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Abstract: Rail transportation is recently making a comeback with stunning results from
technological viewpoint. While the efficiency of trains is well known, many aspects related to
energy management still need to be tackled, including sustainability and optimization issues.
These issues are central to the control community, and in this context model predictive control
(MPC) is a powerful control approach for its capability of guaranteeing constraints satisfaction,
while minimizing a predefined cost function. In this article, we exploit these advantages to
provide more efficient control of the electric equipment inside railway vehicles. More precisely, the
proposed MPC approach is capable of addressing the challenging scenario of partially catenary-
free tracks for trains. These are equipped with batteries, which have to supply traction motors
and parallel-connected auxiliary loads in an efficient manner, while reducing the amount of
losses over the electric lines. Simulation results, based on real data provided by the industrial
partner Alstom rail transport, show the effectiveness of the proposal.
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1. INTRODUCTION

Nowadays, because of its reduced energy consumption,
rail is already the greenest and strategic transportation
sector in the transition process towards moving forms
powered by green, low-carbon energy. In fact, in the
last decades, different sustainable solutions have been
proposed to further improve the train energy consumption,
through both vehicles technology upgrades, and control-
based techniques (Scheepmaker et al., 2017).

Among these control-based works, for instance, eco-drive
control is a valid solution to the problem of generating
optimal driving sequences taking into account a trade-
off between energy consumption and travel time, see e.g.,
(Farooqi, 2019). Such a method has been also exploited
to recover braking energy which otherwise would be lost
in the train rheostats. Specifically, collaborative eco-drive
control approaches have been proposed, for instance as in
(Farooqi et al., 2019), where a network of trains, modelled
as Markov systems interacting among each other, are in-
duced to use the energy deriving from braking of other
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trains in order to accelerate, thus avoiding energy supply
from the main grid. Most of these works are based on
optimization methods (see e.g., (Howlett, 2000)), relying
on a switched characterization of the train dynamics whose
motion is captured by four operation modes, i.e., accelera-
tion, cruising, coasting and braking (Albrecht et al., 2016).

Another important aspect for train energy efficiency is the
power control to supply auxiliary services (e.g., heating,
cooling or lightning). Classical solutions relied on central-
ized architectures, which were not very efficient in the
low power range, and adopted expensive and bulky volt-
age source converters (VSCs). Recently, as an alternative,
parallel-connected converters are an efficient solution to
power distribution in railway vehicles in order to mini-
mize the current circulating among auxiliary services, and
possibly traction motors, hence achieving load sharing
and losses reduction. Droop-control based solutions are
the most adopted methodologies in this framework, where
virtual impedance control (Kim et al., 2011), or voltage-
current droop control (Li et al., 2018) have been proposed,
among many other techniques. Also robust approaches,
such as sliding mode control methods based on a droop-like
sliding variable (Buzzi et al., 2020), have been introduced.

Moreover, these works often assume the presence of the
catenary grid over all the train track, so as to ensure a
power source to the trains, both for traction and auxil-



iary services, whenever no energy exchange among them
occurs. Therefore, a recent paradigm for train power dis-
tribution based on catenary-free tracks is under investiga-
tion, see e.g., (Becker and Dämmig, 2016; Al-Ezee et al.,
2015). Indeed, catenary-free tracks are adopted in specific
contexts, when electric lines cannot be installed due to
environmental issues. However, this configuration requires
the presence of on-board power sources such as batteries or
fuel cells (Campillo et al., 2017; Alstom, 2016). As a con-
sequence, the design of control techniques to manage the
electric power distribution inside each train, while taking
into account catenary-free tracks, becomes mandatory.

