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ABSTRACT The fast increase in electric vehicle (EV) usage in the last 10 years has raised the need to
properly forecast their energy consumption during charge. Lithium-ion batteries have become the major
storage component for electric vehicles, avoiding their overcharge can preserve their health and prolong their
lifetime. This paper proposes a Machine Learning model based on the K-Nearest Neighbors classification
algorithm for EV charging session duration forecast. The model forecasts the duration of the charge by
assigning the event to its correct class. Each class contains the charging events whose duration is comprised
of a certain interval. The only information used by the algorithm is the one available at the beginning of the
charging event (arrival time, starting SOC, calendar data). The model is validated on a real-world dataset
containing records of charging sessions from more than 100 users, a sensitivity analysis is performed to
assess the impact of different information given as input. The effectiveness of the model with respect to the
benchmark models is demonstrated with an increase in performance.

INDEX TERMS Classification algorithms, electric vehicle charging, forecasting, machine learning.

I. INTRODUCTION

When dealing with Electric Vehicle (EVs) chargers devoted
to private use, the charging power profiles of a charging unit
are representative of the user behavior (usually a family).
Likely, the EV charger is used to charge a single vehicle,
which ensures that the charging profile is similar during
each charge. The main feature that differentiates charging
events is their duration. Taking into account the previous
considerations, it would be useful to forecast in advance the
“type” (short/long, complete/incomplete) of charging event
(short/long, complete/incomplete) that is going to occur at the
moment the charging car is plugged in [1]. The capability of
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the charging system to predict how long the EV is staying in
charge mode would permit the implementation of new fea-
tures in the charging control system such as the activation of
an optimized battery charging [2], [3] similar to the ones that
can be currently found in some smartphones. The charging
system would be also capable of choosing to activate a ““fast”
or “slow” charge, which will have a different impact on the
power load demand of the entire household. This new opti-
mized charge would give the user a better charging experience
suited to their habits, and at the same time, it would preserve
the state of the battery. For instance, from IOS 13 system on,
thanks to the prediction of user daily habits, the optimized
charging system of an iPhone, initially charges the battery up
to about 80% and then completes the charge shortly before
the forecast finish time [4]. In this way, the battery is never at

VOLUME 11, 2023


https://orcid.org/0009-0006-6968-1926
https://orcid.org/0000-0002-2106-0374
https://orcid.org/0000-0002-1300-556X
https://orcid.org/0000-0001-6417-3750
https://orcid.org/0000-0001-6095-2968

S. Matrone et al.: EVs Charging Sessions Classification Technique

IEEE Access

100% charge for a long period, a condition which may cause
battery degradation due to voltage exceeding the limit when
the battery is fully charged [5]. The objective of the paper
is to propose a supervised machine learning model capable
of “predicting” the duration of the next EV charging event,
happening at a certain EV charging station, by assigning the
event to the correct class that is representative of its duration
interval. A K-Nearest Neighbors (KNN) model is chosen to
perform the classification task given only a limited amount
of features as input [6]. Although the KNN has already been
applied in literature [6], [7], [8], previous studies on EVs
charging sessions use the KNN as a regressive prediction
model; on the contrary, the present study proposes a KNN
Classification [9], [10] model for classifying charging events
in different duration categories based on temporal features.
Moreover, the majority of the studies in the literature focus
more on the energy demand prediction than on the pure
charging duration prediction based on user behavior. In [11],
session duration is predicted to help users in trip planning.
The contributions of this paper are:

1) The proposal and the test of an application of a KNN
model to EV charging session duration forecast. The KNN
is used as a classification model, in contrast with the other
studies in the literature that are rather based on regression.
Charging events are classified into different duration cate-
gories based on temporal features.

2) The analysis of the impact of additional temporal data
used as input to the model. We perform a sensitivity analysis
on the employment of information such as the day of the week
in which the charging is occurring and the time passed since
the last charge.

The novelty of the proposed paper consists in accurately
forecasting the class of EV charge power profiles in terms of
areduced number of features (duration) which is a key param-
eter for EV charging stations and DSOs (Distribution System
Operator). This is a change of the perspective in the tradi-
tional load power curve methodology which usually relies on
time-series forecasting methods. The proposed model is val-
idated on a real-world dataset containing information about
charging events that occurred in more than 100 EV charging
stations around the UK. Thanks to its simplicity and speed
the proposed KNN algorithm, and thanks to the possibility to
generalize the model, it could be implemented and fully work
locally on any type of charging towers.

