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Fast dynamics and transient events are becoming more and more frequent in power systems, due to the
high penetration of renewable energy sources and the consequent lack of inertia. In this scenario, Phasor
Measurement Units (PMUs) are expected to track the monitored quantities. Such functionality is related not
only to the PMU accuracy (as per the IEC/IEEE 60255-118-1 standard) but also to the PMU reporting rate (RR).
High RRs allow tracking fast dynamics, but produce many redundant measurement data in normal conditions.
In view of an effective tradeoff, the present paper proposes an adaptive RR mechanism based on a real-time

selection of the measurements, with the target of preserving the information content while reducing the data
rate. The proposed method has been tested considering real-world datasets and applied to four different PMU
algorithms. The results prove the method effectiveness in reducing the average data throughput as well as its
scalability at PMU concentrator or storage level.

1. Introduction

Power systems are experiencing an ever-increasing penetration of
distributed generation from renewable energy sources (RES) [1]. Due
to their inherent volatility and lack of rotational inertia, RES are more
prone to sudden variations, which may result in regional or even
systemic contingencies [2-4].

In this scenario, the measurement infrastructure shall guarantee a
prompt and pervasive control, e.g. by means of Phasor Measurement
Units (PMUs) [5-7]. Indeed, PMUs produce time-stamped measure-
ments of synchrophasor, frequency, and rate of change of frequency
(ROCOF), enabling to compare the power system state in remote loca-
tions. Moreover, PMUs are characterised by reduced latencies (i.e. few
tens of ms), and they typically operate with reporting rates (RRs) of
some tens of frames per second (fps).

It is worth noticing that PMUs were originally conceived for large
transmission networks, in order to measure phasor and frequency devi-
ations between remote nodes, assuming quasi-steady state conditions.
The objective was to provide snapshots of the system state at given
reporting time instants [8,9], rather than describing a time evolution.

Nowadays, the challenging conditions induced by the reduced in-
ertia have pushed for the development of more and more performing
estimation algorithms, capable of dealing with faster dynamics. How-
ever, this is not sufficient to properly identify trends in consecutive
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measurements [10]. Indeed, this capability does not just depend on
the estimation accuracy of a given algorithm, on the analog front
end [11,12] or the employed transducer [13], but it is strongly affected
by the configuration of the PMU, particularly its RR, and by how
measurement data are employed.

The relationship between dynamics monitoring and PMU RR was
investigated in the literature. In [14], within an internet of things
framework, the RR of a PMU is adaptively tuned based on root mean
square (rms) variation of voltage measurements to follow dynamics
and feed a variable rate state estimator. In [15], the impact of PMU
accuracy and RR with different interpolation techniques is investigated.
The ideal tracking should be able to measure, interpolate or predict the
synchrophasor, frequency and ROCOF in each relevant time instant.
For this reason, [15] introduces the concept of tracking error index,
intended to summarise the usefulness of available measurements for
describing the fundamental component time evolution. This approach
is very different from those based on goodness of fit [16] or normalised
rms error [17], which account for the discrepancy between the acquired
waveform and a cosinusoidal signal whose amplitude and phase are
obtained from the PMU measurements.

In this paper, we introduce a strategy to reduce the RR, and thus the
PMU data throughput, depending on the comparison between measured
and predicted value in each potential reporting instant. Following
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this approach, it is possible to prevent a measurement from being
transmitted if the tracking quality at the receiver is satisfactory. In other
words, the measurement is transmitted only if it carries a significant
amount of independent information with respect to what is already
available. Differently from [14], the proposed method focuses on the
application viewpoint: the objective is to guarantee a sufficient tracking
quality while reducing the data throughput. It can be applied, with
possibly different configurations, at PMU, phasor data concentrator
(PDCQ), application, and even data storage level, aiming at keeping
relevant information in a concise way when and where needed. The
proposed method is simple, real-time and keeps into account accu-
racy targets according to the specific requirements. Furthermore, it is
complementary to compression-based strategies, like in [18,19], which
are typically post processing stages for storage purposes. Indeed, the
proposed method reduces the data amount based on a monitoring-
quality-aware approach and thus can be also integrated with lossless
and measurement-independent compression strategies.

The paper is organised as follows. Section 2 introduces the concept
of tracking index and its application to reduce the RR. Section 3
describes the case studies derived from real-world events and used
as testbench for the proposed method. Section 4 briefly presents the
adopted PMU algorithms. Section 5 illustrates the simulations and
discusses the obtained results. Finally, Section 6 gives some closing
remarks and possible future lines of research.

2. Proposed method

As shown in [15], the tracking capability of a PMU does not descend
directly from its point-wise accuracy, as this is defined only in corre-
spondence of the reporting time instants. However, by interpolating
or extrapolating new measurement values, it is possible to introduce
specific indices for quantifying the tracking error.

2.1. Tracking indices

Let us assume a power system with nominal frequency f,. A generic
PMU analyses the power signal in order to estimate the parameters as-
sociated with its fundamental component, in particular the underlying
synchrophasor X (), frequency f(¢) and rate of change of frequency
ROCOF(z), for a given set of time instants. In this context, the most
relevant metrics to evaluate PMU errors are:

Total Vector Error (TVE): Considering the measurement instant ¢, it
represents the relative distance (in percentage) in the complex plane
between estimated and reference synchrophasor, which is
TVE() = 100 - 1X® = X0l @

[X(®)]
where ~ indicates a measured value hereinafter. TVE can be straight-
forwardly extended to evaluate the relative deviation between two
generic phasors and it will be used also with this meaning in the
following.

Frequency Error (FE): 1t is the difference between measured and
reference frequency at time ¢, hence

FE(1) = fi(t) = ,(1) @
In the following, FE will be expressed in mHz.