Motivated by the challenging catenary-free scenarios with
additional power sources such as batteries, the main goal
of this paper is to design a model predictive control (MPC)
energy management system for regulating the train in-
ternal electric resources, thus maximizing its efficiency.
In particular, the predictive capability of the MPC ap-
proach suits well with the time-varying catenary supply,
coordinating in advance the battery charge based on the
knowledge of the future track characteristics. Specifically,
the proposed MPC acts as a high-level controller to provide
voltage and current references tracked by suitable low-
level controllers, e.g., plug-and-play regulators (Nahata
et al., 2021) or sliding mode ones (Incremona et al., 2017).
Moreover, the proposed MPC enables high energy savings
in terms of active power losses reduction, and a proper
management of the batteries state of charge, e.g., consider-
ing regenerative braking scenarios. The proposed strategy
is finally applied to a realistic case study relying on data
provided by Alstom rail transport.

The paper is structured as follows. In Section 2, the
train electric model is described. The MPC formulation
is discussed in Section 3, and the case study is presented
in Section 4. Some conclusions are gathered in Section 5.

2. MODELLING AND PROBLEM STATEMENT

The electric model of the train is hereafter introduced, and
the energy-management control problem is formulated.

AUX Mbattery

DC-link

catenary

Fig. 1. Schematic representation of the train electric com-
ponents.

Consider Fig. 1 where a simplified schematic rendering of
the electric equipment of the train is illustrated. It includes
two different energy sources, that is the catenary grid and
the batteries, both connected to the DC-link. Whenever
the train is disconnected from the catenary, the batteries
are instrumental to supply the traction current and all
the auxiliary loads, such as heating, cooling or lightning.
DC/DC converters and parallel voltage source converters
(VSCs) interface the DC-link with the battery internal
circuit in DC, and auxiliary loads together with traction
motors in alternating current (AC), respectively.
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Fig. 2. Single line electric diagram for a single carriage
with battery and traction motor on the DC-network
(thick lines), and auxiliary load on the AC-network.

Table 1. List of symbols for the ith carriage.

Symbol Description

R
[i]

b
L

[i]

b
battery DC-network impedance

I
[i]

DCb
battery DC-network current

V
[i]

b
battery DC-network voltage

R[i]
c battery internal resistance

E[i]
c battery open circuit voltage

I[i]
c battery internal current

V [i]
c battery internal voltage

R[i]
a L[i]

a auxiliary DC-network impedance

I
[i]
DCa

auxiliary DC-network current

V [i]
a auxiliary DC-network voltage

R[i]L[i]C[i] auxiliary AC filter

v
[i]

C
capacitor AC voltage

ı[i] auxiliary AC-network current

v[i] auxiliary AC-network voltage

R
[i]
L

, ı
[i]
L

ZI load

R
[i]
t L

[i]
t DC-network impedance

I
[i]
DCt

DC-network current

I
[i]
T

traction current

V
[i]
T

traction voltage

R
[i]

DCℓ
L

[i]

DCℓ
transit DC line impedance

I
[i]

DCℓ
transit DC line current

R
[i]

ℓ
L

[i]

ℓ
AC line impedance

ı
[i]

ℓ
AC line current

In the following we assume that the considered train has
n carriages and the notation ·[i], with i ∈ N := {1, . . . , n},
is used to indicate variables associated to the ith carriage.
Moreover, for the sake of simplicity, without any loss of
generality, carriages are numbered in increasing order,
meaning that the ith carriage is connected to the (i+1)th
one for any i ∈ N ′ := {1, . . . , n − 1}. Note that, in the
following, the dependence of all the variables on time t will
be omitted, when obvious, for the sake of compactness.

Consider now the ith carriage single line electric diagram,
provided by Alstom rail transport, in Fig. 2. The definition



of all the variables is reported in Table 1. As described
before, a DC/DC converter interfaces the DC-link with
the battery internal circuit, as well as a VSC does the
same for the AC auxiliary loads. The traction circuit is
here reasonably simplified as a current generator capable
of sending current towards the DC-link if braking mode
occurs. All the carriages are then connected to the fol-
lowing and preceding ones trough both the DC-network
impedances and those of the AC-network. Note that, the
electric circuit could be different for each carriage, as some
“buggy” carriage (i.e., without traction motors) may be
present. For the sake of clarity, in order to introduce the
model of the catenary grid and of the battery, the specific
carriage illustrated in Fig. 2 contains all these elements,
which are discussed hereafter.