The paper is organized as follows. Section II describes
the methodology followed in the research, analyzing also the
KNN model from a theoretical point of view, the evaluation
procedure that will be used to assess the performances of the
model, and, introduces the case study to which the developed
model is applied. The results of the simulations are collected
in Section III and then discussed in Section I'V.

Il. METHODOLOGY

Figure 1 shows the workflow followed in the study. The
dataset is first divided into smaller subsets, each one con-
taining the sessions belonging to a single charging point. The
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FIGURE 1. Graphical representation of the followed workflow.

definition of the classes in which charging sessions have to
be categorized is done based on the duration of the charge
because it is the feature that deeply influences the optimized
charging. Then, the data in each subset is reshaped in order
to enter the supervised machine learning KNN classification
model. Three models, differing in the data given as input, are
trained using the reshaped data, the best model is assessed
according to cross-validation preliminary results and metrics
that are described later in this paper. The model showing the
best results is finally tested using the test set of data and
compared to the baseline model.

A. CASE STUDY

The data used to validate the proposed model comes from a
real-world dataset containing the charging information about
200 domestic EV chargers in the UK called My Electric
Avenue. “My electric avenue” is a project aimed to examine
the impact of EVs on the local electricity network as sales
of EVs continue to rise. Several clusters of neighbors were
created in different regions in the United Kingdom. Each
participant was equipped with a Nissan LEAF electric car
for 18 months from 16/02/2014 to 29/11/2015, this allowed
us to mimic a future scenario in which many people in an
area choose to use a pure electric car or plug-in hybrid one.
Over 100 families, each one assigned to one of the clusters,
were successfully recruited and the usage of the respective
EVs was monitored. A further 100 people were recruited for
the project’s Social Trials with a total of 225. Trials partici-
pants also drove Nissan LEAFs but without the technology
capable of monitoring and controlling the electricity used
during the charge [12]. For the purpose of this study, the data
of participants in the Social Trial are not used. Participants
were divided into 10 clusters, each of them containing up to
12 based on the region they were located. The matrix regard-
ing EV charge data schematizes 76.699 charging events, the
entries of the matrix are:

o id: Identifier for the session record
« PartecipantID: Identifier of the car
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« BatteryChargeStartDate: Date and Time of the begin-
ning of the session

« BatteryChargeStopDate: Date and Time of the ending
of the session

« Starting SoC (of 12): State of Charge of the battery at
the beginning of the session

« Ending Soc (of 12): State of Charge of the battery at the
end of the session

MyElectricAvenue dataset is a collection of home stations,
therefore it is a good example of a situation like the one
described in Section I, each charger is belonging to a family
that charges always the same car, so it is a perfect way to
test our model and its capability to learn the typical behavior
of the users and their habits to correctly classify the type of
charging each time. The prediction model can be installed
directly on the charging station, it trains periodically on the
data collected at each recharge to model users charging habits.
When the vehicle is connected at the beginning of the charge,
the information on the SoC, the date and time is available
to the station and therefore to the model that can “predict”
the duration of the charge based on the training performed
on previous charging events. The optimized battery system is
activated according to the predicted duration. At the end of
the charge, the effective duration of the session is recorded to
be used as new information for the next training of the model.

B. KNN ALGORITHM

The KNN algorithm is a supervised machine learning tech-
nique used to solve both classification and regression prob-
lems. It is based on the assumption that similar things are
near to each other. In the classification case, it is able to
classify an unlabeled point given as input based on the class to
which the k nearest labeled points belong, which are indeed
its nearest neighbors. Given a training set of labeled data,
a positive integer k of neighbors, and a test observation x,
the KNN classifier first identifies the k points in the training
data that are closest to xp, forming the domain Ny. The
nearest neighbors are found calculating the distance between
xo and all the points in the training set, the metric commonly
used is Minkowski with p = 2, equivalent to the standard
Euclidean metric. It then estimates the conditional probability
for xo being part of class j as the share of points in Ny belong-
ing to class j. As described by Equation (1), the probability
of xp being assigned to class y = j is equal to the ratio of
the number of points 7 in Ny that belong to j and the total
number of neighbors k. Finally, it proceeds to classify the
test observation xq to the class with the largest probability.
Figure 2 shows the functioning of KNN algorithm [13]:

