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This paper proposes a limit analysis heterogeneous model for masonry arches in presence of innovative
strengthening, rigid blocks, and joints reduced to interfaces. The reinforcement is considered in a simpli-
fied but effective way in the context of limit analysis, suitably modifying the admissibility conditions of
the constitutive law that governs the behavior of contact joints. First, the force resultants at the interface
after the reinforcement is investigated. Based on that, the yield condition and flow rule in the standard
heterogeneous limit analysis formulation are updated. This approach is applied to solve both associated
and non-associated sliding cases. For benchmarking purposes, the collapse of a 2D arch with both-side
Fiber Reinforced Polymer (FRP) reinforcement is analyzed, followed by several parametric studies and
a cost-benefit study. Collapse analysis of a real arch tested in-situ is also presented for further verifica-
tion. The results show that in some cases an incorrect collapse mechanism and an overestimated ultimate
load would be obtained through associated limit analysis. Such overestimation may become very signif-
icant once the reinforcement is taken into account. The presented cases illustrate that the maximum
overestimation of the load could reach in meaningful cases of technical interest 91% of the associated pre-
diction. This suggests the use of a non-associated flow rule to accurately predict the collapse load increase
of reinforced arches. According to the cost-benefit study, it is recommended to strengthen at least half of
the joints to guarantee an acceptable effect of the strengthening. The simulation of the collapse of the in-
situ tested arch further proves the reliability of the proposed approach.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Historical arch and vault masonry structures are widely dif-
fused in the western and eastern worlds. Those peculiar construc-
tions have been standing for a long era and many of them have
become precious historical and monumental constructions that
deserve to be preserved. Collapse analysis of these historical build-
ings has raised great concern in recent numerical studies. Commer-
cial incremental-iterative-analysis packages, such as Finite
element method [1] or Discrete element method [2–3], are usually
time-consuming and probably meet convergence problems when
analyzing the failure of the masonry. Thanks to the boom of Com-
putational Operational Research, many optimization-based
approaches were developed [4–5], where the collapse problem is
formalized into an optimization problem and can be solved fast
in a single step. Among these tools, heterogeneous limit analysis
is becoming one of the standard tools for collapse analysis of those
historical structures [6–10]. This powerful approach can not only
precisely take into account the discrete nature of the masonry
structures but quickly provide their collapse mechanism and ulti-
mate load. As concluded in pioneering works [11–12], if an associ-
ated flow rule is employed, i.e., the vector of possible
discontinuous velocities keeps orthogonal to the limit surface
(Fig. 1a), the problem can be solved through robust linear program-
ming (LP) software available in a single step. Unfortunately, as
Drucker claimed [13], such associativity does not hold in most
cases for a masonry structure, since it results in an unrealistic sep-
aration among the bricks when sliding takes place. A more reason-
able choice for simulating the sliding is to use a classic Coulomb
sliding friction law [14], which should be, however, non-
associated (Fig. 1b). This complex problem has been tackled by
many researchers in the last two decades (see for instance [15–
18]). Two common strategies to find the solution of a non-
associated limit analysis problem are linear complementary pro-
gramming (LCP) [16] or sequential linear programming (SLP)
[17]. The second approach, more recent, has the advantage that
still uses linear programming to solve a complementarity problem
within a certain iterative searching scheme, securing robustness
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Nomenclature

LIST OF SYMBOLS
e Normal discontinuous velocity at interface
c Sliding discontinuous velocity at interface
h
�

Rotational discontinuous velocity at interface
n Axial force at interface
s Shear force at interface
n
�

Normal resultant at interface
s
�

Shear resultant at interface
m
�

Moment at interface
e Eccentric at interface
t Height of the joint
c0 Initial cohesion given by mortar
u Sliding friction angle
g Rotational friction angle
w Sliding dilation angle
A Area of the interface
ej Normal discontinuous velocity at joint j
cj Sliding discontinuous velocity at joint j
h
�
j Rotational discontinuous velocity at joint j

n
�
j Normal resultant at joint j

s
�
j Shear resultant at joint j

m
�
j Moment at joint j

uj Sliding friction angle of joint j
gj Rotational friction angle of joint j
wj Sliding dilation angle of joint j
Aj Area of joint j
c0,j Initial cohesion given by mortar at joint j
ui Horizontal centroid velocity at block i
v i Vertical centroid velocity at block i
x
�
i Rotational velocity at block i

Wi Weight of block i
FiLx Live load acting at block i along � direction
FiLy Live load acting at block i along y direction
F int Intrados tensile force due to reinforcement
Fext Extrados tensile force due to reinforcement
F ins Intrados sliding force due to reinforcement

Fexs Extrados sliding force due to reinforcement
F int;max Maximum intrados tensile cohesion
Fext;max Maximum extrados tensile cohesion
F ins;max Maximum intrados sliding cohesion
Fexs;max Maximum extrados sliding cohesion
fbt Tensile strength of brick
fbc Compressive strength of brick
b Peeling angle of FRP
led Optimal bond length of FRP
tf thickness of FRP
Ef Young’s Module of FRP
bf Strengthening depth
fbd Design bond strength of FRP
rr Debonding strengthen of SRG
teq Equivalent thickness of the SRG
a Load multiplier
Nre Number of the reinforced joint
Lre Matrix of strengthening scheme
A equilibrium matrix
x unknown joint resultant
fD Vector of dead load
fL Vector of live load
N constitutive constraint operator
z Slackness variable for failure surface
c0 Initial cohesion force given by mortar
cm Spurious cohesion given by reinforcement
q unknown joint discontinuous velocities
u unknown centroid velocities at blocks
p resultant of the discontinuous velocities
V Transforming operator
rij Vector from block i to joint j (centroid)
ejt Normal vector of joint j
ejn Tangential vector of joint j
ex Unit vector of horizontal direction
ey Unit vector of vertical direction

Fig. 1. Typical limit surface for normal force n and shear force s at joints, and
different flow rules for discontinuous separation velocity e and sliding velocity c: (a)
associative (‘‘sawtooth”) friction; (b) Coulomb (non-associated) friction.
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even in case of large-scale problems. Note that the non-associated
flow rule actually refers to the case where the dilation angle is not
consistent with the friction angle. While in this paper, we would
use this term to specify the zero-dilation case because it is more
common for masonry structures.

