
Robotics and Autonomous Systems 172 (2024) 104585

A
0
n

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

RobustStateNet: Robust ego vehicle state estimation for Autonomous Driving
Pragyan Dahal a,∗, Simone Mentasti b, Luca Paparusso a, Stefano Arrigoni a, Francesco Braghin a

a Department of Mechanical Engineering, Politecnico di Milano, Italy
b Department of Electronics, Information Engineering and Bioengineering, Politecnico di Milano, Italy

A R T I C L E I N F O

Keywords:
Ego motion prediction
Ego state estimation
Sensor fusion
Robust state estimation
Autonomous driving
Sensors failure

A B S T R A C T

Control of an ego vehicle for Autonomous Driving (AD) requires an accurate definition of its state. Implementa-
tion of various model-based Kalman Filtering (KF) techniques for state estimation is prevalent in the literature.
These algorithms use measurements from IMU and input signals from steering and wheel encoders for motion
prediction with physics-based models, and a Global Navigation Satellite System(GNSS) for global localization.
Such methods are widely investigated and majorly focus on increasing the accuracy of the estimation. Ego
motion prediction in these approaches does not model the sensor failure modes and assumes completely
known dynamics with motion and measurement model noises. In this work, we propose a novel Recurrent
Neural Network (RNN) based motion predictor that parallelly models the sensor measurement dynamics and
selectively fuses the features to increase the robustness of prediction, in particular in scenarios where we
witness sensor failures. This motion predictor is integrated into a KF-like framework, RobustStateNet that takes
a global position from the GNSS sensor and updates the predicted state. We demonstrate that the proposed
state estimation routine outperforms the Model-Based KF and KalmanNet architecture in terms of estimation
accuracy and robustness. The proposed algorithms are validated in the modified NuScenes CAN bus dataset,
designed to simulate various types of sensor failures.
1. Introduction

Ego Vehicle state estimation is the first step in an Autonomous
Driving software application. For the safe implementation of the tasks
further down the pipeline, such as motion planning and control, it is
crucial for the estimated ego vehicle state to be accurate. Ego motion
estimation and ego state estimation are two different tasks performed
using different sensors. Global Navigation Satellite System (GNSS),
Inertial Measurement Unit (IMU), Wheel Encoders, Lidar, Camera,
etc., are combined to build the Autonomous Driving sensor suite. The
majority of works in literature use exteroceptive sensors like Camera,
Lidar, or proprioceptive sensors like IMU for ego-motion estimation.
In combination with this, sensors like GNSS in standalone mode or
Lidar in Simultaneous Localization and Mapping (SLAM) [1] mode
are popular for state estimation or localization. Works with camera
relocalization [2] are also getting traction in this field. Ego vehicle state
estimators based on Kalman Filters utilizing the vehicle dynamics for
motion prediction and GNSS for state update are significantly common
in literature [3]. These traditionally developed filtering estimators are
prone to inaccuracies due to sensor failures and GNSS measurement
unavailability in urban scenarios.

Estimation algorithms implement sensor fusion with a different
permutation of the aforementioned sensors. The motivation for sensor

∗ Corresponding author.
E-mail address: pragyan.dahal@polimi.it (P. Dahal).

fusion in such algorithms is to increase state observability by exploiting
different sensors’ complementary nature and introducing redundancy
into the estimation algorithms. Deep learning-based motion estima-
tors, Visual Odometry (VO) solvers, Visual Inertial Odometry solvers
(VIO) [4], etc., perform end-to-end motion estimation by directly fusing
the sensor features and compute estimates through complex learned
mapping functions. These fusion strategies, developed without explic-
itly modeling the error sources in sensors, can be prone to robustness
issues [5]. Some recent works, [5,6], study the involvement of IMU
and Camera failures and propose a fusion strategy to weight features
to robustly estimate ego vehicle motion.

While the majority of works in the literature focus on increasing
the accuracy of the estimation routine, be it motion or state estimation,
very little attention is given to increasing the robustness to the sensor
failure. In this work, we focus on the robustness and accuracy of
estimation as a single problem. We study various failure scenarios of
proprioceptive sensors like IMU, wheel encoders, and steering encoders.
We propose a novel deep learning-based state estimator that utilizes
a Recurrent Neural Network (RNN) for motion prediction and state
update and is structured in a similar fashion to the Kalman Filter.
The overall architecture of the proposed model is illustrated in Fig. 1.
A comparative study is performed between the proposed algorithm,
vailable online 7 December 2023
921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.robot.2023.104585
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:pragyan.dahal@polimi.it
https://doi.org/10.1016/j.robot.2023.104585
https://doi.org/10.1016/j.robot.2023.104585
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104585&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Robotics and Autonomous Systems 172 (2024) 104585P. Dahal et al.
Fig. 1. Overall architecture of the proposed ego vehicle state estimator.
the baseline model-based Kalman Filter, and the deep learning-based
filtering framework KalmanNet [7]. The algorithm is validated on the
modified NuScenes Dataset. Sensor failures are introduced into the pre-
existing data and simulated noise into the measurements to validate the
algorithm. The contribution of the paper is three-fold:

• We propose a novel motion predictor for the ego vehicle state
estimation utilizing Recurrent Neural Networks. We demonstrate
that the predictor is robust to sensor measurement and input
failures and provides reliable state prediction.

• The proposed motion predictor is integrated into a novel deep
learning-based update framework, which consistently provides
ego vehicle state estimation, even when multiple sensors fail.

• We create a new challenging dataset by incorporating sensor
failure in the existing NuScene dataset. The code to generate the
failures will be released upon paper acceptance.

The remainder of the article is organized in the following fashion.
Section 2 presents a survey of works in the literature related to ego-
motion and state estimation. In Section 3, we explain the problem
statement the paper is trying to solve. Section 4.1 details the proposed
motion prediction architecture while 4.3 explains the architecture of
the proposed RobustStateNet. Section 4.5 provides the details regarding
the training of the proposed models. In Section 5, we discuss the experi-
mental setup and validate the proposed models. Section 7 concludes the
paper.

2. Related works

2.1. Ego motion estimation

Ego motion estimation can be categorized into either odometry
computation using the fusion of proprioceptive sensors like IMU and
exteroceptive sensors like Camera and Lidar or into state computation
using vehicle motion models. Visual Odometry (VO) [8,9], Visual Iner-
tial Odometry(VIO) [4–6,10], and Visual, Inertial, and Lidar Odometry
(VILO) generally compute the relative pose between two consecutive
time frames and compute the trajectory of the ego-motion by accu-
mulating them. However, ego-motion computation using predefined
models uses the knowledge of vehicle kinematics or vehicle dynam-
ics. The motion prediction in this work is focused on computing the
predicted state at each time instance, which comprises positional val-
ues in two dimensions (x,y, and yaw angle) along with their rate
of change, hence resembling state computation procedures with the
model-based methods. In many of the physics-based models, for ex-
ample, single-track kinematic models, double-track models, and even
models based on vehicle dynamics can fail in cases of sensor mea-
surement degradation or failure. Strictly model-based implementations
use signal-filtering techniques to filter out possible noise and outliers.
2

Authors in [11] use a kinematic bicycle vehicle model to perform a
single-step prediction, and this motion model is used in a KF framework
to provide vehicle state estimates. However, no explicit modeling of
the possible sensor failures or measurement degradation is done in the
algorithm development. Implementation of these physics-based models
relies heavily on the accuracy of the vehicle parameters which can be
cumbersome to compute.