ROCOF Error (RFE): It corresponds to the difference between mea-
sured and reference ROCOF at time 7, namely

RFE(r) = ROCOF(r) — ROCOF(r) 3)

that will be expressed in Hz/s.
In [15], the so-called Tracking Error index (TrE) is introduced. In
this paper, a more general definition of TrE is adopted, as described
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below. The target is quantifying the accuracy in following the evolu-
tion of synchrophasor, frequency and ROCOF of the monitored signal,
starting from the data provided by the PMU. In this context, three
TrEs are considered, namely TrEqyg, TrEpg and TrEggg, for quantifying
the tracking accuracy of phasor, frequency and ROCOF, respectively.
Only the first one will be explicitly defined, since the other two can be
derived straightforwardly. Measurement units are those of the corre-
sponding error metrics. Concerning the phasor, a specific TrE is defined
as

N-1,3 > 2
X(nT,) — X (nT,
Tripyg 2 4| L 3 XTI = XCTOL @
NS 1X@T)

T, is the sampling interval, corresponding to the maximum available
data rate (the sample rate f,), namely the closest approximation of the
continuous time domain. N is the number of samples in the considered
time window (the timescale is shifted so that the first sample is located
in t = 0s). The symbol ~ indicates the reconstructed value, i.e.

= X, for nT, =1,

X(nT,) = { Yty - fornty =, ®)
XP(nT,) for nT, # 1,

where 1, = k;T, represents the ith considered measurement instant.

Indeed, k; is the index of the sample corresponding to the ith available
measurement and thus k;, € £ c {0,...,N —1}. It is important to
highlight that, in such definition of TrEryg, the instants k;7, do not
necessarily correspond to all the PMU reporting instants, but, more
generally, a subset of them. For the sake of simplicity and without loss
of generality, in the following each PMU reporting instant corresponds
to a sampling instant. X?(nT,) is the reconstructed synchrophasor at the
instant nT, which does not correspond to a measurement instant.

The TrE is thus defined as the rms value of the deviation be-
tween the underlying reference quantity in the monitored waveform,
sampled with rate f;, and its reconstruction, obtained from a set of
measurements and provided with rate f; through a proper prediction
or interpolation technique. In this paper, prediction only is considered
(thus exploiting just past measurements) because we focus on real-time
measurement manipulation, while interpolation unavoidably increases
latency. Prediction can be performed with many different algorithms. In
the following, phasor extrapolation from the last measurement instant
is considered, therefore

Xty + (0 = i) Ty) = Xty - ©)

o/ {2771t~ 0k T+ #ROCOFt Y~y PT7 |

where ;) = k;,,T, is the last available or considered measurement
instant before time nT, (i.e., i(n) = argmax; {k; | k; < n} gives thus the
largest measurement index whose corresponding instant k;,, T, < nTy).
ki corresponds to n when the current time instant is also a measure-
ment instant. The most recent synchrophasor, frequency and ROCOF
measurements, among those available at a given processing stage, are
thus used to compute the predicted synchrophasor. This implies that
phasor amplitude is simply repeated every T, until a new measurement
is available, while phasor phase angle is extended to future instants
using the latest frequency and ROCOF estimates. TrEgy and TrEggg are
defined analogously to (4) as the rms FE and RFE, respectively, between
predicted and reference quantities in the considered interval, using
time step T,. Following the same approach, frequency extrapolation is
performed as

/71(1,-(,1) + (n = ki)Ty) = j\l(ti(n))+
+ ROCOF (1,,))(1n — kii)T, )

while ROCOF is obtained simply by holding the most recent value until
the next one is available, i.e.

ROCOF(t,(, + (n — ky(,y)T,) = ROCOF (1)) ©)]

since no further information about ROCOF trend is available from PMU
measurements.
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2.2 Adaptive measurement decimation

Tracking error indices TrEqyg, TrEpg, and TrEgg; are intended to
assess the capability to follow the time evolution of synchrophasor,
frequency and ROCOF, respectively, during an event, by exploiting
the available measurements X(t;), fl(t,-), R@F(z,—), with i | k; €
{0.k;1ys - kyy_1y }-* For this reason, they provide an indication of the
available information (possibility to catch electrical signal dynamics)
and thus they depend on both the point-wise PMU accuracy and the
location of the time instants k;T,, other than the method adopted for
prediction.

Reporting time instants #; are intrinsically sparse with respect to the
sampling instants nT;, because RR in a PMU cannot be higher than a few
hundred frames per second. The capability to predict synchrophasor,
frequency and ROCOF at unmonitored time instants is thus limited by
measurement accuracy and rate when coupled to each phenomenon
timescale. It is thus impossible to define a unique RR that is optimal
for all the conditions of interest. For example, in a quasi steady-state
scenario, all the relevant information could be transferred by providing
just few measurements per second. However, when dynamics occur, the
RR should be increased accordingly, so that it is possible to track the
variations of the monitored quantities. On the other hand, a constantly
high RR represents a waste of resources (bandwidth, processing, stor-
age, etc.) since it produces a transfer of heavily redundant information,
and might even jeopardise applications responsiveness.

In the proposed method, the PMU algorithm runs at high, fixed
rate RR;, (corresponding to the time interval T;,) but a measurement
is transmitted only if useful under the circumstances at hand. An
adaptive RR is able to better respond to dynamics while reducing data
throughput.

This method is applicable every time a PMU measurement stream
can or needs to be decimated, without adding significant latency. The
algorithm works in real-time on a sequence of PMU measurements.
The basic idea is that new estimates should be transmitted only when
they provide significant informative content, that is when they cannot
be accurately deduced from the previously reported measurements,
namely by applying (6), (7), and (8). Assuming that T;, = rT,, with
r the number of samples between two measurements, we consider a
selection strategy for each incoming triplet of measurements defined
as (7 is the transpose operator)

S N — T
m(hrT,) & [X(hrTS), ATy, ROCOF(hrTQ] )
where h is the index scanning the N, reporting instants included in
the considered interval of N samples, i.e., h = 0,1,..., % . m(hrTy)

triplets are kept or discarded according to a selection rule. Indeed, the
resulting decimated output sequence is given by:

m°"[i] = m(z,)
m(h(0)rT,) =m(0) fori=0

= (10)
m(h(i)rT,) where h(i) = argmin, (h | h > h(i— 1) &

le;m(arT))llo > 1}

where once again i indicates the index of measurements available in
output and A(i) is thus the input sequence reporting index h associated
with the ith selected measurement triplet. || - ||, is the infinity norm,
while ¢;(-) is a vector function defined as:

