
Vol.:(0123456789)

SN Computer Science (2024) 5:212
https://doi.org/10.1007/s42979-023-02547-w

SN Computer Science

ORIGINAL RESEARCH

Performance and Efficiency Exploration of Hardware Polynomial
Multipliers for Post‑Quantum Lattice‑Based Cryptosystems

Francesco Antognazza1 · Alessandro Barenghi1 · Gerardo Pelosi1 · Ruggero Susella2

Received: 8 June 2023 / Accepted: 7 December 2023
© The Author(s) 2024

Abstract
The significant effort in the research and design of large-scale quantum computers has spurred a transition to post-quantum
cryptographic primitives worldwide. The post-quantum cryptographic primitive standardization effort led by the US NIST
has recently selected the asymmetric encryption primitive Kyber as its candidate for standardization and indicated NTRU, as a
valid alternative if intellectual property issues are not solved. Finally, a more conservative alternative to NTRU, NTRUPrime
was also considered as an alternate candidate, due to its design choices that remove the possibility for a large set of attacks
preemptively. All the aforementioned asymmetric primitives provide good performances, and are prime choices to provide
IoT devices with post-quantum confidentiality services. In this work, we present a comprehensive exploration of hardware
designs for the computation of polynomial multiplications, the workhorse operation in all the aforementioned cryptosystems,
with a thorough analysis of performance, compactness and efficiency. The presented designs cope with the differences in
the arithmetics of polynomial rings employed by distinct cryptosystems, benefiting from configurations and optimizations
that are applicable at synthesis time and/or run time. In this context, we target a use case scenario where long-term key
pairs are used, such as the ones for VPNs (e.g., over IPSec), secure shell protocols and instant messaging applications. Our
high-performance design variants exhibit figures of latency comparable to the ones needed for the execution of the symmet-
ric cryptographic primitives also included in the Post-Quantum schemes. Notably, the performance figures of the designs
proposed for NTRU and NTRU Prime surpass the ones described in the related literature.

Keywords Hardware security · Post-quantum · Lattice-based cryptosystems · Key encapsulation method

Introduction

Public-key cryptography (PKC) plays a fundamental role in
today’s technology providing the properties of confidential-
ity, data and origin authentication, and non-repudiability;
indeed, its diffusion is witnessed by the number of widely
used communication protocols that rely on it, such as the
IETF Transport Layer Security (TLS) and IP Security
(IPsec) Internet standard protocols. PKC primitives are in
wide use to encrypt data between two parties (without a
pre-shared secret) over an insecure channel, or to build a
Public Key Infrastructure, and to guarantee the integrity and
authenticity of data in form of digital signatures.

Currently, the most used algorithms, RSA and Elliptic
Curve cryptography, rely on the hardness of integer fac-
toring and the hardness of computing discrete logarithm
in finite cyclic groups, respectively. However, in 1994,
Peter Shor designed an algorithm for quantum computers
that solve both the prime factoring and discrete logarithm

This article is part of the topical collection “Recent Trends on
Information Systems Security and Privacy” guest edited by Steven
Furnell and Paolo Mori.

 * Alessandro Barenghi
 alessandro.barenghi@polimi.it

 Francesco Antognazza
 francesco.antognazza@polimi.it

 Gerardo Pelosi
 gerardo.pelosi@polimi.it

 Ruggero Susella
 ruggero.susella@st.com

1 Department of Electronics, Information and Bioengineering
- DEIB, Politecnico di Milano, Piazza Leonardo da Vinci,
32, 20133 Milan, Italy

2 Department of Electronics Information Technology
and Bioengineering, STMicroelectronics S.r.l, Via Paracelso,
20, Agrate Brianza (MB) 20864, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02547-w&domain=pdf
http://orcid.org/0000-0003-0840-6358

 SN Computer Science (2024) 5:212 212 Page 2 of 19

SN Computer Science

problem with an exponential speedup with respect to clas-
sical computers, effectively breaking the corresponding
cryptosystems.

Due to the long-term confidentiality and data/origin
authentication guarantees required from asymmetric cryp-
tographic primitives, and in sight of the recent advancements
in the implementation of quantum computers, a significant
effort in standardizing quantum-resistant algorithms for
public-key cryptography is required. For that reason, the
National Institute of Standards and Technology (NIST) in
2016 started the Post-Quantum Cryptography (PQC) stand-
ardization process to assess viable candidates for both Pub-
lic Key Encryption (PKE) functionalities, in form of Key
Encapsulation Mechanisms (KEMs), and digital signatures.
The process refined its 69 candidate algorithms, reducing
them to a single KEM and three digital signatures for imme-
diate standardization at the end of the third round [1]. Fur-
thermore, NIST provided a list of candidates that are still
under investigation as alternates, as they rely on different
computationally hard problems. Arguably, the the most suc-
cessful class of algorithms of this standardization process is
the one of lattice-based algorithms, being attractive in terms
of computational latency and with practically acceptable key
and ciphertext sizes.

Besides the candidate selected for immediate standardiza-
tion, Kyber [2], three other schemes were deemed particu-
larly interesting in the contest: NTRU [3], NTRU Prime [4]
and Saber [5]. NTRU was officially recommended as the
fallback alternative in case patent issues cannot be solved
by the end of 2023 [6]. As a further testimony of NTRU’s
security and efficiency, Google LLC adopted it as the key
encapsulation method of choice in its internal infrastructure
[7, 8]. NTRU Prime is an NTRU variant with conservative
choices in the underlying algebraic structure, which prevent
a number of attacks preemptively. Thanks to its conservative
design choices, it has been adopted, and employed by default
in hybrid mode by OpenSSH [9], the most widely diffused
implementation of the Secure SHell (SSH) protocol suite.
Saber [5] is based on a slightly different algebraic problem
with respect to Kyber (i.e., the Module Ring-learning with
roundings problem instead of Module Ring-learning with
errors problem), which is at least as computationally hard
as the one of Kyber.

The four aforementioned lattice-based cryptosystems rely
on the arithmetic of polynomials with integer coefficients
modulo q, where q is either a power of two, or a small prime
number; all considered modulo a polynomial with a low
number of terms. Depending on the choices, the polynomial
ring obtained in such a way, may be more or less friendly to
sub-quadratic multiplication techniques. Among such tech-
niques, the Number Theoretic Transform (NTT) is the most
efficient way to perform a multiplication, provided that the
maximum degree of the polynomial generating the ring is

a power of two and that the ring of coefficients is modulo a
prime: given an n degree polynomial, it runs in O(n log2(n)))
sequential steps. By contrast, efficient versions of the school-
book algorithm, which runs in O(n2) , such as the one by
Comba [10], can always be applied, leading to extremely
compact designs but also reduced throughput. Software and
hardware implementations of the multiplication algorithms
also rely on divide-et-impera techniques such as Karatsuba
[11] or Toom-Cook decompositions [12]: these techniques
trade off an increased design complexity and larger constants
hidden in the O notation for a constant decrease in the com-
plexity exponent.

An emerging hardware design approach is the one known
in the literature as x-net or LFSR-based multiplier. Its under-
lying idea is to perform n coefficient-wise multiplications
per clock cycle, resulting in a total computation time that is
O(n) . While x-net-based multipliers require a non-negligible
amount of resources, their very good performance and flex-
ibility prompted this work, in which we provide results on
a unified multiplier design for Kyber, NTRU, NTRU Prime
and Saber. We note that the specification of Kyber states
that the private and public keys are represented in the NTT-
transformed domain, in order to save NTT computations, in
the encryption and decryption primitives. Doing so, obtains
an advantage in computation speed, at the cost of sacrific-
ing cryptographic agility. Indeed, devising accelerators that
are able to speed up the computation of Kyber employing
the key pair in the specified transport format, i.e., in the
NTT-transformed domain, would result in the design not
being compatible with lattice-based cryptosystems where the
underlying polynomial ring is not NTT friendly, e.g., NTRU.

To this end, in our work, we consider that our unified
multiplier is employed in cryptographically agile compo-
nents, where the transport format of the Kyber key pairs is
first converted back into the canonical domain upon key pair
loading. This scenario fits appropriately all the cases where
long-term key pairs are used, and cryptographic agility is
desired, such as in smartcards, IPSec-based VPNs, instant
messaging protocols, and the SSH transport layer protocol
[13].

Contributions

Our work aims to show that it is possible to have a uni-
fied design for an hardware accelerator computing the poly-
nomial multiplications in all polynomial rings of the four
lattice-based cryptosystems: Kyber, NTRU, NTRU Prime,
and Saber. The structure of such an accelerator stems from
an architecture able to achieve efficiency results beyond the
state of the art for NTRU-like cryptosystems. We provide
efficiency results of a synthesis-time specialized accelera-
tor for the arithmetic used by the NTRU (both NTRU HPS
and NTRU HRSS variants), NTRU Prime, Saber and Kyber

SN Computer Science (2024) 5:212 Page 3 of 19 212

SN Computer Science

cryptoschemes, namely every round-3 lattice-based KEM
proposals at NIST’s Post-Quantum standardization contest.
Subsequently, we provide a unified design supporting all the
polynomial rings, for all security levels of the KEMs, allow-
ing cryptographic agility without the need of replacing the
hardware component. We validated the correctness of the
results and gathered the performance and resource figures
for every parameter set specified by the latest specifications
available, for an FPGA design flow. Our design does not
depend on FPGA specific resources, allowing for simple
portability across different FPGA manufacturers, and retar-
geting toward ASIC designs. We note that our design uses
a sequential memory layout to store polynomial coefficients
in memory, and accesses them in a single sweep; therefore,
our design is eligible to be used also in a pipelined fashion,
a feature not achievable with current NTT-based multipliers.
This work is the result of an extension of the one presented
in [14]: in particular, we studied further design trade-offs,
adding the resource constrained designs, and further explor-
ing the advantages coming from the unified multiplier archi-
tecture when a specific NIST security level is specified at
design time.

