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Abstract—In recent years, Variational Quantum Algorithms
(VQAs) have emerged as a promising approach for solving
optimization problems on quantum computers in the NISQ
era. However, one limitation of VQAs is their reliance on
fixed-structure circuits, which may not be taylored for specific
problems or hardware configurations. A leading strategy to
address this issue are Adaptative VQAs, which dynamically
modify the circuit structure by adding and removing gates, and
optimize their parameters during the training. Several Adaptative
VQAs, based on heuristics such as circuit shallowness, entan-
glement capability and hardware compatibility, have already
been proposed in the literature, but there is still lack of a
systematic comparison between the different methods. In this
paper, we aim to fill this gap by analyzing three Adaptative
VQAs: Evolutionary Variational Quantum Eigensolver (EVQE),
Variable Ansatz (VAns), already proposed in the literature,
and Random Adapt-VQE (RA-VQE), a random approach we
introduce as a baseline. In order to compare these algorithms to
traditional VQAs, we also include the Quantum Approximate
Optimization Algorithm (QAOA) in our analysis. We apply
these algorithms to QUBO problems and study their perfor-
mance by examining the quality of the solutions found and
the computational times required. Additionally, we investigate
how the choice of the hyperparameters can impact the overall
performance of the algorithms, highlighting the importance of
selecting an appropriate methodology for hyperparameter tuning.
Our analysis sets benchmarks for Adaptative VQAs designed for
near-term quantum devices and provides valuable insights to
guide future research in this area.

Index Terms—Adaptative VQAs, Quantum Algorithms, NISQ,
Benchmark, QUBO

I. INTRODUCTION

Adaptative Variational Quantum Algorithms (VQAs) have
recently emerged as a leading strategy to overcome the limita-
tions of traditional VQAs [1]. Adaptative VQAs are quantum
algorithms which dynamically modify the structure of the
circuit, with the goal of creating ansatzes that are tailored to
the specific problem being solved and the available hardware.
The common approach adopted consists in defining a pool of
gates and some rules which describe how these gates should
be chosen and added to the circuit at each iteration. The rules
are inspired by the desirable properties of a quantum circuit,
such as circuit shallowness, low number of noisy gates, and
appropriate number of cnot gates for entanglement generation.
In Adaptative VQAs it is possible to distinguish two optimiza-
tion processes. The first aims to create the structure of the
circuit by adding and removing gates, while the second has

the goal of optimizing the parameters of the gates (e.g., angles
of rotation gates). Both structure and parameter optimization
aim to produce the best circuit by minimizing their respective
loss functions, which encode the information on the problem
we want to solve and the properties desired for the circuit.

Several Adaptative VQAs have already been proposed in
the literature. A first category includes ADAPT-VQE [2],
qubit-ADAPT-VQE [3], and qubit-excitation-based-ADAPT-
VQE [4], adaptative versions of the Variational Quantum
Eigensolver (VQE) [5], [6], which are designed for the same
purpose (i.e., finding the ground state of a Hamiltonian oper-
ator), but do not rely on a fixed-structure circuit. Specifically,
they start with an initial ansatz and dynamically add gates from
a pool that depends on the specific chemistry problem being
solved. There also exists an adaptative version of the Quantum
Approximate Optimization Algorithm (ADAPT-QAOA) [7],
which, at each iteration, chooses the most appropriate mixer
for the following layer of the circuit. Other Adaptative VQAs
are based on a genetic approach [8]–[10], while others develop
variational ansatzes using Machine Learning techniques [11],
[12]. Finally, some algorithms employ strategies like gate
simplification in order to reduce the circuit depth [13].

As there are multiple well-motivated methods, it is chal-
lenging to determine the best approach to solve a specific
problem. Moreover, several studies have already benchmarked
the performance of traditional VQAs [14], [15] and the vari-
ants of ADAPT-VQE [16], [17]. However, a comprehensive
comparison of different types of adaptative VQAs applied
to the same problem with the goal of assessing their ef-
fectiveness compared to fixed-structure methods is currently
lacking in the literature. Therefore, in this work we aim to
establish some benchmarks applying three Adaptative VQAs
and QAOA to different instances of Quadratic Unconstrained
Binary Optimization (QUBO) problems. Specifically, in our
analysis we want to assess: (i) the efficacy of adaptative
algorithms to identify a good structure for the circuit, (ii) the
effectiveness of Adaptative VQAs compared to methods that
use a fixed structure, (iii) the impact of the hyperparameters
on the performance of the algorithms.