Pr(X =xoly =j) = % > Ii=J) ey

iENy
The number of k£ has a drastic effect on the KNN classi-
fier obtained. As k grows, the method becomes less flexible
and the decision boundaries are closer to a linear function.
A decision boundary is a curve, characteristic to the KNN
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FIGURE 2. Graphical representation of KNN classification of a point for
two different k values. When k is set equal to 8 the new point is assigned
to class B, when k is set to 15, the point is classified as A.

model and k value, that can be ideally drawn in the plan in
which the data points are represented, all the points on one
side of the curve will be assigned to a certain class, the ones
on the other side to a different label. However, with increasing
k, predictions become more stable until eventually reaching
a maximum and starting to decrease again.

C. DATA PROCESSING

Analyzing the data, it was noticed that the majority of the
sample charging events have a duration lower than or equal to
1 hour, few of them last more than 8 hours, and a large group
has a correspondent time interval between 2 and 6, with a
mean value of 3 hours circa. Based on the last considerations
and the results of a previously performed sensitivity analysis,
the best results were shown when dividing the dataset into
3 different classes. The presence of more than 3 classes
caused a decrease in accuracy due to the lower population of
each class in the training set. This decision makes the problem
amulti-class classification since there are more than 2 classes.
The first class contains the sessions with a duration lower
than 2 hours, the second includes the session between 2 and
6 hours, and the last has all the rest of the events that last more
than 6 hours. The classification described is repeated for each
of the 110 participants.

Before using the KNN algorithm introduced in Section I,
data has to be properly reshaped. The input matrix X has shape
(Msampless Nfeatures)> WHETe Rggmpies 1 the number of sessions
belonging to a unit and the features that are the information
that the charging system sees the moment the EV plugs in,
as per Section I they will be different in the three cases that
will be analyzed and reported in Table 1.

The first model is trained using only the Starting SoC
and the time of the day in which the charge is starting. The
starting SOC, if properly evaluated by the Battery Manage-
ment System (BMS) [14], [15] is a crucial feature in the
prediction of the duration of the charge assuming that it is
brought to completion. The time of the day gives the model
information about the habits of the user. In the second model
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TABLE 1. Study cases description.

Case Input data

Case 1 Starting SoC, hour of the day, minute

Case 2 Starting SoC, hour of the day, minute, day of the week
Case 3 Starting SoC, hour of the day, minute, day of the week,

time passed since the last charge

also information about the day of the week is added, which
could be useful for the model to learn what type of charge is
more common during the weekend rather than on working
days. The last model is trained also using the time passed
since the last charging. These three cases are summarized in
Table 1.

The output matrix y has a similar shape with (nsmpiess
label), where the label is the number of the class in which
the session in input has been classified, the classifier tries to
predict the duration of recharge by understanding in which
class it falls. Based on the predicted class, the charging system
will start a charge that is suited for the available time interval.
The input and output data are split into a training set and a
testing set. Considering the low number of samples available
for each charging unit, 90% of the samples are used for the
training while the remaining 10% is used to test the model.

The same KNN architecture is used for all of the 3 cases
presented in Tablel. The KNN algorithm is really simple
and needs a few parameters to perform a classification task.
In our case, a KNN classifier with uniform weights was
implemented. The uniformity of weights makes it so that,
when assessing the most probable class for an input data
point, the model considers all the neighbor points to have
the same weight, which means their influence on the final
classification is not depending on their distance from the
input point but is constant for all of them. The distance metric
used by the model to find the neighbors of a point is the
Euclidean one (Minkowski with p = 2). The last parameter
needed by the model is the number of neighbors to find and
take into account for the choice of a class.

The k number of neighbors has a strong influence on
the results of the classification problem, for this reason, the
KNN model has been trained and tested on each subset of
data containing the sessions of a charging station for each
number of neighbors (k) from 1 up to 25. The optimal value
of k that maximizes the accuracy for each charging station
has been individuated. All following calculations are done
using the said optimal value. In general, was not possible to
identify a rule in the value of k that maximizes accuracy in
the proposed problem optimal k assumes every value between
1 and 22 with no apparent principle. The model, trained with
the optimal value of k for each station, is then used to make
predictions on the test set.