Preliminaries

In this section, we provide a summary of the polynomial
arithmetic for the polynomial rings employed in Kyber,
NTRU, NTRU Prime and Saber. Subsequently, we provide
a summary of linear time hardware modular multipliers
obtained with the x-net technique for speed-oriented designs,
as well as an outline of generic modular multipliers mini-
mizing the memory accesses obtained with the Comba’s
strategy for size-oriented designs. In the following, we will
denote polynomials of degree n with lowercase letters as
a(x) =

∑n−1

i=0
aix

i.
The aforementioned cryptosystems consider the arithme-

tic over two quotient polynomial rings Rq and Rp , which are
defined as ℤq[x]∕⟨p(x)⟩ and ℤp[x]∕⟨p(x)⟩ , respectively. The
differences in the ring structures arise from the choice of
the values p, q, n, and p(x), of which a summary is reported
in Table 1. Each cryptosystem specifies multiple parameter
sets guaranteeing a security margin equivalent to the one
provided by AES-128 (security level 1), AES-192 (security
level 3), and AES-256 (security level 5). In particular, p is
always chosen to be a small odd number between 3 and 11;
q is either a small power of two (between 211 and 213) or a
prime number of the same order of magnitude. The latter
choice yields polynomials with coefficient over a field, ℤp ,
while the former choice allows a trivial modular reduction
mod q , via truncation of the most significant bits.

The polynomial, p(x), employed to obtain the quotient
ring, gives Rq and Rp a nega-cyclic algebraic structure, as
in Kyber and Saber, (i.e., with p(x) = xn + 1) or a cyclic
algebraic structure, as in NTRU, (i.e., with p(x) = xn − 1).
The latter structure name stems from the fact that, given
an element a(x) ∈ Rp , computing the result of x ⋅ a(x) is
equivalent to cyclically shifting its coefficients toward the
higher degrees, by one position. Similarly, the nega-cyclic
structure implies that the same cyclic shift takes place, but
a sign flip of the constant term is also performed after the
cyclic shift. The authors of NTRU Prime chose xn − x − 1
as the polynomial modulus p(x), thus obtaining polynomial
field algebraic structures for Rq and Rp : this removes the
need to introduce further constraints on the parameters of the
structure (which are indeed present in Kyber and Saber), pre-
venting future attacks that may exploit the specific proper-
ties of finite fields. To align our notation with the one of the
cipher specifications, we will consider the representatives
of the residue classes modulo q or modulo p, to which the
coefficients of polynomials belong, as the integers balanced
around the zero element, for example between −

⌈
(q − 1)∕2

⌉

and ⌊(q − 1)∕2⌋.

Modular Polynomial Multiplication Algorithms

Modular Polynomial multiplications with large operands are
extremely common in cryptographic primitives, and have
seen significant efforts in their optimization. A first classi-
fication criterion is the strategy that is employed to perform
the modular polynomial reduction: indeed, it is sometimes
possible to interleave the reduction operation with the inter-
mediate steps of the multiplication algorithm, saving on the
memory elements required for the computation. The second
classification criterion is the asymptotic complexity of the
multiplication method, counted as the number of coefficient-
wise multiplications, which in turn is a function of the num-
ber of coefficients of the operands, n.

As shown in Algorithm 1, the operand-scanning, school-
book method for polynomial multiplications involves O(n2)

Table 1 Summary of the features of the polynomial rings
R

p
= ℤ

p
[x]∕⟨p(x)⟩ and R

q
= ℤ

q
[x]∕⟨p(x)⟩ for each KEM

Cryptographic Scheme q p n p(x)

NTRU 2
i 3 prime x

n − 1

Values values
NTRU Prime Prime 3 prime x

n − x − 1

Values values
Kyber Prime 5, 7 2

i x
n + 1

Values 256
Saber 2

i 7, 9, 11 2
i x

n + 1

Values 256

 SN Computer Science (2024) 5:212 212 Page 4 of 19

SN Computer Science

coefficient-wise multiplications as it adds together all the
results of multiplying the first polynomial factor by each one
of the monomials composing the second factor.

Algorithm 1 Schoolbook Multiplication Algorithm

Require: A = (An−1, . . . A0), B = (Bn−1, . . . , B0), arrays storing the coefficients of
two polynomials a(x) = an−1x

n−1 + . . . + a0, b(x) = bn−1x
n−1 + . . . + b0, with

each coefficient belonging to a chosen finite ring.
Ensure: C = (C2n−2, . . . C0), array storing the coefficients of c(x) = a(x)·b(x), where

each coefficient ci(or Ci, resp.) belongs to the chosen finite ring, 0 ≤ i ≤ 2n− 2.
1: for j ← 0 to n− 1 do
2: for i ← 0 to n− 1 do
3: Cj+i ← Cj+i + Aj ·Bi single Multiply-and-Accumulate
4: end for
5: end for

The sub-quadratic methods, pioneered by Karatsuba [11],
provide algorithms to compute the polynomial multiplication
in O(nloga(2a−1)) coefficient-wise multiplications, where a ≥ 2 .
In particular, Karatsuba proposed the algorithmic variant for
a = 2 , while Toom and Cook [12] generalized the result for
a > 2 . The reason for avoiding the ubiquitous application of
such methods is that, while the number of coefficient-wise
application decreases, they require an increasing number of
polynomial additions and subtractions to compute the result.
While additions and subtractions have a linear cost in n, their
overhead offsets the gains coming from saving multiplica-
tions for small values of n. Given that the ratio between the
absolute values of the computational costs of multiplications
and additions/subtractions varies depending on the underly-
ing computational platform, it is commonplace to determine
the break-even value for the parameter a through an exhaus-
tive evaluation when designing a specific instance of a cryp-
tographic scheme. In our context, Karatsuba was used in [15]
instantiating three parallel Comba multipliers, while the design
in [16] involved a 3-way Toom-Cook computing five parallel
multiplications recursively with the Karatsuba method.

Algorithm 2 Parallel Schoolbook Algorithm

Require: A = (An−1, . . . A0), B = (Bn−1, . . . , B0), arrays storing the coefficients of
two polynomials a(x) = an−1x

n−1 + . . . + a0, b(x) = bn−1x
n−1 + . . . + b0, with

each coefficient belonging to a chosen finite ring.
Ensure: C = (C2n−2, . . . C0), array storing the coefficients of c(x) = a(x)·b(x), where

each coefficient ci(or Ci, resp.) belongs to the chosen finite ring, 0 ≤ i ≤ 2n− 2.
1: C ← (0, . . . , 0) // zeroed array with 2n− 1 components
2: for i ← 0 to n− 1 do
3: C ← C +CoeffWiseMultiplication(A,Bi)
4: end for

Finally, it is possible to compute polynomial multipli-
cations in O(n log2(n)) exploiting Fourier transformations.
The method relies on the fact that multiplying two poly-
nomials yields the same result computed by the convolu-
tion of their coefficients, interpreted as integer sequences.

This allows to perform the multiplication computing the
discrete-time Fourier transform of the sequences, per-
forming the element-wise multiplication of the results
and computing the inverse Fourier transform of such an
outcome. The total cost of the operation depends on the
cost of computing the Fourier transform, to which a linear
amount of coefficient-wise multiplications must be added.
For the special case where n is a power of two, computing
the Fourier transform takes O(n log2(n)) , thus resulting in a
O(2(n log2(n)) + n) = O(n log2(n)) cost for the entire multi-
plication. This technique is applied fruitfully to polynomi-
als in a ring ℤq[x]∕⟨p(x)⟩ , provided that the degree of p(x)
is a power of two, and that ℤq is a field, (to make use of all
the required roots of unity), and goes by the name of Num-
ber Theoretic Transform (NTT) [16]. As it is the case for
the sub-quadratic multiplication techniques, also the NTT
requires some linear time operations to be computed, and
thus the break-even point for the value of n is sought experi-
mentally. Of the four cryptosystems we are considering, only
Kyber has a parameter choice that may benefit from the use
of NTT-based techniques.

SN Computer Science (2024) 5:212 Page 5 of 19 212

SN Computer Science

Linear‑time Modular Multiplication

An orthogonal approach to the redesign of a multiplication
algorithm is the one that exploits the inherent parallelism
of the schoolbook strategy. Indeed, all the coefficient-wise
multiplications involved in a product of a single monomial
coefficient by the entire other factor, can be computed inde-
pendently. This observation leads to the design of a linear
time multiplication algorithm that exploits n computation
units and n coefficient-wide memories to compute the entire
product in O(n) following the operative pattern shown in
Algorithm 2.

The first proposal of a linear time modular multiplica-
tion algorithm specialized for the NTRUEncrypt polynomial
ring comes from [17]. The work achieves the multiplication
in n clock cycles using n parallel multiply-and-accumulate
(MAC) units. Furthermore, to reduce the area of each MAC
unit, the work replaces the multiplier with a multiplexer,
which selects one of the three possible coefficient-wise mul-
tiplication outcomes, thanks to the small size of the coeffi-
cients of the Rp operand, with p = 3 . This approach was then
separately adapted for the realization of the arithmetic of
the different polynomial rings of Saber, NTRU, and NTRU
Prime cryptoschemes [16, 18, 19]. The authors of [18] pro-
posed a centralized way to compute the few possible results
of a coefficient-wise multiplication, and distribute them to
every MAC unit. In [20], the authors proposed to postpone
the reduction mod q of the coefficients of the multiplication
result to the end of the multiplication. This approach entails
larger accumulators to store the coefficients of the resulting
polynomial, while allowing to save area as only a single
modular reduction unit is required.