2.1 DC-network

Let us use the subscripts ·b, ·a and ·t to denote all the
variables associated to the battery circuit, to the auxiliary
load circuit and to the transit line, which connects the aux-
iliary load circuit and the traction generator, respectively.

Given the corresponding impedances R
[i]
b L

[i]
b , R

[i]
a L

[i]
a and

R
[i]
t L

[i]
t , one has that the DC-network equations are

İ
[i]
DCb = 1

L
[i]

b

(
−R

[i]
b I

[i]
DCb − V

[i]
b + V

[i]
DC

)
, (1a)

for the battery circuit,

İ
[i]
DCt =

1

L
[i]
t

(
−R

[i]
t I

[i]
DCt − V

[i]
T + V

[i]
DC

)
, (1b)

for the transit line towards the traction motor, and

İ
[i]
DCa = 1

L
[i]
a

(
−R[i]

a I
[i]
DCa − V [i]

a + V
[i]
T

)
, (1c)

for the auxiliary load circuit, where V
[i]
DC is the voltage

on the DC-link, while I
[i]
DCb, I

[i]
DCa, I

[i]
DCt and V

[i]
b , V

[i]
a , V

[i]
T

are currents and voltages corresponding to these circuits,
as described in Table 1.

Now, given the DC-link resistive-inductive line impedance

between carriages i and i+ 1, namely R
[i]
DCℓL

[i]
DCℓ, and the

current flowing from carriages i and i+ 1, i.e., I
[i]
DCℓ, with

I
[n]
DCℓ = 0, the line dynamics are captured by

İ
[i]
DCℓ =

1

L
[i]

DCℓ

(
−R

[i]
DCℓI

[i]
DCℓ + V

[i]
DC − V

[i+1]
DC

)
, (2a)

for i ∈ N ′. Moreover, exploiting the Kirchhoff’s current
law, it holds that

I
[i]
DCℓ = I

[i−1]
DCℓ − I

[i]
DCb − I

[i]
DCa − I

[i]
T , (2b)

for i ∈ N ′. For the sake of simplicity, without any loss
of generality, we assume the catenary grid connected to

the first carriage, and injecting the current I
[0]
DCℓ. The

dynamics of the injected current from the catenary is

İ
[0]
DCℓ =

1

L
[0]

DCℓ

(
−R

[0]
DCℓI

[0]
DCℓ + V0 − V

[1]
DC

)
δ , (3)

where V0 is the catenary voltage at the DC-link, modelled
as constant, while δ is a time-varying boolean parameter,
where δ = 1 if the catenary is connected to the train. Since

the current I
[0]
DCℓ is null when the catenary is disconnected,

this is bounded as

I
[0]
DCℓδ ≤ I

[0]
DCℓ ≤ Ī

[0]
DCℓδ. (4)

2.2 Batteries

The variables of interest for the battery model are the

open-circuit voltage E
[i]
c , the battery capacity c

[i]
c , the

internal resistance R
[i]
c , the current I

[i]
c , and the voltage

V
[i]
c . Considering the battery internal circuit, according to

the following Kirchhoff’s voltage law, it follows that

V [i]
c − E[i]

c = R[i]
c I [i]c , (5)

where the open-circuit voltage E
[i]
c is assumed constant.