II. ALGORITHMS BENCHMARKED

The goal of this study is to evaluate the efficacy of adap-
tative algorithms in optimizing quantum circuits. For this

407

2023 IEEE International Conference on Quantum Computing and Engineering (QCE)

979-8-3503-4323-6/23/$31.00 ©2023 IEEE
DOI 10.1109/QCE57702.2023.00053

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 Q

ua
nt

um
 C

om
pu

tin
g 

an
d 

En
gi

ne
er

in
g 

(Q
CE

) |
 9

79
-8

-3
50

3-
43

23
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

Q
CE

57
70

2.
20

23
.0

00
53

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 31,2023 at 14:27:16 UTC from IEEE Xplore.  Restrictions apply. 



reason, we choose the following algorithms: Evolutionary
Variational Quantum Eigensolver (EVQE) [10] and Variable
Ansatz (VAns) [13], both specifically designed to search for
the optimal circuit structure. In addition, we include two
further methods in our analysis: Random Adapt-VQE (RA-
VQE), an adaptative algorithm which employs a random
process to build the circuit structure, and the traditional Quan-
tum Approximate Optimization Algorithm (QAOA), a fixed-
structure algorithm. By analyzing the performance of these
methods, we can determine whether an adaptative algorithm
can improve the performance of a fixed-structure algorithm
and if an adaptative method that utilizes specific ideas for
building the circuit structure performs better than an adaptative
algorithm that relies on a random approach.

A. Evolutionary Variational Quantum Eigensolver

Evolutionary Variational Quantum Eigensolver (EVQE) is
a genetic algorithm designed to build the quantum circuit
for finding the ground state of a Hamiltonian operator. The
genomes in the population correspond to different quantum
circuits, and their genes correspond to blocks of gates.

EVQE involves several iterations for building the circuits
in the population. At each iteration, the algorithm applies the
operations of insertion and removal of gates with fixed proba-
bilities in order to vary the circuit structures while maintaining
limited depth. Differently from other quantum genetic algo-
rithms, EVQE builds the circuits utilizing parametric gates,
and optimizes their parameters at each iteration. However, to
reduce the computational cost, only the parameters of the last
added gene are optimized. At the end of each iteration, the
best circuits are selected and used for building the following
generation. The selection of the best parent genomes is guided
by a loss function, defined as follows:

〈ψ|H|ψ〉+ a g + b c (1)

where ψ is the final state of the circuit, H is the Hamiltonian
of the problem, g is the total number of genes, c is the number
of cnot gates, and a, b are two weight coefficients. This loss is
used both to select the best parent genomes at each iteration
and to choose the best circuit at the end of the process. By
minimizing the value of the loss function, EVQE is able to
identify a circuit with a low expectation and a limited number
of gates and cnot gates.

EVQE is different from traditional genetic algorithms be-
cause it does not employ crossover (i.e., exchange of genes
between genomes). This choice is made because, due to
entanglement, merging the circuits of two parent genomes does
not necessarily produce an offspring similar to either parent.
Therefore, it would be necessary to optimize the parameters
of the entire circuit, instead of just the last added gene.

Finally, to preserve population diversification, EVQE em-
ploys a speciation strategy, grouping similar individuals into
the same species. During the selection of parent genomes,
individuals belonging to species with fewer elements are
chosen with higher probability, in order to maintain a good
representation of all the species.

B. Variable Ansatz

Variable Ansatz (VAns) [13] is an Adaptative VQA, which
is chosen because it employs heuristics to guide the selection
and placement of gates, as well as simplification strategies to
obtain shallower circuits.