With the recent advancements in machine learning, learning-based
techniques are widely adopted to study various aspects of vehicle
dynamics. Authors in [12] use a simple Fully Connected Network (FCN)
to estimate the vehicle side slip angle. A Long Short-Term Memory
(LSTM) is used to estimate the vehicle lateral velocity in [13]. The
authors use the sensor data collected in a simulation environment as
input to this RNN model which regresses a vehicle lateral velocity
as output. [14] use three different Nonlinear AutoRegressive Neural
Networks with exogenous input (NARX) to estimate the vehicle side slip
angle for three different road conditions. The authors then use a pattern
recognition classifier to select the output corresponding to correct road
conditions. While these works are focused on estimating one single
parameter or an aspect of vehicle dynamics, learning a complete vehicle
motion model through data is also taking traction. Authors in [15]
integrate a vehicle dynamic model based on the FCNs into a feed-
forward feedback control. They demonstrate that with such integration
of learned dynamic models into the control setup, the controller is
able to provide comparable results to the experienced human driver
at the limits of the vehicle’s capabilities. In [16], authors propose a
Model Predictive Controller (MPC) that replaces the traditional vehicle
motion models with a learned NN-based dynamic model. The input to
the model is the history of past system states and vehicle inputs. In
[17], authors propose a learning-based vehicle dynamics model based
on Gated Recurrent Unit (GRU). The network predicts the state at the
next time instance, as it takes as input the state of past instances and
other system values like wheel torque and brake pressure.

2.2. Ego vehicle state estimation

Global localization of the ego vehicle can be done in multiple
ways. Using exteroceptive sensors, Camera-based relocalization [2],
and Lidar-based SLAM algorithms [1,18] are prevalent in the literature.
A more simplistic approach would be to utilize the global positioning
provided by a GNSS sensor or multiple GNSS sensors attached to
the vehicle. In this setting, a variant of KF, Extended KF (EKF), or
Unscented KF (UKF) is employed to provide consistent state estimates.
A comparative study of these algorithms is presented in [3]. While these
algorithms are efficient to implement, they require explicit modeling
of motion model noise and measurement noise to be used in the
development of the Kalman Filter. They are also prone to errors in cases
of sensor failure and measurement degradation.

Robotics and Autonomous Systems 172 (2024) 104585P. Dahal et al.
Fig. 2. Ego vehicle motion prediction architecture.
However, some recent works have started to address the issue of
partial domain knowledge, i.e. develop state estimation algorithms
without the knowledge of system noise parameters. Authors in [7]
propose KalmanNet, two RNN-based state estimation models with an
underlying assumption that the system motion model and measure-
ment models are known. Even though the vehicle dynamics models
are widely investigated, they are prone to failures in sensor failure
scenarios. These assumptions could be further investigated, which is
done in our proposed algorithm. In [19], the motion model and the
noise parameters are learned from the data while the update step takes
the exact form of the Model-Based KF. LSTMs and Transformers are
used to estimate the parameters in [20], where authors demonstrate
the superior performance of these models compared to the Expectation
Maximization Kalman Filter (EM-KF).

The mentioned works in the literature, for both motion and state
estimation, develop learning-based models completely focusing on in-
creasing the accuracy of estimation. They are trained to utilize fully
functional sensor measurements and are not equipped to deal with
sensor failure or measurement degradation scenarios. Furthermore, the
sensor measurements are concatenated and directly fed as input to the
models, hence not utilizing the possible different dynamics of these
sensor measurements and increasing the ability to have redundancy.
Hence, in this work, we explore the possibility of modeling sensor
dynamics in parallel and choosing the relevant features in a selec-
tive manner. We train our model with a dataset that includes sensor
degradation and failure scenarios making it robust to such failures.

3. Problem statement

For motion prediction and control of the ego vehicle, its state at any
given time must be well defined. In this work, we model the ego vehicle
motion and state in two dimensions, (x,y). The state at time instance 𝑘
is represented as :

𝑥𝑘|𝑘 =
[

𝑥𝐺 , 𝑦𝐺 , 𝜓, 𝑣,𝑤
]

𝑘 (1)

where, 𝑥𝐺 and 𝑦𝐺 are longitudinal and lateral positions in Global
Reference Frame (G), 𝜓 is yaw angle, 𝑣 is longitudinal velocity and
𝑤 is yaw rate. The reference point for the ego vehicle state estimation
is taken at the center point of the vehicle’s rear axle.

At the given time instance 𝑘, measurements from IMU, wheel en-
coders, and steering encoders are received. We assume a proper syn-
chronization between sensors in the development of this algorithm.
Longitudinal acceleration, 𝑎𝑥, lateral acceleration 𝑎𝑦, and yaw rate 𝑤𝑧
are obtained from IMU. Steering angle 𝛿 is obtained from the steering
encoder and wheel speeds from the four wheel encoders. The GNSS
sensor provides global positioning along with the velocities in the
Global Reference Frame. For the position of the different sensors and
the reference frames, please refer to the NuScenes dataset [21]. Given
the measurement from the IMU, wheel encoders, steering encoders and
GNSS at time instance 𝑘, the task of the algorithm is to estimate ego
vehicle state 𝑥 .
3

𝑘|𝑘
4. RobustStateNet

RobustStateNet’s architecture is designed to resemble that of the
model-based Kalman Filter, hence comprising of two major compo-
nents, motion prediction and state update. We implement RNN based
motion prediction and update steps which are explained subsequently
in Sections 4.1 and 4.3.

4.1. Ego vehicle motion prediction

In a traditional KF setting for ego vehicle state estimation, vehicle
kinematics or dynamics are generally used to develop the motion
model. They also require information regarding various model param-
eters, which at times can be difficult to attain. These motion models,
even though highly accurate, are not robust to sensor failure and
are very prone to wrong estimations. They fail in cases of missing
measurements, sensor misalignment, or disconnections. With this in
mind, we propose a motion predictor that can provide consistent and
accurate state prediction even in cases of sensor failures or misreadings.
Fig. 2 illustrates the architecture of this prediction model. We employ
three parallel stateful LSTMs for the input from IMU, steering encoder,
and wheels encoders as demonstrated in the figure.

The measurements obtained from the sensors are vertically concate-
nated with the velocity and yaw estimate of the previous time step, 𝑘−1.
The inputs to these LSTM are represented in Eq. (2).