TVEP(hrTy)
ArvE
e,(m(hrT,) = | FEGT)| an
Apg
|RFEP (hrTy)|
ARrE

1 The set obviously contains unique elements, even though i(r,) might be
the same as i(n,) (with n; < n,) if no measurement instants fall in the interval
(”171’"27}]'
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with
_p _ ~ .
TVE(hrT,) & | X (hr?) X (h(i — DrT,)| a2)
| X (h(i — DrTy)|
FEP(hrT) & fP(hrT,) = f1(h(i — D)rT,) 13)
RFE?(hrT,) 2 ROCOF”(hrT,) — ROCOF(h(i — 1)rT,) 14)

representing the phasor, frequency and ROCOF prediction deviations,
respectively. In (12)-(14), X?(hrT,), fl”(hrTS), and ROCOF?(hrT,) are
the predicted synchrophasor, frequency and ROCOF values at ¢ = hrT},
which are obtained as mentioned above, i.e. applying (6), (7), and (8)
considering the instant 7,_; = h(i — 1)rT,, corresponding to the last
selected measurement set m°"[i—1], as starting point. Parameters Aryg,
Agg and Aggg are normalisation factors that correspond to the thresholds
imposed to TVE?(hrT,), FE?(hrT,) and RFEP(hrT,), respectively.

In principle, the algorithm keeps and transmits only the measure-
ments considered as relevant with the following approach: at every
instant ArTy, it computes the predicted values starting from the last
selected triplet of measured values (index i — 1) and compares them
with the current triplet m(ArT,) through TVE’(hrT,), FE(hrT,) and
RFE’(hrT,). If at least a deviation exceeds the corresponding threshold,
m(hrT,) is kept and becomes m°“[i]. Otherwise, data is discarded and
the process moves on iteratively, further extending the time horizon
by T;, and updating the prediction. From the opposite point of view,
the data transferred with the proposed decimation method enables
reconstructing synchrophasor, frequency and ROCOF with rate RR;;.
When compared to fixed RR equal to RR;,, the resulting degradation
is given by TVE?, FE? and RFE? and thus is below Apyg, A and Aggg,
respectively.

The same strategy can be applied also to individual quantities,
e.g. to frequency measurement only, thus extracting from the flow at
RR a subset of relevant measurements. This can help in further reducing
the amount of data, but, in the following, only the global rule defined
by (10) (i.e. the thresholds on the three parameters are checked as if
they were conditions in ‘OR’) is discussed and tested.

3 Case studies

In this Section, we briefly introduce the case studies used for evalu-
ating the performance that can be reached by adopting the proposed
adaptive RR algorithm. Such case studies have been derived from
official reports of contingencies and transient events, as published by
transmission network operators and regulating agencies. This enables
assessing the performance under real-world scenarios. In particular,
two different sets of case studies have been considered. The first one,
reported in Fig. 1, comprises three short segments of contingencies
intended to demonstrate the proposed method capability of promptly
adapting the RR based on the current conditions. The second set,
instead, is presented in Fig. 2 and consists of longer duration events,
which allow for evaluating the proposed method advantages in terms
of RR optimisation also in the presence of slowly-varying conditions.

The following paragraphs provide a short description of each case
study. More precisely, (A), (B), and (C) refer to the first set, whereas
(D) and (E) refer to the second one. In this context, we focus on
limited portions of signals that are particularly relevant to the proposed
method, but further information can be found in the corresponding
official reports.

(A) Australia 2016: The first case study refers to the South Australia
blackout, occurred on September 28, 2016 [4]. Extreme weather condi-
tions caused the trip of three transmission lines and initiated a sequence
of 6 faults. Simultaneously, 9 wind farms were forced to a sustained
generation reduction as a protection feature activated. The combination
of such adverse factors produced a sudden separation of the South
Australian system, thus resulting in frequency instability. With an
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Fig. 1. Instantaneous frequency (blue) and voltage amplitude (red) as function of time
in the three considered short-duration case studies: Australia 2016 in (a), Arizona 2011
in (b), and Turkey 2015 in (c).

average ROCOF of —6.25 Hz/s, the remaining generation facilities were
tripped in less than 1s and caused the blackout for the entire region.

Fig. 1(a) shows the time profiles of voltage magnitude and fre-
quency as measured at the node of Robertstown in red and blue,
respectively. The rated voltage and frequency were equal to 275 kV
and 50 Hz, respectively. After nearly 1.5 s, both the profiles exhibit a
sudden transition from normal to transient conditions, characterised by
fast dynamics and oscillations.

(B) Arizona 2011: The second case study refers to a sequence of
outages that hit the Pacific Southwest power system on September 8,
2011 [20]. The event had an overall duration of 11 min. It was initiated
by a series of unfortunate factors, as the disconnection of a transmission
line in correspondence of a demand peak, and it ended with the system
collapse due to the irreparable imbalance between generation and
demand. In particular, the last part has been considered, when a rapid
drop of both voltage and frequency produces the unavoidable trip of
both loads and generators.

Fig. 1(b) reports the instantaneous voltage amplitude and frequency
in red and blue, respectively. After nearly 1s, a first separation of
the system causes a drop in both profiles. Despite a partial mitigation
provided by under-frequency load shedding, after 3 s the synchronous
generators trip and the frequency collapse starts again. The origi-
nal dataset refers to a transmission network with rated voltage and
frequency equal to 300kV and 60Hz, respectively. Without loss of
generality, in the following, frequency has been scaled to 50 Hz. First,
this guarantees the comparability of the results with the other cases,
since the same PMU algorithms can be employed. Second, the obtained
frequency profile still represents a plausible scenario for a power system
outage.