VAns starts from an initial layer (“Separable Ansatz” (SA)
or “Hardware Efficient Ansatz” (HEA), see Appendix) and
performs a number of iterations in which the circuit is modified
with the goal of minimizing a loss function. At each iteration,
the algorithm inserts blocks of gates compiling to the identity
(i.e., for which there exists a combination of parameters such
that these gates act like the identity gate). The number of
blocks to insert is randomly chosen at each iteration according
to an exponential distribution. Each block of gates is then
applied to randomly selected qubits, with higher probabili-
ties for the qubits with fewer gates. After inserting gates,
the algorithm applies simplification rules that fall into two
categories: algebraic and cost-related. Algebraic rules aim to
substitute gates with fewer gates that have the same function
(e.g., simplification of consecutive cnot gates applied to the
same qubits or sum of angles in consecutive rotations around
the same axis), while cost-related rules remove gates whose
contribution to reducing the loss function is negligible. The
algorithm subsequently employs a classical optimizer to adjust
the gate parameters (rotation angles), with the objective of
minimizing a cost function. At the end of each iteration, the
modifications to the circuit are accepted only if the difference
between the new value for the loss and the minimum loss
ever found is lower than a threshold. The stopping criterion is
given by a fixed number of iterations of the algorithm. Further
details about VAns can be found in Appendix.

C. Random Adapt-VQE

In order to provide a comparison between the adaptative
algorithms described, which use heuristics to build the circuit
structure, with an adaptative algorithm that constructs the
circuit through a random process, we introduce a new baseline
which we call Random Adapt-VQE (RA-VQE). We consider
two possible choices for the initial layer of the quantum circuit:
the same “Separable Ansatz” (SA) and “Hardware Efficient
Ansatz” (HEA), used by VAns (see Appendix). Then, at each
iteration we randomly select a new gate from a pool of rotation
and cnot gates, and apply it to randomly chosen qubits. After
adding a new gate, we optimize all the parameters of the circuit
using a classical optimizer. The algorithm terminates when
a certain number of iterations for the search of the circuit
structure have been performed.

D. Quantum Approximate Optimization Algorithm

Finally, in order to provide a comparison with a method that
relies on a fixed-structure circuit, we also conduct experiments
using the widely adopted Quantum Approximate Optimization
Algorithm (QAOA) [18], a traditional VQA particularly suited
to solve combinatorial optimization problems, in particular
QUBO problems. We consider the standard version of QAOA,
which includes an initial layer of Hadamard gates, a mixer
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built with rotation gates around the x-axis, and initial param-
eters randomly chosen from a uniform distribution.

III. EXPERIMENTAL PROTOCOL

In this section we describe our experimental protocol,
focusing on the choices we make in order to perform the
experiments consistently and compare the different algorithms
in terms of quality of the solution found, number of gates and
computational time.

A. Problem Instances

We evaluate the algorithms on three instances: MaxCut,
Minimum Vertex Cover, and Number Partitioning, adopting
the QUBO formulations described in [19]. For building the
MaxCut instances, we consider both Erdős-Rényi random
graphs with an edge probability of 0.7, and, subsequently, a
star-topology graph. For Minimum Vertex Cover, we employ
other Erdős-Rényi random graphs with an edge probability of
0.7, using a penalty coefficient of 8 in the QUBO formulation
described in [19] (choosing the best value for the penalty
is outside the scope of our work). This penalty is applied
whenever both endpoints of an edge are excluded from the
candidate cover. Lastly, for Number Partitioning, we generate
instances by randomly selecting integer numbers from a list
that ranges from 1 to 20.

In each problem, the goal is to find the binary vector
that minimizes the QUBO cost function. In order to find the
solution of the QUBO problem, we follow the conventional
approach of converting the QUBO formulation into an Ising
problem [20]. Consequently, the objective becomes to deter-
mine the ground state of a Hamiltonian operator, which can be
accomplished by utilizing a quantum circuit and minimizing
the expectation of the Hamiltonian on its final state.

For each type of problem, we consider instances of different
size, with N=4, 8, 12, and 15 variables. For each type of
problem and size, we generate ten different QUBO instances,
run the algorithms and report the averaged results.

B. Circuit Structure and Parameter Optimization

The algorithms we consider require two stages. The first
stage is the identification of a new candidate circuit structure,
which is done according to the specific algorithm criteria
(i.e., random gate insertion, simplification of redundant gates,
selection of best circuits). Once a new candidate structure has
been identified, its parameters (i.e., angles for the rotation
gates) are optimized using a classical optimizer which aims
to minimize the circuit expectation. We find the best gate
parameters using the SciPy COBYLA [21], a gradient-free and
noise-resilient optimizer, largely adopted to tune parameters in
variational quantum algorithms [22], [23]. Once the optimal
parameters for the given structure have been obtained, the
structure is evaluated with the specific algorithm loss. The
process is then repeated by generating a new candidate struc-
ture, until a stopping criterion is reached. The choice of the
loss function depends on the algorithm being used. For VAns,
Random Adapt-VQE, and QAOA, the loss is given by the