On the other hand, owing to the development of composite
materials, numerous innovative strengthening techniques have
2

been employed to improve the structural performance of historical
masonry buildings, the most diffused being probably the applica-
tion of external FRP strips or FRCM grids. How to simulate such a
strengthening effect through a standard heterogeneous limit anal-
ysis has gained growing attention, because limit analysis is much
faster than a classic incremental elasto-plastic approach and is able
to provide information that is extremely interesting in design, such
as the ultimate load carrying capacity, the activating failure mech-
anism and, at least on critical sections, the stress distribution at
collapse. Among current works, one of the critical drawbacks is
that most of the approaches presented in the literature still employ
the associated flow rule [19–23], which is not in line with the
actual behavior of masonry, especially if reinforced. This is partic-
ularly true for arches, where the associativity may work only if a
flexural failure mechanism characterized by the formation of four
hinges triggers. As shown by Heyman, if the arch is not particularly
squat, such hypothesis is very realistic in case of absence of rein-
forcement, but the presence of an external retrofitting tends to pre-
clude the formation of a flexural hinge in those positions where the
reinforcement is placed, giving raise to mixed failure mechanisms
where sliding is also present. Furthermore, the reinforcement was
mostly modeled by introducing extra elements [24–26]. Such mod-
eling strategy is accurate but sometimes cumbersome especially
when extended to 3D problems. To bridge these gaps, this paper
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presents a simple modeling approach for masonry arches, includ-
ing the strengthening effect within the frame of a simple heteroge-
neous limit analysis where blocks are assumed infinitely resistant,
joints are reduced to interfaces with a cohesive-frictional behavior
and no-extra elements are required for the reinforcement strips.
The proposed approach is meant to be applied for both associated
and non-associated formulations. Starting from the simple obser-
vation that the failure surface of the contact is found to change
after strengthening [27–28], the major peculiarity of the procedure
presented is the possibility to consider the reinforcement effect by
merely modifying the constraint regarding the failure surface,
without involving extra elements.

The organization of the paper is structured as follows: section 2
first investigates the change of the failure surface after strengthen-
ing. The formulation of the standard heterogeneous limit analysis,
both associated and non-associated, is then updated considering
such a strengthening effect. By implementing the aforementioned
theory, section 3 analyzes the collapse of a benchmark 2D arch
with both-side FRP reinforcement. The effect of the reinforcement
is briefly summarized and the results of the collapse employing
associated and non-associated flow rules are compared. Several
parametric studies are carried out after that. After that, a cost-
benefit study to find an optimal strengthening scheme is con-
ducted in section 4. Finally, in section 5, we simulate the collapse
of an arch experimentally tested in-situ, followed by detailed sen-
sitivity analyses, as a verification. The acquired results are dis-
cussed and several critical conclusions are drawn in Section 6.

2. Methodology

To illustrate the change of the failure surface after the reinforce-
ment, we first consider all the possible forces at a representative
joint with both-side strengthening (Fig. 2). The reinforcement pro-

duces tensile forces (Fex
t and F in

t ) when the joint separates (Fig. 2a),

while once the sliding happens, Fex
s and F in

s are applied to the block
because of the triggering of a peeling failure at the FRP-support
interface (Fig. 2b). Taking these effects into account (Fig. 2c), the
restriction of the forces at the interface can then be written as in
Eq. (1) (a detailed deduction of this equation is given in Appendix
A).

ej j ¼ m
� �Fint tangþFext tang

n
��Fint �Fext �c0A

��� ��� � tang

n
� �F in

t � Fex
t � c0A

� �
tanuþ s

���� ���� F in
s � Fex

s � 0

0 � F in
t � F in

t;max; 0 � Fex
t � Fex

t;max

0 � F in
s � F in

s;max; 0 � Fex
s � Fex

s;max

ð1Þ

where (n
�
,s
�
,m
�
) is the resultant vector at the interface (Fig. 2d); u and

g are the friction angle for rotation and sliding, respec-

tively;Fin
t;max,F

ex
t;max,F

in
s;max, and Fex

s;max are the maximum forces that
the reinforcement can provide at the interface; c0 is the initial cohe-
sion at the interface, usually provided by the mortar, and A repre-
sents the area of the contact. In the case of no-tension material, c0
is zero.
Fig. 2. Interface resultant forces after strengthening and equivalent description: (a) rota
equivalent description.

3

The failure surfaces formed by those constraints are shown in
Fig. 3. Compared with the original one [16], the region for the pos-
sible force state is enlarged due to the reinforcement. Specifically,

m
�
–n
�

surface is translated along the positive direction of n
�

axis

(Fig. 3a); s
�
–n
�
surface, besides the transversely moving, is expanded

along the s
�
axis at the same time (Fig. 3b).

Constraints shown in Eq. (1) can be shaped into a matrix form,
see the following Eq. (2) that is very similar to the yield condition
used in a standard heterogeneous limit analysis [16]:

Nx� c0 � cm ¼ z; z � 0 ð2Þ
c0 is the vector collecting all the initial cohesion for each inter-

face. Matrix N is named constitutive constraint operator, contain-
ing the friction angle of the contact for both sliding and rotation.
For a specific contact j, the matrix Nj and vector c0,j are given in
Eq. (3), where the subscript j indicates the corresponding material
parameter for the contact j.

Nj ¼

sinuj cosuj 0
sinuj � cosuj 0
singj 0 cosgj

singj 0 � cosgj

2
6664

3
7775 ; c0;j ¼

csþ0;j
cs�0;j
crþ0;j
cr�0;j

2
66664

3
77775 ¼

c0;jAj sinuj

c0;jAj sinuj

c0;jAj singj

c0;jAj singj

2
6664

3
7775
ð3Þ

It is worth mentioning that in Eq. (2) a spurious cohesion term
cm merely needs to be added to consider the effect of the strength-
ening. The components of cm at a specific interface j are given in Eq.
(4), which can be simply derived from the properties of the rein-
forced material:

cm;j ¼

csþm;j

cs�m;j

crþm;j

cr�m;j

2
66664

3
77775 ¼

F in
t;max þ Fex

t;max

� �
sinuj þ F in

s;max þ Fex
s;max

� �
cosuj

F in
t;max þ Fex

t;max

� �
sinuj þ F in

s;max þ Fex
s;max

� �
cosuj

2F in
t;max singj

2Fex
t;max singj

2
6666664

3
7777775
ð4Þ

The Lower Bound (LB) and Upper Bound (UB) associated formu-
lations considering the effect of reinforcement can be then updated
as illustrated hereafter in Eqs. (5) and (6), respectively:

maximize
a;x;z

a

subjectto Ax ¼ afL þ fD
Nx� c0 � cm ¼ z

z � 0

ð5Þ

minimize
u;q;p

�fTDuþ cT0pþ cTmp

subjectto fTLu ¼ 1

ATu ¼ q
NTp ¼ q; p � 0

ð6Þ
tional failure; (b) sliding failure (c) possible joint forces when failure happens; (d)



Fig. 3. Change of the failure surfaces due to the reinforcement: (a) m
�
–n
�
limit surfaces; (b) s

�
–n
�
limit surfaces.
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Moreover, this technique is also applicable for the non-
associated case, which can be easily incorporated within an exist-
ing SLP scheme [17]. In such SLP scheme, a non-associated problem
is unpacked into a series of associated limit analyses. The friction
angle is gradually reduced in each step, enforcing the limit surface
to be horizontal in the Mohr plane (Fig. 4). The corresponding flow
vector is adjusted simultaneously due to the associativity and the
dilation angle will eventually vanish. As a consequence, these asso-
ciated solutions will converge to a non-associated one.

