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In hypersonic applications, the construction of accurate and computationally affordable
models for simulating non-equilibrium fluid flows is a challenging task. In particular, design-
relevant cases are complex and data availability is poor, de facto hampering the development of
constitutive relations of general validity. To circumvent this issue, we propose a methodology for
building physics-constrained neural networks providing a correction to the constitutive relation
included in the Navier-Stokes model, with a specific focus on rarefied flows. The approach is
based on the premise that physical laws should be inherently encoded in robust and accurate
closures. By requiring the fulfillment of these laws i.e., by introducing specific constraints to the
training process of the neural network, we obtain correction terms coherent with the physics,
enhancing the modeling of both the viscous stress tensor and the heat flux vector. The goal is to
demonstrate the feasibility of the proposed approach and its potential to benchmark the test
case of the 1D shock.

I. Nomenclature

𝜌 = mass density
𝒖 = bulk velocity
𝐸 = total energy per unit mass
𝑝 = pressure
𝑎 = speed of sound
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𝑀 = Mach number
𝜔 = VHS parameter
𝒆 = symmetric part of the velocity gradient
𝛀 = antisymmetric part of the velocity gradient
𝜙 = Boltzmann velocity distribution function
Kn = Knudsen number
I = identity tensor
𝝉 = viscous stress tensor
𝒒 = heat flux vector
𝝉NS = viscous stress tensor for Navier-Stokes model
𝒒NS = heat flux vector for Navier-Stokes model
𝐹 = Augmented Navier-Stokes augmented equations
𝑓 , 𝑔 = Deep Learning corrections to Navier-Stokes model
𝜽 = learning weights
𝑼 = conserved variables vector
𝑼𝐴 = adjoint variables vector
𝑸 = thermodynamic state vector
𝐽 = objective function
Λ = molecular mean free path
𝜖rel = relative error w.r.t. target data
𝜖T = scheduler threshold value
𝛼LR = learning rate
𝛼 = regularization coefficient

II. Introduction
The construction of accurate and computationally affordable computer models for simulating non-equilibrium

fluid flows is a challenging task, particularly when dealing with hypersonic applications. The popular Navier-Stokes
(NS) model yields unreliable predictions whenever the continuum assumption fails (approx. for a Knudsen number
Kn > 0.1). On the other hand, the large computational cost entailed in solving the more suited Boltzmann equation
makes its numerical solution impossible for non-trivial cases. In such cases, even the most efficient Direct-Simulation
Monte Carlo (DSMC) solution methods may result prohibitively expensive, in particular if approx. Kn < 10 and if
thermochemical nonequilibrium is considered.

This paper focuses on improving the computational capabilities for predicting nonequilibrium hypersonic flows in the
transitional regime 0.1 < Kn < 10. Namely, we build physics-constrained Deep Learning (DL) augmentation terms that
take advantage of the known and resolvable physics e.g., first principles, thermodynamics laws, and conservation laws,
and exploit them to improve the accuracy of the NS solution. The aim is to achieve a prediction accuracy comparable to
that of the DSMC solution while maintaining a computational cost comparable to solving the standard NS equations.

Previous studies employed Deep Neural Networks (DNNs) for enhancing the modeling of incompressible fluid
flows, with particular reference to turbulent phenomena, but their potential has not been fully deployed for hypersonic
applications, for which literature concerning DL-DNNs augmentation models is still scarce. Recent research by
Sirignano et al. [1] proposed an innovative online training strategy that leverages the adjoint method to optimize the
parameters of a DL model by solving a constrained PDE. This approach allows consistent mathematical-physical training
and was successfully applied to hypersonic problems by Nair et al. [2] for a 1D shock flow in the transitional regime.
However, this model does not embed the first principle of physics, making it case-dependent and preventing its extension
to general 2D/3D applications.

The present work aims to overcome these issues and extend the state-of-the-art by proposing a flexible framework for
building physics-constrained neural network closures of general application. To overcome these drawbacks, the pursued
approach is based on the premise that physical laws and constraints are inherently embedded in real applications and
they can be exploited to guide the development of more robust and accurate closures. By incorporating these constraints
into the training process, we aim to develop a model that can capture both the universal physics, which is general, and
the physics encoded in the data, which is case-dependent. It is important to note that the main advantage of the approach
proposed in this work, compared to other alternative approaches, is its ability to generalize: the structure of the developed
model is case-independent and permits the use of the same model on very different problems. In principle, the model
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trained for a 1D problem can easily be used for 2D or 3D problems involving the same physics, since no case-specific
parameter or geometry setup is involved, and its physics-informed core aims to reproduce the universal dependencies
between input flow variables and output corrections. The prescriptions of physics are translated into mathematical
constraints that are hard-imposed on the NN correction. As an example, the NN model input/output mathematical
functional relation satisfies Noll’s principles for macroscopic governing equations, guaranteeing its validity for different
geometrical setups (e.g., altering the reference system would not compromise the model’s accuracy). This result is
particularly important for applying this methodology in design-relevant cases since it can enable the development of
corrections that can be trained on simple scenarios while maintaining the ability to generalize to any case, easing the
training process by partially overcoming the challenging task of gathering consistent amount of reliable data in the
context of complex applications.

To indicate the feasibility of the proposed approach and its potential, a benchmark test case has been studied: the
investigation of the inner structure of a 1D shock low-pressure Argon flow. The paper is organized as follows: Sec. III
covers the theoretical background of the equations governing the fluid flow. A brief review of deep learning algorithms
and their training strategy is also given. Section IV outlines the novel framework for building physics-constrained deep
learning closures. In Section V we apply the developed methodology on the steady 1D shock case. Finally, Sec. VI
presents a summary and discussion of future work.

III. Theoretical framework
In this Section, the theory underlying this work and the terminology used are briefly reviewed.

A. Governing equations
Consider the velocity distribution function 𝜙(𝑡, 𝒙, 𝒗), which represents the solution to the Boltzmann equation, with

𝒗 denoting the molecular velocity. The Boltzmann equation for a single component non-reactive monoatomic gas can be
formulated as

𝜕𝜙

𝜕𝑡
+ 𝒗 · ∇𝒙𝜙 =

(
𝜕𝜙

𝜕𝑡

)
collision

(1)

The mass density 𝜌, bulk momentum 𝜌𝒖 and total energy 𝜌𝐸 can be determined as statistical moments of the
velocity distribution function 𝜙 with respect to collision invariants 𝑚, 𝑚𝒗, 1

2𝑚 |𝒗 |2, respectively. The balance equations
for these quantities are derived directly from the moments of the Boltzmann equation [3].