TABLE I
HYPERPARAMETERS AND ALLOWED RANGE FOR EACH ALGORITHM

EVQE Range VAns Range

population size {5, . . . , 20} initial layer {SA, HEA}
dist threshold {1, . . . , 10} scale [0, 1.5]
prob insertion [0, 1] temperature [1, 20]
prob removal [0, 1] accept wall [30, 70]
a [0, 0.5] accept perc [0, 1]
b [0, 0.5] min randomness [30, 50]

max randomness [50, 70]
decrease to {1, . . . , 10}
factor accept perc [0.8, 0.99]

RA-VQE Range QAOA Range

initial layer {SA, HEA} p {1, . . . , 10}

expectation on the final state, while, for EVQE, it consists in
the expectation with added penalties defined in (1). The circuit
resulting in the lowest loss function encountered during the
optimization process is chosen as the solution for our problem.

C. Hyperparameter Tuning

Each algorithm has a set of hyperparameters that affect
the structure search (e.g., circuit depth, penalty coefficients,
probabilities of adding or removing gates) and need to be
optimized to ensure that all methods are evaluated in a fair
and consistent way. For this purpose, we adopt a Bayesian
optimization approach [24], [25], which is widely used to tune
hyperparameters in Machine Learning [26]. Specifically, for
each problem size, we generate a MaxCut instance derived
from an Erdős-Rényi random graph with an edge probability
of 0.7. Then, for each algorithm and number of variables,
we test 50 hyperparameter configurations and choose the one
that yields the lowest value for the same loss optimized
by the specific algorithm considered. Since some algorithms
are computationally expensive, especially when run on large
instances, we set a time limit of 7 days for testing the
50 configurations. If the time limit is exceeded, we select
the configuration that leads to the lowest loss among those
evaluated.

The complete list of hyperparameters for each algorithm
and their ranges of allowed values can be found in Table I.
We determine each range by performing some initial trials.

EVQE has many hyperparameters to tune, including the
population size, the weights a and b for the penalties in
its loss function (1), and the probabilities of applying the oper-
ations of gate addition (prob insertion) and gate removal
(prob removal) at each iteration. The last hyperparameter
to tune is the distance threshold dist threshold used to
determine if two genomes belong to the same species.

VAns has the highest number of hyperparameters. The first
choice is the initial layer, followed by scale, which
regulates the exponential distribution used to determine the
number of gates to insert at each iteration and temperature,
which defines the probabilities of choosing the qubits where
to apply the new gates (a smaller temperature implies that
the probability of getting a qubit with fewer gates is higher).
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Then, the hyperparameter accept wall determines whether
or not to accept the elimination of gates during the cost-
related simplification step. Accept wall is varied during
the iterations, based on other hyperparameters, referred to as
(min randomness, max randomness, and decrease
to). Finally, the threshold accept perc is used to decide
whether to accept a new solution, depending on the difference
between its loss and the lowest loss found so far. This threshold
is reduced at each iteration using a factor referred to as
factor accept perc, which makes the algorithm more
selective in accepting worse solutions over time.

For RA-VQE, the only hyperparameter to tune is the
initial layer. QAOA also has only one hyperparameter,
which is the depth of the circuit p. However, tuning this hyper-
parameter is crucial because it affects the expressibility of the
circuit, the search space for the optimizer, the computational
cost, and the resilience to noise when using real hardware.

D. Computational Budget

In order to ensure consistency among the different methods,
given a problem instance, each algorithm has a maximum
budget of 104 evaluations of the circuit expectation: if the
maximum budget is reached, the algorithm is stopped. Then,
given a new candidate structure, its parameter optimization
has a budget of 50 iterations. Since QAOA has a fixed-
structure circuit, its entire evaluation budget will be used for
the parameter tuning phase. Therefore, for QAOA the classical
parameter optimizer will have a budget of 104 iterations
instead of 50. We conduct our circuit simulations utilizing the
IBM’s Qiskit statevector simulator.