(C) Turkey 2015: The third case study refers to the blackout oc-
curred in Turkey on March 31, 2015. As reported in [3], the trip
of an overloaded line produced the separation into an Eastern and
Western subsystem. In the latter one, the sudden power deficit of nearly
21 % caused the loss of synchronism with the Central Europe system:
after 1s, the three interconnection lines with the Bulgarian and Greek
grids were also tripped. As the frequency was rapidly dropping from
49 to 48.4Hz, the under-frequency load shedding relays disconnected
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Fig. 2. Instantaneous frequency (blue) and voltage amplitude (red) as function of time
in the two considered long-duration case studies: Florida 2019 in (a) and Croatia 2021
in (b).

about 4800 MW of load, thus reducing the ROCOF. Once reached the
frequency limit of 47.5Hz, though, the loss of several synchronous
generators caused the collapse of the entire Western subsystem.

The contingency has an overall duration of 10s, but the present
analysis focuses on a shorter portion, shown in Fig. 1(c) and char-
acterised by inconsistent and uncorrelated dynamics for frequency
and voltage. More precisely, the frequency experiences a steady, yet
progressively increasing, linear ramp, whereas the voltage presents
significant modulation. For the sake of completeness, it is worth men-
tioning that this specific event was triggered by the disconnection of
the Ataturk-Yesilhisar Kuzey 400kV transmission line.

(D) Florida 2019: The fourth case study refers to a forced oscillation
event as recorded in the US Eastern Interconnection on January 11,
2019 [21]. Due to a failure in the control of a steam turbine generation
unit, an oscillation was observed in the Florida network for an overall
duration of approximately 18 min. The event was characterised by a
dominant frequency around 0.25Hz with a near-zero dampening ratio.
In this case, the rated voltage and frequency are equal to 500kV and
60 Hz, respectively. Also in this case, we transposed the frequency of
the synthetic waveforms at 50 Hz.

Fig. 2(a) presents the voltage and frequency time profiles as ac-
quired by Frequency Disturbance Recorders [22] in red and blue,
respectively. For the sake of clarity, the analysis is limited to a segment
of two minutes, but similar considerations hold for the entire event
duration. It is interesting to observe how the frequency profile is
affected by a sinusoidal modulation whose frequency and depth can be
approximated to 0.25 Hz and 50 mHz, respectively. The voltage profile,
instead, keeps quite stable around the pre-event value.

(E) Croatia 2021: The fifth case study refers to the system sepa-
ration occurred in Croatia on January 8, 2021 [23]. Due to a series
of cascaded trips of transmission network elements (initiated in the
substation Ernestinovo, HR), the Continental Europe Synchronous Area
was split in two areas, which in first approximation could be referred
to as North-West and South-East. The immediate reaction by means of
automated and manual countermeasures allowed to restore the normal
operation in nearly one hour, without major consequences in terms of
damages or shed loads.

Fig. 2(b) presents the voltage and frequency time evolution as
recorded at the substation of Hamitabat in Turkey in red and blue,
respectively. In this case, the rated voltage is 400kV and the nominal
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system frequency is equal to 50 Hz. For the sake of brevity, the analysis
focuses on a limited segment of just one minute. The system separation
initiates after around 40s. Then, both the profiles exhibit different
transient behaviours lasting nearly 10s. The frequency rapidly ramps up
to 50.5 Hz, before initiating a slow decaying trend. The voltage instead
is affected by periodically repeated dips, whose depth is progressively
decaying.

Test cases significance: The dynamics included in the selected case
studies do not coincide in terms of traditional PMU metrics (e.g. max-
imum ROCOF or response time), neither represent a combination of
test conditions included in the IEC/IEEE 60255-118-1 standard (IEC
Std) compliance verification [24]. Their main common feature is the
presence of either fast transients or oscillatory trends. From a power
system control perspective, both these aspects need to be properly
detected and monitored and thus represent the ideal testbench for the
assessment of the dynamic tracking capability achievable with PMUs.

For each test case, data points of voltage amplitude and frequency
have been time interpolated through shape-preserving piecewise cubic
Hermite polynomials. The resulting interpolations feature continuous
derivatives and monotonic trends between couples of points, so that
the shape of the original data is preserved. Phase angle and ROCOF
are represented with piecewise polynomials that can be respectively
obtained by time integrating and differentiating the analytical interpo-
lation of frequency data. The expressions are employed as ground-truth
values for the positive sequence synchrophasor, frequency and ROCOF
to be estimated. Of course, this does not mean that they exactly cor-
respond to the original event: they are affected by several uncertainty
contributions due, for example, to the instrument transformers (ITs),
the data acquisition systems, the estimation algorithms as well as the
adopted interpolation approach. In any case, the obtained trends can
be still considered as representative of the dynamic scenarios that may
occur in real power systems.

Assuming purely positive sequence voltages, the samples of the
three-phase waveforms, which are the input of the synchrophasor
estimation algorithms, can be easily computed from the interpolated
amplitude and phase data; f, = 10kHz sampling rate was adopted,
thus M = 200 samples per cycle at the considered f, = 50Hz rated
frequency. Previous hypotheses enable focusing only on the tracking
capability of the considered PMU algorithms, without the potentially
detrimental effect of other disturbances.

4 Test assumptions

The implementation of the proposed adaptive decimation approach
firstly requires assuming a RR value for the incoming data. For the
sake of compatibility, RR;, = 100 fps, thus corresponding to the highest
standardised RR for 50 Hz systems [24], is used. The values adopted
for the thresholds Ayyg, 4pg and Aggg should be tuned to reach the
desired tradeoff between tracking performance and amount of data.
An appropriate choice should consider also the accuracy of the raw
PMU measurement data, which depends on the adopted PMU estima-
tion algorithm, but also on the class of the IT. More specifically, it
makes no sense to further reduce the threshold values when they are
still negligible with respect to the uncertainty of the corresponding
input estimates. According to this consideration, in the tests Ay (the
threshold value for the TVE) was set to 1073 (0.1 %), which is one tenth
of the accuracy requirement for PMU algorithms under steady-state
conditions [24], reminding that they mostly behave much better. It is
worth stressing that the selected value is also significantly lower than
that derived from the accuracy class of the typical ITs for power systems
applications. On the other hand, IT errors are mainly systematic as far
as synchrophasor measurement is concerned and thus they do not affect
the proposed measurement selection procedure in a significant way.
Furthermore, under slow dynamics, the IT has negligible impact on
the accuracy of frequency and ROCOF estimates, which is bounded by
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the performance of the PMU algorithm. Therefore, 1 mHz was selected
as FE threshold Agz, namely one fifth of the error requirement for
PMU algorithms undergoing steady-state tests without disturbances.
Finally, 4ggr = 0.07Hz/s was chosen, thus almost six times lower
than the maximum RFE value for P-class compliant algorithms during
steady-state conditions.