Algorithm 1 (SLP iterative procedure).
Fig. 4. Adjustment of the limit surfaces during the iterations (zero-dilation case).
1. Solve initial associated problems (5) and (6), get x0
2. Initial: n0 = 0.3; nmin = 0.001; k = 0; tol = 10-6

3. REPEAT
4. Reduce n: n[k+1]  max{n[k]/2, nmin}
5. Reduce frictional angle u and update N[k+1]

tanuj; kþ1½ �  �n kþ1½ � tanuj � tanwj

� �
þ tanwj (7)

Nj;½kþ1� ¼
sinuj;½kþ1� cosuj;½kþ1� 0
sinuj;½kþ1� � cosuj;½kþ1� 0

singj 0 cosgj
singj 0 � cosgj

2
664

3
775 (8)

6. Update cohesion c[k+1] by resultants x[k] from previous step
c kþ1½ �  � 1þ n kþ1½ �

� �
cosu½kþ1�Vx k½ � þ c0(9)

7. Solve new LB/UB problems and get x[k+1]
maximize
a kþ1½ � ;x kþ1½ � ;z kþ1½ �

a kþ1½ �

subjectto Ax kþ1½ � ¼ a kþ1½ �fL þ fD
N kþ1½ �x kþ1½ � � c kþ1½ � � cm ¼ z kþ1½ �

z kþ1½ � � 0

(10)

minimize
u kþ1½ � ;q kþ1½ � ;p½kþ1�

�fTDu kþ1½ � þ cTkþ1½ �p½kþ1� þ cTmp½kþ1�

subjectto fTLu kþ1½ � ¼ 1
ATu kþ1½ � ¼ q kþ1½ �

NT
kþ1½ �p kþ1½ � ¼ q kþ1½ �; p kþ1½ � � 0

(11)

8. Calculate error: e = |a[k+1] � a[k]|/a[k]
9. k  k + 1
10. UNTIL e < tol
To consider the strengthening effect in non-associated prob-
lems, in a similar way it is possible to add such a cohesion cm in
the formulation of each iterative step. The updated SLP iterative
scheme is listed in Algorithm 1 (see [17,29] for further informa-
tion). Here in Eq. (9), matrix V is the operator transforming the
associated sliding to the target non-associated sliding [29]. For
4

contact j, Vj is given in Eq. (12), where wj is the corresponding dila-
tion angle, as noted in Fig. 3b. In the associated sliding case, i.e. uj =-
wj, we have V = 0 and the algorithm is degenerates into the
associated formulation (5) and (6).

Vj ¼

tanuj � tanwj 0 0
tanuj � tanwj 0 0

0 0 0
0 0 0

2
6664

3
7775 ð12Þ

Note that this SLP iterative algorithm can also be applied to the
case where a non-zero dilation angle is present, while in this paper,
we remain in the zero-dilation case, assigning wj as zero because it
is the typical situation studied in masonry structure [10,14–18,29].
Similar to the associated flow, the non-zero dilation angle will give
rise to obvious separation among the bricks and thus leading to
more dissipation at the interface. Intuitively, the ultimate load
for the collapse with non-zero dilation should be larger than that
for zero dilation. Therefore, the presented results for zero-
dilation collapse can, on the other hand, give a lower bound for
these cases with non-zero dilation.

3. Results

3.1. Benchmark case study: A 9-block 2D arch with both-side FRP
reinforcement

To illustrate the implementation of the above formulation, the
collapse of a 9-block 2D arch with both-side FRP reinforcement
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was studied as an example (Fig. 5). The load is applied to Block 2
and the boundary conditions at two supports are also regarded
as frictional interfaces with double-side reinforcement. Properties
of the FRP and the bricks are given in Table 1. The ultimate forces
Ft;max and Fs;max were derived from the code CNR-DT200 [30] (Eq.
(13)) and the peeling strength test [31] (Eq. (14)), respectively. bf
is the width of the FRP reinforcement, which is in our case the
same as the width of the arch; peeling angle b defines the slope
of the reinforcement with reference to the substrate in the peel-
off process. We determine this value based on the experimental
study reported in [31].

Fex
t;max ¼ F in

t;max ¼ Ft;max ¼ f bdledbf ¼ 29:7 kN ð13Þ

Fex
s;max ¼ F in

s;max ¼ Fs;max ¼ Ef tfbf tan3b ¼ 9:86 kN ð14Þ
led is the optimal bond length of the FRP suggested by CNR-

DT200 [30], which derives directly from delamination considera-
tions including the reinforcement type, fracture energy, and
strength of the substrate material. Here it is worth noting that
the problem of minimizing this optimal bond length led required
is not considered in light of a study of the optimal disposition of
the reinforcement which will be presented after, because it would
need to consider an additional variable, namely the dimension of
the blocks.

The collapse behavior of the reinforced arch was predicted by
both associated and non-associated formulations, solved through
LP and SLP procedures, respectively. The results were compared
with those of the arch without strengthening.

3.2. Collapse results

According to the results obtained with the associated formula-
tion, the reinforcement as expected does not change the collapse
mechanisms (Fig. 6a and Fig. 6c); indeed, all of the collapses exhi-
bit a standard 4-hinge mechanism (S4H), with several segments of
the thrust line being located outside the edges of the arch barrel
due to the strengthening (Fig. 6c). The load multiplier after FRP
strengthening is roughly 10 times higher than in the unreinforced
case, which is obviously unrealistic from a technical point of view,
despite fully justified not only by the simplistic assumptions of the
model proposed (which does not account for the delamination of
Fig. 5. Intrados and extrados strengthening scheme.

Table 1
Parameters for the FRP and the bricks.