IV. RESULTS

In this section we illustrate the results of our study. Table II
shows the results for the execution of all the algorithms on the
MaxCut instances (generated both from Erdős-Rényi and star-
topology graphs) and Table III shows the results for Vertex
Cover and Number Partitioning. In particular, we highlight
some insights concerning approximation ratio and expectation,
number of gates and cnot gates and computational time.

A. Approximation Ratio and Expectation

Our primary focus is the quality of the solution, which we
measure using the approximation ratio. This metric is defined
as the ratio between the final expectation and the exact cost
of the solution. An approximation ratio close to 1 suggests
that the final expectation is close to the cost of the ground
state, which in turn indicates a high probability of finding the
exact solution when measuring the final state of the circuit.
Thus, a method can be considered effective if it leads to an
approximation ratio close to 1.

In Table II and III, we can see that all the algorithms achieve
highly accurate solutions with approximation ratios close to 1.

It is worth noting that, while the approximation ratio and
the expectation are closely related, we include both in our
table because their standard deviations provide different types
of information. The standard deviation of the approximation

ratio indicates how much the algorithm performance varies
across different instances, while the variance of the expectation
captures also how the costs of the problem solutions differ
from each other. We observe that the variance of the expecta-
tion, when expressed as a percentage, is highest for Number
Partitioning. However, the low variance of the approximation
ratio for all algorithms suggests that they perform consistently
well even when considering different instances.

Moreover, additional experiments (not included here for
brevity) confirm that QAOA can achieve good results only
when the parameter optimizer is allowed to perform a suffi-
ciently large number of iterations. For instance, limiting the
parameter optimizer to 50 iterations results in significantly
lower approximation ratios, averaging at 0.96 for N=4, 0.81
for N=8, 0.78 for N=12, and 0.79 for N=15 across the different
instances.

B. Number of Gates and Cnot
Upon the examination of Table II and III, it is clear that, de-

spite having similar approximation ratios, there is a significant
difference between Adaptative VQAs and QAOA in terms of
the number of gates and cnot gates in the best circuit found.
The adaptative algorithms require a low number of gates, in
particular cnot gates, while QAOA requires a larger number of
both. This represents a significant drawback for QAOA, as it
leads to longer computational times for circuit execution and
reduces its effectiveness in noisy scenarios. Moreover, note
that in QAOA the number of gates crucially depends on the
problem being solved. For example, the star-topology graph
has far fewer edges than the Erdős-Rényi random graph, which
results in fewer rotation and cnot gates.

Then, it is interesting to note that the random approach
discovers a circuit with a relatively low number of gates, even
though also deeper circuits are explored (the deepest circuit
explored for each instance has around 200 gates). This finding
suggests that, even in noise-free scenarios, shorter circuits lead
to better results, possibly because the parameter optimizer
performs better with fewer angles to tune.

Furthermore, VAns builds circuits with the lowest number of
gates and cnot gates, probably because it is the only algorithm
that applies simplifications to remove gates, suggesting that
the other methods could benefit from a similar technique.
In particular, it is possible to note that, for the instances
with N=15, the optimal circuit found by VAns has zero cnot
gates. Overall, VAns exhibits a good balance between solution
quality and circuit length, making it a promising approach.

Finally, the algorithms show a significant variation also in
circuit depths (not reported due to space limitations). QAOA
requires deep circuits, with an average depth often exceeding
100 for instances of size 12 and 15. In contrast, VAns excels
in producing shallow circuits, almost always with a depth of 1.
EVQE and RA-VQE lie in between, with intermediate circuit
depths ranging from 3 to 14.

C. Computational Times
The time column in Table II and III indicates the number

of seconds for the circuit optimization required by each
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TABLE II
RESULTS FOR THE MAXCUT INSTANCES. APPROX. RATIO, EXPECTATION, AND TIME ARE REPORTED WITH THEIR RESPECTIVE STANDARD DEVIATIONS.

N Algorithm
MaxCut on Erdős-Rényi Graphs MaxCut on Star Graphs

Approx.
Ratio Expectation Gates Cnot Time [s] Approx.