D. MODEL EVALUATION

The evaluation of the quality of any classifier usually passes
through the most immediate and intuitive metric that can be
used: accuracy. Unfortunately, accuracy is not capable of tak-
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ing into account certain factors, for example, the possibility
of having a ‘skewed’ dataset, in which the majority of the
data belongs to the same class with few exceptions, it means
that classifying all the samples in the same class will result in
high accuracy, even if the model is not capable of detecting
the other two classes. It is more representative to build and
observe the confusion matrix of the classifier. Each row of the
confusion matrix represents the instances in an actual class
while each column represents the instances in a predicted
class, in this way, it is possible to identify, the number of True
Positives (TP) (the labels that were assigned correctly), True
Negatives (TN) (the cases in which the classifier recognizes
that a sample is not in a certain class), False Positives (FP) (the
classifier assigns the wrong class) and False Negatives (FN)
(the classifier asses incorrectly that an item is not in a certain
class). In a perfect classification the only non-null values are
on the diagonals of the matrix representing True Positives
and True Negatives [16]. The layout of a confusion matrix is
shown in Figure 3 In multi-class classification, big matrices
can be difficult to analyze, it is more convenient to extract
concise metrics such as precision, recall, and F1. Precision
is the accuracy of the positive predictions, its formula is
shown in Equation 2, where TP and FP are respectively,
the number of true positives and false positives. Recall (also
called sensitivity) is the ratio of positive instances that are
correctly detected by the classifier, Equation (3) shows how it
is calculated. A combination of precision and recall called F1
is a useful metric employed in the comparison of classifiers,
it is calculated as the harmonic mean of precision and recall
(Equation (4)). The harmonic mean gives more weight to
small values so the F1 will be high only if both precision and
recall are high and similar.

- TP
Precision = —— 2)
TP 4 FP
TP
Recall = ———— 3)
TP + FN
Fle T 4
- EN+FP
TP+ ——
52447



IEEE Access

S. Matrone et al.: EVs Charging Sessions Classification Technique

The Receiver Operating Characteristic (ROC) curve is a
graphical representation of the relationship between sensitiv-
ity and specificity. ROC curve plots the True Positive Rate
(also Recall or sensitivity) against the False Positive Rate
(FPR), which is the ratio of negative instances that are incor-
rectly classified as positive. Each point of the curve represents
a couple of TPR/FPR values computed for a certain threshold
between O and 1. Decreasing the threshold will increase the
number of false positives, and therefore the degree of sensi-
tivity. A pure random classifier just produces a straight ROC
line that bisects the plan, while for a good classifier, the curve
is moving toward the top left corner of the plan. The opti-
mal threshold is the one that maximizes the TPR. The Area
Under the ROC Curve (AUC), is a performance indicator
for classifiers, it measures the entire two-dimensional area
under the entire ROC curve from 0.0 to 1.0, indeed it is
equal to 0.5 for a random classifier and equal to 1 for a
perfect one. The higher the AUC, the more a model is able
to distinguish between classes. Thanks to its conciseness,
the AUC is effectively used to compare the performances of
different classifiers. The confusion matrix, precision, recall,
and the F1 score are calculated using Cross Validation, it is a
K-fold validation, meaning the training set of data is split into
K folds (k subsets) of equal size, then predictions are made
and evaluated them on each fold using a model trained on
the remaining folds. In this way, we can have a preliminary
evaluation of the classifier without touching the test set. This
will be used to compare three different models, they only
differ in the number of information given as input to the model
to train. After assessing which is the best classifier among
the analyzed ones, we will finally test its performance on the
test set of the original data to calculate its accuracy. To have
an objective point of view on the results coming from the
KNN algorithm, they are compared to the results of a baseline
model such as the Zero Rule model. It assigns to each sample
in the test set the label that is more frequent in the training
set, for instance, if a training has 80% of samples belonging
to Class 1, the zero rule algorithm will simply assign the
label 1 to each session sample given in the test. This mimics
perfectly a mistake that is likely to happen when making
predictions with a classifier that has been trained on a set of
data in which one class is much more frequent than the other
(skewed).