FRP

Thickness tf [mm] 0.16
Young’s Module Ef [GPa] 230
Design bond strength fbd [MPa] 0.202
Optimal bond length led [mm] 366.872
Peeling angle b [�] 5

5

the strip from the support), but also for the fictitious enforcement
of a failure driven by the formation of flexural hinges, promoted by
the associativity of the flow rule. In the non-reinforcement case,
the collapse results produced by non-associated limit analysis are
in line with those from the associated formulation (Fig. 6a and
Fig. 6b). However, the results become different when engaging
the reinforcement (Fig. 6c and Fig. 6d). Instead of an S4H mecha-
nism, the predicted collapse includes one hinge, one sliding-
failure joint, and one hinge-sliding-mixed joint (HS1). The collapse
load given by the associated formulation is also 21 % higher than
that of the non-associated one, indicating that the associated anal-
ysis could provide an overestimated result, which in some cases is
extremely high because of the impossibility to trigger sliding
cracks.
3.3. Parametric studies

This sub-section first investigates the influence of the friction
angle u (ranging from 20� to 40�) on the ultimate load (Fig. 7).
The curve illustrates that the ultimate load for the collapse will
grow if u increases. With the increase of u, three collapse mecha-
nisms are successively present: local-sliding (LS), HS1, and S4H
mechanism. The range of u where the associated formulation pre-
dicts an S4H mechanism is wider than that of the non-associated
one. This should be owing to the over restriction from the associ-
ated flow against the sliding at the joint. Note that the non-
associated limit analysis always produces a conservative ultimate
load. When u drops, the overestimation of the associated formula-
tion rises significantly. The maximum overestimation can reach
48.6 %.

The following parametric study concerns two extra cohesion
forces provided by the FRP reinforcement. Intuitively, maximum
tensile and sliding cohesions should be dependent on each other
while we lack relevant contributions reporting such a relation.
Thus, in the following, we assume them to be independent (rang-
ing from 101 to 103 kN), attempting to cover all the possible cases.
The results may also provide a reference for other types of innova-
tive strengthening.

Let us now proceed to investigate the influence of the force
Ft;max (called tensile-cohesive in the approach proposed for obvious
reasons) on the collapse performance of the arch (Fig. 8). The ulti-
mate load of the arch increases along with the growth ofFt;max.
When Ft;max increases, the associated limit analysis predicts the
same S4H collapse mechanismwhile the collapse mechanisms pro-
duced from the non-associated side change from an S4H, HS1, to an
LS one. This is because a higher tensile cohesion force will limit the
separation of the joint. Comparatively, the sliding gives rise to less
dissipation energy at the joint and thus becomes apt to happen.
When Ft;max reaches a high level, the increase of the ultimate load
given by non-associated analysis also slows down ascribed to such
a change of collapse mechanism. The load multiplier produced by
the non-associated limit analysis lay on the safer side compared
to that of the associated one. The difference regarding the load
Brick

Width/Height/Depth [mm] 500/400/400
Strengthening depth bf [mm] 400
Compressive strength fbc [MPa] 8
Tensile strength fbt [MPa] 0.8
Friction angle for sliding u [�] 30
Half-length of joint tang [mm] 200



Fig. 6. Collapse results of the arch: (a) no reinforcement, associated flow; (b) no reinforcement, non-associated flow; (c) both-side reinforcement, associated flow; (d) both-
side reinforcement, non-associated flow.

Fig. 7. Load multiplier a vs frictional angle u: associated and non-associated flow, Ft,max = 29.7 kN, Fs,max = 9.86 kN.
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Fig. 8. Load multiplier a vs ultimate cohesion force for tension Ft,max: associated and non-associated flow, u = 30�, Fs,max = 9.86 kN.

Fig. 9. Load multiplier a vs ultimate cohesion force for sliding Fs,max: associated and non-associated flow, u = 30�, Ft,max = 29.7 kN.
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multiplier predicted by these two analyses grows along with the
increase ofFt;max. The maximum difference is about 60.7 %.

A parametric study regarding the sliding cohesion force Fs;max is
then carried out (Fig. 9). The collapse of the arch employing an
associated flow does not exhibit changes by changing the ultimate
cohesion force. The load multiplier produced by the non-associated
limit analysis significantly decreases once Fs;max drops, along with
the change of the collapse mechanisms: from an S4H, HS1, to an
LS mechanism. A higher sliding cohesion force will give rise to a
larger sliding dissipation and thus limit the sliding at the joint.
As a consequence, a large Fs;max will lead to an S4H collapse. Simi-
larly, in this parametric study, employing the non-associated flow
7

brings about a safer collapse load as well. The overestimation of the
load multiplier increases when the Fs;max drops, with a maximum of
70.5 %, considering the results coming from the associated
formulation.

Finally, we investigate the influence of different combinations
of Fs;max and Ft;max on the collapse of the arch. As shown in
Fig. 10, there exists a large area where the loads predicted by the
associated formulation are overestimated. The fork enlarges when
Ft;max/Fs;max ratio increases, as it is visible observing the trend
exhibited by Fig. 8 and Fig. 9. The maximum overestimation can
reach 91 % for the associated prediction. Fig. 11 gives all the possi-
ble collapse mechanisms when the cohesion forces Ft;max and Fs;max



Fig. 10. Load multiplier a vs sliding cohesion Fs,max and separation cohesion Ft,max: associated and non-associated flow, u = 30�.

Fig. 11. Change of the collapse mechanism due to the variation of sliding cohesion Fs,max and separation cohesion Ft,max: non-associated flow, u = 30�.
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vary. In the area where the collapse presents an S4H mechanism,
the associated and non-associated formulations obviously coincide
(because the flexural behavior is associated) and predict the same
collapse load. Note that the whole diagonal lies in such ‘‘consistent
prediction region”, indicating that if the magnitude of the Fs;max and
Ft;max grows in the same proportion, the associated and non-
8

associated formulations will provide coincident results. In the case
of a large Ft;max/Fs;max ratio, sliding appears in the collapse mecha-
nism. Besides the LS and the HS1 mechanism which have been
mentioned in the previous parametric study, another hinge-
sliding-mixed mechanism (HS2) is also found, occurring in a very
narrow area of Fig. 11. This mechanism involves two hinges and
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one sliding-failure joint. Along with the increase of the Ft;max/Fs;max

ratio, HS2, HS1, and LS mechanisms successively present. This
trend is also in line with those already discussed for Fig. 8 and
Fig. 9, varying separately Fs;max andFt;max. Fig. 12 illustrates the per-
centage difference in the collapse load produced by the two formu-
lations under different cohesion force conditions. For HS2, HS1, and
LS collapse, the difference with the associated prediction is 0.01–
6.18 %, 1.76–51.7 %, and 51.7–90.7 %, respectively. In general, a
large Ft;max/Fs;max ratio will give rise to a more significant
overestimation.

