
Integral Sliding Modes Generation via
DRL-Assisted Lyapunov-Based Control for Robot Manipulators

Nikolas Sacchi, Gian Paolo Incremona and Antonella Ferrara

Abstract— This paper proposes an enhanced version of the
integral sliding mode (ISM) control, where a deep neural
network (DNN) is first trained as a deep reinforcement learning
(DRL) agent. Then, such a DNN is fine-tuned relying on
a Lyapunov-based weight adaptation law, with the aim of
compensating the lack of knowledge of the full dynamics in
the case of robot manipulators. Specifically, a DRL agent is
trained off-line on a reward depending on the sliding variable
to estimate the unknown drift term of the robot dynamics.
Such an estimate is then exploited to initialize and perform
the fine tuning of the online adaptation mechanism based on
the DNN. The proposal is theoretically analysed and assessed
in simulation relying on the planar configuration of a Franka
Emika Panda robot manipulator.

Index Terms— Integral sliding mode control, reinforcement
learning, neural networks, robot manipulators.

I. INTRODUCTION

The need to cope with unavoidable modelling mismatches
and disturbances affecting plants made sliding mode control
(SMC) very popular because of its capability of robustifying
the controlled system in front of matched uncertainties
whenever the system states lie on a suitable sliding manifold
[1]. In particular, the key ingredient of a SMC law is
its discontinuous nature, which allows the so-called sliding
variable to converge towards the sliding manifold in a finite
time. The convergence time is in turn determined by the
control gain which has to be selected so as to dominate
the worst realization of the uncertainty terms acting on the
system.

However, the classical SMC presents two main drawbacks.
On the one hand, the designed control gain strongly influ-
ences the presence of the so-called chattering phenomenon
[2]. On the other hand, during the reaching phase towards
the manifold the controlled system is still sensitive to dis-
turbances. In the literature, different solutions to these issues
have been proposed. Higher order sliding mode controllers
[3], [4], full order sliding mode strategies [5], and adaptive
approaches [6]–[8] contributed to the field as valid method-
ologies for chattering alleviation. Instead, the enhancement
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of robustness features of SMC during the reaching phase has
been first solved in the seminal work [9], where the so-called
integral sliding mode (ISM) control has been presented.

The basic idea of an ISM control is to remove the reaching
phase, thus enabling the sliding mode since the initial time
instant, with beneficial effects in terms of robustness despite
matched uncertainties. An extension in the case of both
matched and unmatched disturbances is instead proposed in
[10] and [11]. Among many applications, robotic systems
represent a challenging case study for which ISM control has
been successfully used, see e.g., [12], [13]. Such systems are
often characterized by a partial knowledge of their dynamics.
Specifically, the knowledge of the so-called control effective-
ness matrix is often a common assumption, while this is not
valid for the drift component, which depends on frictions and
Coriolis effects typically unknown to the controller designer.
This aspect can motivate the use of a learning approach to
estimate the missing dynamics information.

Indeed, by virtue of the growth of the computational
power, the so-called learning paradigm has become very
popular. One type of learning approach, used with very sat-
isfactory results in a wide number of fields, is reinforcement
learning (RL) [14], as for instance in robotics (see, e.g., [15],
[16]) or healthcare (see, e.g., [17], [18]). Furthermore, in
the case of very complex problems, the use of universal
function approximators like deep neural networks (DNNs)
[19] is required, giving rise to deep RL (DRL) methods.
As mentioned, in this context, neural networks (NNs) are
the core of the learning approach. NNs have been indeed
successfully applied in many control design applications
giving rise to a variety of learning-based data-driven control
strategies, with stability and robustness guarantees, see e.g.,
[20], [21] for an overview. Among many works, for instance,
[22] introduced weight adaptation laws for NNs which are
derived from Lyapunov stability analysis. Such techniques
have been used to directly approximate the optimal control
law (see, e.g., [23]) or to estimate online part of the system
model. More recently, in [24] a two-layers NN with the
aforementioned weight adaptation laws to estimate the plant
model has been proposed in the framework of ISM control,
giving rise to a novel NN-ISM control approach.