𝑥𝑘𝐼 =
[

𝑣, 𝜓, 𝑎𝑥, 𝑎𝑦, 𝑤𝑧
]

𝑘

𝑥𝑘𝑆 =
[

𝑣, 𝜓, 𝛿
]

𝑘

𝑥𝑘𝑊 =
[

𝑣, 𝜓, 𝑣𝑓𝑙 , 𝑣𝑓𝑟, 𝑣𝑟𝑙 , 𝑣𝑟𝑟
]

𝑘

(2)

where, 𝑥𝑘𝐼 , 𝑥
𝑘
𝑆 and 𝑥𝐾𝑊 are input to the IMU LSTM 𝐼 , Steering LSTM

𝑆 and Wheel LSTM 𝑊 respectively. These LSTMs model the tem-
poral dependencies of the features or the sensor measurements through
the progressive update of the hidden cell units, ℎ𝑘−1𝑆𝑒𝑛𝑠𝑜𝑟 as well.

𝑦𝑘𝐼 , ℎ
𝑘
𝐼 = 𝐼 (𝑥𝑘𝐼 , ℎ

𝑘−1
𝐼)

𝑦𝑘𝑆 , ℎ
𝑘
𝑆 = 𝑆 (𝑥𝑘𝑆 , ℎ

𝑘−1
𝑆)

𝑦𝑘𝑊 , ℎ
𝑘
𝑊 = 𝑊 (𝑥𝑘𝑊 , ℎ

𝑘−1
𝑊)

(3)

ℎ𝑘−1𝐼 , ℎ𝑘−1𝑆 and ℎ𝑘−1𝑊 are the hidden cell units of last time instance for
the IMU, Steering, and Wheel Encoder LSTMs respectively, while 𝑦𝑘𝐼
and ℎ𝑘𝐼 are the output feature and updated hidden unit of the IMU
LSTM.(𝑆 and 𝑊 subscript for the variables related to Steering and
Wheel Encoder respectively.) The outputs of these LSTMs are vertically
concatenated and fed to a feature selection layer, 𝑚 to compute a
mask for the selective fusion of the computed features. We investigate
two different kinds of feature selection mechanisms, proposed by [2,5],
for our implementation.

𝑚𝑘 = 𝑚([𝑦𝑘𝐼 , 𝑦
𝑘
𝑆 , 𝑦

𝑘
𝑊]) (4)

The concatenated features, [𝑦𝑘𝐼 , 𝑦
𝑘
𝑆 , 𝑦

𝑘
𝑊] are represented by a gray

box before 𝑚 in Fig. 2. They are element-wise multiplied with the
computed mask, 𝑚 , and passed through a regressor, based on
𝑘 𝑝

Robotics and Autonomous Systems 172 (2024) 104585P. Dahal et al.

l
b
f
f
m

𝑑

p
t
t

𝑑

W
H
𝑥

𝑥

4

s
t
t
w
y
r

y
e

𝑥

𝑦

𝑓

T
R
w
e

4

K
m
w
t
s
t
o
c

t

t
b
y
i

a
s
a
t
t
t
m
B
v
a

𝑧

d
U
f

l
w
t
e
i

𝑚

𝑓

f
ℎ
t

𝐾

w
n
S
t
t
f

𝑥

T
S

4

F
n

multilayer perceptions (MLPs), to compute the predicted motion of
the ego vehicle. The motion predictor that computes the mask with
Soft Masking is labeled 𝐿𝑆𝑇𝑀0 while the one with Hard Mask is
abeled 𝐿𝑆𝑇𝑀1. Soft Mask computes a deterministic continuous value
ased on the Sigmoid layer while Hard Mask turns on and off different
eatures coming from different sensors. This is done in a stochastic
ashion. Readers are referred to [5] for a clear explanation of these
asking techniques.

𝑥𝑘 = 𝑝([[𝑦𝑘𝐼 , 𝑦
𝑘
𝑆 , 𝑦

𝑘
𝑊] ∗ 𝑚𝑘]) (5)

The output of the prediction model, 𝑑𝑥𝑘 is represented as :

𝑑𝑥𝑘 =
[

𝑑𝑥𝐸𝑝 , 𝑑𝑦
𝐸
𝑝 , 𝑑𝜙𝑝, 𝑣𝑝, 𝑤𝑝

]

𝑘
(6)

The model predicts the change of the longitudinal 𝑑𝑥𝐸𝑝 and lateral
osition 𝑑𝑦𝐸𝑝 , of the ego vehicle in the Vehicle Reference Frame (E) and
he change in the yaw angle 𝑑𝜓𝑝. The motion is later transformed into
he Global Reference Frame(G) to compute the predicted state.

𝑥𝐺𝑝 = 𝑑𝑥𝐸𝑝 ∗ cos𝜓𝑝 − 𝑑𝑦𝐸𝑝 ∗ sin𝜓𝑝
𝑑𝑦𝐺𝑝 = 𝑑𝑥𝐸𝑝 ∗ sin𝜓𝑝 + 𝑑𝑦𝐸𝑝 ∗ cos𝜓𝑝

(7)

hile the vehicle velocity 𝑣 and yaw rate 𝑤 are computed as a whole.
ence, from the model output, the predicted state of the ego vehicle,
𝑘|𝑘−1 can be computed as:

𝑘|𝑘−1[1 ∶ 3] = 𝑥𝑘−1|𝑘−1[1 ∶ 3] +
[

𝑑𝑥𝐺𝑝 , 𝑑𝑦
𝐺
𝑝 , 𝑑𝜓𝑝

]

𝑘

𝑥𝑘|𝑘−1[4 ∶ 5] =
[

𝑣𝑝, 𝑤𝑝
]

𝑘

(8)

.2. Baseline for motion prediction

We develop a Kalman Filter-based baseline for the comparative
tudy. The model is based on the kinematic vehicle model and an Ex-
ended Kalman Filter (EKF) estimator. We use the same state represen-
ation as the RobustStateNet prediction model, 𝑥𝑘|𝑘 =

[

𝑥𝐺 , 𝑦𝐺 , 𝜓, 𝑣,𝑤
]

𝑘,
hich contains the vehicle position 𝑥𝐺 , 𝑦𝐺, yaw 𝜓 , velocity 𝑣 and the
aw rate 𝑤 values in the G frame. For developing the Kalman Filtering
ecursion, longitudinal acceleration, 𝑎𝑥, is used as input to the motion

model, while the averaged value of the wheel encoder speeds, 𝑣𝑤 and
aw rate from the IMU, 𝑤𝑧 are used as a measurement. The system of
quations for the baseline are Eqs. (9) and (10).

𝑘 = 𝑥𝑘−1 + 𝑓𝑘−1(𝑥𝑘−1, 𝑢𝑘, 𝑤𝑘)𝛿𝑡 (9)

𝑘 = 𝐻𝑥𝑘 + 𝜈𝑘 (10)

The motion model is

𝑘−1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇�𝐺 = 𝑣.𝑐𝑜𝑠𝜓
�̇�𝐺 = 𝑣.𝑠𝑖𝑛𝜓
�̇� = 𝜔𝑧
�̇� = 𝑎𝑥

(11)

he input and the measurements are filtered using the Infinite Impulse
esponse (IIR) filter to remove the noises and failure values introduced
hile simulating the sensor measurement degradation. This is done to
nsure a fair comparison with the LSTM-based predictor.