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖) = 0,

𝜕𝜌𝒖

𝜕𝑡
+ ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I − 𝝉) = 0,

𝜕𝜌𝐸

𝜕𝑡
+ ∇ · ((𝜌𝐸 + 𝑝)𝒖 − 𝝉𝒖 + 𝒒) = 0,

(2)

where 𝝉, 𝒒 are undefined terms which represent respectively the viscous stress tensor and the heat flux vector. They can
be expressed as functions of 𝜙 as

𝜏𝑖 𝑗 = −
∫
𝒄∈R3

(𝑐𝑖𝑐 𝑗 − |𝒄 |2)𝜙𝑑3𝒄,

𝑞𝑖 =

∫
𝒄∈R3

𝑐𝑖 |𝒄 |2𝜙𝑑3𝒄,

(3)

where 𝒄 = 𝒗 − 𝒖 is the peculiar velocity. The Chapman-Enskog expansion of 𝜙 truncated at the first order retrieves
expressions for 𝝉 = 𝝉NS and 𝒒 = 𝒒NS in the limit of small perturbations from the local equilibrium condition, thereby
providing balance equations in the form of the Navier Stokes equations. However, the Chapman-Enskog expansion
entails a minimal deviation of the velocity distribution function 𝜙 from its equilibrium Maxwellian form. In transitional
flows, the continuum assumption loses its validity and the local equilibrium hypothesis may not be always fulfilled since
restoring equilibrium after a perturbation requires a non-negligible finite relaxation time. Thus, 𝜙 may significantly
deviate from the Maxwellian equilibrium form and be instead bimodal [4, 5]. In such cases, the hydrodynamic problem
is undetermined with respect to the conserved variables, as obtaining an expression for 𝝉 and 𝒒 requires the knowledge
of 𝜙, which in turn necessitates the resolution of the Boltzmann equation.
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In this work, DL techniques are used to provide closures for 𝝉 and 𝒒 and solve the hydrodynamic problem, bypassing
the solution of the Boltzmann equation. To achieve this purpose, we express 𝝉 and 𝒒, respectively, as closed and
computable functions of conserved variables 𝑼 = 𝜌, 𝜌𝒖, 𝜌𝐸 and the DL-based correction terms 𝒇 and 𝒈

𝝉 = 𝝉(𝑼, 𝒇 ),
𝒒 = 𝒒(𝑼, 𝒈).

(4)

As shown in [2], there are two strategies for performing an augmentation of the model using a Deep Learning
closure:

(a) Augmenting the Chapman-Enskog model of shear-stresses and heat-flux with corrective neural networks:

𝝉 = 𝝉NS (𝑼) + 𝝉C (𝑼, 𝒇 (𝑼; 𝜽)),
𝒒 = 𝒒NS (𝑼) + 𝒒C (𝑼𝒈(𝑼; 𝜽)),

(5)

where (...)C indicate corrective terms to the NS model, in the form of neural network closures.

(b) Directly replacing 𝝉 and 𝒒 with neural networks.

𝝉 = 𝒇 (𝑼; 𝜽),
𝒒 = 𝒈(𝑼; 𝜽).

(6)

Approach (b) has the potential to accurately represent the functional form for 𝝉 and 𝒒, leading to the corrected
flow solution. However, experience showed that the online optimization process for the parameters in approach (b) is
significantly more unstable due to the absence of physical constraints during the exploration phase. This instability can
result in nonphysical and numerically unstable functional forms for stresses and heat flux, ultimately causing the failure
of the entire online optimization method. For example, models that do not satisfy the Second Law of Thermodynamics
can exhibit heat flux moving from lower to higher temperatures, potentially resulting in critical conditions such as 𝑇 < 0.
Additionally, the training process is slower due to the lack of proper scaling, as the network must spend optimization
steps learning the factors of proportionality. This behavior could be mitigated by imposing constraints that enforce
first-principles physics. However, this would reduce the function space that the deep learning operator could generate,
thus losing the advantages of approach (b). To avoid the detrimental drawbacks of approach (b), this work adopts the (a)
strategy. Physics-based constraints in approach (a) are more straightforward to implement, and its intrinsic scaling
renders the training process faster and more efficient. Consequently, based on these considerations, the NN closure
should function as a correction to the Chapman-Enskog shear stress tensor and the heat flux vector

𝜏𝑖 𝑗 = 𝜏NS𝑖 𝑗 (1 + 𝑓𝑖 𝑗 ),
𝑞𝑖 = 𝑞NS𝑖 (1 + 𝑔𝑖).

(7)

In this context, 𝒇 and 𝒈 represent the Navier-Stokes stress tensor and heat flux corrections, respectively. It is important
to note that this formulation can be interpreted as a scaling of the neural network closure

𝜏𝑖 𝑗 = 𝜏NS𝑖 𝑗 + 𝜏NS𝑖 𝑗 𝑓𝑖 𝑗 ,

𝑞𝑖 = 𝑞NS𝑖 + 𝑞NS𝑖𝑔𝑖 ,
(8)

with

𝑓𝑖 𝑗 =
𝜏C𝑖 𝑗

𝜏NS𝑖 𝑗
, and 𝑔𝑖 =

𝑞C𝑖

𝑞NS𝑖
. (9)

Due to this scaling, better training performance can be achieved under the reasonable assumption that the order of
magnitude of 𝝉C and 𝒒C is comparable to that of 𝝉NS and 𝒒NS. More importantly, this scaling makes enforcing physical
constraints on the model significantly easier, such as the Second Law of Thermodynamics, as demonstrated in Sec. IV.
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B. Deep Learning closure
Deep learning techniques rely on NN models which are fundamental nonlinear function approximators. The

universal approximation theorem [6] states that any function can be approximated by a sufficiently large and deep
network. This theoretical foundation allows for the development of NN models such as 𝒇 (𝑼; 𝜽) and 𝒈(𝑼; 𝜽), that
approximate the nonlinear function dependency of the undetermined terms from the physical variables 𝑼. The NN takes
the same inputs that characterize the physical model being emulated, but it has additional parameters i.e., the learning
weights 𝜽 , that need to be calibrated using data. By training the NN on trusted data, we can obtain an approximation of
the physical model’s mapping between outputs and inputs (e.g., between viscous stresses and the flow solution).

There exist different architectures for building NN. These can be classified by type, structure, and learning algorithm,
and perform best depending on the specific application. Therefore, the choice of the architecture is critical and the
interested readers are encouraged to refer to the literature for a more in-depth understanding of the subject [7, 8]. In this
work, we select the DeepONet feedforward deep architecture [9] which particularly suits the learning of continuous
nonlinear operators.

C. Training strategies
There are two primary strategies for gradient-based training: online optimization and offline optimization. Figure 1

illustrates the main key aspects of the online training loop.

Fig. 1 Online training loop.

In CFD applications, the current state-of-the-art consists in the offline approach in which the models are trained
using objective functions that depend explicitly on data and do not require solving a PDE. For instance, modeling the
viscosity would require minimizing the objective function 𝐽 =

∫
𝑉
(`(𝑼, 𝒇 (𝑼; 𝜽)) − `𝑇 )2𝑑𝑉 , where `𝑇 are reference

data. However, this approach faces limitations when exact data for the higher-order terms being modeled is scarce or
unavailable i.e., when the data source is experimental. Furthermore, since the closure is trained without considering
its effects on the system dynamics, the offline optimization may be inconsistent with the governing equations [1].
Additionally, the optimization is not constrained to fulfilling a PDE. Therefore only the physics encoded in the reference
data is possibly captured.