Inspired by [24] and motivated by robotic applications,
in this work we propose an extended version of the NN-
ISM control which relies on the use of a DNN, in order
to estimate the unknown drift term of the robot dynamics.
More precisely, differently from [24], the DNN is initially
treated as a DRL agent, trained off-line according to a reward
function which depends on the sliding variable. The latter is



indeed a valuable index to estimate the unknown drift term
of the robot dynamics, which is essential to design the ISM
control law. Then, the DNN weights achieved as outcome
of the DRL training are adopted to initialize the DNN used
online. Furthermore, an adaptation law based on Lyapunov
stability analysis is introduced to perform the so-called fine
tuning for the weight of the last layer of the DNN.

Making reference to [24], where the weights of the NN are
randomly initialized, thus possibly causing temporary large
estimation error, here the joint use of DRL and Lyapunov-
based adaptation leads to different improvements and advan-
tages. On the one hand, pre-training the DNN using DRL
allows to initialize the online control phase with smaller
estimation error, resulting in a faster recovering of the sliding
mode generation whenever this is lost. On the other hand, the
introduction of fine tuning based on Lyapunov stability anal-
ysis allows to compensate the possible lack of generalization
of the DNN caused by an insufficient quantity of experience
during the DRL training phase. The convergence properties
enabled by the proposed DRL Lyapunov-based ISM control
are proved in the paper and assessed in simulation on a
realistic model of a Franka Emika Panda robot manipulator.

The paper is structured as follows. In Section II the
considered robot model is introduced and some preliminaries
on ISM control and the DRL method are recalled. The DRL
based estimation of the unknown dynamics of the robot
is presented in Section III, while the adopted ISM control
is discussed in Section IV. The proposal is theoretically
analysed in Section V, and simulation results relying on a
realistic robot simulator are illustrated in Section VI. Finally,
some conclusions are drawn in Section VII.

Notation: Let x ∈ Rm be a column vector, then x⊤ ∈
R1×m represents its transpose. Given a real matrix A ∈
Rm×m, then tr(A) is its trace, while λmax(A) and λmin(A)
denote the largest and the smallest eigenvalue of matrix
A, respectively. Given two real matrices A, B ∈ Rm×m,
then tr(A + B) = tr(A) + tr(B), while given A ∈
Rn×m, B ∈ Rm×n, then tr(AB) = tr(BA). Given two real
column vectors a, b ∈ Rm, the trace of the outer product is
equivalent to the inner product, i.e., tr(ba⊤) = a⊤b. Given
two functions f(x) and g(x), then the function composition
h(x) = g(x) ◦ f(x) is such that h(x) = g(f(x)).

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section the dynamical model of the considered robot
manipulator is presented, and the design of the ISM control,
originally introduced in [9], is recalled.

A. Robot modelling

Consider an open-chain robot manipulator with n revolute
joints, whose angular positions are collected in the vector
q ∈ Rn. The dynamics of such a manipulator is given by

M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) = τ + τd, (1)

where M(q) : Rn → Rn×n is the inertia matrix, C(q, q̇) :
Rn × Rn → Rn×n is the Coriolis/centripetal matrix, F (q̇) :
Rn → Rn is the vector of friction terms, G(q) : Rn → Rn

is the gravity vector, τd ∈ Rn is the disturbances vector,
while τ ∈ Rn is the input torque [25, Ch. 2]. Note that the
dependence on time t of all the variables is omitted when
obvious, for the sake of simplicity.

