et al., 2018). Also,
we attempt to estimate the execution time of single layers
rather than of the entire network. This need arises in many
edge computing scenarios, where the DNN execution is split
between the edge device and the remote server. In such
cases, the objective is to choose the splitting point of the
DNN to minimize the overall end-to-end inference time – an
especially relevant problem when the edge device has limited
specifications (Kang et al., 2017).

In particular, we collect execution information at each
convolutional layer j, including the execution time which is
the regression target. The goal of our analyses is to predict
the execution time of future layers exploiting experience from
previous layers. The profiling data for each layer includes
the height and width of the convolution filter, the number of
channels of both the input and the output tensor, and the total
number of floating point operations per second (flops).

For both devices, we conduct three different types of
analysis, each of which uses different training and test sets:
1) in the VGG16 next-layer analysis we use the data from all

convolutional layers before j to predict the execution time
of layer j;

2) the VGG16 all-layer analysis uses the same data to predict
the execution time of all future convolutional layers;

3) in the unseen network analysis, we use data from VGG16
to attempt to predict the more powerful (and computation-
ally intensive) VGG19 network.

All three are essentially extrapolating analyses, in increasing
difficulty order. In particular, our goal in these three scenarios
is to infer whether the scale of the profiling campaign can

be reduced, and by how much. In other words, we want to
check how much profiling data we need in order to have an
accurate assessment of the network execution time, including
the unseen layers. The next-layer and all-layer analyses are
similar in scope, but in the latter we also check whether our
performance models can benefit from compensating errors in
the estimates of single layers. The unseen network case is the
most impactful one in terms of potential savings in profiling
efforts, as it allows training on much smaller networks and
getting information about the larger, more costly ones. This is
useful in many practical scenarios, specifically in the design
phase of neural networks.

The pre-processing phase of all these prediction analyses
includes the normalization of the data, and the computation of
the inverted features and 2nd-degree products of all features
involved, which we then add to the original dataset. The
used regression techniques include Ridge Linear Regression,
XGBoost, and Stepwise, which, according to our preliminary
analysis, are the best suited for this particular scenario. We
omit the others for simplicity of representation. Finally, 5-fold
Cross-Validation (CV) is used for hyperparameter tuning and
a 20% test set is used for validation.

1) In the next-layer analysis, we use all observations from
previous convolutional layers up until j−1 in order to predict
execution times in layer j. For instance, the experiment at
iteration 10 has data from layers 3 to 9 in its training set,
and data from layer 10 as the test set. We show the results of
this analysis for both edge devices in Fig. 2. We represent the
layer number on the horizontal axis (recall that we only report
convolutional layers), and the test-set MAPE of the model on
the vertical axis. Each dot corresponds to a single instance
of a trained model (after hyperparameter tuning), with each
color identifying a particular type of model. For each layer, we
highlight the best-performing model with a cross of the same
color. For simplicity of representation, we only show models
with MAPE within 100% and represent the ones exceeding
this threshold with an arrow in the upper part of the diagram.

From this first analysis, we observe large variability within
different layers on the same device. As a general trend, we
have larger errors for earlier layers due to the smaller amount
of data available, and smaller errors towards the last layers.
Overall, XGBoost stands out as the best-performing model on
average, while Stepwise is the least-performing of the three.
Across both devices, the test-set MAPE of the best model for
each layer is lower than 30% for over 80% of the layers.

2) In the all-layer analysis we use all observations from
previous layers, i.e., up until j − 1, as training data, similarly
to the next-layer analysis. However, in this case, the test set
is the entirety of the subsequent convolutional layers (j up
to the last one) instead of a single layer. For instance, the
experiment at iteration 10 has data from layers 3 to 9 in its
training set, and data from layers 10 to 18 as the test set.
We summarize the results in Fig. 3. Again, we observe large
variability across layers and devices. Overall, XGBoost again
has the best average results.

3) In the unseen network analysis, for both devices, we use

Fig. 2. VGG16 Next-Layer Analysis: Test MAPEs

the entire available VGG16 profiling dataset as training data,
and data from the VGG19 network in the test set. Specifically,
for each iteration j, the test set of the analysis is layer j of
VGG19. We will only show results for the TegraX2 for space
limitations, given that the results are similar. Fig. 4 contains
the performance of the models for the TegraX2 device. In this
case, both linear models (Ridge regression and Stepwise) are
consistent across layers never exceeding 20% MAPE, while
the XGBoost model improves the more we move to the final
layers, although it is unable to reach 50% MAPE.

The three proposed approaches represent different kinds of
extrapolating analysis. Our results show that it is possible
to accurately predict processing times of subsequent layers
of DNN networks, provided that the device has memory
and capacity. A profiling campaign of reduced dimensions
is therefore sufficient, which allows saving on computational
times and costs. In particular, the unseen network analysis
shows that such reduction is possible even across different
networks which share the same building blocks. This is indeed
often the case in practical applications, such as with VGG and
ResNet (He et al., 2016). Overall, these analyses suggest that
in the worst-case scenario, only profiling half the network is
enough to have an accurate estimate of its execution time,
i.e., a sufficiently small MAPE in the regression models. In
fact, only a single layer was sufficient in our unseen network
experiment.