4. Cost-benefit study

In this section, we investigate the influence of different rein-
forcement layouts, aiming at optimizing the cost of the strengthen-
ing. Assuming a constant price of the strengthening material per
meter, minimizing the total cost can be simply equivalent to min-
imizing its length, i.e. the number of the reinforced joint. As a con-
sequence, a typical multi-objective optimization problem is
derived, where the aim is to contemporarily maximize the load
bearing capacity a and minimize the number of the reinforced joint
Nre. Translating such request into mathematical programming, it is
intended to solve the following associated LB/UB problems (15)
and (16):

minimize
a;x;z;Nre ;Lre

�a;Nre

subjectto Ax ¼ afL þ fD
Nx� c0 � cm ¼ z

z � 0
P Lre; Ft;max; Fs;maxð Þ ¼ cm

RðLreÞ ¼ Nre

ð15Þ

minimize
u;p;q;Nre ;Lre

�fTDuþ cT0pþ cTmp;Nre

subjectto fTLu ¼ 1

ATu ¼ NTp
p � 0

P Lre; Ft;max; Fs;maxð Þ ¼ cm
RðLreÞ ¼ Nre

ð16Þ
Fig. 12. Difference of the load multiplier a predicted by associated and non-
associated formulation: variation of sliding cohesion Fs,max and tensile cohesion
Ft,max, u = 30�.
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Lre ¼ Lin
re Lex

re

� � ¼ 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

	 
 T

;

Nre ¼ RðLreÞ ¼ 10 ð17Þ
The constraint P Lre; Ft;max; Fs;maxð Þ ¼ cm implies a mapping from

the strengthening scheme and two ultimate cohesion forces to the
spurious cohesion term cm, which is computable. Lre is a two-
column bool-value matrix representing a specific strengthening
scheme. The two values in row j indicate if the intrados and extra-
dos of the joint j are reinforced or not, respectively (1 for true, 0 for
false). Taking the 9-block arch presented in the last section as an
example, we can represent the intrados reinforcement by Lre given
in Eq. (17). Nre is the number of the reinforced joints, which can be
calculated by summing all the elements in matrix Lre (denoted by
RðLreÞ ¼ Nre). For an intrados-reinforced 9-block arch, Nre is equal
to 10 (see Eq. (17)). The non-associate solution was also obtained
through the aforementioned SLP procedure, as illustrated in Algo-
rithm 1.

The example of the 9-block 2D arch with the same dimensions
and material parameters (see Table 1) assumed in section 3 is here
re-considered. Due to the multiple objectives, the solution to the
optimization problem is no longer a single value but a Pareto fron-
tier must be determined. An enumeration strategy is employed to
search for such a front. In every enumerating step, the number and
location of the reinforcement at the intrados and extrados (Lre and
Nre) are varied and then a new cm is calculated. To reduce the enu-
meration time and in agreement with what occurs in practice
applying a reinforcement, the following cases are investigated:
(1) application of two strips, every-one with a certain length, one
at the intrados and one at the extrados; (2) application of one strip
with a certain length either at the intrados or at the extrados. In
other words, the case of the application of fragmented strips is
not considered and the reinforced joints are always assumed adja-
cent one each other, as shown in Fig. 13. The ultimate load for this
new collapse problem scheme is solved through the proposed
approach. Investigating all the possible permutations varying the
position and length of the reinforcement, the cost-benefit chart
depicted in Fig. 14 is obtained. An envelope curve can be found
where two objective functions cannot be simultaneously mini-
mized anymore.

Pareto fronts predicted by the associated and non-associated
formulations coincide when the number of the reinforced joint is
few (Nre < 6). According to intuition, these two Pareto fronts then
branch when the number of the reinforced joints increases
(Nre > 6). The difference is enlarged along with the increase of
the reinforcement. In this case, a significant overestimation of
the ultimate load is observed when the associated formulation is
employed, which is consistent with the previous results.

Pareto front predicted by non-associated formulation presents
two obvious plateaus, which is a consequence of the activation of
different failure mechanisms. When the number of the reinforced
joints (i.e. the reinforcement length) increases from 0 to 4, the
Fig. 13. Variation of the strengthening schemes considered in the cost-benefit
study.



Fig. 14. Improvement of the ultimate load vs cost of the reinforcement, associated and non-associated formulation: variation of strengthening scheme, u = 30�, Ft,max = 29.7
kN, Fs,max = 9.86 kN. The improvement is compared with the no-reinforcement case.
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improvement of the ultimate load grows and reaches a first pla-
teaus (371.7 %, 4 < Nre < 8). After such plateau, the improvement
starts to increase again and gets to the second plateaus (630.1 %,
11 < Nre < 17). When the number of the reinforced joint is greater
than 18, the improvement of the collapse load is obviously the
maximum (750.9 %), but also the strengthening cost increases. In
conclusion, it can be seen that when the number of the reinforced
joints is larger than 11, the improvement of the ultimate load is
about 84 % of the full-joint strengthening, which appears fully
acceptable for practical purposes. Therefore, to reasonably guaran-
tee a very high strengthening effect, it is recommended to reinforce
at least one half of the joints.
5. Application on a real arch experimentally tested in-situ

To illustrate the possibility to apply the proposed method in
large-scale problems, this section presents the collapse analysis
of a real arch with a complex bond pattern, also taking into account
spandrels. This case has been experimentally tested in-situ [32],
including one unreinforced arch and one arch with Steel Rein-
forced Grout (SRG) reinforcement, with the same geometric prop-
erties. These two cases will both be analyzed in the following
numerical studies and the results will be compared with the avail-
able testing data for further calibration and verification of the pro-
posed approach.

The arch investigated in the following collapse analysis is com-
pletely modeled according to the one tested in [32], whose width is
250 mm, with a span of 3300 mm and a rise of 830 mm (Fig. 15).
The thickness of this arch is 120 mm and the dimension of the
bricks is approximately 250 � 120 � 55 mm. The horizontal dis-
tance between the loading point and the left springing is
10
556 mm, being consistent with the testing condition [32]. Two free
sides and the bottom of the spandrel are regarded as frictional
interfaces.

5.1. Unreinforced case

We first analyze the collapse of the unreinforced arch. Consider-
ing that in the previous analyses the initial cohesion c0 (provided
by mortar) is simply assigned to zero, here a sensitivity analysis
on c0 (from 0.001 to 0.03 MPa) is carried out. Results under two dif-
ferent friction conditions are presented (u = 22� and u = 30�).

As shown in Fig. 16, the collapse load of the unreinforced arch
increases with the growth of the initial cohesion. Such increase
presents slight non-linearity, which is caused by the consideration
of the spandrel. The trend of these curves also indicates that the
collapse mechanism basically does not change when initial cohe-
sion c0 varies. Again, we observe the overestimation of the load
multiplier from the associated formulation. Comparatively, such
overestimation is more obvious in a large friction condition
(u = 30�). According to the experimental study [32], the collapse
load of the unreinforced arch is 2.08 kN. Based on this value, we
can calibrate the cohesions for both associated and non-
associated formulations. All the calibrated cohesions remain
within the range of 0.006–0.010 MPa, which are reasonable for a
no-tension material. Note that the predicted loads are always con-
servative if we assume no initial cohesion, i.e. c0 = 0 MPa.

Fig. 17 gives the collapse mechanism of the unreinforced arch
under two friction conditions. Here we use the corresponding ini-
tial cohesion calibrated for the non-associated formulation. Pre-
sented collapse mechanisms are quite similar to the prior
experimental results [32], which is generally a four-hinge collapse.
Besides two hinges that appear in the middle of the arch, one hinge



Fig. 15. Geometrical properties of the in-situ tested masonry arch.