Having in mind a motion control problem, let q̃ := q− q⋆

be the position error, with q⋆ being the desired reference
position. As result of a 2-fold derivative, one obtains the
error model corresponding to (1), i.e.,

¨̃q = −M−1(q)[C(q, q̇)q̇+F (q̇)+G(q)]+M−1(q)(τ+τd)−q̈⋆.
(2)

Now, let us consider the state space formulation of model
(2), posing x := [q̃⊤ ˙̃q⊤]⊤, with x ∈ Ω ⊂ R2n, i.e.,

ẋ = f(x) +B(x)u+ h(x, t) + a, (3)

with x0 ∈ Ω being the initial condition, and f(x) : Ω → R2n

representing the smooth drift dynamics, defined as

f(x) :=

[
˙̃q

−M(q)−1 [C(q, q̇)q̇ + F (q̇) +G(q)]

]
.

Furthermore, B(x) : Ω → R2n×n is the control effectiveness
matrix, defined as

B(x) :=

[
0n×n

M(q)−1

]
,

for which the following assumption holds.

A1: There exist known constants b,sb ∈ R>0 such that

inf
x∈Ω

∥B(x)∥ ≥ b, (4a)

sup
x∈Ω

∥B(x)∥ ≤ sb. (4b)

Finally, let u := τ ∈ Rn be the input, and let h(x, t) :
Ω× R → R2n and a ∈ R2n be the system perturbation and
the reference acceleration vector respectively, given by

h(x, t) := B(x)τd, a :=

[
0n×1

−q̈⋆

]
such that the following assumption needs to be introduced.

A2: There exist known constants sτ ∈ R>0 and sh = sbsτ ∈
R>0 such that

sup
t∈R≥0

∥τd(t)∥ ≤ sτ , (5a)

∥h(x, t)∥ ≤ sh, ∀x ∈ Ω, ∀ t ∈ R≥0. (5b)

Note that the previous assumption is instrumental to design
the ISM control. Characterizing this bound could require a
careful analysis of the considered system, relying on, e.g.,
data analysis or physical insights.



B. ISM control

Making reference to [9] and having in mind the robot
application, the design of an ISM control for system (3)
is hereafter recalled. The classical formulation of the ISM
control consists of two components, i.e.,

u = u0 + u1, (6)

with u0 ∈ Rn being a stabilizing control law which makes
the origin be an asymptotically stable equilibrium point for
the nominal dynamics given by (3) when h = 0 (i.e., τd = 0),
and u1 ∈ Rn being the discontinuous control law designed so
as to reject the uncertainty terms. Since (3) is a multi-input-
multi-output coupled nonlinear system, the discontinuous law
is selected according to the unit vector approach [1] as

u1 = −ρ
s(x)

∥s(x)∥
, (7)

where ρ ∈ R>0 is a constant gain selected to dominate the
worst realization of the uncertainty terms, while s(x) : Ω →
Rn is the so-called integral sliding variable given by

s(x) = s0(x) + z(x), s(x0) = 0. (8)

The term z(x) : Ω → Rn in (8) is the transient function,
defined so that

ż = −∂s0
∂x

(f(x) +B(x)u0 + a) , z(0) = −s0(0). (9)

From conditions (9), it is clear that the sliding mode is
enabled from the initial time instant thus guaranteeing ro-
bustness in front of matched uncertainties for any t ≥ 0 [9].

C. Some preliminaries on DRL

The main ingredients of a RL algorithm are the so-called
agent and the environment represented by the state σt ∈ S,
with S being the state space. At each time instant t, the
agent performs an action, namely αt ∈ A, with A being the
action space, according to a policy π. Then, the environment
transits into a new state, namely σt+1 ∈ S, such that the
action is evaluated with a reward function, namely rt+1. The
goal of the agent is to learn the policy which maximizes
the total reward over an episode of length Th, i.e., Rt =∑Th