Algorithm 3 Comba’s Multiplication Algorithm

Require: A = (An−1, . . . A0), B = (Bn−1, . . . , B0), arrays storing the coefficients of
two polynomials a(x) = an−1x

n−1 + . . . + a0, b(x) = bn−1x
n−1 + . . . + b0, with

each coefficient belonging to a chosen finite ring.
Ensure: C = (C2n−2, . . . C0), array storing the coefficients of c(x) = a(x)·b(x), where

each coefficient ci(or Ci, resp.) belongs to the chosen finite ring, 0 ≤ i ≤ 2n− 2.
1: C ← (0, . . . , 0) // zeroed array with 2n− 1 components
2: for rIdx ← 0 to n− 1 do
3: for i ← 0 to rIdx do
4: tmp ← tmp+ArIdx−i ·Bi No mem write for Multiply-and-Accumulate
5: end for
6: CrIdx ← tmp
7: end for
8: for rIdx ← n to 2n− 1 do
9: for i ← n to rIdx do

10: tmp ← tmp+ArIdx−(i−n) ·Bi−n No mem write for Multiply-and-Accumulate
11: end for
12: CrIdx ← tmp
13: end for

Resource Constrained Modular Multiplication

Employing a schoolbook multiplier to perform the polyno-
mial modular multiplication in an operand-scanning fashion
results in the smallest amount of computational and memory
resources. Indeed, in a software-based implementation, the
operand-scanning approach has the minimum code size and
register pressure, while in a hardware implementation the
compact design of the multiplier and the simple control
logic, which in turn reduces the size of the driver Finite
State Machine (FSM), yield area savings. A notable alterna-
tive to the plain schoolbook multiplier design is represented
by the Comba’s method [10] reported in Algorithm 3. Such
a strategy can be seen an optimization of the schoolbook
algorithm, aiming at minimizing the number of memory
accesses to compute each coefficient of the result, even if
it still involves O(n2) coefficient-wise multiplications. This
optimization has the additional benefit of requiring a mini-
mal amount of computational resources, in the same fash-
ion as the schoolbook method. The intuition in Comba’s
method is to reorder the single-coefficient multiplications
with respect to the operative pattern of the schoolbook algo-
rithm by performing additions of properly shifted intermedi-
ate polynomials (which in turn are obtained multiplying the
first polynomial factor by each coefficient of the second one).
Comba’s method computes and writes the final value of each
coefficient of the resulting polynomial into the correspond-
ing memory space only once (proceeding from the least
significant coefficient to the most significant one, or vice
versa). From an implementation standpoint, such a feature
is particularly advantageous because it allows to perform

 SN Computer Science (2024) 5:212 212 Page 6 of 19

SN Computer Science

only 2n − 1 read/write accesses to the memory holding the
result, instead of 2n2 read/write accesses required by the
schoolbook strategy. To achieve a modular multiplication
with an operand-scanning Comba multiplier, it is sufficient
to accumulate the coefficient of the result in the correspond-
ing appropriate position: in case the computed coefficient
is within the maximum degree of the polynomial ring ele-
ments, it is added as reported in Algorithm 3, lines 2–7; in
case the coefficient belongs to a monomial of higher degree
(lines 8–13), it is added or subtracted to a set of monomials
of lower degrees, corresponding to the non-null coefficients
of the polynomial ring modulus.

Our Unified Multiplier Design

In this section, we provide the description of our digital
designs to implement the x-net approach and the Comba
approach to polynomial multiplication, for a generic polyno-
mial modulus p(x). In particular, we employ our framework
to describe the x-net multiplier design, specialize its struc-
ture for each one of the four polynomial rings required in

Kyber, Saber, NTRU and NTRU Prime, and describe a uni-
fied multiplier architecture. Subsequently, we describe the
Comba approach to polynomial multiplication, which can
be applied to all polynomial rings needed for Kyber, Saber,
NTRU and NTRU Prime, and similarly describe another uni-
fied multiplier architecture.

In the following, we consider the case of the multiplica-
tion of two polynomials where the first one has coefficients
in ℤp , while the second one has coefficients in ℤq , with p
q , and the product has coefficients in ℤq , which is the poly-
nomial multiplication taking place in all the cryptosystems
at hand. The operation is intended to be computed lifting
the coefficients of the first polynomial ℤp simply reconsid-
ering their values as being in ℤq . We note that NTRU also
requires a multiplication between two polynomials with
coefficients in ℤq . The described multiplier structure also
covers this case, enlarging the width of the signals carry-
ing coefficients in ℤp to hold the coefficients in ℤq . In the
following, we will assume that the polynomial modulus
p(x) is monic, as it is always the case in practice.

Algorithm 4 x-net polynomial multiplier

Require: A = (An−1, . . . A0), B = (Bn−1, . . . , B0), arrays storing the coeffi-
cients of two polynomials a(x) ∈ Zp[x]/ p(x) , a(x) = n−1

i=0 aix
i and b(x) ∈

Zq[x]/ p(x) , b(x) = n−1
i=0 bix

i, p(x) ∈ Zq[x], monic, with degree n
Ensure: C = (C2n−2, . . . C0), array storing the coefficients of c(x) =

Lift (a(x),Zq[x]/ p(x)) b(x)
1: C ← (0, . . . , 0) All coefficients set to zero
2: for i ← 0 to (n− 1) do
3: C ← C +Bi · parallel Multiply-and-Accumulators
4: A ← A · (0, . . . , 0, 1, 0) mod p(x) (x) · x performed via the LFSR structure
5: end for
6: return C

Fig. 1 Structure of an x-net multiplier computing the product r(x) = (a(x) ⋅ b(x)) mod p(x) . The top portion of the modular multiplier takes care
of computing xi ⋅ a(x) mod p(x) at the i-th clock cycle, while the bottom part performs the coefficient-by-polynomial multiplication

SN Computer Science (2024) 5:212 Page 7 of 19 212

SN Computer Science

The main idea of the x-net multiplication is to rewrite
the computation of the polynomial ring multiplication,
i.e., the multiplication of the between a(x) and b(x), and
the subsequent modular reduction mod p(x) , as described
in Algorithm 4. The modular polynomial multiplication,
a(x) ⋅ b(x) = c(x) mod p(x) , is decomposed as a sequence of
coefficient-by-polynomial multiplications and polynomial
additions involving a single coefficient of the second factor
and the entire first factor (line 3), and multiplications by x
followed by modular reductions of the first factor (line 4).
This decomposition of the modular multiplication opera-
tion allows an efficient hardware implementation; indeed,
the coefficient-wise multiplications of line 3 expose a large
amount of data parallelism, while the modular multiplica-
tion by x and the subsequent reduction can be implemented
by means of an LFSR structure.

The hardware structure of a generic x-net modular multi-
plier for a monic p(x) is depicted in Fig. 1.

The coefficient-by-polynomial multiplication (line 3 in
Algorithm 4) is computed with n independent Multiply and
Accumulate (MAC) elements that compute the product of
the coefficient bi by each coefficient of polynomial a(x), and
add the result to the corresponding coefficient of c(x). The
corresponding portion of the circuit in Fig. 1 is the bottom
half, where one MAC element is highlighted in gray. A sin-
gle MAC element is composed by an integer multiplier, an
adder, a modular reducer mod q , and a register containing
the value of the coefficient Ci, 0 ≤ i < n.

The computation of the multiplication of the first fac-
tor by x, a(x) ← a(x) ⋅ x is efficiently done by storing the
coefficients of a(x) in a shift register, as the multiplication
by x acts shifting the coefficients by one position toward
higher degree monomials (to the right, in Fig. 1). Since the
degree of a(x) is at most n − 1 before the multiplication by
x, the modular reduction a(x) ← a(x) ⋅ x mod p(x) can be
efficiently computed. Indeed, since p(x) is monic, comput-
ing the remainder of a(x) ⋅ x mod p(x) is equivalent to the
subtraction from a(x) ⋅ x of the polynomial An−1 ⋅ (p(x) − xn).

The multiplication and modular reduction are performed
in the same clock cycle by the the portion of the x-net mul-
tiplier managing the operation (top portion of Fig. 1). This
circuit, structured as a shift register with feedback, performs
the a(x) ⋅ x shifting the contents of the registers containing
(A0,…An−1) toward right. The same circuit also subtracts
An−1 ⋅ (p(x) − xn) from a(x) ⋅ x by adding the coefficients of
−An−1 ⋅ (p(x) − xn) to the ones of a(x) ⋅ x . This is done insert-
ing the adders on the shift lines between any two elements of
the shift register that contains a(x). This feedback network
structure will thus need as many multipliers and adders as
the number of non-null coefficients in p(x), benefiting from
values of p(x) with a very small number of coefficients, as it
is the case in the four considered cryptosystems. Finally, we
note that the shift register structure also allows to perform the

loading of a(x) with minimal additional hardware. Indeed,
a(x) in our design is loaded coefficient-wise from An−1 to
A0 , inserting a single mux (represented on the left in Fig. 1).

Structural x‑net Optimizations

The first observation leading to an optimization is that the
topmost portion of the x-net multiplier may operate entirely
with values mod p , leading to a significant saving in the
resource consumption for the cases where p ≪ q . The lifting
required to multiply coefficient in ℤp by coefficients in ℤq is
efficiently realized within the multiplier units in the MAC
elements by sign-extending the two’s complement represen-
tation of the ℤp elements.

The second observation leading to an optimization is that,
in case p is very small, as it is the case in our cryptosystems,
the multiplier in the MAC can be substituted by a multiplexer
that selects among a small set of fixed multiples of Bi , which
are in turn computed by a small number of additions. Taking
as an example p = 5 , the multiplier is substituted by a mul-
tiplexer selecting among the values {−2Bi,−Bi, 0,Bi, 2Bi} ,
depending on the value of the coefficient of the a(x) polyno-
mial. The values can be either precomputed only once, and
distributed, or computed within the MAC unit and selected
in place. The first approach requires a larger amount of
resources for each single MAC unit, while obtaining a reduc-
tion in the wiring congestion, which is particularly beneficial
for FPGA targeted implementations.