Neglecting the power losses inside the DC/DC-converter
(typically very low due to their high efficiency), the power
balance around the battery converter can be written as

V
[i]
b I

[i]
DCb = V [i]

c I [i]c . (6)

In fact, possible battery losses are captured by the pres-

ence of the internal resistance R
[i]
c , as evident by combin-

ing (5) and (6) as follows

V
[i]
b I

[i]
DCb = E[i]

c I [i]c +R[i]
c (I [i]c )2. (7)

The state of charge (SoC) of the battery is given by

SoC[i](t) = SoC[i](0) + E[i]
c

∫ t

0

I
[i]
c (z)

c
[i]
c

dz. (8)

2.3 Drivetrain and auxiliary load AC-network

Fig. 2 shows in detail also the schematic single-line dia-
gram of the drivetrain and auxiliary loads circuits, derived
from (Buzzi et al., 2020). While the former is modelled as

a current generator downstream of the impedance R
[i]
t L

[i]
t ,

the latter is connected in parallel to the generator, namely

I
[i]
T , and consists of the impedance R

[i]
a L

[i]
a upstream of the

VSC, and the filter R[i]L[i]C [i] downstream of the VSC,
which is a pulse width modulation (PWM) converter trans-
forming the DC signals to AC ones. The resistive-inductive
component of filter R[i]L[i] plays a role in extracting the
fundamental frequency of the VSC output voltage, while
the capacitor C [i] determines the output voltage of the

ith load indicated with v
[i]
C , as well as the corresponding

output current, namely ı[i]. Finally, the circuit comprises a
ZI-load, i.e., nonlinear load with the parallel combination

of constant impedance (Z) component, given by R
[i]
L , and

current (I) component, namely ı
[i]
L . Moreover, all the loads

are connected in parallel through resistive-inductive lines

with R
[i]
ℓ L

[i]
ℓ impedance. Note that all the resistance and

inductance values are scalar and equal for each phase.

Applying the Kirchhoff’s voltage and current laws, in the
so-called abc-frame, the corresponding model is

dı[i]

dt
=

1

L[i]

(
v[i] − v

[i]
C −R[i]ı[i]

)
, (9a)

dv
[i]
C

dt
=

1

C [i]

(
ı[i] + ı

[i−1]
ℓ − ı

[i]
ℓ −

v
[i]
C

R
[i]
L

− ı
[i]
L

)
, (9b)

for i ∈ N , where ı[i], ı
[i]
L , v[i], v

[i]
C are 3 × 1 column vectors

(one entry for each phase) representing the VSC output
current, the load current, the VSC output voltage and the
capacitor voltage, respectively. Note that, in (9), one has

ı
[0]
ℓ = 0. Considering the electric lines of the auxiliary load

circuit, the dynamics of the line current ı
[i]
ℓ is



dı
[i]
ℓ

dt
=

1

L
[i]
ℓ

(
v
[i]
C − v

[i+1]
C −R

[i]
ℓ ı

[i]
ℓ

)
, (9c)

for i ∈ N ′.

In order to achieve a state model of system (9) in a
suitable form for control design, each three-phase vari-

able s ∈
{
ı[i], ı

[i]
L , ı

[i]
ℓ , v[i], v

[i]
C

}
can be transferred to the

synchronous rotating dq-frame by using the Clarke’s and
Park’s transformations. The latter are given by

sαβ = sae
j0 + sbe

j
2π
3 + sce

j
4π
3 , (10a)

Sdq = Sd + jSq = sαβe
jθ, (10b)

where S ∈
{
I [i], I

[i]
L , I

[i]
ℓ , V [i], V

[i]
C

}
are the dq variable

and θ =
∫ t

t0
ω0dz is the Park’s transformation phase-angle

related to the rated angular frequency ω0 = 2πf0. Hence,
the corresponding dq-frame model becomes

İ
[i]
d =

1

L[i]

(
V

[i]
d − V

[i]
Cd −R[i]I

[i]
d

)
+ ω0I

[i]
q , (11a)

İ [i]q =
1

L[i]