k=0 γ
krt+k+1, with γ ∈ [0, 1] being a discount factor. The

key element to learn such a policy is the so-called state-
action value function Qπ(σt, αt) = E{Rt | σ = σt, α =
αt}, which quantifies the expected long term reward starting
from a certain state σt, taking action αt and following policy
π thereafter. Unfortunately, such a function is unknown and
must be estimated. If both state space S and action space
A are continuous, Actor-Critic methods can be employed,
see e.g., [26], [27]. In particular, in such methods, two main
components can be identified: an Actor and a Critic. The
former is a DNN which represents the policy π according
to which the agent selects the action, while the latter is a
DNN which estimates Q(σt, αt). The Actor parameters, i.e.,
the weights of the DNN, are then updated according to the
direction suggested by the Critic network.

III. DRIFT TERM APPROXIMATION

As mentioned in §II-B, in order to design an ISM control,
the knowledge of the nominal model, i.e., of terms f(x),
B(x) and a, is required. However, when considering robot
manipulators, it is common to assume the inertia matrix
M(q), hence matrix B(x) in (3), known, see e.g., [12], [13].
On the other hand, while vector a is known by definition,
the drift term f(x) is often partially or fully unknown, as in
this paper. Therefore, the universal approximation property
and a DRL approach are presented to estimate f(x).

A. DNN function approximation
Given x ∈ Ω, there exists an ideal DNN characterized by

k ∈ N>0 hidden layers so that

f(x) = W⊤gk(Φ(x)) + ε(x), (10)

where W ∈ RLk×2n are the ideal weights of the output layer,
with Lk being the number of neurons in the kth hidden layer,
ε(x) : Ω → R2n is the so-called function reconstruction
error, while Φ(x) ∈ RLk is the output of the kth hidden
layer. The latter is computed as

Φ(x) = V ⊤
k−1gk−1 ◦ V ⊤

k−2gk−2 ◦ · · · ◦ V ⊤
1 g1 ◦ V ⊤

0 x, (11)

with V0 ∈ R2n×L1 being the ideal weights of the input layer,
and Vj ∈ RLj×Lj+1 , with j = 1, 2, . . . , k − 1, being the
ideal weights of the hidden layers. Moreover, the DNN is
characterized by k bounded ideal activation functions gi :
RLi → RLi , with i = 1, 2, . . . , k. The following assumption
on the bounds of the ideal DNN needs to be introduced.
A3: There exist known constants �W , sεf , sVj , sgi ∈ R>0,

with j = 0, 1, . . . , k−1 and i = 1, 2, . . . , k, so that the
ideal output layer weights W , the input layer weights
V0, the hidden layers weights V1, V2, . . . , Vk−1, the
unknown ideal activation functions g1, g2, . . . , gk, and
the reconstruction error ε(x) are bounded as

supx(t)∈Ω∥W∥ ≤ �W, supx(t)∈Ω∥ε∥ ≤ sεf ,
supx(t)∈Ω∥Vj∥ ≤ sVj , supx(t)∈Ω∥gi∥ ≤ sgi.

Since the ideal DNN weights are not known, an approx-
imation of them can be used. Therefore, the unknown drift
term is estimated as

f̂(x) = Ŵ⊤ĝk(Φ̂(x)), (12a)

Φ̂(x) = V̂ ⊤
k−1ĝk−1 ◦ V̂ ⊤

k−2ĝk−2 ◦ · · · ◦ V̂ ⊤
1 ĝ1 ◦ V̂ ⊤

0 x, (12b)

with Φ̂ being the output of the last hidden layer of the
network with approximated weights, while ĝi, with i =
1, 2, . . . , k, are user-defined activation functions which may
differ from the ideal ones. For the sake of readability, from
now on the quantities gk(Φ(x)) and their estimates ĝk(Φ̂(x))
will be indicated as gk and ĝk, respectively. Moreover, the
following assumption holds.
A4: There exists a known constant sĝi ∈ R>0, with i =

1, 2, . . . , k, so that the user-selected activation functions
of the DNN are bounded as

sup
x(t)∈Ω

∥ĝi∥ ≤ sĝi.



