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Abstract: The utilization of fiber-reinforced polymer (FRP) composites for building reinforcement 

has gained widespread acceptance. However, the bond behavior between externally applied 

composites and strengthened substrates, which are crucial for system efficacy, has primarily focused 

on flat surfaces. Yet, the challenge of curved substrates, common in masonry arches and vaults, 

remains less explored. This study introduces a classical analytical model addressing the bond 

behavior between FRP plates and curved substrates. This classical approach is structured upon a 

simplified model that concentrates all the non-linearities of the FRP–substrate interface. The 

interface is described through a universal multi-linear stress–slip relationship, with the influence of 

the curved substrate being considered by the normal stress that impacts the interface law. Closed-

form solutions for distinct bond-slip law stages are derived and verified against the previous study. 

Through comparisons with existing experimental data and simulations, this approach is able to 

predict the maximum load, the trends of the global load-slip curves, and give insights into detailed 

local behavior. Additionally, the exploration of employing neural networks for determining the 

interface law exhibits promising outcomes. 
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1. Introduction 

Fiber-reinforced polymer (FRP) composites have been widely utilized in building 

reinforcement. However, there exists a research gap concerning strengthening structures 

with curvature, notably in the context of arches and vaults—architectural elements 

frequently found in masonry structures. The efficacy of externally bonded materials in 

strengthening masonry arches [1] and vaults [2] lies in their ability to introduce additional 

tensile capacity into a system. Furthermore, some experimental studies focusing on 

curved elements have been conducted through laboratory tests [2–4] and on-site 

assessments [5]. 

The effectiveness of a reinforced system significantly depends on the bond behavior, 

given that the weakest point typically resides at the interface between the reinforcement 

and the substrate. Typically, shear tests are employed to assess this property [6–9]. When 

dealing with curved substrates, experimental observations have highlighted that the 

influence of substrate curvature, along with the positioning of the reinforcement, is 

substantial [10–13]. In the specific experimental study presented in [10], it was observed 

that the extrados strengthening configuration increased the load-bearing capacity, while 

intrados exhibited a reduced capacity compared to flat substrates, and higher-curvature 

substrates showed more pronounced deviations from flat cases. The geometric 

characteristics introduce more complex bonding mechanisms, such as the appearance of 

normal stress and peeling effects. 
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The common method for predicting an FRP-strengthened system’s bond behavior 

assumes a zero-thickness interface between the FRP composite and the substrate, thereby 

concentrating system non-linearities at the interface. This approach is widely used due to 

its simplicity and intuitiveness, especially when adopting a simple mathematical form of 

the bond-slip law. The interface is characterized by a stress–slip relationship, also known 

as the bond-slip law, often represented through multi-linear [14–18] or exponential 

functions [19,20]. The current study presents comprehensive solutions for a multi-linear 

interface bond-slip law, specifically a quadrilinear law. This model can effectively 

replicate the four key stages of the interface law: the initial elastic stage, a subsequent 

plateau stage, the softening stage, and a final stage representing the residual strength of 

the interface face. The adoption of a cohesive law featuring a plateau stage has found 

success in previous research [21,22], effectively reproducing the observed ductility in 

bond behavior during experimental tests. It is important to highlight that the quadrilinear 

model can be easily degraded into bi-linear or trilinear laws through parameter 

adjustments, enhancing the versatility of the current approach to accommodate various 

shapes and characteristics of cohesive laws. 

In this study, the author continues to use this straightforward approach to describe 

the bond behavior of curved systems, wherein the influence of substrate curvature on the 

system is simplified as the effect of the interface normal stress on the interface law. 

Consequently, the interface law is adjusted during the loading based on varying degrees 

of interface normal stress. The authors’ previous work demonstrated the efficacy of the 

proposed strategy in accounting for the influence of substrate curvature [16]. It should be 

mentioned that mode I fracture (opening fracture) is not considered in this study. For 

masonry structures such as arches and vaults, substantial curvature is required to trigger 

mode I fracture under the external load parallel to the FRP plate axis. Such curvature is 

typically not encountered in these structural members. For a comprehensive 

understanding, refer to the work by Grande et al. [23]. The interaction between FRP plates 

and curved substrates is modeled by shear and normal springs. The findings reveal that 

none of the normal springs exceed their tensile strength, thus indicating the absence of 

mode I fracture. 