Ill. RESULTS
A. COMPARISON OF THE 3 CASES
The preliminary results from the cross-validation analysis
allow us to evaluate the performances of each one of the
models trained based on the 3 cases presented in II-A before
performing the final assessment on the test dataset. Table 2,
3, 4, summarize these results showing the evaluation metrics
calculated for a subset of charging stations taken as examples
and their average values on all of the stations.

Looking at the tables, it is simple to notice how the average
values are maximum for Case 1 and decrease over Case 2 and
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TABLE 2. Cross Validation preliminary results on Case 1.

Station | Accuracy | Precision | Recall | F1 | Number of Sessions
Average 0.69 0.56 0.62 [0.58 -
CCo1 0.81 0.59 0.70 |0.61 84
CCo02 0.89 0.49 0.53 ]0.51 45
CRGO02 0.80 0.73 0.76 |0.73 447
CRGO08 0.70 0.59 0.64 |0.61 387
GC03 0.74 0.61 0.69 |0.62 153
GC09 0.76 0.51 0.70 ]0.59 85
JDO01 0.61 0.52 0.57 ]0.54 580
JDO05 0.73 0.50 0.67 |0.57 113
JD07 0.97 0.90 0.91 |0.91 186
MCO09 0.68 0.51 0.53 ]0.52 259

TABLE 3. Cross Validation preliminary results on Case 2.

Station | Accuracy | Precision | Recall | F1 | Number of Sessions
Average 0.64 0.56 0.57 |0.56 -
CCo1 0.75 0.54 0.55 |0.54 84
CCo02 0.67 0.47 0.47 ]0.47 45
CRGO02 0.82 0.72 0.72 ]0.72 447
CRGO8 0.72 0.63 0.64 |0.63 387
GCo03 0.77 0.69 0.68 |0.69 153
GC09 0.71 0.70 0.69 |0.70 85
JDO01 0.57 0.55 0.53 ]0.54 580
JDO05 0.69 0.56 0.59 ]0.57 113
JD07 1.00 0.94 0.95 |0.95 186
MCO09 0.75 0.66 0.65 |0.59 259

TABLE 4. Cross validation preliminary results on Case 3.

Station | Accuracy | Precision | Recall | F1 | Number of Sessions
Average 0.55 0.53 0.53 |0.53 -
CCo1 0.82 0.65 0.68 |0.66 84
CCo02 0.67 0.62 0.62 |0.62 45
CRGO02 0.77 0.75 0.75 |0.75 447
CRGO08 0.74 0.62 0.60 |0.61 387
GCo03 0.70 0.68 0.68 |0.68 153
GC09 0.82 0.62 0.61 |0.62 85
JDO1 0.72 0.66 0.65 |0.65 580
JD05 0.74 0.62 0.62 |0.62 113
JDOo7 0.86 0.83 0.80 |0.81 186
MC09 0.74 0.53 0.54 |0.53 259

Case 3, however, to compare the three of them and asses the
best one, we also considered the AUC. Before showing the
results, it is important to stress that, since we are treating
a multi-class classification and since the AUC evaluation is
only defined for binary classification, we followed a “One
vs the Rest”” (OvR) approach to extend the calculations to
our case, in which three different classes are present. In turn,
we consider each class as positive and the others as negative,
transforming the problem into a binary classification. We cal-
culate in this way three values of AUC, one for each class
when considered positive. Table 5 reports the mean values
over the entire dataset of the AUC in the three study cases
and the three classes. Figure 5 shows an example of the ROC
curves that result from the OvR evaluation on participant
“JD04 in Case 1. Figure 4 shows how the accuracy is
changing along the three examined cases for the charging
stations considered as examples.

Similarly to the observations made in the previous tables,
also according to the AUC value, Case 1 appears to be the
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FIGURE 4. Trends of the KNN model accuracy as a function of the 3 examined cases.
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FIGURE 5. ROC curves resulting from OvR validation procedure for participant JD04 (taken as example) in Case 1.

TABLE 5. AUC average values on the entire dataset for each of the study
cases and classes.