To address these limitations, this work employs the online optimization algorithm. By defining arbitrary objective
functions, it is possible to target any quantity of interest and enable a training process focused on improving predictions
in relevant flow regions such as boundaries and shocks. The training loop leverages an adjoint-based optimization
algorithm including a constraint designed to enforce the fulfillment of the governing equations. Namely, the constraint
requires that a PDE has be solved at every optimization step, resulting in a "PDE-aware" training process.

Summing up, the online neural network training strategy employed in this study facilitates the development of
a physics-constrained model. The flexibility of the training strategy concerning data source availability is a crucial
feature, mainly when higher-order data is limited, as is the case with complex hypersonic flows. This adaptable training
strategy allows for integrating experimental and DSMC (Direct Simulation Monte Carlo) data sources, creating more
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comprehensive and precise models better equipped to handle a diverse range of operating conditions.

D. Optimization problem
As reported in [2], the whole online training procedure can be mathematically translated in a constrained minimization

problem as follows
𝜽 = argmin{𝐽 (𝑼(𝜽∗))},
subject to 𝑭(𝑼; 𝜽∗) = 0,

(10)

where 𝐽 is the objective function and 𝑭 are the Navier-Stokes augmented equations shown in Section III. The
objective function 𝐽 is constructed using the relative discrepancy between the conserved variables of the augmented
PDE and target data. This discrepancy is normalized with respect to the target data to homogenize the importance of the
different physical quantities in the optimization process,

𝐽 (𝑼(𝜽), 𝜽) =
1
2

∫
𝑉

[(
𝜌(𝜽) − 𝜌𝑇

𝜌𝑇

)2
+

+
(
𝜌𝒖(𝜽) − (𝜌𝒖)𝑇

(𝜌𝑎)𝑇

)
·
(
𝜌𝒖(𝜽) − (𝜌𝒖)𝑇

(𝜌𝑎)𝑇

)
+

+
(
𝜌𝐸 (𝜽) − (𝜌𝐸)𝑇

(𝜌𝐸)𝑇

)2]
𝑑𝑉 + 𝛼 | |𝜽 | |2,

(11)

with 𝑎 =
√
𝛾𝑅𝑇 as the speed of sound. An additional quadratic cost term in 𝜽 is added to enhance robustness [10]. The

regularization coefficient 𝛼 has been set to 0.01 through a process of trial and error.
There are several strategies to solve this nonlinear minimization problem. Here, the adjoint method has been used to

efficiently compute the gradients of the objective function w.r.t. the learning weights 𝜽 and update them exploiting
gradient descent iterations. For steady-state problems, the adjoint equations are

𝜕𝑭

𝜕𝑼

𝑇

𝑼𝑨 +
𝜕𝐽

𝜕𝑼
= 0, (12)

where 𝑼𝐴 are the adjoint variables. Thus, it is possible to calculate the sensitivity of the learning weights by

∇𝜽𝐽 =
𝜕𝑭

𝜕𝜽

𝑇

𝑼𝑨 +
𝜕𝐽

𝜕𝜽
. (13)

The discrete adjoint equations and the forward equations are concurrently solved to the steady state during training.
After the residuals have decreased to a specified threshold level, the solution is considered to be in its steady state. At
this point, the gradient descent step is executed

𝜽new = 𝜽old − 𝛼LR∇𝜽𝐽 (𝜽old). (14)

The training procedure can be visualized through the following algorithm Algo. 1. An adaptive learning rate
schedule is employed to enhance the robustness of the optimization process. A relative error parameter 𝜖rel is defined as
the ratio of the loss of the trained model, 𝐽, to the loss of the unmodified Navier-Stokes solution, 𝐽0, to measure the
accuracy of the models. As can be seen in Algo. 1, whenever 𝜖rel drops below a designated threshold value, 𝜖𝑇 , the
learning rate 𝛼LR is modified by multiplying it with a scaling factor of 𝛽1 < 1. The initial value of 𝜖𝑇 was established at
0.9, and after each adjustment of the learning rate, it was decreased by a factor of 𝛽2 < 1 to further refine the training
process.
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Algorithm 1 Pseudo code describing the training process
1: Restart from unmodified Navier-Stokes solution
2: for Iteration do
3: Time advancing towards steady state
4: if Residuals < Threshold then
5: Gradient descent step
6: end if
7: Compute 𝜖rel
8: if 𝜖rel < 𝜖𝑇 then
9: 𝛼LR = 𝛽1𝛼LR

10: 𝜖𝑇 = 𝛽2𝜖𝑇
11: end if
12: end for
13: Save optimized learning weights 𝜽

The final output of the optimization is the trained model 𝒇 = 𝒇 (𝑼; 𝜽), 𝒈 = 𝒈(𝑼; 𝜽) that closes the balance equations
(2).

IV. A novel framework for building physics-informed deep learning closures
In this section, we propose a novel framework to develop a universal and case-independent physics-based model

that, once trained on physics-representative simple scenarios, aspires to be used to simulate more complex flows while
maintaining its accuracy. To obtain this result, the proposed closure model embeds fundamental principles of physics,
which are “hard-coded”, and it avoids any dependency on problem-specific parameters.

A. Physical constraints
In the following, we delve into explaining how constraints enforcing the fulfillment of physics principles are

incorporated into the proposed model. By "hard-coding" fundamental principles into the model, and by eliminating
parameters dependent on specific scenarios, we aim to increase the robustness of the closure and the range of its
applicability. Note that the closure is already constrained to conservation laws because of the online optimization
approach exposed in Sec. III.C.

1. Noll’s principles
Since the corrective terms 𝒇 , 𝒈 apply to constitutive relations for macroscopic governing equations, they must be

constrained by Noll’s principles. Noll’s principles are physical requirements that constitutive relations must fulfill. They
can be expressed through three important axioms [11, 12]

I Principle of determinism.
Constitutive relations must depend solely on the flow’s time history up to time 𝑡.

II Principle of local effect.
The motion of the fluid outside a small enough neighborhood of a material particle 𝑃, can be ignored in determining
constitutive relations at that point.

III Principle of material frame-indifference.
Constitutive equations must be invariant for changes in the reference system and the observer.

These axioms can be employed to obtain constitutive relations for 𝒇 and 𝒈. Namely, the determinism principle can be
satisfied by assuming that the tensors 𝒇 , 𝒈 depend only on the fluid’s current state of motion. The principle of local
effect is fulfilled if one assumes that 𝒇 , 𝒈 are local functions of the solution 𝑼 and its gradient ∇𝑼 so that 𝒇 , 𝒈 are only
implicit functions of the point’s coordinates. This reduces the phenomenon of model overfitting, therefore

𝒇 = 𝒇 (𝑼,∇𝑼; 𝜽),
𝒈 = 𝒈(𝑼,∇𝑼; 𝜽).