(
V [i]
q − V

[i]
Cq −R[i]I [i]q

)
− ω0I

[i]
d , (11b)

i ∈ N , for the VSC filter equation (9a),

V̇
[i]
Cd =

1

C [i]

(
I
[i]
d + I

[i−1]
ℓd − I

[i]
ℓd −

V
[i]
Cd

R
[i]
L

− I
[i]
Ld

)
+ ω0V

[i]
Cq,

(11c)

V̇
[i]
Cq =

1

C [i]

(
I [i]q + I

[i−1]
ℓq − I

[i]
ℓq −

V
[i]
Cq

R
[i]
L

− I
[i]
Lq

)
− ω0V

[i]
Cd,

(11d)

i ∈ N , for current node balance (9b), while

İ
[i]
ℓd =

1

L
[i]
ℓ

(
V

[i]
Cd − V

[i+1]
Cd −R

[i]
ℓ I

[i]
ℓd

)
+ ω0I

[i]
ℓq (11e)

İ
[i]
ℓq =

1

L
[i]
ℓ

(
V

[i]
Cq − V

[i+1]
Cq −R

[i]
ℓ I

[i]
ℓq

)
− ω0I

[i]
ℓd (11f)

i ∈ N ′, for the line equation (9c). Finally, assuming again
to neglect the power losses inside the VSC, the power
balance around the converter is

V [i]
a I

[i]
DCa =

3

2

(
V

[i]
d I

[i]
d + V [i]

q I [i]q

)
. (12)

3. THE PROPOSED MPC-BASED
ENERGY MANAGEMENT SYSTEM

For the sake of compactness, let us define the following
vectors including the variables previously defined, omitting
also here the time dependence for the sake of clarity,

x[i]=[I
[i]
DCb, I

[i]
DCa, I

[i]
DCt, I

[i]
DCℓ, I

[i]
d , I [i]q , V

[i]
Cd, V

[i]
Cq, I

[i]
ℓd , I

[i]
ℓq ]

′,

u[i]=[V
[i]
b , V [i]

a , V
[i]
t , V

[i]
DC, V

[i]
c , I [i]c , V

[i]
d , V [i]

q ]′ ,

d[i]=[V0, I
[i]
T , I

[i]
Ld, I

[i]
Lq]

′ .

The dynamical equations (1), (2a), (3), (11) are written as

ẋ[i] = f(x[i], u[i], d[i]), (13)

where f(·) is a properly defined vector function. Moreover,
equations (2b),(5),(6),(12), are compacted as

g(x[i], u[i], d[i]) = 0 , (14)

where g(·) is a properly defined vector function. Moreover,
all train electric variables must be constrained within their
physical limits, implying that

x[i] ≤ x[i] ≤ x̄[i], (15a)

u[i] ≤ u[i] ≤ ū[i]. (15b)

Since our goal is to design an MPC-based management
system for the electric devices of the train, we assume
that the proposed approach plays the role of a high-level
controller which generates voltage or current references to
low-level regulators. Note that the design of the stabilizing
low-level current and voltage regulators is beyond the
scope of this paper, and we refer to (Nahata et al., 2021;
Incremona et al., 2017) for possible solutions.

Having in mind a high-level controller, we consider the
MPC running at slower rate, and, given the train circuit
model, this is included as static in the MPC problem
formulation, being electric transients typically much faster
than the MPC sampling time τs ∈ R (see La Bella
et al. (2018)). Therefore, (13) is included in the MPC
formulation at its equilibrium, implying that

f(x[i], u[i], d[i]) = 0. (16)

We are now in a position to introduce the proposed
MPC system. This is designed to be solved in discrete
time domain at each generic time instant t = kτs ∈ R,
where k ∈ N≥0. The prediction horizon is defined as
Tk := {k, . . . , k + N − 1), with the integer N ≥ 1 be the
horizon length. Also the dynamics of the SoC in batteries
must be defined in discrete-time, so that by applying the
forward Euler method to (8) one has

SoC[i](k + 1) = SoC[i](k) +
E

[i]
c I

[i]
c (k)

c
[i]
c

τs . (17)

The battery SoC[i] is bounded as follows

SoC[i] ≤ SoC[i](k) ≤ SoC
[i]
, (18)

where 0 ≤ SoC[i] < SoC
[i] ≤ 1.