Fig. 16. Sensitivity analyses of initial cohesion c0 under two friction conditions, unreinforced arch.
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takes place near the springing under the right spandrel. In some
cases, multiple hinges could be present at this location as well
(see Fig. 17b). The last hinge, located at the bottom of the left span-
drel, is not very obvious, also combining some sliding among the
bricks. Note that the non-associated formulation predicts a small
separation among the bricks at the right spandrel, which should
be more close to reality. However, the overestimation of the asso-
ciated formulation is acceptable in this case (1.70–4.67 %, com-
Fig. 17. Collapse mechanisms of the unreinfo

11
pared with the associated prediction) because sliding happening
in the collapse is very localized.

5.2. SRG-Reinforced case

This subsection analyzes the collapse of the same arch with SRG
reinforcement. Referring to the experimental study [32], we only
consider an extrados reinforcement here, including two different
rced arch under two friction conditions.



Fig. 18. Two extrados strengthening schemes taken into account in the following collapse analyses.

Fig. 19. Sensitivity analyses of tensile cohesion Ft,max and sliding cohesions Fs,max, SRG-reinforced arch, u = 22�.
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schemes: (1) strengthening applied at the extrados but only on the
arch barrel (Fig. 18a); (2) strengthening at the extrados applied on
both arch and spandrels (Fig. 18b). According to the calibrated
results presented in [33], in the following analyses, the friction
angle of the bricks is fixed to 22�. Sensitivity analyses on the two
cohesions forces provided by the SRG are carried out. The tensile
cohesion of the SRG is calculated basing on Eq. (18).
Fex
t;max ¼ rrteqbf ; F in

t;max ¼0 ð18Þ
Where rr is the debonding strength of the SRG, which should

range from 600 to 750 MPa according to the material test reported
in [32]. teq is the equivalent thickness of the SRG. In the sensitivity
analyses, we vary it from 0.03 to 0.3 mm. bf is the width of the rein-
forcement, which is, in this case, the same as the width of the arch.

Wefirst present the sensitivity analysis on tensile cohesion Ft,max.
Because thepeeling test for the SRG is not presented in [32], as a sim-
12
plification, we stick the sliding cohesion Fs,max to 1/3 of Ft,max, refer-
ring to the proportion of these two forces discussed in section 3. The
collapse loadof the archwith arch-only strengtheningfirst increases
with the growth of the tensile cohesion and then reaches a plateau
(Fig. 19a). The trend of the curves predicted by associated and
non-associated formulations are in line one eachotherwhile the col-
lapse load at the plateau is different. At this plateau, the overestima-
tion of the load multiplier due to the employment of an associated
flow also reaches the maximum (14.8 % of increase). In the arch-
spandrel strengthening case, curves of associated and non-
associated solutions exhibit different trends when Ft,max is large:
the non-associated prediction does not grow anymore while the
associated one continuously increases (see Fig. 19b). As a result,
the overestimation of the associated formulation becomes very sig-
nificant (maximum 75.3 %) when the tensile cohesion is large.

Similarly, we can calibrate the tensile cohesion from the exper-
imental result (8.83 kN referring to [32]). Calibrated tensile cohe-



Fig. 20. Collapse mechanism of the SRG-reinforced arch with two different tensile cohesion.
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sions are indicated with green lines in Fig. 19a and Fig. 19b. Com-
paratively, the calibrated tensile cohesion in the arch-only
strengthening case is higher. All these cohesions stay within the
range 7–10 kN, which should be reasonable for SRG reinforce-
ments. Then, we carry out the sensitivity analysis on the sliding
cohesion Fs,max (Fig. 19c and Fig. 19d). In this sensitivity analysis,
we assign the tensile cohesion equal to the value calibrated with
the non-associated formulation (corresponding to the two
strengthening schemes). The curves indicate that the load multipli-
ers are basically not influenced by the change of Fs,max. Only for the
arch-spandrel strengthening arch, the associated solution slightly
grows when Fs,max rises (see Fig. 19d).

The occurrence of the plateau stage in the curves of the sensitiv-
ity analysis on Ft,max should indicate a change in the collapse mech-
anism. Therefore, let us finally investigate how the collapse
mechanism changes when Ft,max varies. The collapse mechanisms
at two different levels of tensile cohesion are presented: (1) tensile
cohesions calibrated for the non-associated formulation
(Ft,max = 9.937 and 8.953 kN for arch-only and arch-spandrel
strengthening, respectively), which is located on the increasing
stage of the curve, and (2) Ft,max = 25 kN, located at the plateau
stage (as noted in Fig. 19a and Fig. 19b). Note here that we still
assign a sliding cohesion Fs,max equal to 1/3 of Ft,max.

In the case of arch-only reinforcement, when the tensile cohe-
sion increases, the location of one hinge changes: one intrados
hinge at the middle part of the arch moves to the ring under the
right spandrel (compare Fig. 20a and Fig. 20b). Consequently, only
one extrados hinge remains within the reinforced span. This hinge
opens at the intrados while no SRG reinforcement is applied at this
13
side. Thus, for such a collapse mechanism, the growth of the tensile
cohesion does not enhance the collapse load anymore, which
explains the occurrence of the plateau stage in Fig. 19a. Associated
and non-associated formulations predict similar collapse mecha-
nisms under two different tensile cohesion conditions. Only the
associated solution presents large separations among the bricks
(in particular in the right spandrel in Fig. 20a and Fig. 20b, LP).
For the arch-spandrel strengthening, associated and non-
associated solutions are consistent under a low tensile cohesion
condition while these two solutions become different when the Ft,-
max increases. Like the arch-only-reinforced case, when the tensile
cohesion is high, the collapse mechanism produced by the non-
associated formulation exhibits only one extrados hinge in the
reinforced area (Fig. 20d, SLP). Therefore, the variation of the Ft,max

does not change the ultimate load. While in the associated solu-
tion, one intrados hinge appears within the reinforced area
(Fig. 20d, LP). The collapse load keeps increasing with the growth
of Ft,max. As a result, the overestimation of the associated formula-
tion becomes significant in this case. Note that the sliding that hap-
pens in such collapses is not obvious, a feature which explains why
the load multiplier is not influenced by the change of the sliding
cohesion (see Fig. 19c and Fig. 19d). The corresponding experimen-
tal result is closer to the mechanism presented in Fig. 20b.