(15)
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The velocity gradient tensor can be expressed using the well-known relation

𝜕𝑢𝑖

𝜕𝑥 𝑗

= 𝑒𝑖 𝑗 +Ω𝑖 𝑗 , (16)

where Ω𝑖 𝑗 is the antisymmetric part of the velocity gradient, representing the rigid body rotation, and 𝑒𝑖 𝑗 is the symmetric
part, representing the strain rate tensor, defined as

Ω𝑖 𝑗 =
1
2
(
𝜕𝑢𝑖

𝜕𝑥 𝑗

−
𝜕𝑢 𝑗

𝜕𝑥𝑖
),

𝑒𝑖 𝑗 =
1
2
(
𝜕𝑢𝑖

𝜕𝑥 𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖
).

(17)

The principle of material frame-indifference imposes that 𝒇 , 𝒈 is Galilean invariant, so 𝒇 , 𝒈 must be independent of
the velocity 𝒖 and of rigid rotation 𝛀. Indeed, consider a first observer in a reference system fixed to the laboratory and
a second observer in a reference system that translates and rotates with the fluid. With respect to this latter, the fluid has
𝒖 = 0, 𝛀 = 0. Assuming 𝒇 = 𝒇 (𝑼,∇𝑼, 𝜽), 𝒈 = 𝒈(𝑼,∇𝑼, 𝜽) to be valid, the first observer would find a dependence of
𝒇 and 𝒈 on 𝒖 and 𝛀, whereas the second would not. Let’s define the thermodynamic state vector 𝑸 = {𝜌, 𝑝, 𝑇}. Since
the behavior of the fluid must be the same for both observers, we deduce that

𝒇 = 𝒇 (𝑸,∇𝑸, 𝒆; 𝜽),
𝒈 = 𝒈(𝑸,∇𝑸, 𝒆; 𝜽).

(18)

2. Viscous stress tensor symmetry
Given that the viscous stress tensor 𝝉 is inherently symmetric, as shown in Eq. (3), it follows that the correction 𝒇

must be also symmetric.

3. Indifference to equilibrium condition
To obtain a closure consistent with continuum theory, the augmented hydrodynamic model must reduce to the NS

equations in the regions of the flow where continuum assumption is valid or, equivalently, where the velocity distribution
function is well approximated by the first-order terms of the Chapman-Enskog expansion. In other words, the corrections
𝒇 , 𝒈 must be negligible whenever the local Kn is sufficiently small. This constraint is imposed in two steps. First, input
gradients are scaled using the hard-sphere mean free path ΛHS as the reference length (21). In this way, input gradients
serve as a measure of the rarefaction of the flow since their magnitude corresponds to the gradient length local Knudsen
number [13]. For a thermodynamic quantity 𝑄𝑖 and for the strain rate 𝑒𝑖 𝑗 , we define

∇𝑄𝑖 =
ΛHS
𝑄𝑖

∇𝑄𝑖 ,

𝑒𝑖 𝑗 =
ΛHS
𝑎

𝑒𝑖 𝑗 ,

(19)

where 𝒆, ∇𝑸 are the scaled input gradients and 𝑎 is the speed of sound. Then, the model must guarantee that, if the
scaled input gradients go to zero, the corrections contribution to stresses and heat flux must be negligible

1. lim
∇𝑸,∇𝒆→0

𝒇 = 0,

2. lim
∇𝑸,∇𝒆→0

𝒈 = 0.
(20)

If the model satisfies these conditions, then the indifference to equilibrium condition is satisfied. To maintain
consistency with this non-dimensional formulation, and to make 𝒇 and 𝒈 independent from the adopted metric, 𝑄 must
also be scaled

𝑄𝑖 =
𝑄𝑖

𝑄𝑖 ref
, (21)

being 𝑄𝑖 ref a fixed reference quantity used to ensure that changes in the metric system are correctly taken into account
(e.g., 𝑝ref = 1Pa).
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4. II Principle of Thermodynamics
As already observed in Sec. III, the macroscopic balance equations are derived directly from the Boltzmann equation,

thus they are valid irrespective of Kn. From balance equations, it is possible to compute the entropy production term as

P𝑆 =
1
𝑇
(𝝉 : 𝒆) − 1

𝑇2 (𝒒 · ∇𝑇) =

=
∑︁
𝑖, 𝑗

1
𝑇
(𝜏𝑖 𝑗𝑒𝑖 𝑗 ) −

1
𝑇2

∑︁
𝑖

(𝑞𝑖
𝜕𝑇

𝜕𝑥𝑖
).

(22)

Therefore, the II Principle of Thermodynamics can be imposed by enforcing the Clausius-Duhem inequality P𝑆 ≥ 0
[14] ∑︁

𝑖, 𝑗

1
𝑇
(𝜏NS𝑖 𝑗 (1 + 𝑓𝑖 𝑗 )𝑒𝑖 𝑗 )︸                          ︷︷                          ︸

(A)

+
∑︁
𝑖

1
𝑇2 (−𝑞NS𝑖 (1 + 𝑔𝑖)

𝜕𝑇

𝜕𝑥𝑖
)︸                             ︷︷                             ︸

(B)

≥ 0.
(23)

It can be proven that enforcing the constraints reported in Eq. (24) over the corrections 𝒇 and 𝒈 guarantees that the
II Law of Thermodynamics is always satisfied.

The (A) term in Eq. (23) is larger than zero if

1. 𝑓𝑖𝑖 = 𝑓 ≥ −1, ∀𝑖,
2. 𝑓𝑖 𝑗 ≥ −1, ∀𝑖, 𝑗 with 𝑖 ≠ 𝑗 .

(24)

On the other hand, if also
1. 𝑔𝑖 ≥ −1, ∀𝑖, (25)

then the (B) term is larger than zero too, and thus the entropy condition is satisfied. For a detailed mathematical proof,
we kindly refer the interested reader to the appendix [.A].

B. General constrained model
By enforcing the conditions listed in Sec. IV.A, we can obtain full physics-constrained anisotropic augmentation

closures ( 𝑓𝑖 𝑗 , 𝑔𝑖) for the hydrodynamic equations (7), with the following structure{
𝑓𝑖 𝑗 = 𝑓𝑖 𝑗 (𝑸,∇𝑸, 𝒆; 𝜽),
𝑔𝑖 = 𝑔𝑖 (𝑸,∇𝑸, 𝒆; 𝜽),

(26)

subject to the constraints
1. 𝑓𝑖𝑖 = 𝑓 ≥ −1, ∀𝑖,
2. 𝑓𝑖 𝑗 ≥ −1, ∀𝑖, 𝑗 with 𝑖 ≠ 𝑗 ,

3. 𝑔𝑖 ≥ −1, ∀𝑖,
4. lim

∇𝑸,∇𝒆→0
𝒇 = 0,

5. lim
∇𝑸,∇𝒆→0

𝒈 = 0.