Finally, the weights estimation errors can be computed as

W̃ = W − Ŵ , (13a)

Ṽj = Vj − V̂j , i = 0, 1, . . . , k − 1. (13b)

B. DRL agent for drift term estimation

Differently from [24], where a single hidden layer NN
is adopted, in this paper a DNN with k hidden layers is
introduced in (11). Although this could represent a further
complication from computational viewpoint, the introduction
of a DRL represents a valid assistant-tool for the online
adaption law.

Due to the continuous nature of the considered problem,
among different approaches, in this paper we rely on the so-
called twin delayed deep deterministic policy gradient (TD3)
Actor-Critic method introduced in [27]. In particular, making
reference to §II-C, in our case the Actor network is exactly
the one in (12). Then, since the objective of the agent is to
estimate the drift term f(x), the state space S and the action
space A are instead defined as S = {x}, A =

{
f̂(x)

}
,

while, in order to train the DRL agent, the reward at time t
is selected as

rt = −∆s(t), (14)

where ∆s(t) := ∥s(t)∥ − ∥s(t−)∥ ∈ Rn, where s ∈ Rn

is the sliding variable, discussed in the next section, while
s(t−) indicates the immediately past value of the sliding
variable itself. After the off-line training phase, that is when
the learning procedure is completed, the DNN weights are
extracted and used to initialize the DNN of the proposed
online Lyapunov based control presented in the next section.

IV. THE PROPOSED LYAPUNOV-BASED ISM CONTROL

We are in a position to introduce the proposed Lyapunov-
based ISM control approach, as depicted in Fig. 1.

u1 = −ρ s(x)
∥s(x)∥

+

+

ẋ = f +Bu+ h+ a
∫

u0 = κ(x)

DNNż in (17)

s0 =
[
Λ I

]
x

∫+

+

x

f̂z

u

s

Fig. 1. Block diagram of the proposed DRL-ISM control scheme.

First, referring to (8), the component s0 is designed as

s0(x) =
[
Λ I

]
x, (15)

where Λ ∈ Rn×n is a diagonal matrix with positive entries.
Hence, it is possible to rewrite (9) as

ż = −
[
Λ I

] (
f̂(x) +B(x)u0 + a

)
, z(0) = −s0(0),

(16)
which, exploiting (12), can be reformulated as

ż = −
[
Λ I

] (
Ŵ⊤ĝk +B(x)u0 + a

)
, (17)

where the nominal dynamics used to design the transient
function is

ẋ = Ŵ⊤ĝk +B(x)u0 + a. (18)

Given any suitable (in whatever appropriate sense in terms
of robustness and performance) control law u0 = κ(x) (see,
e.g., [25, Ch. 6]), the whole control law (6) is given by

u = κ(x)− ρ
s(x)

∥s(x)∥
. (19)

As discussed in §III-B, all the weights of the DNN trained
off-line are used to initialize the DNN in (12). Moreover, an
adaptation law is introduced to perform the fine tuning of
the weight of the outer layer Ŵ . Specifically, the adaption
law is chosen as

˙̂
W = Γĝks

⊤ [
Λ I

]
, (20)

where Γ ∈ RLk×Lk is a constant diagonal matrix with posi-
tive entries selected by the controller designer to determine
the adaptation rate.