This article is structured as follows: Section 2 outlines the governing equations for 

the debonding phenomenon and provides closed-form solutions. The approach’s validity 

is established through comparisons with both existing experimental and modeling 

outcomes in Section 3, demonstrating its good prediction of bond strength. Furthermore, 

this study compares various formulations of bond-slip laws and explores the associated 

modeling parameters in Section 4. Section 5 showcases the application of this model in 

conjunction with a neural network approach to inversely deduce the interface law from 

experimental global curves. A comparison of the NN approach with the traditional bond-

slip law determination approach is detailed in this section. The results underscore the 

effectiveness of this innovative approach, presenting a promising solution for scenarios 

where determining the interface bond-slip law proves challenging. 

2. Mathematical Model Describing the Debonding Problem 

As observed in the shear tests performed on FRP-strengthened curved masonry 

prisms, except for the fracture of the fiber textile outside the bond area, the failure is 

mostly shown as either a cohesive failure involving a few millimeters of the substrate 

material, or the detachment of the FRP from the substrate. Considering these typical 

modes of failure, we lump all the non-linear behavior of the reinforced system along the 

interface for the simplicity of modeling. We make the following assumptions to form a 2D 

mathematical model, as illustrated in Figure 1: (1) It is assumed that the materials and 

external forces exhibit uniformity across the width of the plate. (2) The external force, 

denoted as F, is assumed to be applied at the end of the unbonded FRP plate, acting in a 

direction tangential to the longitudinal axis of the plate. (3) The model comprises three 

components: the FRP plate behaves as linear elastic, the rigid substrate with negligible 
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displacement, and the zero-thickness interface follows a multi-linear bond-slip law, which 

will be illustrated in detail in Section 2.1. 

The loading procedure will be simulated by gradually increasing the slip value 

assigned at the free edge of the FRP plate, which is denoted as ��, and the simulation will 

be terminated once a sufficiently large value of ��  is reached, based on experimental 

observations. 

 
 

(a) (b) 

Figure 1. (a) The debonding problem of FRP-strengthened curved substrate and (b) the simplified 

2D mathematical model and force analysis for infinitesimals. 

2.1. Bond Slip Law 

In this study, a multi-linear relationship is assumed for the bond-slip law � − �, as 

depicted in Figure 2, in which �  represents the shear stress along the FRP–substrate 

interface, and �  denotes the relative displacement between the FRP plate and the 

substrate. However, given the assumption of a fixed substrate, � represents the FRP’s 

displacement as well. The influence of the substrate curvature on the reinforced system 

will be simply considered through the variation in the interface shear stress with respect 

to the interface normal stress. More specifically, the black solid line in Figure 2 represents 

the bond-slip law for the flat substrate case, where the interface normal stress is equal to 

zero. This bond-slip law is depicted as a quadrilinear relationship, which includes an 

initial elastic stage terminating at � = ��  when reaching � = �� , followed by a plateau 

stage until � = ��, then a softening stage until � = ��, and a final stage that exhibits a 

constant residual interface stress �� . These four stages are subsequently designated as 

‘Stage I’ to ‘Stage IV’. Notably, this quadrilinear relationship degenerates into a classical 

triangular relationship when �� = ��. 

 

Figure 2. The multi-linear interface bond-slip law and variations depending on the interface’s 

normal stress ��. 
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To establish the interface bond-slip law for the curved case, as mentioned earlier, the 

experimental results indicate an increase in the load-bearing capacity in the extrados 

strengthening case, while a decrease is observed in the intrados case with respect to the 

flat substrate. Moreover, cases with higher substrate curvature demonstrated more 

pronounced deviations from the flat case behavior. 

Accordingly, we consider an increase in the interface bond strength and ductility for 

the extrados case (represented by the red line in Figure 2), and a reduction for the intrados 

case (represented by the blue line in Figure 2). These adjustments are made based on the 

local interface normal stress and following the Coulomb friction law, expressed 

mathematically as follows: 

⎩
⎪
⎨

⎪
⎧ ��(�) =  ���, 0 < � ≤ ��

∗

��(�) =  ��
∗ , ��

∗ < � ≤ ��
∗ 

��(�) =  ��(� − ��
∗) + ��

∗ , ��
∗ < � ≤ ��

∗  

��(�) = ��
∗, � > ��

∗

 (1) 

in which ��  and ��  represent the stiffnesses of the elastic and softening stages, 

respectively. Parameters denoted with an asterisk superscript indicate the values that vary 

with the interfacial normal stress ��. For the extrados case: 

�
��

∗ = �� + ������
��

∗ = �� + �������
 (2) 

in which �  and ��  are the interface friction angle and the residual friction angle, 

respectively. For the intrados case, we assume no residual strength remains along the 

interface due to the peeling effect undermining the bond capacity towards the total 

debonding of the reinforced system: 

�
��

∗ = �� − ������
��

∗ = 0
 (3) 

Additionally, the limitations of the different stages also vary with ��, and for the 

extrados case, are expressed as: 

�

��
∗ = �� + ������/��

��
∗ = �� + ������/��

��
∗ = ��

∗ − (��
∗ − ��

∗)/��

 (4) 

For the intrados case, replace the plus sign with a minus sign in front of ��  in 

Equation (4). 