(27)

Note that the proposed methodology does not require any information concerning the dimensionality of the problem
(or any other case-specific variable). Therefore, the model is general and usable in a general context. This result is
particularly relevant for the training step, since it makes it possible to carry out the training considering simple problems
that are representative of the physics of the rarefied transitional flows (e.g., 1D normal shock, 2D flat plate boundary
layer) and then use the very same trained models in a broader context.
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C. Simplified isotropic model
Given the limited literature concerning augmentation closures for rarefied flows, it was decided to begin with a

simplified study. Consequently, in this work we implement a simplified isotropic scalar version of the full augmentation
model presented in Sec. IV.B. Using an isotropic model implies that the correction to the stress tensor (or heat flux) is
proportional to the stress tensor (or heat flux) itself. Therefore, this kind of correction is scalar and it can be also seen
as an augmentation of the transport coefficients `, 𝑘 , allowing a straightforward physical interpretation and an easier
implementation and numerical solution, since transport coefficients have stabilizing properties for their own nature.
Nonetheless, the simplified model provides valuable insights concerning the behavior of the system and it leads to
significant performance improvement. The simplified model reads

𝜏𝑖 𝑗 = 𝜏NS𝑖 𝑗 (1 + 𝑓),
𝑞𝑖 = 𝑞NS𝑖 (1 + 𝑔).

In light of the research conducted by Sharma (2023) [15], it has been demonstrated that the impact of bulk viscosity
for Argon monoatomic gas is negligible. Consequently, throughout this work, the value for bulk viscosity has been
assumed to be zero. Therefore, the augmented terms can be expressed as

𝜏𝑖 𝑗 = `NS(1 + 𝑓 ) (2𝑒𝑖 𝑗 −
2
3

Tr(𝒆)𝛿𝑖 𝑗 ),

𝑞𝑖 = −𝑘NS (1 + 𝑔) 𝜕𝑇
𝜕𝑥𝑖

,

(28)

being ` and 𝑘 , respectively, the augmented viscosity and thermal conductivity

` = `NS (1 + 𝑓 ),
𝑘 = 𝑘NS (1 + 𝑔).

(29)

Since the corrections 𝑓 , 𝑔 are scalars, it is necessary to impose an additional isotropic constraint. In fact, a scalar
quantity must not depend on the observer orientation of the axis. This means that inputs of 𝑓 , 𝑔 must be purged by all
those parameters that have a dependence on the orientation of the axis. In particular, 𝑓 , 𝑔 can no longer depend on the
gradient of the thermodynamic state, but only on its magnitude. Additionally, the corrections can not depend on the 𝑒𝑖 𝑗
tensor as a whole, but only on its eigenvalues Eigs(𝒆), which are invariant to the reference system, resulting into the
following functional form

𝑓 = 𝑓 (𝑸, |∇𝑸 |,Eigs(𝒆); 𝜽),
𝑔 = 𝑔(𝑸, |∇𝑸 |,Eigs(𝒆); 𝜽),

(30)

with the entropy constraint enforced by

1. 𝑓 ≥ −1,

2. 𝑔 ≥ −1.

D. Neural Network architecture
The neural network closure is based on a DeepONet architecture [9] which has a structure specialized for

approximating non-linear operators, with further adaptation choices related to the specific application tackled in this
work. Figure 2 shows the schematic representation of the DL closure.
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Fig. 2 Neural network architecture.

The network is characterized by multiple branches: the upper one processes the input gradients, whereas the lower
one processes the thermodynamic state. The outputs of the branches are merged via a dot product, to provide the
corrections with a complete non-linear basis that is a function of both the thermodynamic state and the input gradients,
see Eq.(31). The dense layers 2 and 3 are split to separate the channels of information and make independent basis for 𝒇
and 𝒈.

Out𝑖 = 𝑠 𝑓
©«
𝐻/2∑︁
𝑝=1

𝜓𝑝𝑖
(Grads)𝜙𝑝𝑖

(TMD)ª®¬ , (31)

with 𝑠 𝑓 the function which enforces the entropy constraint, 𝐻 = 24 the dimension of the hidden layers, and Out𝑖 the 𝑖-th
correction for the viscous terms. Note that in this work 𝑂𝑢𝑡1 = 𝑓 , 𝑂𝑢𝑡2 = 𝑔. The inputs are:

Grads = {|∇𝜌 |, |∇𝑝 |, |∇𝑇 |,Eigs(𝒆)},
TMD = {𝜌, 𝑝, 𝑇}.

(32)

The neural network graph can be expressed as

𝑫1 = 𝜎(W1Grads),
𝑫2 = 𝜎(W2𝑫1),
𝑫3 = 𝜎(W3TMD),

[ 𝒑1, 𝒑2]𝑇 = split(𝑫2),
[𝒒1, 𝒒2]𝑇 = split(𝑫3),

𝑓 = Out1 = 0.9 s 𝑓 ( 𝒑1
𝑇
W4 𝒑2),

𝑔 = Out2 = 0.9 s 𝑓 (𝒒1
𝑇
W5𝒒2),

(33)

where 𝜎 = tanh() is the activation function of the dense layer and s 𝑓 is the exponential linear unit function (ELU)
enforcing the entropy constraint (IV.C), since Im(s 𝑓 ) ∈ (−1, +∞). The learnable parameters 𝜽 are the weights of the
dense layers

𝜽 = {(W1)𝑁Grads×𝐻 , (W2)𝐻×𝐻 , (W3)𝑁TMD×𝐻 , (W4)𝐻/2×𝐻/2, (W5)𝐻/2×𝐻/2}.

Biases are not present to guarantee the equilibrium indifference condition, expressed in Eq. (20).
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V. Application: 1D shock test case
The objective of this Section is to verify and assess the proposed methodology, augmenting the standard Navier

Stokes equations with the ML corrective model in the 1D test case of a rarefied Argon flow across a normal shock
in transitional regime. Highly resolved DSMC simulations have been used as target data for training the ML model.
Our approach leverages an online adjoint optimization procedure to train closures. It is important to remark that the
main advantage of the approach proposed in this work, compared to other alternative approaches [2], is its ability to
generalize. The model designed for the 1D shock can, in theory, extend its applicability to 2D or 3D scenarios featuring
normal shocks. This adaptability arises from the absence of case-specific parameters, and the model’s coherence with
fundamental physics. For instance, changing the dimensionality of the problem or altering the reference system would
not jeopardize the model’s validity (e.g., changing the direction of the x-axis would not cause all inputs to change their
sign, preserving the model’s effectiveness).

A. Training details
The results presented in this chapter were obtained using a modified version of the PyShock code, utilized in

Ref. [16], which implements the model developed in Sec. IV.D. The initial learning rate 𝛼LR = 10−6 is adjusted using the
adaptive learning rate scheduler, specified as in Algo. 1 (lines 8-10). This scheduler reduces 𝛼LR each time the relative
error diminishes below a predetermined value. The coefficients of the scheduler are 𝛽1 = 𝛽2 = 0.8. Non-augmented
Navier-Stokes solutions have been used to initialize the simulations. Navier-Stokes and adjoint solutions are solved
concurrently until a steady state is reached, leveraging a pseudo-time advancing forward scheme. Optimization steps are
executed only after the system attains a steady state, which is determined when residuals fall below a specific threshold.