A final point concerning the optimization of the x-net
multiplier is the trade-off between performing modular
reductions in the MAC complex managing the coefficients
of the result, and performing the reductions upon result
readout. Choosing to perform the modular reductions at
readout requires wider accumulator registers for C(x); in
particular, their size grows from

⌈
log2 (q)

⌉
 to

⌈
log2 (npq)

⌉

bits, as n values mod q will be multiplied by a value mod p
and added by the x-net multiplier during its operation. This
increase in area is however compensated by the removal of
n modular reducers mod q from each multiply and accu-
mulate complex, enacting a trade-off that typically gains
in area consumption, unless the reduction by q is trivial
(e.g., when q is a power of two). We explored both strate-
gies devising modular reducers as follows. In the former
case, each accumulator register has log2(q) bits size, and
we perform the mod q operation by conditionally applying
additions and subtractions. Since the distance between each
integer multiplication result and a valid ℤq element is at
most (q − 1) ⋅

⌈
(p − 1)∕2

⌉
 , then

⌈
(p − 1)∕2

⌉
 additions and

subtractions are carried out in parallel with values multiple
of q and the only valid result in ℤq is selected. In case of the
reduction operation performed during the readout, a single
Barrett reduction module is used.

 SN Computer Science (2024) 5:212 212 Page 8 of 19

SN Computer Science

Specialized and Unified x‑net Designs

We now describe the specializations of the x-net designs
that can be performed to optimize its resource consump-
tion according to the specific polynomial ring for NTRU,
Saber, NTRU Prime and Kyber. The specialized designs are
depicted in Fig. 2. For the case of the NTRU polynomial

ring, we have that the large modulus q is a power of two,
while the modulus polynomial is p(x) = xn − 1 . This in turn
allows us to perform the structural optimizations depicted
in Fig. 2a: we perform implicitly the modular reduction as it
is a simple bitwise truncation; therefore, no explicit reduc-
ers modulo q are present; the addition of −An−1 ⋅ (p(x) − xn)
becomes the addition of An−1 alone, since p(x) − xn = −1 .

Fig. 2 x-net architectures
specifically tailored for each
polynomial ring. The readout
circuit of the accumulators is
omitted for clarity. The mod q
reducer is not present whenever
the reduction is performed upon
result readout

SN Computer Science (2024) 5:212 Page 9 of 19 212

SN Computer Science

Given that this element should be added to the A0 coefficient
of the a(x) ⋅ x product, no adder is needed, as the product
a(x) ⋅ x has always A0 = 0 . Therefore, the value of An−1 is
simply fed back into the first register by the feedback line
on top of Fig. 2a.

For the case of Saber, depicted in Fig. 2b, the modulus
q is still a power of two, therefore allowing modular reduc-
tion mod q with a simple bit truncation as for NTRU, while
the polynomial modulus is p(x) = xn + 1 . The value of the
polynomial modulus implies that adding −An−1 ⋅ (p(x) − xn)
is equivalent to adding −An−1 to the null A0 coefficient of
a(x) ⋅ x . As a consequence, a subtractor is added on the
feedback line, fed with 0 as the minuend and An−1 as the
subtrahend.

The x-net design for Kyber, depicted in Fig. 2c, manages
the fact that the large modulus q is a prime value, there-
fore requiring modular reduction units between the output
of the MAC operation and the input of the register stor-
ing Ci, 0 ≤ i < n . The value of the polynomial modulus for
Kyber matches the one of Saber, i.e., p(x) = xn + 1 . As a con-
sequence, the computation of −An−1 ⋅ (p(x) − xn) to be added
back as a result of the modular reduction a(x) ⋅ x mod p(x)
results again in −An−1 being added to the null A0 coefficient
of a(x) ⋅ x.

Finally, the design of the x-net multiplier for NTRU
Prime, depicted in Fig. 2d, also requires to employ a value
of q which is a prime number, in turn requiring a mod q
reducer for each MAC complex. The modulus value for
NTRU prime is p(x) = xn − x − 1 , which in turn implies
that adding −An−1 ⋅ (p(x) − xn) is equivalent to adding
−An−1 ⋅ (−x − 1) = An−1x + An−1 to a(x) ⋅ x . While adding
An−1 does not require an actual adder, as the A0 coefficient
of a(x) ⋅ x is null, adding An−1x requires an actual coefficient-
wise addition An−1 + A1 , where A1 is the coefficient of x in
a(x) ⋅ x . Therefore, the feedback network for the x-net design
of NTRU Prime has an adder taking as inputs An−1 and A0
from a(x), which is indeed A1 in the a(x) ⋅ x product.

Providing a single unified design for all the four cryp-
tosystems was achieved postponing the modulo reduction
of resulting coefficients upon readout and considering the

largest among all the register sizes required by the four
designs, and inserting multiplexers regulating which multi-
ply-add elements are active on the feedback network of the
register containing a(x), and whether or not the sign of An−1
should be flipped. We provide a graphical depiction of the
selection multiplexer to support the inverted feedback coef-
ficient selection in Fig. 3.

This approach required a Barrett reduction module com-
patible with multiple modulus, which was achieved through
storing the pre-computed constants in a small read-only
memory.

Multiplying in Less Than 3n Cycles

In our design, we also explored the possibility of reduc-
ing the multiplication time under 3n cycles. Indeed, the
described architecture uses n clock cycles to load the a(x)
from memory, n cycles to compute the result of the modular
multiplication (potentially without coefficient-wise modular
reduction), and n cycles to read out the final polynomial
multiplication result and store it into the memory. This pro-
cess can be sped up devising a memory bus transferring
multiple polynomial coefficients at once. Transferring � , �
and � coefficients for respectively the small, large and result
polynomials, the overall latency of a polynomial multipli-
cation is

⌈
n∕�

⌉
+
⌈
n∕�

⌉
+
⌈
n∕�

⌉
 . Loading � coefficients of

a(x) for each clock cycle is achieved transferring them in
parallel from main memory, and having the shift register
containing a rotate by � positions at each clock cycle through
appropriate connections. The same approach is applied for
reading out � coefficients of the result from the accumulator

Fig. 3 Multiplexers introduced
by the unified x-net multiplier

Fig. 4 Datapath of the Comba multiplier

 SN Computer Science (2024) 5:212 212 Page 10 of 19

SN Computer Science

registers, possibly instantiating � parallel Barrett modules
when performing the reductions-at-readout approach. To
compute the multiplication of � ℤq coefficients in parallel,
we need a total of � ⋅ n MACs. Indeed, to compute the result
of � multiplication steps, � multiplications and sums need to
be computed at each clock cycle, to obtain the result which
is to be stored � − 1 cells to the right of each MAC unit. Fur-
thermore, it is to be noted that � steps of the update of a(x)
should be computed in a single step. This in turn requires
to perform � − 1 sign flips of the ℤp coefficient for specific
MAC units of Kyber and Saber, and additional 2(� − 1) mul-
tiply and additions for specific MAC units of NTRU Prime.

Comba Multiplication

Realizing a Comba multiplier requires a remarkably small
datapath that is only in charge of performing a single MAC
operation between polynomial coefficients per clock cycle,
and store the result in an accumulator register. The datapath,
depicted in Fig. 4 requires, in addition to a multiplier and an
adder, an additional reducer modulo q, which can be omit-
ted in case the value of q is a power of two, as the modular
reduction amounts to a simple bit truncation of the output of
the MAC. This datapath allows to compute one of the itera-
tions of the loops of Algorithm 3, lines 3–5 and lines 9–11
per clock cycle, while retaining the value of the ��� variable
within the local accumulator. The writeback of the correctly
computed value C���� onto the memory holding the result is
thus done only once at the end of each iteration of the outer
loops of Algorithm 3, lines 2–7 and lines 8–13.

Performing a regular multiplication, followed by a poly-
nomial reduction with Comba’s approach would produce a
result with a maximum degree up to 2n − 1 , which would
in turn double the size of the required memory to contain
it. We optimized the regular Comba algorithm taking care
of saving the result of a single outer loop iteration of lines
8–13 of Algorithm 3, while taking care of the effects of the
modular reduction. This entails either adding or subtracting
the coefficient of the monomials with degree higher than
n − 1 in the result of the plain multiplication to the appropri-
ate coefficient of the modular multiplication result. We note
that such an approach is non-trivial to realize for the case of
the NTRU Prime cryptographic scheme, as coefficients of
monomials with degree higher than n − 1 have to be added
twice, to two subsequent coefficients in the modular mul-
tiplication result. We also note that, before depositing the
result of the sum/subtraction of the coefficient of the mono-
mial with degree higher than n − 1 and the one present in the
result accumulator, a modular reduction is required. Since
we know that the maximum value admissible as the result
of the accumulation is smaller than 2q − 2 , it is possible to
perform the modular reduction together with the accumula-
tion through a simple selection of the result of a short chain

of adders and subtractors, even when the modulus q is not
reduction friendly (i.e., a power of two).

Experimental Evaluation

In this section, we present the results of our synthesis cam-
paign on specialized x-net multipliers for all the four crypto-
systems we considered, and compare them with the current
state of the art solutions. In addition, we show the results for
the design based on the Comba algorithm, optimized for the
NTRU, Kyber, and Saber schemes. Furthermore, we report
the figures of merit for our unified multiplier designs.

The correctness of the results of our multipliers was
tested through test benches obtained with a synthetic compu-
tation model written in SageMath, which generated known
answer tests according to the reference implementations of
the ciphers. We tested the correctness of the polynomial
multiplication for every ring defined by the parameter sets
of Kyber, Saber, NTRU, and NTRU Prime cryptographic
schemes.

We conducted our syntheses for the Xilinx UltraScale+
ZCU106 FPGA (target xczu7ev-ffvc1156-3-e) using
Vivado 2021.1 with Flow_AlternAteroutAbility and
PerFormAnce_netDelAy_high strategies for synthesis and
implementation, using out-of-context synthesis mode and
fixing the clock source cell in order to produce a realistic
timing analysis.

Considering the x-net architecture, we explored four dif-
ferent choices of the amount of coefficients being loaded,
namely, loading either one or four Rp coefficients, and one
or two Rq coefficients. Our systematic exploration led us to

Table 2 Number of R
p
×R

q
 multiplications in key generation,

encapsulation and decapsulation primitives of each cryptographic
scheme

One further Rq ×Rq multiplication is performed during the decapsu-
lation in NTRU, denoted by ⋆ symbol. Module-based cryptographic
schemes Saber and Kyber perform one k × k matrix–vector and one
or two vector-vector multiplications, where the elements are built
from the coefficients of polynomials in Rq or Rp , during key genera-
tion, encapsulation and decapsulation, respectively

Cryptographic scheme Module rank k R
p
×R

q
 Multiplications

Keygen. Encap. Decap.