The MPC problem for battery trains should be designed
to accomplish the following objectives, agreed with the
industrial partner Alstom rail transport:

(1) Batteries must be normally operated with a SoC

higher than a pre-defined threshold SoCth (e.g., 50%)
so as to ensure that a sufficient charge is available
in case of catenary-free sections of the track. This is
included with a soft constraint, i.e.,

SoC[i](k) ≥ SoCth −∆s[i](k) , (19)

where ∆s[i] ≥ 0 is a slack variable that will be highly
penalized in the MPC cost function.

(2) When the train brakes, the current regenerated from

the traction (i.e., when I
[i]
T < 0) must be charged in

the batteries and not injected back in the catenary,
provided that battery limits are not exceeded. This is
formulated through the following soft constraint

I
[0]
DCℓ(k) ≥ −∆Icat(k) , (20)

where ∆Icat ≥ 0 is a slack variable highly penalized
in the MPC cost function.



(3) The train electric circuit must be operated at maxi-
mum efficiency, minimizing power losses while trans-
ferring energy from/to batteries to/from carriages.
Defining the vector of all train currents as

I [i]=[I
[i]
DCb, I

[i]
DCa, I

[i]
DCt, I

[i]
DCℓ, I

[i]
c , I

[i]
d , I [i]q , I

[i]
ℓd , I

[i]
ℓq ]

′ ,

and the diagonal matrix R[i] including all resistances

R[i]=diag{R[i]
b ,R[i]

a ,R
[i]
t ,R

[i]
DCℓ,R

[i]
c ,R[i],R[i],R

[i]
ℓ ,R

[i]
ℓ },

the total active power loss in the train circuit is

Ploss(k) =

n∑
i=1

I [i](k)′ R[i] I [i](k) . (21)

Thus, the following MPC optimization problem is solved
at each t = kτs, i.e.,

min
u(·)

k+N−1∑
h=k

Ploss(h) + γcat∆Icat(h)
2 + γs

n∑
i=1

∆s[i](h)2,

subject to (4), (14)–(21), ∀h ∈ Tk,

where γcat > 0 and γs > 0 are properly defined weights.

4. CASE STUDY

In this section, the proposal is assessed in simulation
relying on real data provided by Alstom rail transport.

4.1 Settings

The simulation scenario consists of a regional train having
n = 4 carriages and it moves over a track with two
stops. The electric equipment of the train is structured
as follows. The first and the fourth carriages (i.e., i = 1
and i = 4) are equipped with both batteries and traction
motors, while the other two (i.e., i = 2 and i = 3)
are “buggy” carriages. Then, all the carriages present a
circuit for auxiliary loads. Moreover, during the journey,
the train crosses a catenary-free section of the track in
the interval t ∈ [80, 140]min. In the following figures,
the time instants where the catenary grid is absent are
highlighted in a shadow window. Making reference to
the single-line electric diagram, all the parameters values,
equal for each carriage, are reported in Table 2. The motor
current required by the train or regenerated during braking
is reported in Fig. 3 (left) for carriage 1 (the current profile
for carriage 4 is the same), together with the direct current
absorbed by the auxiliary loads (right).

As for the proposed MPC, the sampling time is τs = 60 s
and the horizon is N = 30, while the cost function weights
are γcat = 1× 104 and γs = 1× 105. The desired threshold
SoCth is set equal to 0.6. It is worth noting that the
prediction of disturbances is assumed to be known at the
MPC level, e.g., derived from historical data of past train
travels in the same track.