2.2. Governing Equation 

Take an infinitesimal portion ��  of the FRP plate to analyze, see Figure 1b. The 

independent variable � represents the position of any point along the bonded length �, 

where 0 ≤ � ≤ � and the abscissa � = 0 corresponds to the location of the free edge. In 

the Cartesian coordinate system, �� represents the direction aligned with the tangent of 

the substrate (and also the FRP plate), while �� indicates the direction perpendicular to 

the tangent. 

The positive direction of the interface normal stress is defined as being away from 

the center of the curved substrate. For both the extrados and intrados cases, the 

equilibrium of the infinitesimal part along the tangential direction �� can be expressed 

identically as follows: 

��

���

��
=  �(�, ��) (5) 

where ��  and ��  are the thickness and tensile stress of the FRP plate along its 

longitudinal direction separately. For the FRP plate, we can write the constitutive law as 

follows: 

�� = ��

��

��
 (6) 
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where ��  is the elastic modulus of the FRP plate. The governing ODE can be derived by 

substituting Equation (6) into Equation (5): 

���

���
=  

�(�, ��)

����

 (7) 

The interface normal stress �� can be gained by the equilibrium condition along the 

normal direction ��: 

�� =
��

�
�� =

����

�

��

��
 (8) 

With the substitution of �� into the bond-slip law �(�, ��), the ODE of Equation (7) 

is a second-order, non-linear differential equation with the displacement of fiber � 

assumed as being a dependent variable of �. 

2.3. Closed-Form Solutions 

The ODE presented in the previous section can be solved analytically with 

appropriate boundary conditions for each stage. However, as the loading progresses, 

different shear stress stages appear along the interface, and we define ���, ���, and ��� 

as representing the junction points between the elastic and plateau stages, plateau and 

softening stages, and softening and residual strength stages, respectively. 

To identify the occurrence and range of these stages along the interface, we introduce 

a procedure that can be easily implemented through repeated calculations using 

MATLAB or Excel spreadsheet. Given that the FRP plate is always under tension and 

behaves elastically, the fiber displacement �(�) along the bond length will monotonically 

increase from the free edge towards the loading edge. The occurrences of different stages 

are associated with �(�) and will always follow the sequence from Stage I to Stage IV. 

To determine the initial stage at the free edge, it is straightforward to compare the 

assigned displacement ��  with the stage limitations (�� , �� , and �� ), since no normal 

stress appears at this point, and thus no shifting of the limitations due to ��. At the free 

edge, we always have the boundary conditions as follows: 

�

�(� = 0) = ��

��

��
(� = 0) = 0

 (9) 

The solutions for the initial stage can be analytically obtained with these boundary 

conditions, as detailed in the following sub-sections. Subsequently, we can determine the 

displacement value and its first derivative at the junction point between the next stage 

(���, ���, or ���), which will then serve as the boundary conditions for the next stage. The 

junction point can be determined by comparing whether �(�) exceeds the corresponding 

stage limitation (��
∗, ��

∗, or ��
∗) or not, while considering the influence of the normal stress 

at each � under calculation. This calculation approach, implemented through MATLAB, 

is summarized in Figure 3. 
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Figure 3. The procedure for determining the stress stages along the bond length during loading. 

2.3.1. Solutions for Stage I (Elastic Stage) 

As discussed in Section 2.2, the field Equation (7) remains applicable for both the 

extrados and intrados cases. Within the current model, the effect of normal stress is 

exclusively manifested through the interface stress-slip law. Therefore, in the subsequent 

calculations, we will present the closed-form solutions specifically for the extrados case. 

For the intrados case, the solutions can be easily obtained by substituting the value of the 

substrate radius R with a negative value and setting the parameters �� and �����, which 

relate to the residual strength, to zero. 

By substituting the bond-slip law of Stage I (see the first equation of Equation (1)), 

the governing equation is given as: 

����

���
=  

����

����

 (10) 

The subscript of �� denotes the solution of the ODE for the bond-slip law of Stage I. 