Ratio Expectation Gates Cnot Time [s]

4

EVQE 1.00 ± 0.00 -3.00 ± 0.94 9 1 231 ± 18 1.00 ± 0.00 -3.00 ± 0.00 10 1 229 ± 19
VAns 1.00 ± 0.00 -3.00 ± 0.94 2 0 236 ± 134 1.00 ± 0.00 -3.00 ± 0.00 2 0 133 ± 30
RA-VQE 1.00 ± 0.00 -3.00 ± 0.94 6 0 120 ± 2 1.00 ± 0.00 -3.00 ± 0.00 6 1 120 ± 2
QAOA 0.96 ± 0.09 -2.85 ± 0.88 19 7 ∼ 0 1.00 ± 0.00 -3.00 ± 0.00 17 6 ∼ 0

8

EVQE 0.99 ± 0.01 -13.98 ± 0.97 37 5 1174 ± 77 1.00 ± 0.01 -6.97 ± 0.01 50 7 328 ± 20
VAns 0.99 ± 0.04 -13.90 ± 1.20 4 0 112 ± 14 1.00 ± 0.00 -7.00 ± 0.00 5 0 122 ± 16
RA-VQE 1.00 ± 0.00 -14.09 ± 0.98 16 3 156 ± 2 1.00 ± 0.00 -7.00 ± 0.00 14 2 154 ± 4
QAOA 0.98 ± 0.03 -13.75 ± 1.01 146 81 35 ± 9 1.00 ± 0.00 -7.00 ± 0.00 66 28 7 ± 1

12

EVQE 0.96 ± 0.01 -29.83 ± 1.76 20 1 1280 ± 109 0.95 ± 0.02 -10.47 ± 0.18 20 1 1182 ± 91
VAns 0.95 ± 0.04 -29.30 ± 2.21 5 0 143 ± 12 0.98 ± 0.04 -10.80 ± 0.42 5 0 210 ± 141
RA-VQE 0.99 ± 0.01 -30.57 ± 1.55 27 5 731 ± 21 1.00 ± 0.01 -10.95 ± 0.05 20 2 723 ± 13
QAOA 0.98 ± 0.02 -30.44 ± 1.64 471 282 1020 ± 213 1.00 ± 0.00 -11.00 ± 0.00 147 66 121 ± 9

15

EVQE 0.96 ± 0.02 -44.13 ± 2.29 61 7 14242 ± 1887 0.96 ± 0.02 -13.38 ± 0.34 84 13 13296 ± 1500
VAns 0.96 ± 0.03 -44.60 ± 2.63 7 0 607 ± 90 0.99 ± 0.03 -13.80 ± 0.42 7 0 1553 ± 1360
RA-VQE 0.98 ± 0.02 -45.48 ± 1.97 29 4 24144 ± 2463 0.99 ± 0.01 -13.88 ± 0.06 22 2 24052 ± 1733
QAOA 0.97 ± 0.02 -44.60 ± 2.14 466 281 24862 ± 3355 1.00 ± 0.00 -14.00 ± 0.00 129 56 3679 ± 471

TABLE III
RESULTS FOR THE VERTEX COVER AND THE NUMBER PARTITIONING INSTANCES. APPROX. RATIO, EXPECTATION, AND TIME ARE REPORTED WITH

THEIR RESPECTIVE STANDARD DEVIATIONS.

N Algorithm
Vertex Cover on Erdős-Rényi Graphs Number Partitioning

Approx.
Ratio Expectation Gates Cnot Time [s] Approx.

Ratio Expectation Gates Cnot Time [s]

4

EVQE 1.00 ± 0.00 -25.48 ± 9.08 12 1 214 ± 12 1.00 ± 0.00 -464.09 ± 166.16 12 1 175 ± 12
VAns 1.00 ± 0.01 -25.40 ± 8.95 2 0 128 ± 22 0.99 ± 0.01 -461.80 ± 167.07 2 0 153 ± 74
RA-VQE 1.00 ± 0.00 -25.50 ± 9.09 9 2 121 ± 4 1.00 ± 0.00 -464.37 ± 166.41 10 2 123 ± 3
QAOA 0.99 ± 0.01 -25.20 ± 8.78 22 7 4 ± 1 1.00 ± 0.00 -463.64 ± 165.47 26 12 9 ± 3