4.2 Results

Fig. 4 illustrates the SoC profiles for the two batteries in
carriages 1 and 4. As expected, starting from an initial
SoC equal to 0.8, both SoCs decrease but with different

Table 2. Electric parameters.

V0 650 V

Ec 800 V

ω0 2π50 rad s−1

cc 165 kWh

RL 1 × 102 Ω

Rb, Ra, Rt, R,Rc, Rℓ 1 × 10−3 Ω

RDCℓ 4 × 10−3 Ω

LDCℓ 20 × 10−6 H

Lℓ 1 × 10−3 H

L 1 × 10−6 H

C 1 × 10−6 F

Fig. 3. Profiles of traction/braking current I
[1]
T (left), and

of direct load current I
[i]
Ld , i = 1, 2, 3, 4 (right).

rate by virtue of the minimization of losses operated by
the MPC. Indeed, since the auxiliary load of carriage 3
is higher than the others, battery 4, which is the closer
one, is more involved in supplying it. Then, around the
time instant 50min, both batteries are charged due to
the prediction operated by the MPC which foresees the
presence of a catenary-free section of the track. Therefore,
in the interval t ∈ [80, 140]min the two batteries discharge
again to supply both traction and auxiliary loads, and
when the train connects again with the catenary, they start
to charge up to the desired threshold equal to 0.6.

Fig. 4. SoC profiles for the batteries on carriages 1 and 4.

The time evolution of the battery currents I
[i]
DCb, i = 1, 4

is reported in Fig. 5. It is evident from the beginning
that in order to minimize losses over the lines, the MPC
makes the batteries supply part of the traction and load.
Then, coherently to the SoC profiles, when the train brakes
(e.g., in t ∈ [50, 60]min in Fig. 3) and regenerative energy
is provided to the lines, the batteries start to charge,
thus avoiding to transfer the regenerated energy to the
catenary.

The currents flowing through DC lines interconnecting
all the carriages are reported in Fig. 6, where it can be
noticed that the MPC decides to absorb higher amount
of current from the catenary either to charge batteries or,
when needed, to supply traction peaks.



Fig. 5. Profiles of battery current I
[i]
DCb, i = 1, 4.

Fig. 6. Profiles of DC line currents I
[i]
DCℓ, i = 1, 2, 3, 4

between carriages.

Finally, the total energy losses for the simulated scenario
amount to 0.78 kWh. Furthermore, the MPC problem has
been solved in Matlab, using IPOPT optimizer with an
average computational time equal to 2 s.

The performances of the designed MPC are compared with
an heuristic control strategy for managing trains equipped
with batteries. The latter implies the following rules:

• Batteries are activated when the catenary is not
present. Moreover, in this case the current absorption
by auxiliary loads and traction motors is equally
shared among batteries, according to standard cur-
rent sharing strategies.

• Capacitor voltages in the auxiliary circuit are all
constant and equal to the nominal reference 325 V,
see, e.g., (Buzzi et al., 2020).

• Battery voltages at the DC circuit are all constant
and equal to the nominal reference 650 V.

• If the SoC of batteries goes below the threshold SoCth

due to a catenary-free track, batteries are charged up
to 0.8 as soon as catenary is reconnected.

Applying the heuristic control strategy to the same sce-
nario, the overall energy losses are 1.58 kWh, implying
that the proposal enables to achieve a 50.7% power saving.

5. CONCLUSIONS

In this article, we have presented an MPC approach
to solve the energy-management problem for a train,
whose most carriages are equipped with parallel-connected
auxiliary loads, and some of them also with traction
motors and batteries. We have discussed the cost function
design on the basis of efficient energy management, and we
have provided a solution to deal with even a large amount
of optimization variables in real time. The proposal allows
also to efficiently govern the batteries in the case of partial
catenary-free scenarios, thus paving the way for several
extensions, such as fully catenary-free rails, hydrogen fuel-
cells trains and multi-trains networks.
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