To maximize the ability to learn the different behaviors of the non-equilibrium solution at different free stream Mach
numbers 𝑀∞ regimes, the model was trained by targeting simultaneously three free stream Mach number conditions
(𝑀train = 2, 5, 8) and tested within a range of Mach numbers spanning 𝑀∞ = 2 to 𝑀∞ = 10, with 𝑀∞ = 3, 4, 6, 7, 9, 10
considered out-of-sample. These tests were intended to evaluate the ability of the models to extrapolate accurately from
the training dataset.

B. DSMC target data and Navier-Stokes accuracy
An in-house software has been used to generate the DSMC training and testing dataset. The free stream conditions

at the inlet of the argon flow are assumed as follows
• 𝑇∞ = 300K,
• 𝑝∞ = 6.667Pa,

while the pre-shock Mach number 𝑀∞ spans from 𝑀∞ = 2 to 𝑀∞ = 10. For collision modeling, the Variable Hard
Sphere (VHS) model is employed to estimate the collision cross-section. In this context, the parameter 𝜔 was set to
0.75, where 𝜔 = 0.5 corresponds to the Hard Sphere model and 𝜔 = 1 corresponds to Maxwell molecules.

To be consistent with the DSMC setup, we used the Navier-Stokes equations with the VHS viscosity model (NS-VHS)
as the reference non-augmented system of governing equations. VHS viscosity and thermal conductivity models can
be derived in closed form in the context of the Chapman-Enskog theory and, hence, small deviance from equilibrium
conditions is required to assume their validity. VHS viscosity can be expressed as:

` = `ref

(
𝑇

𝑇ref

)𝜔
,

𝑘 = 𝑘ref

(
𝑇

𝑇ref

)𝜔
.

(34)

with `ref function of the mass-specific gas constant 𝑅, the molecular reference diameter 𝑑ref and the 𝜔 VHS parameter:

`ref =
15

√
2𝜋𝑅𝑇ref

2(5 − 2𝜔) (7 − 2𝜔)𝜋𝑑2
ref

(35)

To make the analysis consistent, the 𝜔 parameter and the free stream conditions in the non-augmented NS simulations
align with those used for the DSMC target data.
The discrepancies between non-augmented NS-VHS and DSMC shock profiles are quantified by means of the loss
function 𝐽 (𝑼) eq. (11) evaluated with respect to the DSMC solution.
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(a) (b)

Fig. 3 (a) Error of NS-VHS with respect to DSMC. (b) Local Knudsen number across shock at various Mach
numbers.

Figure 3a reveals that the VHS viscosity model is capable of well approximating the non-equilibrium solution only
in the neighborhood of 𝑀∞ = 3, while increasing or decreasing the Mach number leads to rapidly jeopardizing the
accuracy of the simulation. Therefore, we expect a ML-corrective model capable of improving the performance of the
NS-VHS equations at low and high Mach numbers while maintaining the accuracy at 𝑀∞ = 3. For a more detailed
analysis of NS-VHS performances, please refer to the Appendix where the complete results are presented.

C. Continuum breakdown analysis
The regions of the domain in which the continuum flow hypothesis fails have been identified through the use of a

continuum breakdown parameter. Although the literature provides multiple definitions of such indicators, according
to Lofthouse [13], the gradient-length (GL) local Knudsen number is the most suitable indicator for hypersonic
compressible flows

Kn𝑄 𝑓

GL =
ΛVHS
𝑄 𝑓

|∇𝑄 𝑓 |, (36)

where 𝑄 𝑓 is a flow variable set here as 𝑄 𝑓 = 𝑇 . Figure 3b reports the scalar field associated with Kn𝑇GL. The
KnGL field shows that is not possible to describe properly large areas of the flow using the continuum assumption.
Examining the shock profiles depicted in Fig. 4 and 5, we can establish a correlation between the areas of larger KnGL,
and the across-the-shock region, characterized by strong gradients. Macroscopic quantities experience important
variations across distances comparable to the local mean free path. Therefore, the number of collisions is small and the
velocity distribution function differs consistently from the Maxwellian, resulting in a bimodal-like distribution [5]. This
microscopic behavior causes the breaking of the hypotheses underlying the Chapman-Enskgog expansion across the
shock.

D. Results and discussion
The solutions obtained with the trained models are shown in Figs 4 and 5 for the whole testing dataset. Simulation

results (Trained) are set side by side with the unmodified Navier-Stokes VHS solution (NN VHS) and with the DSMC
target data (DSMC) available for the respective setups. For brevity, only pressure 4 and temperature 5 profiles are
displayed; however, similar trends were observed for the other primitive variables.

1. Pressure
The ML-corrected pressure profile, as illustrated in Fig. 4, demonstrates good agreement with the target non-

equilibrium data, improving the performances of the standard Navier-Stokes predictions for all the 𝑀∞ range.
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(a) 𝑀∞ = 2 (b) 𝑀∞ = 3

(c) 𝑀∞ = 5 (d) 𝑀∞ = 6

(e) 𝑀∞ = 8 (f) 𝑀∞ = 10

Fig. 4 Comparison of computed pressure profiles from the NN model, NS equations, and DSMC data.

2. Temperature
The temperature profiles, as reported in Fig 5, show good capabilities in replicating DSMC results. The NN-trained

model has an effective thermal diffusivity with magnitude in between the NS equations and DSMC predictions. The
discrepancies in the pre-shock region are consistent with the large gradient length based on the Knudsen number
variation across the shock. However, a slight overshoot is observed in the shock tail, for all the cases. Mott-Smith

14



(a) 𝑀∞ = 2 (b) 𝑀∞ = 3

(c) 𝑀∞ = 5 (d) 𝑀∞ = 6

(e) 𝑀∞ = 8 (f) 𝑀∞ = 10

Fig. 5 Comparison of computed temperature profiles from the NN model, NS equations, and DSMC data.

analysis [5, 17] highlighted that temperature overshoot is due to the presence of shock areas in which the thermal
conductivity coefficient 𝑘 , considered as the proportionality factor between the heat flux and the temperature gradient,
assumes negative values. The entropy condition we derived in Sec. section IV.A relies by construction on positive values
of 𝑘 , making it impossible for the model to reproduce this behavior.
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3. Accuracy
The overall accuracy improvement is quantified by means of the relative error parameter 𝜖rel = 𝐽/𝐽0, being 𝐽 and 𝐽0

the objective function evaluated respectively on the augmented NS and the unmodified NS-VHS solution.

Fig. 6 Relative error.

Figure fig. 6 reports the 𝜖rel parameter evaluated for the trained model on the testing data set. As a reference, the
non-augmented NS-VHS solution has 𝜖rel = 1 and, therefore, a 𝜖rel < 1 indicates an improvement to the non-augmented
predictions. These findings reveal that the proposed neural network-enhanced CFD approach outperforms the standard
one in terms of accuracy concerning the target data for all training Mach numbers on the whole testing data set. As
expected, the model exhibits an improvement with respect to DSMC target data at low and high Mach numbers, where
the NS-VHS error is greater, while maintaining the already good accuracy at 𝑀∞ = 3, and displaying at the same time
improved extrapolation capabilities to the out of samples testing cases. In particular, the trained model is able to reach a
drop in the loss function of around 90% for a wide range of the testing data set (𝑀∞ > 6). This suggests the model
effectively captures the underlying physical laws, hinting at its potential to accurately predict unseen data solutions.

