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ABSTRACT
Recommender systems typically rely on past user interactions as
the primary source of information for making predictions. However,
although highly informative, past user interactions are strongly
biased. Impressions, on the other hand, are a new source of infor-
mation that indicate the items displayed on screen when the user
interacted (or not) with them, and have the potential to impact the
field of recommender systems in several ways. Early research on
impressions was constrained by the limited availability of public
datasets, but this is rapidly changing and, as a consequence, interest
in impressions has increased. Impressions present new research
questions and opportunities, but also bring new challenges. Several
works propose to use impressions as part of recommender models in
various ways and discuss their information content. Others explore
their potential in off-policy-estimation and reinforcement learning.
Overall, the interest of the community is growing, but efforts in
this direction remain disconnected. Therefore, we believe that a
workshop would be useful in bringing the community together.

CCS CONCEPTS
• Information systems→ Recommender systems; Evaluation
of retrieval results; •Computingmethodologies→Reinforce-
ment learning; • Human-centered computing→ HCI design
and evaluation methods.
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1 MOTIVATION
In the early days of research on recommender systems, predictions
were primarily based on past user interactions and user or item
features. However, with advancements in technology, the scope
and complexity of recommender systems have increased and new
sources of data (such as context, knowledge-bases, and sequence
structure) have emerged, driving the field forward and creating
thriving sub-fields. Nevertheless, past user interactions remain the
most potent and comprehensive source of predictive power. Despite
this, observed interactions are a sparse and strongly biased source
of information, which has significant implications for both learning
from user actions and evaluating the quality of recommendations
offline [26].

Recently, a source of information that was previously almost
unavailable to the wider research community has emerged with
the potential to impact the field in numerous ways: impressions.
Impressions [7, 15, 25, 28, 37] refer to the items displayed on the
screen when a user interacts (or not) with them and are the product
of the whole recommendation engine [7, 21, 22]. Impressions consti-
tute a nuanced and intricate data source that raises novel research
questions, opportunities, and challenges. These may have profound
implications for how recommender systems are conceptualized,
trained, and evaluated.

Impressions took longer than ratings and interactions to cross
the corporate boundary towards wider research availability [3, 11,
30, 34]. This started to happen eventually: early examples include
the ACM RecSys Challenge in 2016, 2017 and 2019 [1, 2, 13], where
the released datasets included impression data. Until recently, re-
search was still limited by the lack of datasets, this was because the
datasets released as part of the RecSys challenges are usually non
redistributable and focus on very specific and narrow applications,
while only very few other datasets were publicly available. This
is rapidly changing and most of the available datasets including
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impressions have been published in the last few years: e.g., Content-
Wise Impressions [22], MIND [35], FINN.no Slates [7], Yahoo! [9] ,
Search Ads1, Pandor [29], Ali-CCP [19], Alimama [27], Cross-shop
Combo [40], In-Shop Combo [40], Kwai FAIR System [32], Kwai
FAIR Experiment [32]. With the emergence of these new datasets,
studying the use of impressions has become a more accessible topic
for research. However, despite the increasing research interest, the
efforts devoted to studying the use of impressions are still limited
and fragmented. Therefore, we believe that organizing a workshop
at this point would be both useful and timely in bringing together
and consolidating the community working on this topic.

1.1 Status of Research, Challenges and
Opportunities

Some works have already tried to use impressions to build better
recommendation models in various ways: [4, 5, 16, 33, 38, 39] use
impression data to compute features, re-ranking, sampling and to
learn biases. Furthermore [6, 10, 14, 17, 18, 31, 36] apply neural or
deep-learning models including impressions. Most of these papers
have been published in the last two years in conferences such as
SIGIR, KDD, WWW and RecSys.

Among the new research opportunities opened by impressions,
being able to distinguish between the items that the user observed
and did not observe could allow to provide better assumptions on
how to label missing interactions. Some studies consider impres-
sions to be a positive interaction signal, while others view them as
negative signals [21].

Impressions also provide a direction for research that could help
to bridge the gap between algorithms and user experience, two
sides of recommender systems that are often studied independently
of each other. For instance, continuously recommending the same
item may lead to user fatigue [33], resulting in reduced user satis-
faction with the system and wasted recommendations. By using
impressions, recommender systems can better understand how
users interact with the system and, thus, provide recommendations
that improve user experience and engagement.

A further direction of research is in the evaluation of recom-
mendation models. It is known that the past user interactions are a
highly biased data source [26] and impressions, which represent
the real behavior of the recommendation engine that acts as the
intermediary between the user and the available catalogue, could al-
low to better identify those biases. The community is also exploring
new methods for the evaluation of recommender systems, such as
off-policy estimation (OPE) [8, 12, 23] and simulation environments
[24] some of which already use impressions [20].