.3. Ego vehicle state estimation: RobustStateNet

The RobustStateNet is based on the architecture of the standard
alman Filter and utilizes data-based model development for motion
odel and Kalman Gain computation. The algorithm is developed
ith an assumption that the motion model 𝑓 (𝑥) is not known while

he measurement model ℎ(𝑥) is known. We assume this to be the
tandard scenario in the Ego Vehicle State estimation when considering
he proprioceptive sensors’ failure or measurement degradation. The
verall architecture of the RobustStateNet is illustrated in Fig. 3. It
4

an be seen in the figure that the RobustStateNet consists of two steps
o compute the state estimation at a given time instance 𝑘, namely,
prediction and update.

Prediction The Prediction step of the RobustStateNet assumes that
he dynamics of the vehicle motion is not known and uses the RNN-
ased prediction model described in Section 4.1. The velocity and
aw angle component of the estimated state of the previous time
nstance, 𝑘−1 are concatenated with the measurements from the IMU,

steering, and wheel encoders and provided as input to the prediction
model. Contrary to the model-based Kalman Filters, RobustStateNet
does not compute the second-order statistical moment, i.e. the Covari-
ance matrix. Hence, the assumptions related to noise distribution are
not necessary for the development of the filtering recursion.

Update For the update of the predicted state, global positional
nd velocity information is assumed to be available from the GNSS
ensor. Yaw angle and yaw rate from the IMU sensor are also used
s measurement sources. The GNSS measurements are generated from
he ground truth position values provided in the NuScenes dataset in
he absence of the true GNSS data. We simulate the GNSS noise using
he Circular Error Probable of 2 m, which indicates that 50% of the
easurements are not further than 2 m from the correct ego position.
y adding such noise, we simulate the use of cheap GNSS sensors with
ery low accuracy. The measurements from the GNSS and IMU sensors
re used to create the measurement input, 𝑧𝑘.

𝑘 =
[

𝑥𝐺 , 𝑦𝐺 , 𝜓, 𝑣,𝑤
]

𝑘 (12)

The architecture of the update module is illustrated by Fig. 3. Three
ifferent kinds of features are taken as input to the Gated Recurrent
nit(GRU) whose output is the Kalman gain for the state update. The

eatures are:

• State Prediction Difference, 𝛿𝑥 = 𝑥𝑘|𝑘−1 − 𝑥𝑘−1|𝑘−1
• Measurement Innovation, 𝛿𝑧𝑝 = 𝑧𝑘 −𝐻𝑥𝑘|𝑘−1
• Measurement Difference, 𝛿𝑧 = 𝑧𝑘 − 𝑧𝑘−1

These features are weighted using a mask computed from a Sigmoid
ayer with an MLP, 𝑚 as shown in Eq. (13). They provide appropriate
eighting and increase the robustness to the failures introduced into

he motion model and noise in the measurement model. The mask is
lementwise multiplied to the vertically concatenated features and fed
nto the GRU.

𝑘 = 𝑚([𝛿𝑥, 𝛿𝑧𝑝, 𝛿𝑧]) (13)

𝑘 = 𝑚𝑘 ∗ [𝛿𝑥, 𝛿𝑧𝑝, 𝛿𝑧] (14)

The Kalman Gain is computed as a function of these weighted
eatures, 𝑓𝑘, and the hidden state of the GRU of the last time instance,
𝑘−1. The output of the GRU is then passed through an MLP to compute
he Kalman Gain.

= 𝑔(𝐺𝑅𝑈 (𝑓𝑘, ℎ𝑘−1)) (15)

here, 𝑔 is a MLP. The update step does not explicitly model the
oise covariance regarding the vehicle motion and the measurements.
imilarly to [7], we assume that the hidden state of the GRU keeps
rack of the second-order statistical moment. Computed KG is then
ransformed into a matrix, 𝐾, and is used to update the predicted state
rom the LSTM-based motion model.

𝑘|𝑘 = 𝑥𝑘|𝑘−1 +𝐾(𝑧𝑘 −𝐻𝑥𝑘|𝑘−1) (16)

he training and inference of the RobustStateNet will be discussed in
ection 4.5.

.4. Baseline for the state estimation

We compare our proposed RobustStateNet against two baselines.
irst, we develop a Model-Based (MB) EKF, with known measurement
oise parameters, i.e. the ground truth noise parameters are used to

Robotics and Autonomous Systems 172 (2024) 104585P. Dahal et al.
Fig. 3. Overall architecture of the proposed RobustStateNet estimator.
develop the filtering recursion. The motion model of the EKF is based
on the kinematic vehicle model, Eq. (11) while the measurement model
is a linear transformation from state space to measurement space.
Second, we train the first version of KalmanNet, [7] with our own
dataset. The KalmanNet assumes a known vehicle motion model and
measurement model. We use the kinematic model as the motion model
in the framework.

4.5. Training models

4.5.1. Training LSTM based motion predictor
LSTM motion predictor is trained on the modified NuScenes dataset

in a supervised manner. The data collected on the vehicle CAN bus
from the IMU sensor, steering encoder and wheel encoders are used to
create the dataset. Various sensor failure modes are added to the raw
sensor data acquired from the CAN bus to simulate sensor failure. The
data degradation for different sensors is similar to the cases introduced
by [5]. For IMU data degradation, we introduce three different failures
in the raw data:

• All the sensor readings are zeroed
• Addition of random noise to the readings to simulate the sensor

degradation due to moisture and wear
• Sensor misalignment due to loose setup. This is done by intro-

ducing gradually increasing rotation between the sensor reference
frame and the vehicle reference frame.

We employ the first two failure modes for the steering and wheel
encoder failures. NuScenes provides 1000 scenes, of which, 900 are
used for model training while the remaining 100 are for validation
and testing. The dataset is divided into 𝑁 number of samples, each
consisting of mini trajectories of length 𝐻 corresponding to the vehicle
motion. Training dataset can be represented by 𝑆 = {(𝑌𝑖, 𝑋𝑖)}𝑁1 , where
each sample is represented as:

𝑌𝑖 =
[

𝑦𝑖1, 𝑦
𝑖
2.....𝑦

𝑖
𝐻
]

𝑋𝑖 =
[

𝑥𝑖1, 𝑥
𝑖
2.....𝑥

𝑖
𝐻
] (17)

𝑥𝑖𝑡 comprises inputs for IMU LSTM, Steering LSTM, and Wheel encoder
LSTM for sample 𝑖 and time instance 𝑡. As shown by Eq. (2), each
input values require longitudinal velocity, 𝑣, and yaw angle, 𝜓 . In this
implementation, we provide ground truth values for the velocity and
yaw angle at each time instance of the sample. The output for time
instance 𝑡 in the trajectory of sample 𝑖, 𝑦𝑖𝑡 is given by Eq. (6). Each
LSTM consists of 128 hidden units, while the MLP layer is made of two
linear layers, (128–64, 64–5) connected through a ReLU non-linearity.

Loss Function: A weighted mean squared error between the target
values �̂�𝑡 and the predicted value 𝑦𝑡 is computed to optimize the model
parameters 𝜃.