Since Stage I always starts from the free edge if it appears, with the boundary conditions 

at the free edge as given in Equation (9), the solution for this second-order ordinary 

differential equation is: 

��(�) =  �� cosh(��) (11) 

in which � = �� (����)⁄ . The interfacial shear and normal stresses, as well as the fiber 

stress, can be further determined using the first equation of Equations (1), (8) and (6). 

If ��(�) > ��
∗(�), the interface stress will not be maintained in Stage I for the entire 

bond length. The range of Stage I, �� ∈ [0, ���], can be determined by the condition that 

the displacement will not exceed the limitation ��
∗, which can be expressed as follows: 

�� cosh������ =  �� +
����

��

����

�
��� sinh������ (12) 

To determine the value of ���, numerical methods can be resorted to. For example, 

one approach is to calculate the values of ��(�) and ��
∗(�) at different �, starting from 0 

until the former exceeds the latter. The �� value at this point can then be considered as 

the estimated value of ��� . Another option is to use the ‘fsolve’ function provided by 

MATLAB. 

  



Buildings 2023, 13, 2579 7 of 18 
 

2.3.2. Solutions for Stage II (Plateau Stage) 

The governing equation for Stage II can be obtained by substituting the second 

equation of Equation (1) into Equation (7): 

����

���
=  

��

����

+
����

�

���

��
 (13) 

The general solution is given as: 

��(�) =  �� + ���
����

�
�� −

���

��������
�� (14) 

The B.C.s at the left end of the Stage II range can be utilized to determine the values 

of the constants �� and ��. The left end can be either � = 0 or � = ���, depending on 

whether Stage I fades out of the bond length (�� > ��) or not (�� ≤ ��). 

If �� ≤ ��, the B.C.s for Stage II will be the compatibility conditions between Stage II 

and Stage I. This implies that the displacement and its first derivative calculated for Stage 

II should be the same as the solutions obtained by Stage I at � = ���. Therefore, we can 

determine �� and �� as follows: 

�

�� = ������� − ��

�� =
�

����
(
���

��
����� +

���

��������
)
 (15) 

If �� > ��, the left end will be the free edge, and thus the B.C.s are as in Equation (9). 

�� and �� can be determined by letting ������� =
���

��
����� = 0 in the above equation. 

When ��(�) > ��
∗(�), Stage III will occur along the interface as well. Similar to the 

approach of determining the range of Stage I, the right end of Stage II, ��� , can be 

determined by comparing the displacement with the Stage II limitation ��
∗  by solving 

������� = ��
∗�����. 

2.3.3. Solutions for Stage III (Softening Stage) 

The governing equation for Stage III can be obtained by substituting the third 

equation of Equation (1) into Equation (7): 

����

���
=  

��

����

�� +
����(1 − ��/��)

�

���

��
+

�� − ����

����

 (16) 

The general solution is given as: 

��(�) =  ���������√�� + �����√��� +
���� − �� 

��

 (17) 

in which �  and �  are constants given in Equation (18). It should be noted that the 

general solution is presented in this form under the observation that the value of � is 

positive, in accordance with commonly adopted engineering parameters. 

⎩
⎪
⎨

⎪
⎧� = − �

����(1 − ��/��)   

2�
�

�

−
��

����

� = (1 −
��

��
)

����

2�

 (18) 

The constants �� and �� need to be determined by the B.C.s at the left end of Stage 

III. Similar to the analysis for Stage II, the left end can be either � = 0  or � = ��� , 

depending on whether Stage II fades out of the bond length (�� > ��) or not (�� ≤ ��). 

If �� ≤ ��, the B.C.s for Stage II are the compatibility conditions between Stage III 

and Stage II, and �� and �� are as follows: 

�
�� = (

���

��
(���) − ���)/√�

�� = ��(���) + (�� − ����)/��

 (19) 

If �� > ��, the left end will be the free edge, and �� and �� can be determined by 

letting ������� =
���

��
����� = 0 in Equation (19). 



Buildings 2023, 13, 2579 8 of 18 
 

When ��(�) > ��
∗(�), we need to determine the right end of Stage III, ��� . This can be 

achieved by considering whether the displacement exceeds the Stage III limitation, which 

can be solved by setting ��(���) = ��
∗(���). 

2.3.4. Solutions for Stage IV (Residual Strength Stage) 

Upon observing the expressions for the bond-slip law in Stage II and Stage IV, it 

becomes evident that the expressions are identical, except for the distinction between �� 

and �� , as well as ����  and ����� . Consequently, the solutions for Stage IV can be 

readily obtained by substituting �� with �� and ���� with ����� in the solutions for 

Stage II, as presented in Section 2.3.2. Similarly, the B.C.s can be determined either by the 

conditions at the free edge or the compatibility conditions with Stage III at the junction 

point ���. 