4. Corrective DL model
Figures 7a and 7b depict the variation of the 𝑓 and 𝑔 corrections across the shock, providing a visual representation of

the magnitude of their intervention. DL corrections significantly alter the ` and 𝑘 profiles since non-equilibrium effects
manifest in large gradient regions. Viscosity and thermal conductivity are continuum counterparts of sub-continuum
processes, dependent on the microscopic velocity distribution 𝜙. Thus, wherever 𝜙 markedly deviates from the
quasi-equilibrium distribution, transport coefficients are no longer well-approximated by continuum-based models. It is
worth emphasizing that, at locations where the corrections 𝑓 and 𝑔 are negligible, the values of ` and 𝑘 revert to their
non-corrected counterparts ` = `NS, 𝑘 = 𝑘NS, coherently to conditions expressed in Eq. 20. Consequently, the functions
𝑓 and 𝑔 provide a local quantification of the deviations between the quasi-equilibrium models, and the true physical
behavior. The DL model gives an insight into the physics occurring in normal shocks, suggesting the behavior of ` and
𝑘 , which represent respectively the momentum diffusion rate and internal energy diffusion rate, in non-equilibrium flows.
Compared to continuum VHS predictions, the viscosity coefficient is overall decreased while thermal conductivity
reduces its magnitude at lower Mach numbers and increases at high Mach numbers, where non-equilibrium effects are
more influential and promote internal energy diffusion.

VI. Conclusions and future directions
In this work, we have extended the deep learning approach provided in Ref. [2] by designing a framework for

building flexible and generalized NN closures aimed at improving predictions from the Navier-Stokes equations for
rarefied flows in the translational regime. The main idea has been to devise a deep learning approach that allows the
model to be effectively trained on problems governed by simple but representative physics, while simultaneously seeking
general applicability. To accomplish this, the model must remain flexible and independent from the specific case setup,
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(a) (b)

Fig. 7 (a) Viscosity correction 𝑓 . (b) Thermal conductivity correction 𝑔.

such as geometry and free-stream conditions, enforcing the fundamental principles of physics over the NN corrections
to theoretically build more robust and general closures. Specifically, the prescriptions of physics are translated into
mathematical constraints that are imposed on the NN models. In this regard, a full mathematical proof that demonstrates
a set of conditions under which the augmentation model always satisfies the second Law of thermodynamics, paramount
to avoid non-physical and numerically unstable solutions, is also presented.

Feasibility and potential benefits of the proposed methodology are tested on the benchmark test case of the 1D
shock problem and findings demonstrate the potential of deep learning approaches in enhancing the precision of
Navier-Stokes predictions for rarefied gas flow simulations, providing accurate solutions at a comparable cost of solving
the computational-affordable Navier-Stokes equations.

However, some critical aspect exists, as can be seen from the discrepancies between the augmented solution and the
DSMC data in reproducing the temperature overshoot in the shock tail. The model is incapable of learning this behavior
because of restrictive hypotheses enforced to satisfy the Second Law of Thermodynamics. A new set of conditions
more flexible conditions is thus needed to improve the performance of the augmentation model. Additionally, further
studies are required to evaluate the performance of the model on unseen setups e.g., testing the model at different
Mach numbers, temperatures, or geometries, to ensure the accuracy of its predictions across a wide range of conditions.
Further studies will also focus on testing the model on 2D physics-representative cases (e.g., flat plate), to assess the
performance of the corrections on more complex scenarios.

Appendix

A. Proof for the entropy condition
Consider the augmentation terms 𝜑𝑖 𝑗 = (1 + 𝑓𝑖 𝑗 ) and 𝛾𝑖 = (1 + 𝑔𝑖) applying, respectively, on each component of the

stress tensor 𝝉NS and on the heat flux vector 𝒒NS. In order to provide mathematical conditions on 𝒇 and 𝒈 for which the
Second Law of Thermodynamics is always fulfilled, the Clausius-Duhem inequality for the entropy production term
P𝑆 ≥ 0 must be satisfied. The entropy production term can be expressed as

P𝑆 =
1
𝑇
(𝝉NS ⊙ 𝝋) : 𝒆 − 1

𝑇2 (𝒒NS ⊙ 𝜸) · ∇𝑇, (37)
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being ⊙ the Hadamart product (the element-wise or entrywise product) and : the tensor dot product defined as the index
contraction of two tensors 𝐴 : 𝐵 =

∑
𝑖, 𝑗 𝑎𝑖 𝑗𝑏𝑖 𝑗 . Recalling the constitutive relations for the stress tensor we obtain

P𝑆 =
1
𝑇
(𝝉NS ⊙ 𝝋) : 𝒆 − 1

𝑇2 (𝒒NS ⊙ 𝜸) · ∇𝑇,

=
1
𝑇
[(2`𝒆 + _Tr (𝒆) I) ⊙ 𝝋] : 𝒆 + 1

𝑇2 (𝑘∇𝑇 ⊙ 𝜸) · ∇𝑇,

=
1
𝑇

∑︁
𝑖, 𝑗

(
2`𝑒𝑖 𝑗 + _Tr (𝒆) 𝛿𝑖 𝑗

)
𝜑𝑖 𝑗𝑒𝑖 𝑗 +

1
𝑇2

∑︁
𝑖

(
𝜕𝑇

𝜕𝑥𝑖
𝛾𝑖

)
𝜕𝑇

𝜕𝑥𝑖
,

=
1
𝑇

∑︁
𝑖, 𝑗

(
2`𝑒𝑖 𝑗 + _Tr (𝒆) 𝛿𝑖 𝑗

)
𝜑𝑖 𝑗𝑒𝑖 𝑗 +

1
𝑇2

∑︁
𝑖, 𝑗

𝜕𝑇

𝜕𝑥 𝑗

(
𝛿𝑖 𝑗𝛾 𝑗

) 𝜕𝑇

𝜕𝑥𝑖
,

(38)

Ultimately, the Clausius-Duhem inequality of the augmented system requires that

P𝑆 =
1
𝑇

∑︁
𝑖, 𝑗

(
2`𝑒𝑖 𝑗 + _Tr (𝒆) 𝛿𝑖 𝑗

)
𝜑𝑖 𝑗𝑒𝑖 𝑗︸                                   ︷︷                                   ︸

(I)

+ 1
𝑇2

∑︁
𝑖, 𝑗

𝜕𝑇

𝜕𝑥 𝑗

(
𝛿𝑖 𝑗𝛾 𝑗

) 𝜕𝑇

𝜕𝑥𝑖︸                    ︷︷                    ︸
(II)

≥ 0, (39)

where we identified the two separate contributions related to the stresses (I) and to the heat flux (II).
• (I) The contribution of the stress term to the entropy production can be written as

2`
∑︁
𝑖, 𝑗

𝑒𝑖 𝑗𝜑𝑖 𝑗𝑒𝑖 𝑗︸         ︷︷         ︸
(I𝛼)