NTRU 1 5 1 2
⋆

Streamlined NTRU
Prime

1 1 1 3

NTRU LPRime 1 1 2 3
Kyber 2,3,4 k

2
k
2 + k k

2 + 2k

Saber 2,3,4 k
2

k
2 + k k

2 + 2k

SN Computer Science (2024) 5:212 Page 11 of 19 212

SN Computer Science

discover that the x-net configurations loading four Rp coef-
ficients per clock cycle achieve better performance figures
(when transferring two Rq coefficients) and better area–time
product (when transferring one Rq coefficient) than their
alternatives, we therefore report their results alone for the
sake of brevity. We thus have that the first operand, i.e., the
one on ℤp∕⟨p(x)⟩ is loaded into the registers 4 coefficients
at a time, with a data transfer of 8 to 16 bits per clock cycle
depending on the cryptographic scheme and parameter set.
Moreover, we report the resulting data when the modulo
reduction operation is performed every clock cycle or upon
readout. By contrast, the design based on Comba algorithm
performs a modular reduction at each single coefficient
MAC, aiming for extreme compactness and low circuit com-
plexity. Finally, we report the results of our unified multi-
plier designs, able to support the NIST security levels 1, 3
and 5, which are equivalent to the security margin provided
by AES-128, AES-192, and AES-256, respectively. In pro-
viding overall latency figures for the computations acceler-
ated by our designs in the four considered cryptosystems, we
take into account the number of accelerated multiplications
per primitive, as reported in Table 2. We consider, in all
cases, the sequential executions of the required multiplica-
tion operations to provide the latency figures. We note that
the area-time product does not change if multiple parallel
multipliers are instantiated whenever data parallelism is
available in the scheme.

Net Performance Results

We conducted an exploration for the x-net optimized
designs and gathered detailed data of the resource con-
sumption, in terms of Cell Logic Blocks (CLBs), employed
by each multiplier, the number of clock cycles taken for
an entire modular multiplication, and the maximum target
frequency that the design was able to reach. Furthermore,
we also computed the total latency taken by all Rp ×Rq
multiplications in the key generation, key encapsulation
(encryption) and key decapsulation (decryption) primi-
tives of the scheme, as some schemes require more than
a single multiplication (see Table 2). We evaluated the
two coefficient ring reduction strategies described in
Sect. Potential function (i.e., the one acting at each clock
cycle, and the one acting upon readout) for NTRU Prime
and Kyber to determine which solution is to be preferred
when targeting an FPGA design. We noted that delaying
the reduction to the readout phase yields an important
gain in the designs of Kyber and NTRU Prime in terms
of utilization of resources and increase of the working
frequency, although at the cost of a moderate increase in
the number of needed Flip Flops. As a consequence we
selected the said reduction strategy to realize Kyber and
NTRU Prime multipliers. As far the multipliers employed
in Saber and NTRU scheme are concerned, as their param-
eter set exhibit a value of q that is a power of 2, the most
convenient reduction strategy is to reduce the result of the

Fig. 5 Efficiency comparison
of x-net-based designs. Blue,
yellow and orange markers
refer to parameters of security
level 1, 3, and 5, respectively.
Red markers denote parameters
above security level 5. Dashed
lines exhbit the same area-time
(AT) product (lower is better)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2
·104

A
T
=
400

A
T
=
2
0
0

A
T
=

1
0
0

A
T
=

5
0

A
T

=
2
5

A
T

=
1
2
.5

ntruhps2048509
ntruhps2048677
ntruhps4096821

ntruhrss701
lightsaber saber

firesaber

kyber512
kyber768 kyber1024

sntrup653

sntrup761

sntrup857

sntrup953

sntrup1013

sntrup1277

ntrulpr653

ntrulpr761

ntrulpr857

ntrulpr953

ntrulpr1013

ntrulpr1277

Time (us)

A
re
a
(C

L
B
)

NTRU HPS
NTRU HRSS

Saber
Kyber

str. NTRU Prime
NTRU LPRime

 SN Computer Science (2024) 5:212 212 Page 12 of 19

SN Computer Science

multiplication between two polynomial coefficients at each
clock cycle (see Sect. Potential function).

In the following, we employ the Area-Time (AT) product
as an efficiency indicator, computing it as the number of
occupied CLBs times the execution time in milliseconds.

Figure 5 allows to compare the designs of the encapsu-
lation module of Kyber, Saber, NTRU, and NTRU Prime,
employing the x-net-based multipliers that realize for each
of them the more suitable reduction strategy. A blue marker
represents a design with a parameter set corresponding to
the NIST security level 1, a yellow marker refers to security
level 3, an orange marker corresponds to security level 5,
while the red ones refer to security levels above level 5. The
figure also shows as dashed lines the design space points
that exhibit the same area-time (AT) product (lower is bet-
ter) to the end of easing the evaluation of the efficiency of
the encapsulation modules with the parameter sets recom-
mended in the official specification of each cryptographic
scheme.

Figures with similar trends were also obtained for decap-
sulation modules and key generation modules, employ-
ing the data in Appendix A, which shows the detailed and
complete set of results we obtained from our design space
exploration.

In Fig. 5 and in the data referring to decapsulation and
key generation modules, by comparing the designs with an
equivalent security level, it can be noted that the time spent
in polynomial multiplications is larger in Kyber (a mod-
ule RLWE scheme) and Saber (a module RLWR) than in
NTRU-based schemes (right-most values on the x axis of

Fig. 5). Moreover, such a difference increases with the secu-
rity level. The only exception to such a trend is the latency of
polynomial multiplications for the key generation of NTRU
HPS and HRSS for the parameter sets ranked with security
level 1 and 3 due to the large number of operations carried
out. Nonetheless, this penalty is compensated by the flex-
ibility of Kyber and Saber schemes, which have an almost
identical polynomial multiplier usable in every parameter set
(almost constant value on the y axis of the figure). As it can
be clearly seen, given the large amount of parameter sets for
NTRU Prime, the latency of the multiplication for our design
and this cryptographic scheme is linear in the degree of the
polynomials. As a consequence the performance penalty
imposed by larger security levels grows more slowly than
for Kyber and Saber.

When considering various parameter sets of equivalent
security level, it becomes evident that NTRU Prime stands
out as having the least efficient implementation among them.
Comparing NTRU-based parameters with those of Kyber
and Saber, we can see that the former exhibit a consider-
ably lower degree of variability in terms of efficiency when
increasing the security level with respect to the latter. The
gathered data suggests that the x-net architecture is from 4
to 8 times more efficient when employed to compute polyno-
mial multiplications during encapsulations in NTRU rings,
as shown by the marks in Fig. 5 which are close to the origin
of the chart. This fact however does not hold anymore for
the keygen and decapsulation operations, having fewer mul-
tiplications to perform than NTRU. Finally, it is worth noting
that Kyber lags significantly behind the efficiency achieved

Fig. 6 Efficiency comparison
of Comba-based designs. Blue,
yellow and orange markers
refer to parameters of security
level 1, 3, and 5, respectively.
Red markers denote parameters
above security level 5. Dashed
lines exhbit the same area–time
(AT) product (lower is better)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

20

40

60

80

100

A
T
=
200

A
T
=
1
0
0

A
T
=

5
0

A
T
=

2
5

A
T
=

1
2
.5

ntruhps2048509
ntruhps2048677

ntruhps4096821

ntruhrss701

lightsaber
saber

firesaber

kyber512
kyber768 kyber1024

Time (us)

A
re
a
(C

L
B
)

NTRU HPS
NTRU HRSS

Saber
Kyber

SN Computer Science (2024) 5:212 Page 13 of 19 212

SN Computer Science

by the Learning With Errors (LWE) scheme Saber. In fact,
Kyber’s design efficiency is approximately two times worse
than the one of Saber (Tables 3, 4).

The full results of our design space exploration of the
x-net architecture design are reported in Tables 5, 6, 7, 8 in
the Appendix section.

Comba Performance Results

Considering the results of the synthesis campaign of the
Comba-based multipliers, the design shows a remarkably
small area requiring almost two orders of magnitude less
CLBs with respect to the x-net design. This compactness in
turn allows to further improve the working frequency up to
36% for NTRU parameter sets.

From the chart depicted in Fig. 6 obtained with analo-
gous conditions of the Fig. 5, see similar trends than the
ones obtained with the x-net architecture: Kyber is the slow-
est cryptoscheme, NTRU has the fastest and most efficient
implementation during the encapuslation and decapsulation
procedures, and Saber is showing the same results for the
key generation.

These results proved that an extremely compact solution
requiring almost two order of magnitude less area than the

low-latency solution based on x-net still maintains competi-
tive efficiency. In scenarios where the extra incurred cost of
a large low-latency design is not feasible, a compact design
with competitive efficiency presents an appealing solution
when a latency of few milliseconds is admissible.

We report the complete results of the synthesis campaign
in Table 9 in the Appendix.