3. Validation and Comparisons with Existing Data 

In this section, we will validate and compare the current approach with existing data, 

encompassing both experimental and modeling results. The experimental campaign by 

Rotunno et al. [10] provided a basis for our comparative analysis. This campaign involved 

shear tests on five sets of CFRP-strengthened masonry prisms, including one group with 

a flat substrate, two groups with a substrate radius of 1500 mm strengthened on either the 

extrados (CAE) or intrados (CAI), and two other groups with a substrate radius of 3000 

mm strengthened on the extrados (CBE) or intrados (CBI). 

This experimental setup also served as a basis for the numerical model introduced 

by Milani et al. [19], where the debonding problem was characterized using the same ODE 

as that proposed in our study. However, the bond-slip law was described using an 

exponential function, and the ODE was subsequently numerically solved using finite 

differences. The authors’ previous work [16], conducted within the same framework but 

employing a classical trilinear law, is also subjected to comparison. 

3.1. Validating Solution Accuracy 

Verification of the accuracy of the closed-form solutions can be effectively 

accomplished by comparing them with our previous study [16]. This earlier investigation 

focused on the same debonding issue in a curved substrate context and incorporated 

substrate curvature via interface normal stress in a classical trilinear interface law. Apart 

from the shape of the interface law, a significant distinction lies in the inclusion of a 

constant residual strength assumed for the flat and extrados cases in the current study. 

Another difference is that the previous study did not account for any adjustments to the 

stage limits based on the normal stress, allowing for a determination of the junction points 

between various stages using closed-form solutions. 

As mentioned earlier, the current model can also be adapted to a trilinear law by 

setting �� = ��, enabling a direct comparison between the global load-slip curves derived 

from previous solutions and our present solutions. As depicted in Figure 4, a high degree 

of alignment is evident for all the cases under investigation. The disparities between our 

current approach and the trilinear model employed for the validation are detailed in Table 1, 

with a focus on the maximum load and slip before the snapback phenomenon. Notably, 

the observed differences are exceedingly small. This suggests that an adjustment of the 

stage limits does not exert a substantial influence on the global load-slip curves. This 

outcome aligns with our expectations, given the negligible normal stress induced by the 

large substrate radius, resulting in minimal alterations to the stage limits. Modeling 

parameters remain detailed in Table 2, wherein a zero value of the residual strength �� is 

assumed to align with the previous model. 
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Figure 4. Validation against the previous trilinear model by Yuan et al. [16] for all groups 

presented in Table 2. 

Table 1. Validation of the present quadrilinear model regarding the characteristic values from 

global load-slip curves. 

Cases Models Maximum Slip (mm) Maximum Load (kN) 

FLAT 

Trilinear law 0.8945 13,530.69 

Quadrilinear law 
0.8952 

(0.72‰) 

13,531.93 

(0.09‰) 

CAE 

Trilinear law 1.1314 15,243.89 

Quadrilinear law 
1.1327 

(1.16‰) 

15,244.11 

(0.01‰) 

CBE 

Trilinear law 0.9999 14,208.04 

Quadrilinear law 
1.0000 

(0.08‰) 

14,207.98 

(0.004‰) 

CAI 

Trilinear law 0.8659 13,011.44 

Quadrilinear law 
0.8662 

(0.37‰) 

13,011.51 

(0.01‰) 

CBI 

Trilinear law 0.8800 13,266.33 

Quadrilinear law 
0.8804 

(0.51‰) 

13,266.39 

(0.005‰) 

Note: In parentheses are the differences between the current model and the trilinear model for 

verification. 

3.2. Comparisons with Existing Data 

The parameters for the simulation are presented in Table 2. It should be noted that 

the fracture energy and the bond strength of the interface law closely resemble those 

utilized in [10], which were derived from strain data acquired through strain gauges 

placed on the external surface of a CFRP, see study [19] for further details. The interface 

laws employed for the flat case in the previous numerical model [19], as well as in [16], 

using a classical trilinear law, are depicted in Figure 5. 

Worth mentioning is that a considerably larger value of the substrate radius is 

adopted to simulate the flat situation, while for the intrados case, to continue to utilize the 

solutions gained for the extrados case, the substrate radius will be set to be negative; 

additionally, to prevent potential issues where zero values might arise in the 

denominator, considerably small values are employed for �� instead of zero. 
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Table 2. Parameters adopted for the simulation. 