(𝜃) = 𝜆1‖�̂� − 𝑝‖2 + 𝜆2‖�̂� − 𝜓‖2 (18)
5

+𝜆3‖�̂� − 𝑣‖2 + 𝜆4‖�̂� −𝑤‖2
where, 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are scaling values for the different prediction
components regarding the position 𝑝, yaw 𝜓 , velocity 𝑣, and yaw rate
𝑤. In our experiments, we assume values of 𝜆1, 𝜆2, 𝜆3, and 𝜆4 to be
1, 10000, 1 and 100 respectively. The choice of these scaling param-
eters is based on the dimensionality of the various state components.
Notably, we assign a higher value to the yaw scale factor, 𝜆2, due to
its lower value range compared to the other components. In such a
way, the values are all scaled to similar ranges, and the network learns
different tasks simultaneously. The motion predictor is trained using
Back Propagation Through Time (BPTT). Each scene from NuScenes is
divided into multiple samples consisting of mini-trajectories of fixed
length, 𝐻 = 30. Then, they are shuffled to create the training dataset.
Adam, with a constant learning rate of 1𝑒−4 is used to optimize the
model parameters. The model is trained for 40 epochs.

4.5.2. Training full RobustStateNet
RobustStateNet is also trained on the modified CAN bus data of the

NuScenes Dataset. As illustrated in Fig. 3, the input to the model at
any given time instance is the measurements from the IMU, steering
encoder, wheel encoders, and the noisy GNSS sensor. For the motion
prediction component of the model, we start the training with a pre-
trained model. Within RobustStateNet, the motion prediction and state
update are jointly trained, hence the model update section is able
to consider the errors in the motion prediction while increasing its
accuracy. The 1000 scenes from NuScenes are divided into 900 training
sets and 100 validation and testing sets. From the training scenes, we
create 𝑁 samples, where each sample consists of a mini-trajectory of
the vehicle motion. Similarly to the prediction training, a sample can
be represented by Eq. (17). 𝑥𝑖1 in this case, in addition to the IMU,
steering, and wheel encoder values, comprises the noisy GNSS data of
time instance 𝑘 and 𝑘 − 1. 𝑦𝑖1 is the ground truth state position of the
ego vehicle at the first instance of the 𝑖th trajectory.

Loss Function A mean square error between the updated state 𝑦𝑢,
and predicted state 𝑦𝑝 and the target state value �̂�, given by Eq. (19) is
used to optimize the model parameters 𝜃.

(𝜃) = 𝜆1‖�̂� − 𝑦𝑢‖2 + 𝜆2‖�̂� − 𝑦𝑝‖2 (19)

where, 𝜆1, and 𝜆2 are scaling factors for the prediction and update loss.
Since the prediction model is based on a pre-trained model, we attribute
greater significance to the update model. To reflect this emphasis,
we assign the values of 0.8 to 𝜆1 and 0.2 to 𝜆2. RobustStateNet is
also developed using the Pytorch deep learning framework. Adam
optimizer, [22] with a learning rate of 1e−5 is used to train the model.

5. Experiments and results

We perform tests in the NuScenes CAN bus data. Additional noises
and sensor degradation are added to the existing sensor measurements

Robotics and Autonomous Systems 172 (2024) 104585P. Dahal et al.
Fig. 4. Comparison of the output of the LSTM-based predictors with the kinematic model for Scene 922 of the Nuscenes Dataset.
to simulate sensor failures for validating the proposed models. Both the
LSTM-based motion predictor and the RobustStateNet are developed
using the Pytorch [23] deep learning framework. Adam is used to
optimize the model parameters. The models are trained in a consumer
laptop with Nvidia GeForce RTX 3060 GPU. The models are trained on
the first 900 scenes of the NuScenes dataset while the scenes from 900
to 1000 are used to validate and test the models.

To analyze the performance of the proposed algorithms, we use the
Mean Squared Error (MSE) metric between the predicted or estimated
and the Ground Truth States similar to [7]. The metric can be defined
in decibel as :

𝑀𝑆𝐸 = 10𝑙𝑜𝑔10(
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2) (20)

where, 𝑁 represents the trajectory length and 𝑦𝑖 is the predicted or
estimated state at instance 𝑖 of the trajectory and �̂�𝑖 is the ground truth
state at the instance.

5.1. Motion prediction

Since all the sensor measurements are available at 50 Hz, the motion
prediction algorithm also runs at 50 Hz. The motion prediction is
conducted in a recursive manner for both the LSTM-based predictor and
the baseline. The ground truth global positioning at the first instance
is used to initialize the motion predictor which computes the ego
trajectory recursively afterward. The EKF constructed as a baseline
is modeled with the actual noise values to obtain the best possible
outcome. The qualitative results of the motion prediction for the scene
922 are reported in Fig. 4. The experimental scene consists of 900
iterations, i.e. temporal length amounting to the 18-second period. We
can observe that the LSTM-based predictor is able to provide accurate
estimates in terms of the vehicle state prediction, the position trajec-
tory, velocity, yaw angles, and yaw rates. The input to the LSTM-based
predictor is extremely noisy and consists of multiple failure scenarios
generated randomly. However, input to the baseline predictor based on
the kinematic model is filtered using an IIR filter to reduce the effects
of the introduced noise and failures. This qualitative observation also
demonstrates that the LSTM-based predictor outperforms the kinematic
model in accuracy and robustness.

Fig. 5 illustrates the Mean Square Errors (MSE) in dB computed
using Eq. (20) for the two different LSTM-based predictors and the
kinematic model for different scenes in the NuScenes dataset. Table 1
6

Table 1
Averaged MSE in dB for 100 MC simulation runs for the data of scene number 922 of
the NuScene Dataset (Lower values indicate better performances.).

Mode LSTM0 LSTM1 Kinematic

Mean MSE (dB) 11.27 −5.30 11.61
Std Deviation (dB) 0.43 1.35 0.88

reports the MSE result for the scene 922 computed for 100 Monte
Carlo runs for the LSTM0, LSTM1, and the kinematic model. It can
be observed that the accuracy of the prediction from LSTM models is
higher than the kinematic model. LSTM1 model, with the stochastic
hard fusion masking, is demonstrated to be most robust to sensor
failures and provides the best result in terms of state prediction.

5.2. RobustStateNet

In real driving scenarios, assumed cheap GNSSs do not provide the
measurements at 50 Hz, hence to simulate a realistic setting, we adopt
a multi-prediction, single-update framework. In this training approach,
the GNSS data is made available at a frequency of 10 Hz. The motion
prediction algorithm performs prediction at 50 Hz while the state
update happens only at 10 Hz when the GNSS data is made available.
Hence, between the two points of the available GNSS data, only motion
prediction is performed and once GNSS data becomes available the
predicted states are updated. Hence, the RobustStateNet is designed
to operate at 50 Hz. Two variants of RobustStateNet, named 𝑅𝑆𝑁0
and 𝑅𝑆𝑁1 are trained with the different motion predictions 𝐿𝑆𝑇𝑀0
and 𝐿𝑆𝑇𝑀1 respectively. Both the variants, including the baseline of
KalmanNet, are trained for 5 epochs.