The method has been applied to decimate the outputs of four
different PMU algorithms fed with the waveforms described in Sec-
tion 3 in order to evaluate their capability to reduce data transfer with
limited impact on tracking performance. All the algorithms are P-class
compliant, thus designed for achieving fast response. However, they
are based on very different estimation approaches, which are briefly
described in the following:

P-class reference algorithm (P-IEC): P-class algorithm proposed by
the IEC Std [24]. The synchrophasor extraction method consists of
demodulation through a mixer stage tuned at the rated frequency f
and filtering by a N, = 2M — 1 sample triangular window. The syn-
chrophasor is computed for each system phase at an internal frequency,
which can be higher than the considered RR (here f is used, that is a
sample-by-sample estimate); positive-sequence synchrophasor is com-
puted applying the Fortescue transformation. Frequency and ROCOF
measurements are obtained through symmetric first and second order
discrete-time derivatives of the phase angle of the positive-sequence
synchrophasor, respectively. Measured frequency is also exploited in
order to compensate for the attenuation introduced by the filter un-
der off-nominal frequency conditions. The different RRs are obtained
subsampling the internal measurements.

Iterative-interpolated DFT  (i-IpDFT): The algorithm [25] is
based on an enhanced version of the three-point IpDFT, thus exploiting
three DFT bins for the computation of the frequency deviation with
respect to f. It also iteratively refines the estimate by evaluating and
removing from the spectrum both the image frequency component
and the others possibly present in the signal; samples are weighted
with a three-cycle Hann window. For each phase, a synchrophasor and
frequency estimate with an internal rate (100 fps) are obtained. Positive
sequence synchrophasor is computed and node frequency is estimated
as the average of the three per phase values. ROCOF is calculated
through backward discrete-time differentiation using the current and
the previous internal frequency estimate. Lower RRs are obtained by
decimation.

Space Vector approach (SV-F): This method [26] is intrinsically
three-phase, since it operates on the complex-valued Space Vector (SV)
signal obtained from the three-phase samples via SV transformation.
The SV signal is demodulated by adopting a reference frame that rotates
at the rated frequency and processed with five different linear-phase
FIR filters: the first one extracts the baseband phasor, then its amplitude
and phase angle are computed and filtered again to obtain amplitude
and phase-angle measurements. Frequency and ROCOF measurements
are obtained applying specifically designed band-limited differentia-
tors to the instantaneous phase-angle samples. Estimated frequency
deviation is used to compensate for the scalloping loss introduced by
the input filter. The performance of the method clearly depends on
the filter characteristics; in the considered implementation, the design
parameters reported in [26] that ensure P-class compliance have been
adopted: about three cycles are observed for each estimation (N, =
601).

Compressive sensing weighted Taylor-Fourier multifrequency model (CS-
WTFM) The algorithm was presented in [27], as an enhancement
of [28]. Each component that may be present in the phase signal
(i.e. fundamental, harmonic or interharmonic) is modelled with a trun-
cated Taylor expansion, centred on the reporting instants. The fre-
quency support, namely the components to be included in the model,
are selected from a set of candidates (with 1Hz resolution) through
a compressive sensing approach; a Chebyshev weighting window is
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employed to improve performance. After that, the fundamental syn-
chrophasor and its derivatives (up to the second order) are extracted
through least squares fitting of the signal model. For each phase,
the synchrophasor estimate is obtained, while frequency and ROCOF
values are computed relying on non-linear equations involving up to
the second order derivative of the fundamental phasor, respectively.
Positive-sequence synchrophasor is computed, while frequency and
ROCOF estimates are obtained by averaging the per phase values. A
window of N, = 3M + 1 samples around the reporting instant is
used, and a second order expansion for the fundamental component
is adopted.

As a final remark on algorithms, it is interesting to highlight that
the proposed decimation strategy can be applied also to M-class PMUs.
P-class was chosen here since it is intended for fast responses but
nothing prevents a broader application of the method. In literature
“hybrid” algorithms have been proposed aiming at high accuracy and
fast responses (e.g. [29], where a triggering algorithm is proposed
to switch between P-class and M-class outputs, or [30], where an
algorithm simultaneously compliant with both classes P and M is pre-
sented). They might be favourably integrated with the presented deci-
mation, e.g. leveraging the proposed RR adaptation for their embedded
transient condition detection.

5 Simulation and results

The test scenarios described in Section 3 have been used to study
the effectiveness of the proposed adaptive decimation, applied in con-
junction with the PMU estimation algorithms summarised in Section 4.
Overall tracking accuracy of synchrophasor, frequency and ROCOF has
been quantified by computing the respective tracking errors (namely
TrEpyg, TrEpg, TrEgpg introduced in Section 2.2) over the considered
segment. The behaviour on a relatively short waveform is firstly anal-
ysed, considering the case study Australia 2016 (Fig. 1(a)); results are
reported in Table 1.

At 100 fps RR, all the four algorithms achieve good phasor tracking:
i-IpDFT results in TrEpyy = 0.18 %, while others reach slightly lower
values. When tracking errors are so close, it means that they are mostly
due to the prediction rule, while the point-wise measurement accuracy
of the different algorithms (which is evaluated in the reporting instants
through the conventional TVE, FE and RFE metrics) produces a negli-
gible contribution. Frequency tracking is also satisfactory, with i-IpDFT
having the highest error (TrEp; = 4.6mHz). Similar considerations
apply to TrEggg, with three algorithms that behave similarly, while i-
IpDFT shows a tracking error that is about 50 % higher. These results
are somehow expected, since i-IpDFT is inherently based on a stationary
signal model, which shows its limitations as highly dynamic conditions
occur.