Groups CAE CBE CAI CBI Flat 

Substrate 
Strengthening Position Extrados Extrados Intrados Intrados / 

Radius R (mm) 1500 3000 −1500 −3000 10� 

FRP plate 

Elastic modulus �� (MPa) 250,000 

Thickness �� (mm) 0.165 

Width ��  (mm) 100 

Bond length � (mm) 382 354 330 330 330 

Interface 

Bond strength �� (N/mm2) 1.37 

Residual strength �� (N/mm2) 0.05 0.05 0 0 0.05 

Elastic limit ��  (mm) 0.07 

Plateau limit �� (mm) 0.11 

Softening limit �� (mm) 0.26 

Friction angle � (°) 35 

Residual friction angle �� (°) 35 35 10�� 10�� 35 

 

Figure 5. Interface bond-slip laws adopted for current and previous exponential [19] and tri-linear 

[16] approaches, and comparisons with experimental data [10]. 

The global load-slip curves derived from the present model are presented in Figure 

6a, where distinct line types represent different groups and various colors signify different 

stage combinations along the bond length. Notably, an ascending part is discernible for 

the flat and extrados cases, while it is absent for the intrados case. This ascending part is 

attributed to the emergence of the residual strength stage (Stage IV), which, for intrados 

cases, corresponds to zero stress. The substrate curvature directly impacts the interface 

normal stress and, consequently, the interface stress. As a result, we can observe that the 

CAE case demonstrates the highest bond strength, while the CAI case exhibits the lowest. 

The load-slip curves obtained using the current and existing approaches are 

compared in Figure 6b–f. The modeling outcomes show a good agreement, the two 

analytical models exhibit only slight disparities, and both display snap-back behavior, 

which is not present in the numerical modeling results. This difference can be attributed 

to the distinct loading process simulation approaches: in the analytical models, increasing 

slips were imposed at the free edge, whereas, in the numerical model, slip increments 

were applied at the loading edge, naturally precluding any reduction in the slip. 

Comparing the modeling results with the experimental data, a good resemblance is 

evident in terms of the initial elastic behavior and bond strength. However, all these 

models give too brittle behavior compared to the experimental results. This might be 
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attributed to the simplification of the modeling, such as ignoring the damage spread 

inside the substrate and the interlocking provided by the mortar joints, etc. 

  
(a) (b) 

  

(c) (d) 

  
(e) (f) 

Figure 6. (a) The global load-slip curves obtained with the present model; and comparisons with the 

previous studies (the exponential model [19], the tri-linear model [16] and the experimental data 

[10]) for groups: (b) flat, (c) CAE, (d) CBE, (e) CAI, and (f) CBI. 

The current methodology offers a comprehensive insight into the propagation of 

interface slip and stresses, utilizing cases CAE and CAI as exemplars, as illustrated in 

Figure 7. Different lines indicate the different stages appearing along the bond length. The 

slip patterns clearly show the influence of each stage corresponding to their respective 

limitations. The distribution of interface shear stresses demonstrates a noticeable 

progression from the loading edge to the free edge, including the appearance of the 
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plateau and softening stages, eventually reaching the residual strength phase. Notably, 

the normal stresses within the two cases exhibit opposing signs, a consequence of our 

negative radius assumption for the intrados case. Additionally, the normal stress 

consistently remains at a low level, mainly due to the substantial substrate radius. 

  
(a) (b) 

  

(c) (d) 

  
(e) (f) 

Figure 7. The distributions of (a) slip, (c) interface shear stress, (e) interface normal stress of case 

CAE; and (b) slip, (d) interface shear stress, and (f) interface normal stress of case CAI along the 

bond length. 

4. Discussions Regarding the Interface Law 

In a previous study based on trilinear laws [16], an extensive investigation of the 

impacts of the parameters embedded in the interface law was conducted. It was 

ascertained that the bond strength of the reinforced system mostly depended on the 

fracture energy of the interface, regardless of the precise configuration of the interface law, 

as corroborated by the findings thus far [16,17,24]. Further conclusions have been drawn, 
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highlighting that the interface friction angle and residual friction angle exerted minimal 

influence on the global curves, owing to the considerably low magnitude of the interface 

normal stress. Therefore, within this section, our focus will center on investigating the 

contrasts between the current multi-linear model and the previous trilinear-law-based 

model, while also examining the effects of residual strength. This analysis will be 

undertaken while maintaining consistent values for the friction angles. 