Fig. 6 illustrates the RobustStateNet version 0, i.e. RSN0 state
estimates for the scene number 918 of the NuScene dataset. We can
observe that the input GNSS measurements are extremely noisy, in spite
of which, the algorithm is able to provide reasonably accurate state
estimation. It also needs to be considered that the input to the motion
prediction model, from IMU, steering encoders, and wheel encoders
are simulated to add additional noise and failures. Fig. 7 illustrates
the mean and standard deviation of the MSE values of the estimated
states for the different versions of RobustStateNet, the self-trained
KalmanNet, and the Model-Based EKF computed for the 30 Monte Carlo
simulations with randomly generated sensor failures. KalmanNet is able
to outperform the MB EKF as it is able to learn the measurement

Robotics and Autonomous Systems 172 (2024) 104585P. Dahal et al.
Fig. 5. MSE in dB for predicted state computed against the ground truth for different NuScene scenes from the test set.
Fig. 6. Comparison of the states estimated using the RobustStateNet with the Model-Based (MB) EKF algorithm for test scene 918 of the Nuscenes dataset.
.

noise through the data and also to some extent account for the model
mismatch and failures introduced by the sensor degradation in the
prediction steps. RobustStateNet variants, RSN0 and RSN1 outperform
both the baselines and provide the most robust and accurate estimates.
In Table 2, the results of 100 Monte Carlo runs for the different Robust-
StateNet variants, KalmanNeT, and the model-based EKF are reported.
In Tables 3 and 4, we report the mean Root Mean Square Error(RMSE)
and its standard deviation for all the state components computed for
the test scenes, i.e. the scenes 900 to 1000 from the NuScenes dataset.
Table 3 reports the results for the cases without the sensor failure.
We can observe that both variants of the RobustStateNet outperform
the baseline EKF and the KalmanNet. Table 4 reports the results for
the test set with the inclusion of the sensor failure and confirms the
results of RobustStateNet’s superior performance in terms of robustness
and accuracy. Furthermore, RobustStateNet is able to perform each
iteration of inference at 1 millisecond in a consumer laptop with an i7
Intel processor and Nvidia 3060 RTX GPU, hence ensuring the real-time
applicability of the algorithm.
7

Table 2
Averaged MSE in dB for 100 Monte Carlo runs on the scene number 918 of the
NuScene Dataset for two different variants of the RobustStateNet(RSN0 and RSN1),
KalmanNet(KN), [7] and Model-Based EKF (MB).

Filter RSN0 RSN1 KN MB

Mean MSE (dB) −18.27 −18.06 −11.90 8.62
Standard Dev (dB) 0.866 0.7286 0.3135 0.035

Table 3
RMSE Mean/Std for all the testing scenes from 900 to 1000 in the Nuscenes without the
sensor failures for the proposed and the baseline algorithms: two different variants of
the RobustStateNet(RSN0 and RSN1), KalmanNet(KN), [7] and Model-Based EKF (MB)

Filter RSN0 RSN1 KN MB

Position (m) 0.030/8.85e−5 0.034/5.26e−5 0.125/8e−3 0.043/8e−5
Yaw (rad) 0.009/6e−4 0.010/4e−4 0.011/4e−4 0.069/0.1
Vel (m/s) 0.0003/7.3e−8 0.0002/1.34e−7 0.019/1e−4 0.028/1e−4
YawRate (rad/s) 0.0001/9e−8 0.0001/1.5e−8 7e−6/8e−11 4e−4/3e−8

Robotics and Autonomous Systems 172 (2024) 104585P. Dahal et al.
Fig. 7. Mean and Standard deviation of the Mean Square Error (MSE) in terms of dB of the state computed against the ground truth for different NuScene scenes for two different
variants of the RobustStateNet (RSN0 and RSN1), KalmanNet (KN), [7] and Model-Based EKF (MB) for 30 Monte Carlo Simulation with artificially induced failures.
Table 4
RMSE Mean/Std for all the testing scenes from 900 to 1000 in the Nuscenes with the
sensor failures for the proposed and the baseline algorithms.

Filter RSN0 RSN1 KN MB

Position (m) 0.169/6e−4 0.185/4e−4 0.35/2e−3 0.20/4e−4
Yaw (rad) 0.070/6e−4 0.087/4e−4 0.094/4e−4 0.116/0.1
Vel (m/s) 0.0213/7.3e−8 0.0242/1.34e−7 0.132/1e−4 0.164/1e−4
YawRate (rad/s) 0.014/9e−8 0.014/1.5e−8 0.013/8e−11 0.024/3e−8

6. Discussion

MB Kalman filters, which are used for state estimation, rely on a
solid understanding of the statistical properties of the measurements.
Specifically, they assume that the measurements follow a Gaussian dis-
tribution and are subject to additive noise In addition to the statistical
requirements, implementing MB Kalman filters also necessitates well-
defined motion and measurement models. These models describe how
the state of the system evolves over time and how it is related to the
measurements obtained. It is crucial to have accurate and reliable defi-
nitions of these models to ensure the Kalman filter performs optimally.
If the parameters defining the models are erroneous or poorly defined,
it can lead to significant degradation in the estimation accuracy of the
Kalman filter. Recently proposed KalmanNet [7] performs well within
the domain of the partial knowledge of the system dynamics. It does
not require the definition of noise statistics however, does require an
explicit definition of the motion and measurement models. The authors
have demonstrated its superiority to the Model-Based filters and vanilla
RNN in their work. This superiority can also be seen in the results
portrayed by Fig. 7 and Table 2 when it was trained in our dataset.
Our proposed RobustStateNet architecture maintains the structure of
the MB filter with a clear definition of prediction and update steps.
Like KalmanNet, we do not require any definition of noise statistics,
which are learned implicitly by the models while performing filtering
recursions. We take inspiration from KalmanNet to develop the update
step of the filtering system with some modifications introduced to fit
our application. However, the physics-based motion model used in
the KalmanNet is replaced entirely by an LSTM-based robust motion
predictor. The proposed two different variants employ different feature
selection techniques, deterministic and stochastic feature selection. This
feature selection allows for the introduction of robustness in the predic-
tion model which in turn is exploited by the whole filtering recursion.
RobustStateNet computes a state updating matrix, which can be seen as
8

Kalman Gain (KG) and as demonstrated by [24], does provide insight
into the confidence of the estimated state. Integration of the LSTM-
based robust predictor enables the filtering recursion to perform better
than KalmanNet, which is demonstrated by the results in Fig. 7 and
Table 2.

7. Conclusions and future work

In this paper, we propose a novel LSTM-based motion predictor
for ego vehicle state prediction and RobustStateNet, a robust ego
vehicle state estimation algorithm. We simulate sensor failures into
the NuScenes dataset to train the proposed models. The proposed
models are compared against the baseline, the kinematic model for
motion prediction, and MB EKF and self-trained KalmanNet [7] for
the RobustStateNet. We demonstrated that the LSTM-based predic-
tor’s accuracy with the stochastic feature selector performs better in
terms of accuracy and robustness than the kinematic model. When
the prediction model is integrated into the RobustStateNet estimation
framework, the overall model performs better than the model-based
EKF and KalmanNet in all the state component predictions. These
results hold true for scenarios both with and without the presence of
sensor failures. Additionally, for future research, RobustStateNet can
be extended to accommodate a learned mapping between the state and
measurements, i.e. the measurement model in the MB KF filter setting.
Furthermore, a state representation of ego motion can be studied.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The research employed publicly available data from the NuScenes
CAN bus dataset.