When applying the proposed adaptive RR approach, tracking errors
slightly increase, but the variation is extremely small and not noticeable
with 2 digits of precision. This is remarkable if we consider that the
average RR is roughly halved, as it can be noticed from the compression
ratio values, defined as the ratio between the number of measurements
corresponding to RR = 100 fps and those selected by the adaptive RR
technique. In comparison, fixed 50 fps RR, corresponding to a similar
amount of transferred data, produces 70 % higher TrEryg values, TrEgg
may be more than double, while the increase of TrEgg is between 20 %
and 36 % according to the specific algorithm.

However, it is worth highlighting that i-IpDFT achieves a notice-
ably lower compression ratio with respect to the others. In order to
better understand the behaviour, Fig. 3 compares the instantaneous
RRs (the inverse of the time interval between consecutive selected
measurements) achieved by the proposed technique as either P-IEC
or i-IpDFT algorithm is adopted.? The remaining two methods behave

2 From here on, the name of the algorithm in the legend of the figures
without further specification indicates the application of the proposed adaptive
RR algorithm to the corresponding measurements.
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Table 1
Tracking results with fixed and adaptive reporting rate: Case study Australia 2016.
Index RR Algorithm
[fps] P-IEC i-IpDFT SV-F CS-WTFM
100 0.16 0.18 0.17 0.16
TrEqyg [%] 50 0.30 0.30 0.30 0.30
adaptive 0.17 0.18 0.17 0.16
100 2.7 4.6 3.3 4.3
TrEg [mHz] 50 5.4 12 5.0 4.8
adaptive 2.7 4.6 3.3 4.3
100 0.80 1.3 0.81 0.82
TrEges [Hz/s] 50 1.1 1.6 1.1 1.1
adaptive 0.80 1.3 0.81 0.82
Compression Ratio - 2.06 1.95 2.05 2.07

similarly to the former, therefore they are not shown for the sake of
clarity. At the beginning, the instantaneous RR is rather low, but after
0.7 s it occasionally hits the maximum value of 100 fps because of the
frequency oscillations appearing between 0.6 s and 1.2 s before dropping
down to about 5fps. As a response to the abrupt variation occurring
at about 1.5s, RR increases noticeably, reaching 100 fps for about half
a second. It settles down below 50fps, before rising again to follow
the next frequency transient. From the plot, it can be noticed that the
RR of the i-IpDFT is sometimes higher than that of P-IEC (and thus of
the others), especially at the beginning. The reason for this is mainly
related to the poor performance of the corresponding ROCOF estimate,
which shows erratic oscillations, not present in the actual waveform.
As a result, the threshold value Aggg is exceeded more frequently, thus
increasing the number of selected measurements.

Finally, Fig. 4 compares the reconstructed phasor amplitude through
adaptive RR with the reference one (obtained with sampling interval
T,) in the neighbourhood of the first large transient. The P-IEC esti-
mation algorithm is considered here, since the others show a similar
behaviour. In particular, blue crosses highlight the measurements se-
lected by the proposed technique and the solid blue line represents
the predicted values between two selected measurements. Since the
predictor (6) assumes zero amplitude derivative, a stepped trend is
noticeable. The red dotted line shows the theoretical evolution of the
signal amplitude, as derived from the mathematical formulation of the
test waveform. In the first part of the observed time window (i.e., ¢ <
1.5s), the signal is in quasi-stationary conditions. Accordingly, the PMU
RR is significantly reduced and the reported measurements are quite
sparse, yet sufficient to follow the slow amplitude variations. As soon as
the signal exhibits some oscillations, the PMU RR is set to its maximum
and the reported measurements are updated with a period of 10ms.

The second, short-duration case study is represented by Arizona
2011 (Fig. 1(b)), and the most significant results are reported in
Table 2. Considering fixed 100 fps RR, synchrophasor tracking accuracy
is very similar for all the considered algorithms (with i-IpDFT achieving
a marginally larger TrEryg), and values are slightly lower than those
obtained with the Australia 2016 case study. The capability to follow
the time evolution of frequency is also satisfactory: i-IpDFT reaches
the largest TrEgg, but it is still below 1 mHz. As far as the ROCOF, P-
IEC, SV-F and CS-WTFM algorithms result in very close tracking errors
around 0.1 Hz/s, with i-IpDFT once again being the least performing,
with TrEgpg = 0.23 Hz/s. Reducing RR to 50 fps has a major effect on
accuracy: the growth of the tracking error ranges from about 50 % to
more than 100 %. Synchrophasor tracking quality is similar for all the
estimation techniques, but i-IpDFT reaches considerably larger TrEgg
and TrEggp values with respect to the others.

When adopting the proposed adaptive decimation method, we can
immediately notice a minor increase of the tracking errors (below 10 %)
with respect to RR = 100 fps for synchrophasor, frequency and ROCOF.
This means that, also in this case, the set of selected measurements is
able to capture virtually the full informative content. Data throughput
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Table 2
Tracking results with fixed and adaptive reporting rate: Case study Arizona 2011.
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Fig. 3. Australia 2016: Instantaneous RR for P-IEC and i-IpDFT algorithms.
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Fig. 4. Australia 2016: Amplitude estimates at retained measurement instants and
predicted values compared to the actual waveform, P-IEC algorithm.

is reduced by about 38 % for all the PMU algorithms (corresponding to
an average RR of about 60 fps), thus highlighting the high efficiency of
the approach. Adopting i-IpDFT results in a slightly lower compression
ratio than the others, mostly because it exceeds the threshold Agg; more
often. As a final consideration, the adaptive decimation provides about
20 % more data with respect to the 50 fps fixed RR, but the obtained
tracking performance is far better.