Thanks to the adaptability and robustness provided by the analytical approach, this 

section aims to assess various commonly employed forms of interface laws, as illustrated 

in Figure 8a. The comparisons encompass classic trilinear laws, trilinear laws exhibiting 

either rigid or brittle behavior, and quadra-linear laws with differing plateau stage 

durations. It should be noted that all these relationships share closely aligned fracture 

energy values. The global load-slip curves for case CAE are presented in Figure 8b. The 

differences corresponding to the elastic stiffness and beginning of the residual stage can 

be identified, nonetheless, due to the near-identical fracture energy values, and the results 

demonstrate an overall convergence. 

  
(a) (b) 

Figure 8. (a) The various interface bond-slip laws adopted for simulation, and (b) the corresponding 

global load-slip curves. 

Figure 9 illustrates the global load-slip curves obtained using different values of 

residual strength (��) for both the CAE and CBE cases, maintaining the other parameters 

at the values specified in Table 2. Increased values of �� result in a more pronounced 

ascending part, a higher global bond strength, and a higher residual strength. Notably, in 

the CAE case, higher �� values contribute to a closer approximation of the global curve. 

However, for the CBE case, characterized by lower substrate curvature, large �� values 

appear to be less suitable, suggesting the feasibility of adopting distinct ��  values to 

account for cases with varying substrate curvatures. 
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(a) (b) 

Figure 9. Load-slip curves obtained with different values of residual strength �� for (a) case CAE 

and (b) case CBE. 

5. Parameters Determination via Neural Network 

A proper determination of the bond-slip law is essential for replicating the observed 

bond behavior during shear tests. One common method for achieving this involves the 

placement of strain gauges along the bond length during the test [2,25,26]. By analyzing 

the strain data, it becomes possible to derive shear stress and slip through differentiation 

and integration, respectively. This direct approach offers the advantage of not 

necessitating prior knowledge of the mathematical form of the bond-slip law. However, 

despite its conceptual simplicity, experimental outcomes generally show a high 

discreteness. Consequently, this approach often yields bond-slip curves of irregular 

shapes, demanding user interpretation to choose an appropriate bond-slip law for 

simulation purposes, as exemplified in this study.  

Another approach involves utilizing global load-slip data obtained experimentally 

to deduce the bond relationship in a reverse manner, which is termed ‘inverse calibration’ 

in some research [8,27,28]. Initially, a mathematical form for the bond-slip law needs to be 

assumed, then some key features (such as maximum load and fracture energy, etc.) and 

the global curves are derived based on this assumption. These derived features are then 

adjusted to closely match the experimental data, allowing for the determination of the 

previously undetermined bond-slip law parameters. This method proves valuable when 

sufficient experimental strain data are lacking. 

The conventional method used for inverse calibration involves a regression analysis, 

and more recently, there has been a growing interest in utilizing neural networks for 

achieving the same purpose [14,29]. This novel approach leverages the power of neural 

networks to reproduce complicated data relationships and patterns. Compared to the 

traditional approach, wherein traditional regression techniques aim to establish a direct 

functional relationship between input and output variables, neural networks serve as a 

data-driven black box. This distinction is particularly important when dealing with 

complex and nonlinear systems, since neural networks excel in capturing intricate 

patterns and dependencies within data, enabling them to flexibly model complex 

relationships between input and output variables. 

In order to enhance the quality of neural network predictions, the selection of training 

inputs and outputs requires careful consideration. Input dimensionality, denoting the 

number of features of global curves in this context, needs to be able to identify the most 

informative features and discard the less important ones, and may lead to model 

complexity when excessively high. While increased outputs allow for the network to make 

more comprehensive predictions, they might also complicate training and necessitate a 

larger training dataset. It can be said that the efficiency and accuracy of training and 

prediction largely depend on the choice of training data, which introduces risks. 
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Inadequate or unrepresentative training data may result in a suboptimal model 

performance, including the risk of overfitting, ultimately leading to inaccurate 

predictions. Therefore, a balanced approach is imperative to optimize the neural 

network’s ability to make accurate predictions while mitigating the risks associated with 

data quality and model complexity. 

For the specific issue of inverse calibration, the data for training are structured as 

follows: (i) the training outputs encompass the various combinations of the parameters of 

the bond-slip law; (ii) the inputs for the training involve features extracted from the global 

curves, utilizing the aforementioned combinations within the current analytical model. 

Subsequently, when provided with the features of experimental global curves, the trained 

neural network is expected to yield the bond-slip law that corresponds to the experimental 

data. This process is visualized in Figure 10.  