1.2 Workshop Description
TheWorkshop on Learning and Evaluating Recommendations with
Impressions will focus on all aspects related to leveraging impres-
sion data to build and evaluate a recommendation engine. The
goal is to both help to coalesce researchers exploring the use of
impressions from different perspectives, as well as foster increased
interest from the community for this new and still largely underex-
plored topic that has the potential of impacting the field in several
ways. The workshop aims to provide a venue for researchers and
1https://www.kaggle.com/competitions/kddcup2012-track2

practitioners to come together in order to: (i) share experience and
lessons learned; (ii) identify key challenges in the area; (iii) build a
common mental model and conceptual framework for thinking and
researching on the use of impressions; (iv) identify emerging topics
and new opportunities. The workshop also aims to lay bridges be-
tween practitioners and academics, encourage a wider availability
of impression data sources and leverage industry’s experience to
guide and inform academic research.

1.3 Workshop Topics
Conceptual framework: definition of “impression”, role of

impressions in the recommendation task definition, user
action attribution to impressions, prediction and causation,
closed vs. open loops;

Recommendation models: new learning approaches taking
advantage of impression data, impressions in label data, loss
functions, model topologies;

Model training: data preprocessing, sampling, partitioning,
hyperparameter tuning with impressions;

Evaluation: evaluation methodology and metrics, impact on
offline evaluation bias;

User modeling: newmodels considering user behavior in face
of impressed items;

Reinforcement learning and off-policy estimation:
offline vs. online setting, impressions in RL and OPE;

Datasets: collection of new datasets with impressions from
different domains, user interfaces, applications;

User Studies: how the user behavior is impacted by the com-
position of impressions, impact of user fatigue, etc.;

Theory: theoretical aspects in the use of impressions for rec-
ommender systems, both in the development of new and
improved recommender systems and in their evaluation;

Perspectives: new perspectives on existing problems that
could benefit or just change by adding impressions as a new
variable, as well as old challenges that can be now tackled
from new angles, and new challenges that derive from the
use of impressions.

1.4 Workshop Organization
The workshop will be organized by:

Maurizio Ferrari Dacrema: Professor at Politecnico di Mi-
lano. His research interests include recommender systems
evaluation and quantum computing. He has been local or-
ganization chair at the 12th Italian Information Retrieval
Workshop.2

Pablo Castells: Professor at Universidad Autónoma de
Madrid (UAM) and Amazon scholar. His research interests
include recommender systems evaluation, algorithmic and
experimental bias, and beyond-accuracy perspectives. He
has organized six RecSys workshops in areas such as eval-
uation and experimentation, novelty and diversity, and in-
dustry applications; as well as workshops and tutorials at
SIGIR, WSDM and The Web Conference. He has served in
the RecSys organizing committee in different roles including

2https://recsyspolimi.github.io/iir2022/
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PC co-chair in 2016, and served as PC co-chair and general
co-chair of SIGIR in 2021 and 2022 respectively.

Justin Basilico: Netflix. He has been an Industry co-chair at
RecSys 2022 and 2023, he has coorganized the 2020 and 2021
International Workshop on Industrial Recommendation Sys-
tems at KDD, and the 2022 REVEAL workshop at RecSys. He
also coorganizes the annual Netflix Personalization, Recom-
mendation, and Search (PRS) workshop.

Paolo Cremonesi: Professor at Politecnico di Milano and co-
Founder of ContentWise. His research interests include rec-
ommender systems and quantum computing. He has served
in the organization of scientific meetings in different roles,
including program chair of ACM iTVX in 2013, and general
co-chair of ACM RecSys in 2016. He serves in the RecSys
steering committee since 2017.

2 RELATED PRIORWORKSHOPS
We are not aware of any prior workshop that focused on the topic
of impressions itself. However, the use of impressions has been
connected to the following other workshops:

Causality, Counterfactuals, Sequential Decision-Making
& Reinforcement Learning for Recommender Systems

(RecSys 2022) the workshop did not discuss primarily
impressions but the topic of off-policy estimation is
connected to the availability of information on the real
user preferences and on the bias introduced by the
recommendation engine which could be estimated using
impressions.

ACM RecSys Challenge Workshop (RecSys 2019, 2017 and
2016) the workshop did not discuss primarily impressions but
the data available during the challenge included impressions
and therefore some of the papers described how the teams
used them.

RecSys workshops on recommender systems evaluation:
Evaluation has been a recurring workshop topic at RecSys:
workshops such as RUE 2012, RepSys 2013, REDD 2014,
SimuRec 2021 have focused on offline evaluation method-
ology, metrics, reproducibility, bias, and datasets, among
many other important elements and issues in recommender
system evaluation. As far as the proposers are aware (as
co-organizers of these past workshops), impressions were
not addressed or discussed in that scope so far.

3 PROGRAM COMMITTEE
The following is a list of the confirmed program committee: An-
tonio Ferrara (Politecnico di Bari), Claudio Pomo (Politecnico
di Bari), Daniele Malitesta (Politecnico di Bari), David Massimo
(Free University of Bolzano), Fernando B. Pérez Maurera (Po-
litecnico di Milano), Marco de Gemmis (Università degli Studi
di Bari Aldo Moro),Marco Polignano (Università degli Studi di
Bari Aldo Moro),Maurizio Ferrari Dacrema (Politecnico di Mi-
lano), Nicolò Felicioni (Politecnico di Milano), Olivier Jeunen
(ShareChat), Paolo Cremonesi (Politecnico di Milano), Pengjie
Ren (Shandong University), Vito Walter Anelli (Politecnico di
Bari), Xin Xin (Shandong University).
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