Comparison with the State‑of‑the‑Art Results

Table 3 reports the comparison of our cryptosystem-spe-
cialized designs with the existing state of the art on NTRU
and NTRU Prime linear time multipliers. We note that our
design achieves a 30–40% reduction in the required CLBs
for both cryptosystems, when comparing our solution which
loads a single Rq coefficient (x-net) with the one in [19].
Furthermore, we also obtain a 28–96% gain in working fre-
quency with respect to the same design, therefore achieving
also a higher area-time efficiency. We compare our solution
loading two Rq coefficients at once, with the only currently
available data point in the public technical report [21]. The
solution reported in the technical report, where it is denoted
as x2-net, is 10% larger in area a 2.2× slower in the working
frequency for the design for NTRU. These results show how

Table 3 Comparing results
of our x-net and x2-net with
[19], and [21] with multiplier
architectures adaptable to
multiple cryptographic schemes
targeting a UltraScale+ target

The count of clock cycles do not consider the time to transfer the operands and the result. No DSP were
used

Work Parameter set CLB Frequency CC LUT FF BRAM

x-net sntrup761 6757 312 762 38798 21768 2
[19] sntrup761 9699 255 762 65207 32929 6
x-net ntruhrss701 3088 588 702 18383 10898 2
[19] ntruhrss701 5476 300 702 33230 32327 6
x
2-net ntruhps4096821 7766 412 413 46293 12029 2

[21] ntruhps4096821 8728 187 412 54478 9227 –
x
2-net firesaber 5602 338 129 30809 4654 2

[21] firesaber 3427 310 128 22127 7841 –

Table 4 Results of the synthesis
targeting an Xilinx UltraScale+
ZCU106 FPGA for the unified
designs compatible with the
specified parameter sets

The design based on x-net is configured to transfer 4 Rp coefficients and 1 Rq coefficients per clock cycle.
Each supported parameter set can be selected at run time

Design Supported Security CLB Freq. LUT FF CARRY8 DSP48E2
ciphers level

x-net NTRU,
NTRU Prime,
Saber, Kyber

AES-128 12090 272 70704 20184 2630 2
AES-192 13935 247 83922 24237 3064 2
AES-256 15273 241 94410 27276 3448 2

x-net NTRU,
NTRU Prime,
Kyber

AES-128 8825 272 53479 18750 2624 2
AES-192 10071 247 63718 22593 3058 2
AES-256 11435 244 71775 25401 3442 2

Comba NTRU, Saber AES-256 67 328 394 142 30 0
Kyber

 SN Computer Science (2024) 5:212 212 Page 14 of 19

SN Computer Science

the x-net design is a remarkable fit for the Rp ×Rq multipli-
cations in NTRU and NTRU Prime.

Unified Design Performance Figures

We now analyze the results of the unified architecture sup-
porting polynomial multiplications for all four cryptographic
schemes at hand. The results are reported in Table 4.

When considering a unified x-net design capable of adapt-
ing at run time to the required polynomial ring, we basically
need to instantiate the longest LFSR among the ones for the
the supported parameter sets, pre-compute 2p + 1 integer
multiplication outcomes for the largest value of p in use
across all schemes, and insert multiplexers to propagate the
correct data to the functional units. By contrast, obtaining a
unified Comba design is less demanding on FPGA resources,
since the only accumulator which is present in the Comba
datapath has a size depending uniquely on the value of the
large modulus q. As a consequence, we report the synthesis
results of the Comba unified design for the highest security
level alone, as they match the ones for all other security
levels.

Analyzing the results in Table 4, we observe that,
while raising the security level from 1 to 3 (5) the uni-
fied designs require ≈ 15 % (≈ 30 %, respectively) more
FPGA resources to be implemented. In particular, we also
observe that omitting Saber from the supported cipher

set allows for a consistent FPGA resource saving, such
that the design compatible with parameters up to security
level 5 is more compact than the smaller one which only
has compatibility with lightsaber parameters. Raising the
desired security level for the integrated design also has
a negative impact on the maximum working frequency;
however, such an impact is quite limited (≈ 10%). Finally,
we note that the FPGA resource requirements for the uni-
fied Comba design are approximately two orders of mag-
nitude smaller with respect to the x-net design, therefore
providing an extremely appealing optimization corner for
resource constrained environments.

By looking at the area comparison of the unified
design with the ones specialized to a specific parameter
set depicted in Fig. 7, the design providing complete run
time flexibility takes around 50% more area resources than
the largest tailored component (NTRU Prime) required to
run the most demanding cipher of the same security level
set, and when support to Saber is dropped, the area pen-
alty drops to almost negligible values. Furthermore, the
achieved running frequency is only 5 to 22% slower than
the slowest component it encompasses, while taking no
penalty on the number of clock cycles used to compute any
of the multiplications with respect to a dedicated design.

The x2-net designs specialized for the NTRU HPS/HRSS
parameters are more compact than the ones tailored for
Saber parameter sets, suggesting that the increasing of the

Fig. 7 Comparison of the area
of the designs of different cryp-
toschemes (security level 1)

x-
ne
t (
mo
d.
ea
ch
CC

)

x-
ne
t (
mo
d.
at
rea
do
ut
)

x2
-n
et
(m
od
. e
ac
h
CC

)

x2
-n
et
(m
od
. a
t r
ea
do
ut
)

un
ifie
d
x-
ne
t (
sl1
)

un
ifie
d
x-
ne
t (
sl1

w/
o s
ab
er)

un
ifie
d
x-
ne
t (
sl3
)

un
ifie
d
x-
ne
t (
sl3

w/
o s
ab
er)

un
ifie
d
x-
ne
t (
sl5
)

un
ifie
d
x-
ne
t (
sl5

w/
o s
ab
er)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Multiplier design

A
re
a
(C

L
B
)

kyber512 sntrup653 ntrulpr653
ligthsaber ntruhps2048509

SN Computer Science (2024) 5:212 Page 15 of 19 212

SN Computer Science

size of Rp coefficients is more impactful than the increase
of the length of polynomials.

Unsurprisingly, those high-performance designs require
2× the area than the x-net designs processing just one Rq
coefficient. However, this is not the case for the designs tai-
lored for the parameters of NTRU Prime and Kyber which,
delaying the modulo of the coefficient at readout phase, use
only 1.45× (1.71× , respectively) more resources.

The unified design implemented by means of a Comba-
based multiplier needs to drop support for NTRU Prime
ciphers, but shows an even greater flexibility supporting all
security levels with a single design with no area penalties
incurred. This peculiarity is due to the fact that support-
ing higher security levels for the investigated cryptographic
schemes translates into smaller values of the parameter p
(decreasing the complexity of the MAC unit) and larger val-
ues of n or k (increasing the latency of the operation for the
Comba algorithm).

Ultimately this multiplier requires only 10% more area
with respect to the largest tailored component (kyber512),
and does not manifest a decrease in maximum working
frequency.

When comparing the area–time (AT) product of all our
designs in Fig. 8, we can see that for NTRU parameters
both the x-net and Comba designs have higher efficiency
than the other proposed schemes, suggesting a remarkable

fit for the task. In particular, for the x-net design perform-
ing the coefficient modulo operation each clock cycle
shows an order of magnitude difference. During the key-
gen and decapsulation, this no longer holds, and we recall
that one of the three multiplications during decapsulation
specified in round 3 submission of NTRU does not have
one operand with Rp coefficients, thus requiring an addi-
tional cost.

Moreover, considering the Saber parameters, we see
an almost equivalent AT product of the Comba and x-net
designs.

For the unified x-net design supporting parameters up
to security level 1, its efficiency is matching the one pro-
duced by the specialized design supporting the NTRU Prime
parameter, suggesting that its support is the limiting fac-
tor leading to a 9.6× decrease of efficiency when compared
with the specialized design supporting only the NTRU HPS
parameter.

Similarly, when considering the unified Comba design
and the specialized one for Kyber parameters we can deter-
mine a matching area-time product, signaling that the coef-
ficient modulo operation is limiting the maximum frequency
and increasing the area requirements.

The x2-net designs performing the coefficient mod-
ulo each clock cycle shows a drastic reduction of effi-
ciency with respect to the design processing a single Rq

Fig. 8 Comparison of the effi-
ciency of the multipliers among
the encapsulation algorithms
(security level 1)

co
mb
a

x-
ne
t (
mo
d.
ea
ch
CC

)

x-
ne
t (
mo
d.
at
rea
do
ut
)

x2
-n
et
(m
od
. e
ac
h
CC

)

x2
-n
et
(m
od
. a
t r
ea
do
ut
)

un
ifie
d
co
mb
a

un
ifie
d
x-
ne
t (
sl1
)

un
ifie
d
x-
ne
t (
sl1

w/
o s
ab
er)

un
ifie
d
x-
ne
t (
sl3
)

un
ifie
d
x-
ne
t (
sl3

w/
o s
ab
er)

un
ifie
d
x-
ne
t (
sl5
)

un
ifie
d
x-
ne
t (
sl5

w/
o s
ab
er)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4

·105

Multiplier design

A
re
a-
T
im

e
pr
od

uc
t

kyber512 sntrup653 ntrulpr653
ligthsaber ntruhps2048509

 SN Computer Science (2024) 5:212 212 Page 16 of 19

SN Computer Science

coefficient. This fact suggests that the design is too large
for our FPGA target design, probably congesting the rout-
ing resources and sparsely occupying the CLBs. This is
not the case when the modulo operation is performed
during the readout: we see an identical area–time prod-
uct, suggesting that this technique is a viable solution for
increasing the performance.

An important detail is that our unified design based on
the Comba algorithm achieves substantial better efficiency
than the security level 5 unified solutions based on the x-
net architecture. When Kyber’s parameter sets are in use,
the gain is between 2× and 5.5×.

Finally, we want to highlight the fact that our x-net-
based unified solutions would not perfectly suit a power-
efficient scenario, particularly when considering the results
of the design specialized for the NTRU parameter sets.

The Comba-based unified solution mitigates this draw-
back, and the efficiency improvement has profound impli-
cations for applications where power efficiency and cryp-
tographic agility is paramount, such in case of low-power
edge devices in a cloud computing architecture deployed

in remote locations. Although, this solution exhibits a
significant latency of few milliseconds, which could pose
challenges for certain class of applications.

Concluding Remarks

In this work, we analyzed a flexible design for linear time
polynomial multiplications, applicable to accelerate four
post-quantum cryptographic primitives: Kyber, Saber,
NTRU, and NTRU Prime. We reported quantitative results
of the efficiency of primitive-tailored designs, obtaining
area savings (10–40%) and significant frequency gains
(96–120%) with respect to the state of the art of NTRU and
NTRU Prime multipliers. Our unified design provides the
first hardware implementation of a polynomial multiplier
able to accelerate the computation of Kyber, Saber, NTRU,
and NTRU Prime at all security levels in a single component
with a frequency reduction in the range of 5–22%, and only
a 50% multiplier area increase.