8

EVQE 1.00 ± 0.00 -153.23 ± 19.08 52 7 318 ± 22 1.00 ± 0.00 -1792.06 ± 810.76 38 6 335 ± 33
VAns 0.99 ± 0.02 -152.00 ± 17.42 6 1 107 ± 11 0.99 ± 0.01 -1784.50 ± 801.51 3 1 100 ± 9
RA-VQE 1.00 ± 0.00 -153.48 ± 19.15 14 2 156 ± 4 1.00 ± 0.00 -1795.56 ± 811.39 13 1 160 ± 4
QAOA 0.99 ± 0.00 -152.79 ± 19.17 159 80 242 ± 98 1.00 ± 0.00 -1795.37 ± 810.96 192 112 695 ± 111

12

EVQE 0.99 ± 0.00 -356.76 ± 21.04 25 2 1140 ± 67 0.99 ± 0.00 -3751.91 ± 1139.08 28 3 1180 ± 164
VAns 0.97 ± 0.03 -348.68 ± 21.45 10 0 148 ± 11 0.99 ± 0.01 -3739.40 ± 1139.47 4 1 123 ± 14
RA-VQE 1.00 ± 0.00 -358.59 ± 20.64 21 3 722 ± 13 1.00 ± 0.00 -3768.12 ± 1141.37 20 2 839 ± 124
QAOA 1.00 ± 0.00 -357.70 ± 20.40 498 276 3825 ± 114 1.00 ± 0.00 -3766.05 ± 1141.98 642 396 4403 ± 167

15

EVQE 0.99 ± 0.00 -558.47 ± 42.41 37 4 14964 ± 3493 0.99 ± 0.00 -5445.82 ± 1150.11 35 3 24656 ± 845
VAns 0.99 ± 0.00 -559.04 ± 42.28 14 0 2287 ± 239 1.00 ± 0.00 -5475.76 ± 1140.00 6 0 813 ± 315
RA-VQE 1.00 ± 0.00 -560.98 ± 42.40 22 2 20377 ± 4122 1.00 ± 0.00 -5491.80 ± 1158.48 26 4 18698 ± 5008
QAOA 1.00 ± 0.00 -559.95 ± 42.07 505 287 27876 ± 1745 1.00 ± 0.00 -5484.86 ± 1159.61 675 420 26206 ± 15692

algorithm and provides valuable information for understanding
the runtimes of the different methods.

It is worth noting that VAns almost always achieves the
lowest computational time for the instances of size 12 and
15, probably because it tends to create shorter circuits which
require less time to execute. Additionally, VAns has the highest
variance in computational time, possibly due to the numerous
stochastic components that can affect the algorithm runtime.

Moreover, the Adaptative VQAs exhibit similar execution
times for different problems (if the number of variables is kept
constant). On the other hand, QAOA execution time strongly
depends on the specific problem being solved. For example,
solving the MaxCut problem on an Erdős-Rényi graph takes at
least five times longer than solving MaxCut on a star-topology
graph. This discrepancy is likely due to the number of gates

in the circuit, which for QAOA is directly tied to the problem
being addressed, as observed in the previous subsection.

D. Hyperparameters

The optimal values obtained for the hyperparameters of each
algorithm are reported in Table IV.

For EVQE, we can observe that populations with a larger
number of individuals are preferred, and that the best co-
efficients for the penalties in the loss function are almost
always 0. Regarding QAOA, we find that shallower circuits
are preferable, even in our noise-free scenario. This is likely
because larger values of p lead to circuits with more gates,
and therefore a larger number of parameters to tune. As a
result, considering deeper circuits may lead to worse solutions
because the parameter optimizer struggles to find the global
optimum when too many parameters are involved.
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TABLE IV
BEST HYPERPARAMETERS FOUND WITH THE BAYESIAN OPTIMIZER

Algorithm Hyperparameter N=4 N=8 N=12 N=15

EVQE

population size 20 19 20 14
dist threshold 1 7 4 3
prob insertion 0.282 0.451 0.164 1.000
prob removal 1.000 0.000 0.287 0.178
a 0.000 0.000 0.000 0.000
b 0.000 0.000 0.098 0.000

VAns

initial layer SA SA SA SA
scale 1.137 0.459 0.489 0.000
temperature 11.477 8.027 5.737 20.000
accept wall 58.522 55.661 34.411 30.000
accept perc 0.042 0.323 0.096 0.000
min randomness 49.968 39.338 38.776 50.000
max randomness 67.402 51.267 51.222 70.000
decrease to 7 9 1 10
factor accept perc 0.820 0.810 0.973 0.800

RA-VQE initial layer SA SA SA SA

QAOA p 1 2 3 2

Moreover, we remark that selecting appropriate ranges for
certain hyperparameters is essential for obtaining a good
performance of the algorithm. For example, acceptance
wall in the VAns method must be chosen carefully, otherwise
it could cause the removal of all the gates during the cost-
related simplification step, leading to an empty circuit and
rendering every previous iteration of the VAns algorithm
useless. Similarly, the penalty weights in the loss function of
EVQE must be selected with care. If they are set too high, the
algorithm may focus only on minimizing the number of gates
and ignore the primary objective of optimizing the expectation.