6. Conclusions

We have proposed a modeling strategy for including the
strengthening effect in the heterogeneous limit analysis of
masonry arches with infinitely resistant blocks. It relies into a stan-
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dard heterogeneous approach, i.e. without the use of overlaying
new elements; in particular, a ‘‘spurious cohesion” term was added
to the constraint of the joint reduced to interface, defining new
constitutive laws. Based on such approach, a collapse analysis of
a 2D arch with FRP reinforcement was carried out as a benchmark
example, followed by several parametric studies and a cost-benefit
study. Employing this approach, we also analyzed the collapse of a
real arch experimentally tested in-situ for further verification.

As mentioned in the introduction, recent works have almost
always neglected the non-associated sliding when analyzing the
collapse of reinforced arches. Nevertheless, the results of this paper
illustrate that such a disregard could lead to an inaccurate predic-
tion of the collapse. The collapse mechanism of common arches
with reinforcement reported in recent works is primarily a four-
hinged one S4H (see [19,22] for instance, and Fig. 6a). On the con-
trary, according to both experimental observations (e.g. [34]) and
the results of this study, the presence of the reinforcement most
likely is responsible for a considerable change of the collapse
mechanism. Employing associated limit analysis, such failure
modes are hardly predictable, but once involving non-associated
sliding, it is possible to obtain mixed collapse mechanisms with
the contemporary presence of flexural hinges and sliding interfaces
(HS1 and HS2), as well as mechanisms characterized by pure-
sliding (LS). Moreover, as reported also in other existing literature
[11,12,17], an associated limit analysis could lead in some selected
cases to an overestimation of the ultimate load even in absence of
reinforcement, which is also in line with the results of this study.
This overestimation becomes in several cases critical when
accounting for the reinforcement in the analyses. Generally,
according to the analysis of the 9-block arch, a large Ft;max/Fs;max

ratio tends to bring about more sliding in the collapse, and the
overestimation of the collapse load using classic limit analysis
becomes more significant. The simulation of the in-situ tested arch
also indicates that even though no sliding appears in the collapse,
the locations of the hinges predicted by the associated and non-
associated formulation will be different when Ft;max/Fs;max ratio is
large. The overestimation of the associated solution will become
obvious in this case. From the cost-benefit study, such overestima-
tion also becomes extremely high when the number of reinforced
joints increases. Obviously, the results of the presented cases also
indicate that the ultimate load predicted by the associated and
non-associated formulations will be close if the two predicted col-
lapse mechanisms are the same. In this case, the associated formu-
lation can still be used to avoid an iterative search of the collapse
state through an SLP procedure. However, if relevant in-situ tests
are lacking or engineering experience is insufficient, this criterion
is difficult to be judged only by implementing an associated limit
analysis. Therefore, in general, we would recommend directly con-
ducting a non-associated limit analysis for a more accurate
prediction.

When applying the proposed modeling strategy, the choice of
the two ultimate cohesion forces, Ft;max andFs;max, is crucial being
their influence on the results quite high. Generally, the tensile
cohesion force Ft;max is comparatively easier to be determined,
because extensive debonding tests have been carried out for differ-
ent types of strengthening materials in recent works (e.g. [35–40]).
Ft;max can be easily stemmed from the debonding strength. For FRP
reinforcement, for instance, the code of practice CNR-DT200 has
also provided clear guidance to calculate such resistance [30]. On
the other hand, the sliding cohesion force Fs;max should be calcu-
lated based on the peeling strength of the bond between reinforce-
ment and substrate. However, the peeling mechanism of the
interface between different reinforcements and masonry is still
object of jeopardized investigation in the literature, especially for
curved substrates like arches. Relevant peeling tests have been
14
scarcely reported in recent contributions and the results turned
out to appear rather scattered [31,40]. A detailed parametric study
varying in a wide range the ultimate sliding cohesion force Fs;max

can be useful to have a better insight into all possible collapse
modes triggering, in case that a reliable peeling strength is not
available experimentally.

As far as the cost-benefit study is concerned, according to the
Pareto fronts predicted by the non-associated formulation, it can
be deduced that roughly-one half of the joints should be reinforced
to guarantee an acceptable strengthening effect at the same time
reducing installation costs.

In the collapse analysis of the in-situ tested arch, the predicted
collapse mechanism is quite close to the experimental results, for
both unreinforced and reinforced arches. The prediction of the col-
lapse load should also be justified because all the calibrated
parameters remain in a reasonable range. Note that if we assume
a zero initial cohesion for masonry, the proposed code always pre-
dicts a safe load multiplier compared with the experimental
results.

On the basis of the foregoing results and discussion, it may be
affirmed that the proposed approach can successfully simulate
the enhancement of the ultimate load carrying capacity and the
change of the collapse mechanism in masonry arches after
strengthening.

However, the limitations of the proposed approach still exist. To
give a fast prediction, the reinforcement is modeled only in an
implicit manner. Thus, the failure mechanism between the rein-
forcement layer and substrate cannot be deduced. A detailed
load–displacement description for the whole collapse process is
also absent because the proposed code is based on limit analysis.
On top of that, although a non-associated solution is more realistic
than an associated one, we cannot confirm if the minimum load
multiplier is predictable by the SLP procedure. At least in principle,
the involvement of the non-associativity can give rise to multiplic-
ities of the solution (many contributions have reported this issue,
see [11–12,41]). The SLP procedure can give the solution with a
minimum load multiplier only in a simple two-block system [17]
while for a more complex block system no theoretical study is
available to guarantee the minimization. Therefore, the proposed
approach still requires more verifications from experimental and
numerical contributions.

Besides further verifications and calibrations of the proposed
approach, future work will concern extending this approach to
solve 3D geometric problems because up to now it can only deal
with 2D cases. In this manner, the analysis of reinforced skew
arches could be possible. Analyzing the arch with different geome-
tries and the collapse with non-zero dilations will also be post-
poned to our future work. Finally, as we discussed above,
cohesion forces provided by the reinforcement are difficult to be
derived if relevant material tests are not available. For this sake,
we will investigate possible analytical formulations to calculate
these parameters. These formulations should predict the extra
cohesion forces basing on the actual debonding of the reinforce-
ment that can be determined with standard tests, also considering
the role played by the curvature of the substrate.
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Appendix A

This appendix first presents a detailed deduction of the formu-
lation of the failure surface after the reinforcement. Considering a
contact shown in Fig. 2c, the force vector at the contact can be

decomposed to three components alongn
�
,s
�
, and m

�
(Fig. 2d). Now

we deduce the constraints that these three resultants should obey
at the interface. According to the equivalence of the force, the rela-
tions between the real force (n, s) and these three resultants,
including the extra forces provided by the reinforcement layer as
well as the initial cohesion c0, are given as follows. A and t are
the area and length of the contact, respectively.

n
� ¼ nþ F in

t þ Fex
t þ c0A ð19Þ

s
� ¼ sþ F in

s þ Fex
s ; s � 0

s
� ¼ s� F in

s � Fex
s ; s < 0

)
) s

���� ��� ¼ sj j þ F in
s þ Fex

s ð20Þ

m
� ¼ n � eþ F in

t tang� Fex
t tang; tang ¼ t

2
ð21Þ

Substitute n in Eq. (21) by Eq. (19), the eccentricity of the normal

force n can be represented by n
�
andm

�
(Eq. (22)). To meet the static

condition, no rotation should happen at this contact. Thus, the act-
ing point of the normal force should remain within the section.