Table 5 Results of the synthesis
targeting an Xilinx UltraScale+
ZCU106 FPGA specialized for
each supported parameter sets

The design is based on the x-net algorithm, when 4 Rp and 1 Rq coefficients are loaded/read per clock
cycle, and the modulo reduction operation is performed each clock cycle. One further Rq ×Rq multiplica-
tion is performed during the decapsulation in NTRU, denoted by ⋆ symbol. Area–Time product computed
as latency (ms) × CLB

x-net algorithm – 4 R
p
 and 1 R

q
 coeffs. transfer – modulo each CC

Security Parameter set CLB CC Freq. Latency (μs) AT product

level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128 kyber512 4226 583 312 7.47 11.21 14.95 31.58 47.37 63.17
ntruhps2048509 2150 1153 638 9.04 1.81 3.61 19.42 3.88 ⋆7.77
sntrup653 8411 1477 275 5.37 5.37 16.11 45.17 45.17 135.52
ntrulpr653 8411 1477 275 5.37 10.74 16.11 45.17 90.34 135.52
lightsaber 3245 583 497 4.69 7.04 9.38 15.22 22.83 30.45

AES-192 kyber768 3202 583 328 16.00 21.33 26.66 51.22 68.29 85.37
ntruhps2048677 2825 1531 625 12.25 2.45 4.90 34.60 6.92 ⋆13.84
ntruhrss701 3336 1585 600 13.21 2.64 5.28 44.06 8.81 ⋆17.62
sntrup761 9691 1720 325 5.29 5.29 15.88 51.28 51.28 153.86
ntrulpr761 9691 1720 325 5.29 10.58 15.88 51.28 102.57 153.86
saber 3019 583 553 9.49 12.65 15.81 28.64 38.19 47.74

AES-256 kyber1024 3202 583 328 28.44 35.55 42.66 91.06 113.82 136.59
ntruhps4096821 3712 1855 562 16.50 3.30 6.60 61.26 12.25 ⋆24.50
sntrup857 11142 1936 312 6.21 6.21 18.62 69.13 69.13 207.41
ntrulpr857 11142 1936 312 6.21 12.41 18.62 69.13 138.27 207.41
firesaber 2468 583 581 16.06 20.07 24.08 39.62 49.52 59.43

Above
AES-256

sntrup953 12770 2152 312 6.90 6.90 20.69 88.08 88.08 264.24
ntrulpr953 12770 2152 312 6.90 13.79 20.69 88.08 176.16 264.24
sntrup1013 13017 2287 275 8.32 8.32 24.95 108.25 108.25 324.76
ntrulpr1013 13017 2287 275 8.32 16.63 24.95 108.25 216.50 324.76
sntrup1277 16686 2881 262 11.00 11.00 32.99 183.48 183.48 550.44
ntrulpr1277 16686 2881 262 11.00 21.99 32.99 183.48 366.96 550.44

SN Computer Science (2024) 5:212 Page 17 of 19 212

SN Computer Science

Table 6 Results of the synthesis
targeting an Xilinx UltraScale+
ZCU106 FPGA specialized for
each supported parameter sets

The design is based on the x-net algorithm, when 4 Rp and 1 Rq coefficients are loaded/read per clock
cycle, and the modulo reduction operation is performed at readout. Area-Time product computed as latency
(ms) × CLB

x-net algorithm – 4 R
p
 and 1 R

q
 coeffs. transfer – modulo at readout

Security Parameter set CLB CC Freq. Latency (μs) AT product

level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128 kyber512 3186 585 328 7.13 10.70 14.27 22.72 34.09 45.45
sntrup653 8138 1479 288 5.14 5.14 15.41 41.79 41.79 125.37
ntrulpr653 8138 1479 288 5.14 10.27 15.41 41.79 83.58 125.37

AES-192 kyber768 2615 585 312 16.88 22.50 28.12 44.12 58.83 73.54
sntrup761 9043 1722 312 5.52 5.52 16.56 49.91 49.91 149.73
ntrulpr761 9043 1722 312 5.52 11.04 16.56 49.91 99.82 149.73

AES-256 kyber1024 2615 585 312 30.00 37.50 45.00 78.45 98.06 117.67
sntrup857 10141 1938 312 6.21 6.21 18.63 62.99 62.99 188.97
ntrulpr857 10141 1938 312 6.21 12.42 18.63 62.99 125.98 188.97

above
AES-256

sntrup953 11073 2154 312 6.90 6.90 20.71 76.44 76.44 229.33
ntrulpr953 11073 2154 312 6.90 13.81 20.71 76.44 152.89 229.33
sntrup1013 12022 2289 312 7.34 7.34 22.01 88.19 88.19 264.59
ntrulpr1013 12022 2289 312 7.34 14.67 22.01 88.19 176.39 264.59
sntrup1277 14735 2883 325 8.87 8.87 26.61 130.71 130.71 392.13
ntrulpr1277 14735 2883 325 8.87 17.74 26.61 130.71 261.42 392.13

Table 7 Results of the synthesis
targeting an Xilinx UltraScale+
ZCU106 FPGA specialized for
each supported parameter sets

 The design is based on the x-net algorithm, 4 Rp and 2 Rq coefficients are loaded/read per clock cycle, and
the modulo reduction operation is performed each clock cycle. One further Rq ×Rq multiplication is per-
formed during the decapsulation in NTRU, denoted by ⋆ symbol. Area–Time product computed as latency
(ms) × CLB

x-net algorithm – 4 R
p
 and 2 R

q
 coeffs. transfer – modulo each CC

Security Parameter set CLB CC Freq. Latency (μs) AT product

level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128 kyber512 6508 327 197 6.64 9.96 13.28 43.21 64.81 86.42
ntruhps2048509 4455 645 438 7.36 1.47 2.95 32.80 6.56 ⋆13.12
sntrup653 13992 825 200 4.12 4.12 12.38 57.71 57.71 173.15
ntrulpr653 13992 825 200 4.12 8.25 12.38 57.71 115.43 173.15
lightsaber 5796 327 400 3.27 4.91 6.54 18.95 28.42 37.90

AES-192 kyber768 5579 327 206 14.29 19.05 23.81 79.70 106.27 132.83
ntruhps2048677 6208 855 475 9.00 1.80 3.60 55.87 11.17 ⋆22.34
ntruhrss701 7428 885 425 10.41 2.08 4.16 77.33 15.46 ⋆30.93
sntrup761 16429 960 188 5.11 5.11 15.32 83.89 83.89 251.67
ntrulpr761 16429 960 188 5.11 10.21 15.32 83.89 167.78 251.67
saber 4993 327 425 6.92 9.23 11.54 34.57 46.10 57.62

AES-256 kyber1024 5579 327 206 25.40 31.75 38.10 141.69 177.11 212.54
ntruhps4096821 8052 1035 438 11.82 2.36 4.73 95.13 19.02 ⋆38.05
sntrup857 19034 1080 188 5.74 5.74 17.23 109.34 109.34 328.03
ntrulpr857 19034 1080 188 5.74 11.49 17.23 109.34 218.68 328.03
firesaber 4200 327 375 13.95 17.44 20.93 58.59 73.24 87.89

above
AES-256

sntrup953 21165 1200 188 6.38 6.38 19.15 135.09 135.09 405.28
ntrulpr953 21165 1200 188 6.38 12.77 19.15 135.09 270.19 405.28
sntrup1013 22219 1275 188 6.78 6.78 20.35 150.68 150.68 452.06
ntrulpr1013 22219 1275 188 6.78 13.56 20.35 150.68 301.37 452.06
sntrup1277 27283 1605 200 8.03 8.03 24.07 218.94 218.94 656.83
ntrulpr1277 27283 1605 200 8.03 16.05 24.07 218.94 437.89 656.83

 SN Computer Science (2024) 5:212 212 Page 18 of 19

SN Computer Science

Furthermore, we presented a simpler and compact multi-
plier based on the Comba algorithm specialized for NTRU,
Saber and Kyber schemes, in some cases able to achieve a
comparable design efficiency than the x-net-based solutions,
and proposing a more efficient unified design able to adapt
at run time to the different polynomial rings using only 10%
more resources and without a frequency drop compared to
its specialized solution.

Appendix A

Design Space Exploration Results

This section includes the results of our comprehensive
design space exploration.

Table 8 Results of the synthesis
targeting an Xilinx UltraScale+
ZCU106 FPGA specialized for
each supported parameter sets

The design is based on the x-net algorithm, 4 Rp and 2 Rq coefficients are loaded/read per clock cycle, and
the modulo reduction operation is performed at readout. Area-Time product computed as latency (ms) ×
CLB

x-net algorithm – 4 R
p
 and 2 R

q
 coeffs. transfer – modulo at readout

Security Parameter set CLB CC Freq. Latency (μs) AT product

level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128 kyber512 5460 329 291 4.52 6.78 9.04 24.69 37.03 49.38
sntrup653 11867 827 238 3.47 3.47 10.42 41.23 41.23 123.70
ntrulpr653 11867 827 238 3.47 6.95 10.42 41.23 82.47 123.70

AES-192 kyber768 4733 329 291 10.18 13.57 16.96 48.15 64.21 80.26
sntrup761 13762 962 238 4.04 4.04 12.13 55.62 55.62 166.87
ntrulpr761 13762 962 238 4.04 8.08 12.13 55.62 111.25 166.87

AES-256 kyber1024 4733 329 291 18.09 22.61 27.13 85.61 107.02 12.842
sntrup857 15404 1082 238 4.55 4.55 13.64 70.02 70.02 21.008
ntrulpr857 15404 1082 238 4.55 9.09 13.64 70.02 140.05 21.008

above
AES-256

sntrup953 18111 1202 238 5.05 5.05 15.15 91.46 91.46 274.40
ntrulpr953 18111 1202 238 5.05 10.10 15.15 91.46 182.93 274.40
sntrup1013 19201 1277 238 5.37 5.37 16.10 103.02 103.02 309.07
ntrulpr1013 19201 1277 238 5.37 10.73 16.10 103.02 206.04 309.07
sntrup1277 23332 1607 238 6.75 6.75 20.26 157.54 157.54 472.62
ntrulpr1277 23332 1607 238 6.75 13.50 20.26 157.54 315.08 472.62