Finally, while experimenting with different hyperparameter
configurations, we observed a significant variation in the
algorithm loss depending on the chosen configuration. For
example, when applied to a MaxCut instance with N=15
variables, VAns achieved a loss value of -49 with the best
hyperparameter configuration, while the worst configuration
resulted in a loss of -37.

V. CONCLUSIONS

Our study benchmarks three different Adaptative Varia-
tional Quantum Algorithms (EVQE, VAns, and RA-VQE) and
QAOA for solving QUBO problems in noise-free scenarios.
Our results show that the adaptative algorithms do not provide
an advantage in terms of approximation ratio, since the value
obtained with all methods is always close to 1. However,
we observe significant differences in the number of gates
and runtimes. QAOA generates high-quality solutions, but
its fixed-structure circuit requires a high number of gates,
increasing the computational time and making it more prone
to errors in noisy scenarios. On the other hand, Adaptative
VQAs, in particular VAns, can find shorter circuits that main-
tain solution quality, making them promising alternatives to
traditional VQAs. Similarly, from the comparison between
EVQE and VAns with RA-VQE, the former do not show an
advantage in terms of approximation ratio, but they sometimes

allow to obtain a shorter circuit. Moreover, it is worth noting
that the adaptative algorithms offer the significant advantage
of producing flexible circuits, which can be tailored to the
constraints and requirements of the specific hardware.

Finally, our work suggests potential directions for future
research. One possible avenue is the investigation of the
performance of adaptative algorithms on larger problem in-
stances and in noisy scenarios, as well as the evaluation of
their effectiveness on real quantum hardware. Furthermore,
the techniques adopted by a particular adaptative algorithm,
such as the circuit simplification strategies employed by VAns,
could potentially be adapted for use in other algorithms.

Overall, our study provides insights into the potential of
Adaptative VQAs and emphasizes the importance of consider-
ing all relevant dimensions when evaluating these algorithms:
circuits leading to solutions with similar approximation ratios
can have a significantly different number of gates, which is
a crucial dimension to consider when assessing the efficiency
and feasibility of quantum algorithms.

APPENDIX

Here we specify some details and specific choices made
for the VAns algorithm1. Firstly, we consider the “Separable
Ansatz” (SA) and “Hardware Efficient Ansatz” (HEA) in FIG.
2 of the original paper [13] as options for the initial layer, and
use the blocks of gates depicted in FIG. 3 as options for the
gates to insert at each iteration.

The circuit simplification process involves applying alge-
braic rules (Section IIC, rules 1 to 5) iteratively until no further
modifications are possible. Then, we use the commutation
rules from FIG. 4 and check if the circuit can be further
simplified applying the algebraic rules again. These simpli-
fication and commutation rules are applied iteratively until
no further simplification is possible. Next, we perform cost-
related simplifications by removing each gate from the circuit,
one at a time, and evaluating the expectation without that
gate. If this expectation is lower than the expectation obtained
considering the full circuit, or higher but within a certain
threshold, we consider the modified circuit as acceptable. After
testing the removal of all the gates, we choose the circuit
leading to the lowest expectation among the acceptable ones.
We continue this process of simplification iteratively, until no
removal is considered acceptable. We then repeat the process
of applying both algebraic and cost-related simplifications,
until no further modification is possible.

Finally, it is worth noting that the probabilities for choosing
the number of blocks of gates to insert at each iteration and the
qubits where to place them, as well as the formulas for varying
the hyperparameters temperature, accept wall and
accept perc at the end of each iteration are derived from
the GitHub code with the original implementation of VAns.

1Some specific choices are not included in the paper, but based on
the GitHub code available at https://github.com/matibilkis/qvans and on a
discussion with the authors.
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