Finally, considering (15), deriving (8) with respect to time,
substituting (3), (10), (17) and (19), and exploiting (13a), the
dynamics of the sliding variable can be computed as

ṡ =
[
Λ I

] (
ε+ h−B(x)ρ

s

∥s∥
+

+W⊤(gk − ĝk) + W̃⊤ĝk
)
. (21)

V. STABILITY ANALYSIS

In this section, the main theoretical result is presented.
Theorem 1: Consider the robot dynamics expressed as in

(3), with initial condition x0 ∈ Ω, control law (19), sliding
variable as in (8), (15) and (17), and a pre-trained DNN (12)
with adaptation laws for the outer layer weights (20). If A1,
A2, A3, and A4 hold, and

ρ >
nλmax(Λ + I)

(
ε+ h+W (gk + ĝk)

)
bλmin(Λ + I)

, (22)

then a sliding mode s = 0 is enforced.
Proof: Select the Lyapunov-like candidate function

v(x(t)) : R2n → R as

v(x) =
1

2
s⊤s+

1

2
tr
(
W̃⊤Γ−1W̃

)
, (23)

where s is the integral sliding variable defined in (8), and
W̃ as in (13a). Differentiating (23) with respect to time, one
obtains

v̇(x) = s⊤ṡ+ tr
(
W̃⊤Γ−1 ˙̃

W
)
. (24)

Substituting (21) and given that ˙̃
W = − ˙̂

W , the above
equation becomes

v̇(x) = s⊤
[
Λ I

](
ε+ h−B(x)ρ

s

∥s∥
+

+W⊤(gk − ĝk) + W̃⊤ĝk

)
− tr

(
W̃⊤Γ−1 ˙̂

W
)
.

(25)



Using the update law (20), one has

v̇(x) = s⊤
[
Λ I

](
ε+ h−B(x)ρ

s

∥s∥
+

+W⊤(gk − ĝk) + W̃⊤ĝk

)
− tr

(
W̃⊤ĝks

⊤ [
Λ I

] )
.

(26)

Exploiting the property of the trace operator, the term de-
pending on W̃ is canceled, obtaining

v̇(x) = s⊤
[
Λ I

](
ε+ h−B(x)ρ

s

∥s∥
+W⊤(gk − ĝk)

)
.

(27)

If A1, A2, A3 and A 4 hold, then (27) can be upper
bounded as

v̇(x) ≤ s⊤
[
Λ I

] (
12n×1(sε+ sh+�W⊤(sgk + sĝk))

−ρb
[
I I

]⊤ s

∥s∥

)
≤ 1⊤

n×1

[
Λ I

]
12n×1

(
sε+ sh+�W⊤(sgk + sĝk)

)
∥s∥

− ρbs⊤
[
Λ I

] [
I I

]⊤ s

∥s∥
= 1⊤

n×1

[
Λ I

]
12n×1

(
sε+ sh+�W⊤(sgk + sĝk)

)
∥s∥

− ρbs⊤(Λ + I)
s

∥s∥
≤ nλmax(Λ + I)

(
sε+ sh+�W⊤(sgk + sĝk)

)
∥s∥

− ρbλmin(Λ + I)∥s∥ = −η∥s∥, (28)

with 1∗×1 being a column vector of all ones and η :=
−(nλmax(Λ+I)

(
sε+ sh+�W⊤(sgk + sĝk)

)
−ρbλmin(Λ+I)).

Hence, if condition (22) is satisfied, then v̇(x) ≤ −η∥s∥ < 0,
∀x ∈ Ω, implying that a sliding mode s = 0 is enforced,
which concludes the proof.

VI. SIMULATIONS AND RESULTS

In this section, in order to assess the proposed NN-
ISM control algorithm, simulations carried out relying on
the model of a Franka Emika Panda robot (see Fig. 2)
are illustrated and discussed. Only three joints and planar
motions are considered, while the robot dynamics is derived
from [28]. As for the parameters, they are obtained from
direct measurements and from the analysis carried out in
[29], so that the length of the links are l1 = 0.35m, l2 =
0.4m and l3 = 0.15m, while the masses are m1 = 3.875 kg,
m2 = 4.814 kg, m3 = 2.401 kg.

(a) setup

q1

ℓ 1

q 2

ℓ2

q3
ℓ3

x⃗

y⃗

z⃗O0

(b) schematic view

Fig. 2. Franka Emika Panda robot manipulator. Setup (a). Schematic view
of a planar manipulator with three joints (b).