Acknowledgments

This paper was supported by ‘‘Sustainable Mobility Center (Centro
Nazionale per la Mobilità Sostenibile – CNMS)’’ project funded by the
European Union NextGenerationEU program within the PNRR, Mission
4 Component 2 Investment 1.4.

Robotics and Autonomous Systems 172 (2024) 104585P. Dahal et al.
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.robot.2023.104585.

References

[1] T. Shan, B. Englot, LeGO-LOAM: Lightweight and ground-optimized lidar odome-
try and mapping on variable terrain, in: 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS, 2018, pp. 4758–4765, http://dx.doi.
org/10.1109/IROS.2018.8594299.

[2] C. Chen, S. Rosa, C.X. Lu, B. Wang, N. Trigoni, A. Markham, Learning selective
sensor fusion for state estimation, IEEE Trans. Neural Netw. Learn. Syst. (2022)
1–15, http://dx.doi.org/10.1109/TNNLS.2022.3176677.

[3] M. Bersani, M. Vignati, S. Mentasti, S. Arrigoni, F. Cheli, Vehicle state estimation
based on Kalman filters, in: 2019 AEIT International Conference of Electrical
and Electronic Technologies for Automotive, AEIT AUTOMOTIVE, 2019, pp. 1–6,
http://dx.doi.org/10.23919/EETA.2019.8804527.

[4] L. Han, Y. Lin, G. Du, S. Lian, DeepVIO: Self-supervised deep learning of
monocular visual inertial odometry using 3D geometric constraints, 2019, http://
dx.doi.org/10.48550/ARXIV.1906.11435, arXiv URL https://arxiv.org/abs/1906.
11435.

[5] C. Chen, S. Rosa, Y. Miao, C.X. Lu, W. Wu, A. Markham, N. Trigoni, Selective
sensor fusion for neural visual-inertial odometry, in: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 10534–10543,
http://dx.doi.org/10.1109/CVPR.2019.01079.

[6] P. Dahal, S. Mentasti, L. Paparusso, S. Arrigoni, F. Braghin, Fault resistant
odometry estimation using message passing neural network, in: 2023 IEEE
Intelligent Vehicles Symposium, IV, 2023, pp. 1–8, http://dx.doi.org/10.1109/
IV55152.2023.10186649.

[7] G. Revach, N. Shlezinger, X. Ni, A.L. Escoriza, R.J.G. van Sloun, Y.C. Eldar,
KalmanNet: Neural network aided Kalman filtering for partially known dynamics,
IEEE Trans. Signal Process. 70 (2022) 1532–1547, http://dx.doi.org/10.1109/tsp.
2022.3158588.

[8] S. Wang, R. Clark, H. Wen, N. Trigoni, DeepVO: Towards end-to-end visual
odometry with deep recurrent convolutional neural networks, in: 2017 IEEE
International Conference on Robotics and Automation, ICRA, IEEE, 2017, http:
//dx.doi.org/10.1109/icra.2017.7989236.

[9] S. Wang, R. Clark, H. Wen, A. Trigoni, End-to-end, sequence-to-sequence prob-
abilistic visual odometry through deep neural networks, Int. J. Robot. Res. 37
(2018) 513–542.

[10] Y. Almalioglu, M. Turan, M.R.U. Saputra, P.P. de Gusmão, A. Markham, N.
Trigoni, SelfVIO: Self-supervised deep monocular Visual–Inertial Odometry and
depth estimation, Neural Netw. 150 (2022) 119–136, http://dx.doi.org/10.1016/
j.neunet.2022.03.005.

[11] M. Bersani, S. Mentasti, P. Dahal, S. Arrigoni, M. Vignati, F. Cheli, M. Matteucci,
An integrated algorithm for ego-vehicle and obstacles state estimation for
autonomous driving, Robot. Auton. Syst. 139 (2021) 103662, http://dx.doi.org/
10.1016/j.robot.2020.103662.

[12] D. Chindamo, M. Gadola, Estimation of vehicle side-slip angle using an artificial
neural network, MATEC Web Conf. 166 (2018) 02001, http://dx.doi.org/10.
1051/matecconf/201816602001.

[13] D. Kong, W. Wen, R. Zhao, Z. Lv, K. Liu, Y. Liu, Z. Gao, Vehicle lateral velocity
estimation based on long short-term memory network, World Electr. Veh. J. 13
(2021) 1, http://dx.doi.org/10.3390/wevj13010001.

[14] A. Bonfitto, S. Feraco, A. Tonoli, N. Amati, Combined regression and clas-
sification artificial neural networks for sideslip angle estimation and road
condition identification, Veh. Syst. Dyn. 58 (2019) 1–22, http://dx.doi.org/10.
1080/00423114.2019.1645860.

[15] N. Spielberg, M. Brown, N. Kapania, J. Kegelman, J. Gerdes, Neural network
vehicle models for high-performance automated driving, Science Robotics 4
(2019) eaaw1975, http://dx.doi.org/10.1126/scirobotics.aaw1975.

[16] M. Rokonuzzaman, N. Mohajer, S. Nahavandi, S. Mohamed, Model predictive
control with learned vehicle dynamics for autonomous vehicle path tracking,
IEEE Access 9 (2021) 128233–128249, http://dx.doi.org/10.1109/ACCESS.2021.
3112560.

[17] L. Hermansdorfer, R. Trauth, J. Betz, M. Lienkamp, End-to-end neural network
for vehicle dynamics modeling, in: 2020 6th IEEE Congress on Information
Science and Technology, CiSt, 2020, pp. 407–412, http://dx.doi.org/10.1109/
CiSt49399.2021.9357196.

[18] M. Frosi, M. Matteucci, ART-SLAM: Accurate real-time 6DoF LiDAR SLAM,
2021, http://dx.doi.org/10.48550/ARXIV.2109.05483, arXiv. URL https://arxiv.
org/abs/2109.05483.

[19] H. Coskun, F. Achilles, R. DiPietro, N. Navab, F. Tombari, Long short-term
memory Kalman filters:Recurrent neural estimators for pose regularization,
2017, http://dx.doi.org/10.48550/ARXIV.1708.01885, arXiv URL https://arxiv.
org/abs/1708.01885.

[20] Z. Shi, Incorporating transformer and LSTM to Kalman filter with EM algorithm
for state estimation, 2021, http://dx.doi.org/10.48550/ARXIV.2105.00250, arXiv
URL https://arxiv.org/abs/2105.00250.
9

[21] H. Caesar, V. Bankiti, A.H. Lang, S. Vora, V.E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, O. Beijbom, nuScenes: A multimodal dataset for autonomous driving,
2019, arXiv preprint arXiv:1903.11027.