Fig. 3. VGG16 All-Layer Analysis: Test MAPEs

Fig. 4. VGG16 to VGG19 Unseen Network Analysis: Test MAPEs

B. Stereomatch application

The second scenario we consider for validation uses Stere-
omatch (Paone et al., 2012), an image-processing edge com-
puting application. Stereomatch evaluates the disparity value
between a pair of stereo images (i.e., coming from the same
scene but observed by two cameras), which can then be used
to calculate the depth of objects in that scene. This application
uses adaptive-shape local support windows for each pixel,
based on color similarity. It has four independent input param-
eters: number of parallel threads, color similarity confidence,

granularity of the disparity hypotheses to test, and length of
the arm of the support windows. We execute this application
with a fixed input dataset containing 40 pairs of images. The
goal is to predict the execution time of the program given
the feature dataset containing the input parameters described
earlier. We repeat the analysis for 100 iterations, each time
adding 30 more data points to the profiling dataset. This is
because, similarly to the VGG experiments, we want to assess
the minimum amount of profiling data needed to successfully
conduct inference on execution times, to reduce the scale of the
profiling campaign. In this case, we use the same ML models
as before: Ridge regression, XGBoost, and Stepwise. At each
iteration, we use a 5-fold CV for hyperparameter tuning and
20% of the available data as the test set.

We now show results from three increasingly refined experi-
mental campaigns. In the first one, we use a simple grid search
for hyperparameter tuning, amounting to a total of about 5000
individual experiments. Furthermore, we perform no feature
augmentation, using only the original dataset for regression.
We show MAPEs for all models and iterations in Fig. 5.

In the second experiment, we perform feature augmentation,
namely adding the inverse of the number of threads and
the second-degree products of all existing features to the
regression dataset. Everything else is identical to the first
campaign. Fig. 6 shows the resulting MAPEs. We notice an
increase in performance for both linear models (Stepwise and
Ridge), particularly in the latter, while errors of XGBoost are
mostly unchanged. This trend indicates the large amount of
useful information contained in the interaction terms which
we derived from the original features. This is to be expected:
features such as the test granularity essentially control the
number of times operations of the algorithm are performed,
and this number in turn depends on the other features.

Finally, in the third experimental campaign, we keep the
feature augmentation from the second campaign and conduct
hyperparameter tuning on each ML model via BO (see Section
III-C) instead of using grid search. In particular, we set the
maximum number of BO iterations to 10: this results in a total
of 250 individual experiments. Fig. 7 summarizes the outcome
of the campaign. By cutting the number of experiments by
a factor of 20, we are still able to obtain the same levels
of accuracy as with the grid search method. This shows the
effectiveness of a clever hyperparameter tuning method like
BO. By this last experimental campaign, we are able to reach
10% MAPE on nearly all XGBoost and Ridge models, with the
Stepwise errors rarely exceeding 30%. In all three campaigns,
by the 3rd iteration, we can confidently assert that a MAPE
lower than 20% has been achieved, meaning that 90 profiling
data points at most are needed to build accurate prediction
models for the execution time of Stereomatch.

V. CONCLUSIONS

In this paper, we have presented aMLLibrary, an open-
source Python package that allows the training of multiple
performance models. We have shown the effectiveness of the
ML models implemented, and of the different plugins for

Fig. 5. Stereomatch Campaign 1: Base Dataset, Grid Search

Fig. 6. Stereomatch Campaign 2: Feature Augmentation, Grid Search

Fig. 7. Stereomatch Campaign 3: Feature Augmentation, BO Tuning

feature engineering and hyperparameter tuning. The repository
is actively maintained, and future additions are already under
development, such as the introduction of new ML models
building techniques and further data pre-processing tools for
outlier identification.

ACKNOWLEDGMENTS

The European Commission has funded this work under
the Horizon 2020 Grant Agreement number 956137 LIGATE:

LIgand Generator and portable drug discovery platform AT
Exascale, as part of the European High-Performance Comput-
ing (EuroHPC) Joint Undertaking program.

REFERENCES

Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl (2011).
“Algorithms for Hyper-Parameter Optimization”. In: NIPS
Proc. 24.

Bergstra, J., D. Yamins, and D. Cox (2013). “Making a
Science of Model Search: Hyperparameter Optimization
in Hundreds of Dimensions for Vision Architectures”. In:
ICML Proc.

Chen, T. and C. Guestrin (2016). “XGBoost: A Scalable Tree
Boosting System”. In: SIGKDD Proc.

Das, A., A. Leaf, C. Varela, and S. Patterson (2020).
“Skedulix: Hybrid Cloud Scheduling for Cost-Efficient Exe-
cution of Serverless Applications”. In: IEEE CLOUD Proc.