In the previous study, discussions confirmed the minor influence of the interface 

bond-slip law shape on the global behavior. Therefore, this section adopts a classical 

trilinear bond–slip relationship, requiring three parameters to be determined: ��, ��, and 

��. The parameter ��  can be directly estimated from the global curve, as it corresponds to 

the slip value at the end of the elastic phase. The ranges of the parameters are determined 

based on the previous investigation experience; �� ranges between 0.5 and 3 MPa, �� 

ranges between 0 and 0.5 MPa, and ��  ranges between 0.1 and 0.5 mm. For each 

parameter range, 50 interpolations are uniformly selected, resulting in a total of 50� =

125,000 combinations for three parameters. In the case of intrados scenarios, only two 

outputs are necessary, as we assume �� = 0, and we will conduct 100 interpolations to 

generate 10,000 combinations. 

Upon examining the experimentally obtained global load-slip curves presented in 

Figure 6, it indicates that these curves can be simplified into a two-stage polyline 

characterized by an initial linear phase and followed by an ascending branch. 

Consequently, we select three key features to serve as inputs for the neural network 

training. These values encompass the load and slip values at the end of the elastic branch, 

which are referred to as �� (known) and ��, respectively, as well as the maximum load 

(��) and its corresponding slip (��). In conclusion, the training dataset comprises a three-

dimensional input set and a corresponding three-dimensional output set for the extrados 

case (and a two-dimensional output set for the flat and intrados cases), resulting in a total 

of 125,000 items for the training (with 10,000 items allocated for the flat and intrados cases), 

as depicted in Figure 10. 

 

Figure 10. Illustration of neural network training and prediction process for extrados case. 

Five neural networks were trained to infer the bond-slip law for all five cases 

discussed in Section 3.2, facilitated by the MATLAB Neural Network Fitting application. 

This versatile application enables a detailed training parameter setup and offers an 

effective training visualization. The preparation of the training data is accomplished 
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through repeated calculations employing the current analytical model, where different 

combinations of interface law parameters are assigned. This procedure is remarkably 

efficient, requiring only a few minutes due to the rapid computational capabilities of the 

analytical model. Furthermore, the training process itself takes a matter of minutes when 

employing the MATLAB toolbox with the current quantity of training data. The efficiency 

of this approach is evident in its capacity to yield good predictions for the bond-slip laws 

while still demanding reasonable computational resources. 

The features extracted from the experimental global curves are summarized in Table 

3, with corresponding standard deviations provided in brackets. The interface laws 

projected by the trained neural network are also presented in Table 3, and a comparison 

of the global curves obtained using the NN-predicted interface law and the traditional 

approach utilizing strain gauges is depicted in Figure 6. The results demonstrate a good 

predictive performance. Notably, for the flat and extrados cases, a more pronounced 

ascending phase and a larger maximum load can be observed due to the generation of a 

larger ��. Nevertheless, it is important to note that, despite these promising outcomes, 

none of these results can fully replicate ductile behavior due to the inherent limitations in 

the analytical approach proposed in this study. 

Table 3. Features from experimental curves and NN predicted interface laws. 

Groups �� (mm) 
Inputs NN Predicted Outputs 

�� (��) �� (��) �� (��) �� (���) �� (���) �� (��) 

Flat 0.040 (0.37) 5.194 (0.24) 20.397 (0.08) 1.660 (0.23) 1.436 0.184 0.253 

CAE 0.036 (0.29) 6.733 (0.06) 25.895 (0.07) 2.586 (0.32) 1.491 0.297 0.415 

CBE 0.019 (0.28) 5.452 (0.12) 21.811 (0.01) 3.096 (0.19) 1.758 0.106 0.186 

CAI 0.036 (0.47) 5.048 (0.16) 15.916 (0.06) 0.844 (0.24) 2.118 / 0.221 

CBI 0.004 (0.58) 4.848 (0.31) 16.633 (0.15) 1.844 (0.50) 2.038 / 0.228 

6. Conclusions 

The present study introduced an analytical framework to describe the debonding 

behavior of FRP plates adhered to brittle curved substrates. A simplified classical 

mathematical model was employed, incorporating a multi-linear interface bond-slip law 

to consider the impact of normal stress induced by substrate curvature. The accuracy of 

the derived closed-form solutions and the effectiveness of this approach were validated 

against available experimental data and simulations. However, the current model 

exhibited brittle behavior compared to the experimental results, primarily attributed to its 

ignorance of the substrate. An investigation of the effects of the interface parameters 

confirmed that the bond behavior was primarily influenced by the interface fracture 

energy, rather than the specific form of the interface law. Furthermore, a novel neural-

network-based approach for determining the bond-slip law in cases with absent 

experimental strain data was introduced, demonstrating a promising performance. 
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