Fig. 5 visually compares the actual frequency waveform with the
prediction obtained from the selected measurements. P-IEC estimation
algorithm is shown here, but the others behave very similarly. The
linear trend between reported frequency measurements resulting from
the prediction rule (7) is clearly visible. Fig. 6 gives further insight in
the decimation mechanism in the same test case. It shows the computed
prediction errors TVE?, FE?, and RFE” at the reporting instants along
with chosen thresholds Aryg, Apg, and Aggg (horizontal red dashed
lines). Measurements are kept only when one of the errors exceeds the
threshold. The most “critical” region is in the right part of the figures
and confirms the high measurement rate in Fig. 5. Furthermore, FE? ap-
pears the most sensitive degradation metric in this case, particularly in
the first interval (approximately 7; < 1s) where slower variations occur
and in many instants it anticipates the drift of the others, while TVE?
becomes more effective during significant frequency changes (around
t; = 1.1s) and Aggpy acts as an early trigger for significant dynamics at
the end of the considered interval. These considerations do not apply

Index RR Algorithm
[fps] P-IEC i-IpDFT SV-F CS-WTFM
100 0.12 0.13 0.12 0.12

TrEpvg [%] 50 0.24 0.24 0.24 0.24
adaptive 0.13 0.14 0.13 0.12
100 0.56 0.97 0.56 0.78

TrEg [mHz] 50 1.2 2.5 1.0 0.98
adaptive 0.63 1.0 0.63 0.82
100 0.10 0.23 0.10 0.11

TrEges; [Hz/s] 50 0.18 0.30 0.18 0.18
adaptive 0.11 0.23 0.11 0.11

Compression Ratio - 1.63 1.61 1.63 1.62

Frequency [Hz]
T T T
504
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Fig. 5. Arizona 2011: Frequency estimates at retained measurement instants and
predicted values compared to the actual waveform, P-IEC algorithm.

0.2 0.4 0.6 0.8 1 1.2
Time [s]

Fig. 6. Arizona 2011: TVE’, FE?, RFE’ for the P-IEC algorithm (solid lines) and the
corresponding thresholds Aryg, Apg, Agep (red, dashed lines).

to all the possible scenarios but point out the complementarity and the

role of the different prediction errors to effectively adjust the RR.
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Table 3
Tracking results with fixed and adaptive reporting rate: Case study Turkey 2015.

Index RR Algorithm

[£ps] P-IEC i-IpDFT SV-F CS-WTFM

100 11 1.2 1.1 11
TrEry [%] adaptive 11 1.2 1.1 11

100 13.7 14.9 45 3.0
TrEpy [mHz] adaptive 13.7 14.9 45 3.0

100 14 0.90 0.47 0.15
TrEre [Hz/5] adaptive 14 0.90 0.47 0.15
Compression Ratio - 1.00 1.00 1.00 1.00

Turkey 2015 (Fig. 1(c)) represents the last short-duration case study
to be analysed. The considered segment contains a frequency ramp as
well as a very jagged voltage amplitude, exhibiting large variations.
When adaptive RR is employed, at least one of the threshold values
is exceeded in each of the candidate reporting instants. Therefore, all
the measurements are selected, and thus, in this case, the adaptive
RR technique corresponds to the 100fps RR of the incoming data,
as from Table 3. Tracking errors are significantly larger than before,
for example with TrEry exceeding 1%. i-IpDFT reaches the highest
TrEgg, just below 15mHz, with the P-IEC algorithm performing just
marginally better (almost 14 mHz). On the contrary, SV-F and CS-WTFM
result in much lower frequency tracking errors, which drop down
to about 4.5mHz and 3.0mHz, respectively. Even larger differences
occur as ROCOF tracking performance is analysed. Surprisingly, the
P-IEC algorithm is the least accurate, with TrEgpp exceeding 1.4 Hz/s,
while i-IpDFT enables an error that is 40 % lower. However, SV-F and
CS-WTFM methods provide a further significant improvement, with
ROCOF tracking errors of 0.47 Hz/s and 0.15Hz/s, respectively. These
results show that, when needed, i.e. when the dynamics to track require
a finer-grained measurement sampling, the proposed algorithm behaves
exactly as expected, without discarding any relevant information.

The second set of tests is focused on longer waveforms, i.e. Florida
2019 and Croatia 2021 events presented in Section 3, aiming at as-
sessing the performance of the proposed method also on a wider time
interval where either fast or long-term events can occur.

Fig. 7 shows frequency measurements in a 15 s portion of Florida
2019. Once again, the tracking appears significantly accurate with re-
spect to sample-by-sample reference values. As expected, the algorithm
output focuses more on faster dynamics, whereas the measurement
instants start to thin out as the frequency transition becomes smoother.
Frequency follows an oscillatory behaviour all over the waveform (see
Fig. 2(a)) and thus the compression pattern appears somehow period-
ical too. This is confirmed by Fig. 8, which reports the instantaneous
RR provided by the proposed algorithm during the whole event. It is
interesting to notice that the instantaneous RR is much lower than the
original one (100 fps), leading to an average RR of 7.1 fps and thus to
a remarkable compression ratio.

Table 4 summarises the tracking results for Florida 2019, with all
the considered indices. Compared to the original 100 fps measurement
series, the adaptive RR leads to a compression ratio above 17, corre-
sponding to less than 700 selected estimates out of about 12,000. The
tracking indices for TVE, FE and RFE confirm the capability of the
method to maintain low prediction errors, while reducing the amount
of data. It is important to underline that the aim of the proposal is to
bound the errors within reasonable and desired limits for the whole
time rather than focusing on maximum accuracy. Nevertheless, by
suitably tuning the thresholds, it is still possible to increase the PMU
accuracy at the expenses of higher data rates.

Table 4 also reports the results for 5fps RR, which roughly corre-
sponds to the average measurement rate of the adaptive method. The
proposed approach results in much lower errors with a similar amount
of data. TrEgy is indeed reduced to almost one third and it is kept lower
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Fig. 7. Florida 2019: Frequency estimates at retained measurement instants and
predicted values compared to the actual waveform, P-IEC algorithm.