Case 1 | Case 2 | Case 3
Class 0| 0.61 0.57 0.54
Class 1| 0.58 0.55 0.52
Class 2| 0.56 0.54 0.56

best-performing one. This result is particularly interesting.
Despite the fact of having more features in input, neither
Case 1 nor Case 2 manage to overcome Case 1, on the
contrary, they perform less. It means the information about
the day of the week in which the charging is occurring and the
time passed since the last charge is not capable of improving
the classification accuracy, it is probable that the only effect
they achieve is to complicate the input excessively, making
it more difficult to learn for the model, moreover, the pop-
ulation of each subset of data is limited, making it difficult
for the model to learn more features at once. However this
is not always the case, there are particular charging stations
in which the introduction of new features in the input is
increasing the performances both in terms of accuracy and in
terms of AUC, for instance in ‘JD07’ where accuracy is even
reaching a value of 1 in Case 2. It is likely that the owners of
these stations are the ones that have more repetitive behavior
and habits, making this type of model more effective.
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B. TESTING OF THE BEST CASE

Finally, we can test the best classifier on the test set, cal-
culating its accuracy and comparing it with the accuracy of
the Zero Rule benchmark model to check its improvement.
Table 6 shows the results for a subset of charging stations
taken as examples, in the first row are reported the average
values on the entire dataset. A graphical comparison between
the accuracy of the KNN model and the Zero Rule algorithm
is shown in Figure 6. The model that we have built reaches
an accuracy of 61% on the completely new testing data
with an average improvement with respect to the Zero Rule
of 69%. Looking at the single stations, in some cases, the
improvement is really high (e.g. CC02), while in other cases
it is a lot lower (e.g.CRGO02). This behavior can be easily
explained by noticing how greater improvements are found
for the charging station in which the presence of the three
classes is well balanced, in these cases the Zero Rule has
really low performances causing the number of labels *0’, *1°
and "2’ is similar, hence the KNN classifier can be exploited at
its full capability of predicting user behavior. On the contrary,
the stations with a strong prevalence of one of the classes, the
skewed ones, have smaller improvements because the Zero
Rule was already predicting only the most common class as in
the case of CRGO2 in which the majority of data is belonging
to Class 2.
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TABLE 6. Results on the test set for Case 1.

Station | Accuracy | Zero Rule accuracy | Improvement
Average 0.61 0.36 69%
BLO1 0.65 0.5 23%
CC02 0.6 0.067 88%
CRGO1 0.57 0.19 67%
CRGO02 0.94 0.88 6%
CRGO8 0.98 0.86 18%
GCo01 0.46 0.06 87%
MC05 0.65 0.45 30%

MC05
GCo1

CRGO8

CRGO1

I
]
1
CRGO2
—
cco2 W
I

BLO1

o
o
N

0.4 0.6 0.8 1 12

M Zero Rule accuracy KNN accuracy

FIGURE 6. Comparison between the accuracy of the KNN model and the
Zero Rule algorithm.

IV. CONCLUSION

In this paper, a KNN classification model has been proposed
and applied to the real-world MyElectricAvenue EV charging
sessions dataset. The model has proven its capability to learn
the user charging habits and behavior, and then classify the
charging events based on their duration. The information
on session duration could play a relevant role in an opti-
mized battery charging strategy devoted to the planning of
EV charges and limiting battery damage. Three different
configurations of the model have been proposed to assess the
impact that different features given in input could have on
the results of the classification. The two additional features
(day of the week and time passed since last charging) were
not capable to improve the performances of the classification
model during the cross-validation, the best results came from
the simple input containing just the time and starting SoC
at the beginning of the charge. During the final test, the
model demonstrated being capable of correctly classifying
the charging event on limited input data and therefore fore-
casting the duration of the charging event with high accuracy.
The improvement with respect to the benchmark model is
even higher when the user behavior is variable in terms of
the length of the charging events. The comparison of the
proposed model with others present in the literature would
not be significant since the latter are of the regressive type
as in [11]. The error metrics used to evaluate a regression
model (e.g. MAPE) are not applicable to a classification
model such as the one described in our paper. For future
works, we could implement a new multi-output classification
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KNN model capable of classifying both cases based on the
estimated duration and on the possibility that the user would
stop the charging before its completion.
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