+_
∑︁
𝑖, 𝑗

Tr(𝒆)𝛿𝑖 𝑗𝜑𝑖 𝑗𝑒𝑖 𝑗︸                 ︷︷                 ︸
(I𝛽)

. (40)

Let 𝒗 = (𝑒11, 𝑒22, 𝑒33)𝑇 , 𝒘 = (𝑒12, 𝑒13, 𝑒23)𝑇 , and the concatenation 𝑽 = (𝒗, 𝒘) = (𝑒11, 𝑒22, 𝑒33, 𝑒12, 𝑒13, 𝑒23)𝑇 .
Let also define 𝑨1 = diag (𝜑11, 𝜑22, 𝜑33) and 𝑨2 = 2diag (𝜑12, 𝜑13, 𝜑23).
We can then write in a compact form

(I𝛼) = 𝒗𝑇 𝑨1𝒗 + 𝒘𝑇 𝑨2𝒘 = 𝑽𝑇

[
𝑨1 0
0 𝑨2

]
𝑽

= 𝑽𝑇 𝑨𝑽

(41)

and
(I𝛽) = Tr(𝒆)

∑︁
𝑖, 𝑗

𝛿𝑖 𝑗𝜑𝑖 𝑗𝑒𝑖 𝑗 =
∑︁
𝑘

𝑒𝑘𝑘 ·
∑︁
𝑗

𝑒 𝑗 𝑗𝜑 𝑗 𝑗 =
∑︁
𝑗

∑︁
𝑘

𝑒 𝑗 𝑗𝜑 𝑗 𝑗𝑒𝑘𝑘 =
∑︁
𝑗

∑︁
𝑘

𝑒 𝑗 𝑗𝐷 𝑗𝑘𝑒𝑘𝑘 , (42)

being 𝐷 𝑗𝑘 = 𝜑 𝑗 𝑗 . Let’s decompose 𝐷 𝑗𝑘 in a symmentric part 𝐷 (𝑠)
𝑗𝑘

= 1
2 (𝐷 𝑗𝑘 + 𝐷𝑘 𝑗 ) = 1

2 (𝜑 𝑗 𝑗 + 𝜑𝑘𝑘) and its
antisymmetric part 𝐷 (𝑎)

𝑗𝑘
= 1

2 (𝐷 𝑗𝑘 − 𝐷𝑘 𝑗 ), obtaining

(I𝛽) =
∑︁
𝑗

∑︁
𝑘

𝑒 𝑗 𝑗𝐷
(𝑠)
𝑗𝑘
𝑒𝑘𝑘 +

∑︁
𝑗

∑︁
𝑘

𝑒 𝑗 𝑗𝐷
(𝑎)
𝑗𝑘

𝑒𝑘𝑘 =
∑︁
𝑗

∑︁
𝑘

𝑒 𝑗 𝑗𝐷
(𝑠)
𝑗𝑘
𝑒𝑘𝑘 , (43)

because the anti-symmetric contribution is zero. Note that

𝑫 (𝑠) =


𝜑11

1
2 (𝜑11 + 𝜑22) 1

2 (𝜑11 + 𝜑33)
1
2 (𝜑11 + 𝜑22) 𝜑22

1
2 (𝜑22 + 𝜑33)

1
2 (𝜑11 + 𝜑33) 1

2 (𝜑22 + 𝜑33) 𝜑33

 . (44)

Eventually, we obtain

(I𝛽) = 𝑽𝑇

[
𝑫 (𝑠) 0

0 0

]
𝑽 = 𝑽𝑇𝑩𝑽, (45)
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Ultimately, we can re-write the (I) as

(I) = 𝑽𝑇 (2`𝑨 + _𝑩)𝑽 =

= 𝑽𝑇 (`(𝑩 + 2𝑨 − 𝑩) + _𝑩)𝑽 =

= (` + _)𝑽𝑇𝑩𝑽 + `𝑽𝑇 (2𝑨 − 𝑩)𝑽𝑇

(46)

Since (` + _) ≥ 0 and ` ≥ 0, the term (I) is larger, or at most equal, than zero ∀𝑽 if the bilinear forms 𝑽𝑇𝑩𝑽 and
𝑽𝑇 (2𝑨 − 𝑩)𝑽 are larger or equal than zero. In other words, 𝑩 and (2𝑨 − 𝑩) must be positive semi-definite.
Exploiting Sylvester’s criterion, we found that the matrix 𝑩 is positive semi-definite if and only if 𝜑𝑖𝑖 = 𝜑 ≥ 0, ∀𝑖,
whereas the matrix 2𝑨 − 𝑩 is positive semi-definite if and only if 𝜑𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 with 𝑖 ≠ 𝑗 .

• (II) manipulated to obtain

(II) = 𝑘
∑︁
𝑖, 𝑗

( 𝜕𝑇
𝜕𝑥𝑖

𝛾𝑖𝛿𝑖 𝑗
𝜕𝑇

𝜕𝑥 𝑗

) = 𝑘∇𝑇𝑇 (diag(𝛾1, 𝛾2, 𝛾3))∇𝑇, (47)

therefore, (II) ≥ 0 if and only if diag(𝛾1, 𝛾2) is positive semi-definite. According to Sylvester’s criterion, this
translates into the condition 𝛾𝑖 ≥ 0

In conclusion, fulfilling the following relations on the correction term entries

1. 𝜑𝑖𝑖 = 𝜑 ≥ 0, ∀𝑖,

2. 𝜑𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 with 𝑖 ≠ 𝑗 ,

3. 𝛾𝑖 ≥ 0,

is a sufficient condition for ensuring that Clausius-Duhem inequality is satisfied. With reference to 𝑓𝑖 𝑗 and 𝑔𝑖 , these
conditions translate into

1. 𝑓𝑖𝑖 = 𝑓 ≥ −1, ∀𝑖
2. 𝑓𝑖 𝑗 ≥ −1, ∀𝑖, 𝑗 with 𝑖 ≠ 𝑗

3. 𝑔𝑖 ≥ −1, ∀𝑖
It’s worth noting that, for the standard Navier-Stokes stress tensor and heat flux, we have 𝑓𝑖 𝑗 = 0 and 𝑔𝑖 = 0. As a result,
we retrieve as expected that the Second Law of Thermodynamics is fulfilled for the standard Navier-Stokes equations.

B. Comparison between Navier-Stokes and DSMC solutions
The Variable Hard Sphere (VHS) model exhibits different behaviors at varying Mach numbers. Compared to DSMC

data, the VHS model tends to be more diffusive at lower Mach numbers, while at higher Mach numbers it displays
reduced diffusivity. Notably, at Mach number 3 (M=3), the VHS model demonstrates a commendable capability to
replicate data obtained through DSMC methods. In contrast, the Sutherland model proves to be excessively steep for all
Mach numbers, indicating limitations in its predictive accuracy for this test case.
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Fig. 8 𝑥-Velocity Fig. 9 𝑦-Velocity

Fig. 10 Temperature Fig. 11 Pressure
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