Table 9 Results of the synthesis
targeting an Xilinx UltraScale+
ZCU106 FPGA specialized for
each supported parameter sets

The design is based on the Comba algorithm, and the modulo reduction operation is performed each clock
cycle. Area–Time product computed as latency (ms) × CLB

Comba algorithm – modulo each CC

Security Parameter set CLB kCC Freq. Latency (μs) AT product

level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128 ntruhps2048509 35 260.1 930 1398.4 279.6 559.3 48.9 9.7 ⋆19.5
lightsaber 36 66.1 522 506.1 759.2 1012.3 18.2 27.3 36.4
kyber512 60 66.1 295 895.6 1343.4 1791.2 53.7 80.6 107.4

AES-192 ntruhps2048677 37 459.7 906 2536.9 507.3 1014.7 93.8 18.7 ⋆37.5
ntruhrss701 46 492.8 883 2790.5 558.1 1116.2 128.3 25.6 ⋆51.3
saber 39 66.1 522 1138.8 1518.4 1898.1 44.4 59.2 74.0
kyber768 56 66.1 319 1863.5 2484.7 3105.9 104.3 139.1 173.9

AES-256 ntruhps4096821 43 675.7 845 3998.1 799.6 1599.2 171.9 34.3 ⋆68.7
firesaber 33 66.1 667 1584.5 1980.6 2376.7 52.2 65.3 78.4
kyber1024 56 66.1 319 3313.0 4141.3 4969.5 185.5 231.9 278.2

SN Computer Science (2024) 5:212 Page 19 of 19 212

SN Computer Science

These tables are meant to strengthen the reproducibility
of our designs and trade-offs.

Funding Open access funding provided by Politecnico di Milano
within the CRUI-CARE Agreement.

Data availability The complete dataset is also available in CSV format
at https:// doi. org/ 10. 5281/ zenodo. 83376 25.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Human and animal rights No research involving humans and animals
was performed, nor personal data being collected.

Informed consent There was no need to ask for informed consent.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. NIST PQC Team: PQC standardization process: announcing four
candidates to be standardized, plus fourth round candidates. 2022.
https:// csrc. nist. gov/ news/ 2022/ pqc- candi dates- to- be- stand ardiz
ed- and- round-4.

 2. The CRYSTALS-Kyber Team: CRYSTALS-cryptographic suite
for algebraic lattices-Kyber 2020. https:// pq- cryst als. org/ kyber/.

 3. The NTRU Team: NTRU–a submission to the NIST post-quantum
standardization effort 2020. https:// www. ntru. org/.

 4. The NTRU Prime Team: NTRU Prime. 2022. https:// ntrup rime.
cr. yp. to/.

 5. The SABER Team: SABER–MLWR-Based KEM 2019. https://
www. esat. kuleu ven. be/ cosic/ pqcry pto/ saber/.

 6. Alagic G, Apon D, Cooper D, Dang Q, Dang T, Kelsey J, Licht-
inger J, Miller C, Moody D, Peralta R, Perlner R, Robinson A,
Smith-Tone D, Liu Y-K. Status report on the third round of the
NIST post-quantum cryptography standardization process. 2022.
https:// doi. org/ 10. 6028/ NIST. IR. 8413- upd1.

 7. ISE Crypto PQC working group: Securing tomorrow today: Why
Google now protects its internal communications from quantum
threats. https:// cloud. google. com/ blog/ produ cts/ ident ity- secur
ity/ why- google- now- uses- post- quant um- crypt ograp hy- for- inter
nal- comms.

 8. Schmieg S. PQC at Google. Invited talk at The 14th International
Conference on Post-Quantum Cryptography, PQCrypto 2023.
https:// pqcry pto20 23. umiacs. io/ slides/ Invit ed.3. pdf.

 9. The OpenSSH Team: OpenSSH Changelog for version 9.0 2022.
https:// www. opens sh. com/ txt/ relea se-9.0.

 10. Comba PG. Exponentiation cryptosystems on the IBM PC. IBM
Syst J. 1990;29(4):526–38. https:// doi. org/ 10. 1147/ sj. 294. 0526.

 11. Karatsuba A. Multiplication of multidigit numbers on automata.
Soviet Phys Doklady. 1963;7:595–6.

 12. Bodrato M. Towards optimal toom-cook multiplication for uni-
variate and multivariate polynomials in characteristic 2 and 0. In:
Carlet C, Sunar B (eds) Arithmetic of finite fields, first interna-
tional workshop, WAIFI 2007, Madrid, Spain, June 21-22, 2007.
In: Proceedings. Lecture Notes in Computer Science, vol. 4547,
pp. 116–133. Springer 2007. https:// doi. org/ 10. 1007/ 978-3- 540-
73074-3_ 10.

 13. Ylonen T. IETF RFC 4252—The secure shell (SSH) Authentica-
tion protocol. 2006. https:// www. rfc- editor. org/ rfc/ rfc42 52.

 14. Antognazza F, Barenghi A, Pelosi G, Susella R. An efficient uni-
fied architecture for polynomial multiplications in lattice-based
cryptoschemes. In: Mori P, Lenzini G, Furnell S (eds) Proceed-
ings of the 9th International Conference on Information Systems
Security and Privacy, ICISSP 2023, Lisbon, Portugal, February
22-24, 2023, pp. 81–88. SciTePress 2023. https:// doi. org/ 10. 5220/
00116 54200 003405.

 15. Marotzke A. A constant time full hardware implementation of
streamlined NTRU prime. In: Liardet P, Mentens N (eds) Smart
card research and advanced applications-19th international con-
ference, CARDIS 2020, virtual event, november 18–19, 2020,
Revised Selected Papers. Lecture Notes in Computer Science,
vol. 12609, pp. 3–17. Springer 2020. https:// doi. org/ 10. 1007/
978-3- 030- 68487-7_1.

 16. Dang VB, Mohajerani K, Gaj K. High-speed hardware architec-
tures and FPGA benchmarking of CRYSTALS-Kyber, NTRU, and
Saber 2021. https:// eprint. iacr. org/ 2021/ 1508.

 17. Liu B, Wu H. Efficient architecture and implementation for
NTRUEncrypt system. In: IEEE 58th International Midwest Sym-
posium on Circuits and Systems, MWSCAS 2015, Fort Collins,
CO, USA, August 2-5, 2015, pp. 1–4. IEEE 2015. https:// doi. org/
10. 1109/ MWSCAS. 2015. 72821 43.

 18. Basso A, Roy SS. Optimized polynomial multiplier architec-
tures for post-quantum KEM Saber. In: 58th ACM/IEEE Design
Automation Conference, DAC 2021, San Francisco, CA, USA,
December 5-9, 2021, pp. 1285–1290. IEEE 2021. https:// doi. org/
10. 1109/ DAC18 074. 2021. 95862 19.

 19. Farahmand F, Dang VB, Nguyen DT, Gaj K. Evaluating the Poten-
tial for Hardware Acceleration of four NTRU-based key encapsu-
lation mechanisms using software/hardware codesign. In: Ding J,
Steinwandt R (eds) Post-quantum cryptography-10th International
Conference, PQCrypto 2019, Chongqing, China, May 8-10, 2019
Revised Selected Papers. Lecture Notes in Computer Science,
vol. 11505, pp. 23–43. Springer 2019. https:// doi. org/ 10. 1007/
978-3- 030- 25510-7_2.

 20. Peng B, Marotzke A, Tsai M, Yang B, Chen H. Streamlined NTRU
prime on FPGA 2021. https:// eprint. iacr. org/ 2021/ 1444.

 21. Carter E, He P, Xie J. High-performance polynomial multipli-
cation hardware accelerators for KEM Saber and NTRU 2022.
https:// eprint. iacr. org/ 2022/ 628.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.8337625
http://creativecommons.org/licenses/by/4.0/
https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4
https://pq-crystals.org/kyber/
https://www.ntru.org/
https://ntruprime.cr.yp.to/
https://ntruprime.cr.yp.to/
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://doi.org/10.6028/NIST.IR.8413-upd1
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://pqcrypto2023.umiacs.io/slides/Invited.3.pdf
https://www.openssh.com/txt/release-9.0
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1007/978-3-540-73074-3_10
https://doi.org/10.1007/978-3-540-73074-3_10
https://www.rfc-editor.org/rfc/rfc4252
https://doi.org/10.5220/0011654200003405
https://doi.org/10.5220/0011654200003405
https://doi.org/10.1007/978-3-030-68487-7_1
https://doi.org/10.1007/978-3-030-68487-7_1
https://eprint.iacr.org/2021/1508
https://doi.org/10.1109/MWSCAS.2015.7282143
https://doi.org/10.1109/MWSCAS.2015.7282143
https://doi.org/10.1109/DAC18074.2021.9586219
https://doi.org/10.1109/DAC18074.2021.9586219
https://doi.org/10.1007/978-3-030-25510-7_2
https://doi.org/10.1007/978-3-030-25510-7_2
https://eprint.iacr.org/2021/1444
https://eprint.iacr.org/2022/628

	Performance and Efficiency Exploration of Hardware Polynomial Multipliers for Post-Quantum Lattice-Based Cryptosystems
	Abstract
	Introduction
	Contributions

	Preliminaries
	Modular Polynomial Multiplication Algorithms
	Linear-time Modular Multiplication
	Resource Constrained Modular Multiplication

	Our Unified Multiplier Design
	Structural x-net Optimizations
	Specialized and Unified x-net Designs
	Multiplying in Less Than 3n Cycles
	Comba Multiplication

	Experimental Evaluation
	Net Performance Results
	Comba Performance Results
	Comparison with the State-of-the-Art Results
	Unified Design Performance Figures

	Concluding Remarks
	Appendix A
	Design Space Exploration Results
	References