In order to estimate the drift term, the TD3 agent, im-
plemented by using PyTorch, is trained for 500 episodes,

(a) Joint 1 (b) Joint 2 (c) Joint 3

Fig. 3. Time behaviour of the joint positions (expressed in rad) when fine
tuning is not applied (green line) and when it is applied (red line).

Fig. 4. Time behaviour of the sliding variable vector when no fine tuning
is performed (left column) and when adaptation law (20) is applied (right
column).

Fig. 5. Time behavior of the bounds of the outer layer weights.

each of them characterized by duration and time-step equal
to 10 and 10−3 seconds, respectively. In each episode, the
robot is controlled relying on the scheme in Fig. 1 so that
it moves towards a random configuration in the joint space
while being subject to a random matched disturbance h.
Note that, in this phase, the adaptation law derived from
stability analysis is not applied. The discontinuous control
gain is instead designed large enough so that, in the ideal
case of known drift term, the disturbance is widely rejected.
Specifically, it is selected as ρ = 25 and kept constant
during the whole training. Moreover, the gain matrix of
the integral sliding variable is designed as Λ = In×n,
while the stabilizing part of the control law is chosen as
u0 = G(q)− 15 · q̃ − 20q̇. As for the TD3 agent, the Actor
network, i.e., (12), consists of 6 inputs, 2 hidden layers with
400 and 300 neurons (see, [26]), respectively, and 6 outputs.
The hidden layers and the output layer are characterized
by tanh(·) and linear activation functions, respectively. The
Critic networks is finally defined as in [27]. Moreover, Actor



and Critic networks are trained using Adam optimizer with
learning rate equal to 10−5.

After the off-line preliminary DRL-based tuning of the
weights in (12), two different simulations are executed. In
the first one, the DNN (12) is employed directly in the
NN-ISM control without the online fine tuning (briefly,
FT). In the second one, the adaptation law (20) is instead
used to fine tune online the outer layer of the DNN (12).
In both scenarios, the manipulator is controlled to reach
the desired configuration q⋆ =

[
π/4 π/3 π

]⊤
rad,

while being subject to a disturbance τd chosen so that h =[
0⊤3×1 0.7 · sin(2πt) −0.5 · sin(4πt) 0.5 · cos(1.5πt)

]⊤
.

For both simulations, the controller parameters are selected
equal to the ones used in the training phase. Moreover, in
the simulation with fine tuning, the constant gain matrix
is set as Γ = 15 · I300×300. As it is possible to see from
Fig. 3, when the online fine tuning is not adopted, the
desired configuration is not achieved. This could happen
for different reasons, like, e.g., sub-optimal design of the
reward function or lack of exploration during the DRL
training phase. If the online adaptation (20) is applied, the
robot reaches the desired configuration and keeps it with
very small oscillations. Moreover, Fig. 4 and Fig. 5 further
validate the theoretical results introduced in Theorem 1. In
particular, Fig. 4 shows that, differently from the case in
which the fine tuning is not applied, when using the online
adaptation law (20) a sliding mode is always enforced. To
conclude, Fig. 5 shows that, for all the duration of the
simulation, the time-varying weights Ŵ , determined by the
adaptation law (20), remain bounded.

VII. CONCLUSIONS

In this paper, an enhanced version of the NN-ISM control
algorithm in [24] is proposed for addressing the motion
control problem of robot manipulators with partial known
dynamics. In order to design the ISM control approach, the
nominal model of the plant is indeed required. Thus, the in-
tegral sliding manifold is designed relying on a DNN, whose
weights adaptation is initialized by a DRL-based offline
training to estimate the unknown drift term. The theoretical
analysis of the proposal is reported in the paper providing
conditions for the integral sliding modes generation, and its
assessment is finally illustrated relying on a realistic robot
manipulator.
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