Didona, D. and P. Romano (2015). “Using Analytical Models
to Bootstrap Machine Learning Performance Predictors”. In:
ICPADS Proc.

Draper, N. and H. Smith (1998). Applied Regression Analysis.
Vol. 326. John Wiley & Sons.

Ferri, F., P. Pudil, M. Hatef, and J. Kittler (1994). “Compara-
tive Study of Techniques for Large-Scale Feature Selection”.
In: Machine Intelligence and Pattern Recognition. Vol. 16.
Elsevier, pp. 403–413.

Filippini, F., M. Lattuada, M. Ciavotta, A. Jahani, D. Ardagna,
and E. Amaldi (2022). “A Path Relinking Method for the
Joint Online Scheduling and Capacity Allocation of DL
Training Workloads in GPU as a Service Systems”. In: IEEE
Transactions on Services Computing, pp. 1–16.

Frazier, P. (2018). “A Tutorial on Bayesian Optimization”. In:
arXiv preprint arXiv:1807.02811.

Gianniti, E., L. Zhang, and D. Ardagna (2018). “Performance
Prediction of GPU-based Deep Learning Applications”. In:
SBAC-PAD Proc.

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual
Learning for Image Recognition”. In: CVPR Proc.

Ibrar, M., L. Wang, GM Muntean, A. Akbar, N. Shah, and
K. Malik (2021). “PrePass-Flow: A Machine Learning
based technique to minimize ACL policy violation due to
links failure in hybrid SDN”. In: Computer Networks 184,
p. 107706.

Izima, O., R. de Fréin, and A. Malik (2021). “A Survey of
Machine Learning Techniques for Video Quality Prediction
from Quality of Delivery Metrics”. In: Electronics 10.22,
p. 2851.

Kang, Y., J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J.
Mars, and L. Tang (2017). “Neurosurgeon: Collaborative
Intelligence Between the Cloud and Mobile Edge”. In: ACM
SIGARCH Computer Architecture News 45.1, pp. 615–629.

Kirchoff, D., M. Xavier, J. Mastella, and C. De Rose (2019).
“A preliminary study of machine learning workload predic-
tion techniques for cloud applications”. In: EuroPDP Proc.

Lattuada, M., E. Gianniti, D. Ardagna, and L. Zhang (2022).
“Performance Prediction of Deep Learning Applications
Training in GPU as a Service Systems”. In: Cluster Com-
puting 25.2, pp. 1279–1302.

Maros, A., F. Murai, APC da Silva, J. Almeida, M. Lattuada,
E. Gianniti, M. Hosseini, and D. Ardagna (2019). “Machine
Learning for Performance Prediction of Spark Cloud Appli-
cations”. In: IEEE CLOUD Proc.

Mustafa, S., I. Elghandour, and M. Ismail (2018). “A Machine
Learning Approach for Predicting Execution Time of Spark
Jobs”. In: Alexandria Engineering Journal 57.4, p. 3767.

Nawrocki, P. and P. Osypanka (2021). “Cloud Resource De-
mand Prediction using Machine Learning in the Context
of QoS Parameters”. In: Journal of Grid Computing 19.2,
pp. 1–20.

Paone, E., G. Palermo, V. Zaccaria, C. Silvano, D. Melpig-
nano, G. Haugou, and T. Lepley (2012). “An Exploration
Methodology for a Customizable OpenCL Stereo-Matching
Application Targeted to an Industrial Multi-Cluster Archi-
tecture”. In: CODES+ISSS Proc.

Simonyan, K. and A. Zisserman (2015). “Very Deep Convo-
lutional Networks for Large-Scale Image Recognition”. In:
ICLR Proc.

AUTHOR BIOGRAPHIES

BRUNO GUINDANI is a Mathematical Engineering gradu-
ate, now Ph.D. student in Computer Science at the Department
of Electronics, Information, and Bioengineering at Politecnico
di Milano, Italy. His research interests include the application
of Bayesian statistical models and Machine Learning tech-
niques for the optimization of HPC systems.
Mail address: bruno.guindani@polimi.it

MARCO LATTUADA received his Ph.D. degree in Com-
puter Engineering in 2010 at Politecnico di Milano, Italy,
where he was temporary researcher and lecturer until 2019. He
is now a senior software engineer at STMicroelectronics. His
research interests include methodologies for automatic genera-
tion of code for embedded heterogeneous architectures, mainly
in the Artificial Intelligence and Deep Learning domains.
Mail address: marco.lattuada@st.com

DANILO ARDAGNA is Associate Professor at the De-
partment of Electronics, Information, and Bioengineering at
Politecnico di Milano, Italy, where he also received his Ph.D.
degree in Computer Engineering in 2004. His work focuses on
design and evaluation of optimization algorithms for resource
management of cloud computing and big data systems.
Mail address: danilo.ardagna@polimi.it

	Introduction
	Related work
	aMLLibrary
	Overview and usage
	Modules and plugins
	Bayesian Optimization tuning

	Experiments
	VGG neural networks
	Stereomatch application

	Conclusions