Instantaneous RR [fps]

> —pac ]

0 1 1 1 1 1
20 40 60 80 100

Time [s]

Fig. 8. Florida 2019: Instantaneous RR, P-IEC algorithm.

than 1mHz for all the algorithms. It is important to stress that, with
such a periodical time evolution of the signal parameters, we are in a
favourable condition for constant RRs. In practice, long steady-state and
close to nominal conditions are much more common than dynamics,
thus the advantage of the adaptive RR is even more pronounced.

It is interesting to notice that the different algorithms behave in a
similar way, i.e. they show similar tracking capabilities under adaptive
RR, whereas constantly high RRs tend to emphasise the differences.
With the original data rate, in particular, errors are low but fairly
different between the methods. For instance, i-IpDFT, which suffers
from larger FEs during dynamic conditions, results in higher tracking
error indices for all the measured quantities.

The Croatia 2021 waveform includes a much more irregular be-
haviour with respect to Florida 2019, particularly for voltage magni-
tude (see Fig. 2(b)), with fast oscillations around ¢ = 40s. The proposed
method has been applied with the same parameters as before, and
the tracking results are reported in Table 5, with three different RRs:
100 fps, 10 fps, and adaptive. 10 fps is the closest divider of RR;, to the
average RR corresponding to the compression ratio of the adaptive
approach, which is higher than 10. The results show that in such
conditions, TrEryg degradation is much stronger (almost 10 times)
when a fixed decimation rate is applied with respect to the adaptive
case. This behaviour can be understood by looking at Fig. 9, where
the adaptive sampling method is compared with the RR = 10fps case
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Table 4
Tracking results with fixed and adaptive reporting rate: Case study Florida 2019.
Index RR Algorithm
[fps] P-IEC i-IpDFT SV-F CS-WTFM
100 6.5 E-4 11 E4 9.0 E-4 2.0 E-4
TrEpyg [%) 5 52E2 60E2 52E2 52E-2
adaptive 2.6 E-2 2.5 E-2 2.5 E-2 2.5 E-2
100 0.005 0.011 0.007 0.010
TrEgg [mHz] 5 1.3 1.5 1.3 1.3
adaptive 0.46 0.47 0.46 0.46
100 0.001 0.003 0.001 0.001
TrEgge [Hz/s] 5 0.016 0.017 0.016 0.016
adaptive 0.010 0.010 0.010 0.010
Compression Ratio - 18.8 17.7 19.0 19.1
Table 5
Tracking results with fixed and adaptive reporting rate: Case study Croatia 2021.
Index RR Algorithm
[fps] PIEC  iIpDFT  SV-F CS-WTFM
100 0.020 0.020 0.020 0.020
TrEqyg [%] 10 0.19 0.19 0.19 0.19
adaptive 0.05 0.05 0.05 0.05
100 0.038 0.044 0.015 0.049
TrEgg [mHz] 10 0.41 0.48 0.36 0.40
adaptive 0.35 0.37 0.35 0.35
100 0.004 0.004 0.002 0.002
TrEggg [Hz/s] 10 0.010 0.011 0.010 0.010
adaptive 0.008 0.008 0.007 0.007
Compression Ratio - 10.7 10.5 10.7 10.7

in terms of magnitude measurements. Two different time intervals
have been magnified in the figure. The left inset refers to an almost
steady-state condition around ¢ = 32s. It is clear that the adaptive
method (blue crosses) gives only few relevant measurements that are
added when the zero-holding of the previous magnitude estimate is
not enough to properly track the variations. On the other side, the
inset on the right in Fig. 9 shows that the adaptive method chooses
frequent measurements to follow fast dynamics, whereas measurements
performed every 100 ms (orange points) easily miss the fast transition.
In the figure, for the sake of clarity, only predictions computed through
the adaptive rate are reported (which are very close to the theoretical
dashed line), but it is easy to understand that zero-holding in the
RR = 10fps case (not shown for a better clarity) leads to large errors
just before r = 40s. Visual inspection of Fig. 9 also helps to recall
that tracking indices have an averaging effect in case of fast changes
having short duration, and thus the overall error decrease summarised
in Table 5 is even more significant when maximum errors or average
errors in small intervals are considered.

6 Conclusions

The paper has addressed the problem of reducing measurement data
rate from PMUs while keeping the relevant information, so that it is
possible to reconstruct the time evolution of the monitored quanti-
ties according to a predetermined accuracy target. In particular, the
proposed method continuously adapts the measurement reporting rate
of synchrophasor, frequency and ROCOF to actual signal conditions.
Thanks to this capability, it can effectively cope with both events re-
quiring more detailed descriptions and steady-state conditions that can
be summarised with few measurements. Waveforms from different real-
world scenarios have been used to validate the algorithm and prove
its efficiency and performance. Indeed the tracking accuracies based
on selected measurements are comparable with those at maximum
reporting rate and, on the other hand, they are remarkably better
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Fig. 9. Croatia 2021: Phasor amplitude estimation at retained measurement instants
with adaptive and fixed-rate decimation, P-IEC algorithm.

than those achievable with constant reporting rates providing the same
average data throughput.

Critical events can be followed in an efficient way, and different
PMU algorithms can be adapted to achieve similar tracking perfor-
mance targets, thus highlighting the importance of focusing on appli-
cation objectives instead than individual instrument performance. The
proposed method can thus represent a valuable tool for transmission
system operators to configure their wide area monitoring system and
enhance its operation, according to their specific needs.

As a final remark, it is worth noticing that the proposed method
is not intended to be fully compliant with the existing normative
framework, since it requires a higher flexibility in the data concen-
tration criteria. The entire definition of the communication protocol is
beyond the scope of this paper, but the PMU measurement data frame
already contains fields that could be easily customised for conveying
information about adaptive reporting rate variations. Furthermore ad
hoc adapters might be installed to support the proposed method in
existing infrastructures.
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