Then we get Eq. (23) constraining interfacial resultants n
�
andm

�
.

e ¼ m
� �F in

t tangþ Fex
t tang

n
� �F in

t � Fex
t � c0A

ð22Þ

ej j � t
2
) m

� �F in
t tangþ Fex

t tang
n
� �F in

t � Fex
t � c0A

�����
����� � tang ð23Þ

Here we use tang to represent the half height of the section. g is
the friction angle regarding the rotation, defining the limits of the
moment with respect to the normal force at the contact.

The constraints regarding n
�
and s

�
can be derived from the clas-

sical Coulomb friction model, as shown in the left of Eq. (24). Sub-
stituting n and s through Eq. (19) and Eq. (20), we can get the
formulation at the right side. u is the friction angle referred to slid-
ing, given the limits of the shear force.

n tanuþ sj j � 0

) n
� �F in

t � Fex
t � c0A

� �
tanuþ s

���� ���� F in
s � Fex

s

� 0 ð24Þ
Both Eqs. (23) and (24) can be equivalent to a pair of inequality

constraints. The reinforcement will reach maximum strength when
the interface is about to fail. Thus, we can simply substitute the four

extra forces (Fin
t ,F

ex
t ,Fin

s , and Fex
s ) with their corresponding strength.

n
�
singþm

�
cosg� 2F in

t;max sing|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
crþm

� c0A sing|fflfflfflfflffl{zfflfflfflfflffl}
crþ0

� 0;

m
� �F in

t;max tangþ Fex
t;max tang � 0

n
�
sing�m

�
cosg� 2Fex

t;max sing|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
cr�m

� c0A sing|fflfflfflfflffl{zfflfflfflfflffl}
cr�
0

� 0;

m
� �F in

t;max tangþ Fex
t;max tang < 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð25Þ
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n
�
sinuþ s

�
cosu� F in

t;max þ Fex
t;max

� �
sinuþ Fin

s;max þ Fex
s;max

� �
cosu

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

csþm

� c0A sinu|fflfflfflfflfflffl{zfflfflfflfflfflffl}
csþ
0

� 0; s
� � 0

n
�
sinu� s

�
cosu� F in

t;max þ Fex
t;max

� �
sinuþ Fin

s;max þ Fex
s;max

� �
cosu

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cs�m

� c0A sinu|fflfflfflfflfflffl{zfflfflfflfflfflffl}
cs�
0

� 0; s
�
< 0

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð26Þ
As a consequence, inequalities (25) and (26) define the failure

surfaces, taking into account the reinforcement, referred to rota-
tion and sliding, respectively. Rewriting them in matrix form, we
can obtain Eq. (2). The components in the two cohesion terms c0
and cm (given in Eqs. (3) and (4)) correspond to the constant terms
in Eqs. (25) and (26).

In addition, we explain more about the basic theory of associ-
ated limit analysis. Standard formulations include both Lower
Bound (LB) and Upper Bound (UB) theories, describing the collapse
condition from statics and kinematics viewpoints, respectively. LB
formulation (Eq. (5)) maximizes the external load multiplier a in
the condition of equilibrium and constitutive law. The constitutive
law defines the failure surface where the joint resultant state
should not exceed, as discussed in section 2. Here we elaborate
on the deduction of the equilibrium condition (first constraint in
Eq. (5)). This condition describes the relation between the interface
resultants � and the force applied at the centroid of the block
(Fig. 21a).

Considering block i, such an equilibrium can be expressed by Eq.
(27). Th right side of the equation represents the external force act-

ing at the centroid of block i, where f iD and f iL are vectors collecting
all the dead and live loads applied to this block. sgn(x) is the sign

function. At the left side, the matrix Ai
j transforms the interface

resultant xj to the equivalent centroid-acting forces, and the sum
of these forces for all the joint j associated with block i is equal
to the external force (right side). More details can be found in
[12,16,41].X
j2Ji

sgn rije
j
n

� �
Ai

jxj ¼ af iL þ f iD; Ji ¼ jjjoint j is assocaited with block if g

ð27Þ
The contains in the vectors and matrix in Eq. (27) are given in

Eq. (28). Here,n
�
j,s
�
j, and m

�
j are the normal force, shear force, and

moment acting at the interface j; Fi
Lx and Fi

Ly are the live load
in � and y direction. In this paper, we only consider vertical loads,

thus we assign Fi
Lx ¼ 0 andFi

Ly ¼ �1. Wi represents the dead load of
block i, i.e. its weight.

Ai
j ¼

ej
nex ej

tey 0

ej
nex ej

tey 0

�ej
trij ej

nrij 1

2
664

3
775; xj ¼

n
�
j

s
�
j

m
�

j

2
664

3
775; f iL ¼

Fi
Lx

Fi
Ly

0

2
64

3
75; f iD ¼

0
�Wi

0

2
64

3
75
ð28Þ

The UB formulation (Eq. (6)) minimizes the total power of the
structure, defined by the sum of the potential power of the blocks

�fTDu and the dissipation power at the interface cT0pþ cTmp (see Eq.
(6)). Since we have discussed the flow rule in section 2, more
details about the geometric compatibility condition (first con-
straint in Eq. (6)) are given here. This condition calculates the dis-
continuous velocities at each joint (j for example), collected in qj,
based on the centroid velocity of the adjacent blocks ui

(Fig. 21b). The transposed matrix Ai
j projects the centroid compo-



Fig. 21. Diagram of (a) equilibrium condition and (b) geometric compatibility condition.
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nents from the global coordinate (ex; ey) to the local coordinate of

the joint j (ej
n; e

j
t), and the sum of these projected components can

define the discontinuous velocities at this joint (Eq. (29)).X
i2Ij

sgn rije
j
n

� �
Ai

j

� �T
ui ¼ qj; Ij ¼ ijblock i is associated with joint jf g

ð29Þ
Eq. (30) gives the contains in the vectors qj and ui. Here, ui, vi,

andx
�

i, are the horizontal, vertical, and rotational velocities at the

centroid of block i; ej, cj, and h
�
j are the horizontal, vertical, and rota-

tional discontinuous velocities at the joint j.

ui ¼
ui

v i

x
�

i

2
64

3
75; qj ¼

ej
cj

h
�
j

2
664

3
775 ð30Þ

Assembling Eqs. (27) and (28) for all the joints and blocks, we
can get the equilibrium and geometric compatibility constraints
in the LB and UB formulation, respectively.
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