[22] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, http://
dx.doi.org/10.48550/ARXIV.1412.6980, arXiv URL https://arxiv.org/abs/1412.
6980.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch:
An imperative style, high-performance deep learning library, in: Advances in
Neural Information Processing Systems, Vol. 32, Curran Associates, Inc., 2019,
pp. 8024–8035.

[24] I. Klein, G. Revach, N. Shlezinger, J.E. Mehr, R.J.G. van Sloun, Y.C. Eldar,
Uncertainty in data-driven Kalman filtering for partially known state-space
models, 2021, http://dx.doi.org/10.48550/ARXIV.2110.04738, arXiv URL https:
//arxiv.org/abs/2110.04738.

Pragyan Dahal is a Ph.D candidate at Mechanical En-
gineering Department of Politecnico Di Milano, Italy. He
received M.Sc in Mechanical Engineering from Politecnico
Di Milano, Italy in 2020 with specialization on Mechatronics
and Robotics. His main research interests include Environ-
ment Perception, Multi Object Tracking (MOT) algorithms,
Control and Path Planning etc of Autonomous Vehicle.

Simone Mentasti is a researcher at Dipartimento di Elet-
tronica Informazione e Bioingegneria of Politecnico di
Milano, Italy. He obtained the M.S. degree in computer
science from Università Statale di Milano, Italy, in 2017 and
a Ph.D. in Computer Engineering from Politecnico di Milano
in 2022. His interest focuses on robotics, perception, sensor
fusion, sensor calibration and deep learning for autonomous
driving cars. His research concerns the development of
a sensor fusion framework for autonomous vehicles able
to retrieve a uniform representation of the environment
surrounding the car.

Luca Paparusso received the M.Sc. degree in mechanical
engineering from Politecnico di Milano, Italy, in 2018,
where he is pursuing the Ph.D. degree. He was research
fellow at Istituto Italiano di Tecnologia (IIT), Italy, in 2019,
and Visiting Ph.D. at Stanford University, Autonomous Sys-
tems Laboratory (ASL), CA, USA, from 2021 to 2022. His
research is focused on trajectory forecasting and motion
control for efficient and safe autonomous navigation in
multi-agent environments

Stefano Arrigoni is currently a postdoctoral researcher at
the institute of mechanical engineering at the Politecnico
di Milano. He received the M.S. degree in mechanical
engineering and the Ph.D. degree in applied mechanics
both from Politecnico di Milano, Milano, Italy, in 2013 and
2017, respectively. His research interests lie in the area
of autonomous vehicles with a focus on motion planning
techniques and V2V communication.

Francesco Braghin (Member, IEEE) received the M.S. de-
gree in mechanical engineering and the Ph.D. degree in
applied mechanics both from Politecnico di Milano, Milano,
Italy, in 1997 and 2001, respectively. In 2001, he became
an Assistant Professor and in 2011, an Associate Professor
with the Department of Mechanical Engineering, Politecnico
di Milano. Since 2015, he has been a Full Professor in ap-
plied mechanics. Research interests range from autonomous
vehicles to mechatronic systems in general.

https://doi.org/10.1016/j.robot.2023.104585
http://dx.doi.org/10.1109/IROS.2018.8594299
http://dx.doi.org/10.1109/IROS.2018.8594299
http://dx.doi.org/10.1109/IROS.2018.8594299
http://dx.doi.org/10.1109/TNNLS.2022.3176677
http://dx.doi.org/10.23919/EETA.2019.8804527
http://dx.doi.org/10.48550/ARXIV.1906.11435
http://dx.doi.org/10.48550/ARXIV.1906.11435
http://dx.doi.org/10.48550/ARXIV.1906.11435
https://arxiv.org/abs/1906.11435
https://arxiv.org/abs/1906.11435
https://arxiv.org/abs/1906.11435
http://dx.doi.org/10.1109/CVPR.2019.01079
http://dx.doi.org/10.1109/IV55152.2023.10186649
http://dx.doi.org/10.1109/IV55152.2023.10186649
http://dx.doi.org/10.1109/IV55152.2023.10186649
http://dx.doi.org/10.1109/tsp.2022.3158588
http://dx.doi.org/10.1109/tsp.2022.3158588
http://dx.doi.org/10.1109/tsp.2022.3158588
http://dx.doi.org/10.1109/icra.2017.7989236
http://dx.doi.org/10.1109/icra.2017.7989236
http://dx.doi.org/10.1109/icra.2017.7989236
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb9
http://dx.doi.org/10.1016/j.neunet.2022.03.005
http://dx.doi.org/10.1016/j.neunet.2022.03.005
http://dx.doi.org/10.1016/j.neunet.2022.03.005
http://dx.doi.org/10.1016/j.robot.2020.103662
http://dx.doi.org/10.1016/j.robot.2020.103662
http://dx.doi.org/10.1016/j.robot.2020.103662
http://dx.doi.org/10.1051/matecconf/201816602001
http://dx.doi.org/10.1051/matecconf/201816602001
http://dx.doi.org/10.1051/matecconf/201816602001
http://dx.doi.org/10.3390/wevj13010001
http://dx.doi.org/10.1080/00423114.2019.1645860
http://dx.doi.org/10.1080/00423114.2019.1645860
http://dx.doi.org/10.1080/00423114.2019.1645860
http://dx.doi.org/10.1126/scirobotics.aaw1975
http://dx.doi.org/10.1109/ACCESS.2021.3112560
http://dx.doi.org/10.1109/ACCESS.2021.3112560
http://dx.doi.org/10.1109/ACCESS.2021.3112560
http://dx.doi.org/10.1109/CiSt49399.2021.9357196
http://dx.doi.org/10.1109/CiSt49399.2021.9357196
http://dx.doi.org/10.1109/CiSt49399.2021.9357196
http://dx.doi.org/10.48550/ARXIV.2109.05483
https://arxiv.org/abs/2109.05483
https://arxiv.org/abs/2109.05483
https://arxiv.org/abs/2109.05483
http://dx.doi.org/10.48550/ARXIV.1708.01885
https://arxiv.org/abs/1708.01885
https://arxiv.org/abs/1708.01885
https://arxiv.org/abs/1708.01885
http://dx.doi.org/10.48550/ARXIV.2105.00250
https://arxiv.org/abs/2105.00250
http://arxiv.org/abs/1903.11027
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00224-5/sb23
http://dx.doi.org/10.48550/ARXIV.2110.04738
https://arxiv.org/abs/2110.04738
https://arxiv.org/abs/2110.04738
https://arxiv.org/abs/2110.04738

	RobustStateNet: Robust ego vehicle state estimation for Autonomous Driving
	Introduction
	Related Works
	Ego Motion Estimation
	Ego Vehicle State Estimation

	Problem Statement
	RobustStateNet
	Ego Vehicle Motion Prediction
	Baseline for motion prediction
	Ego Vehicle State Estimation: RobustStateNet
	Baseline for the State Estimation
	Training Models
	Training LSTM based motion predictor
	Training full RobustStateNet

	Experiments and Results
	Motion Prediction
	RobustStateNet

	Discussion
	Conclusions and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

