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ABSTRACT

The directivity of a musical instrument is a function that

describes the spatial characteristics of its sound radiation.

The majority of the available literature focuses on mea-

suring directivity patterns, with analysis mainly limited to

visual inspections. Recently, some similarity metrics for

directivity patterns have been introduced, yet their appli-

cation has not being fully addressed. In this work, we in-

troduce the problem of musical instrument retrieval based

on the directivity pattern features. We aim to exploit the

available similarity metrics for directivity patterns in order

to determine distances between instruments. We apply the

methodology to a data set of violin directivities, including

historical and modern high-quality instruments. Results

show that the methodology facilitates the comparison of

musical instruments and the navigation of databases of di-

rectivity patterns.

1. INTRODUCTION

The analysis of the directional sound radiation characteris-

tics of musical instruments is a rather old topic in the liter-

ature with first works by Olson [1] and Meyer [2–4] dating

back to the seventies. In the past few decades, numerous

studies were proposed mainly focusing on accurate mea-

surements of the directivity patterns [5–8] or on qualitative

comparisons of the instrument characteristics [9–11].

Recently, the interest in spatial audio technologies [12]

for virtual and augmented reality increased the attention

towards the modeling and analysis of directivity patterns.

In particular, the modeling of directional sound sources

showed to provide improved sound field reconstruction for

the navigation of sound scenes [13, 14]. Therefore, differ-

ent solutions have been proposed to include the directiv-

ity of acoustic sources in simulation frameworks such as

boundary and finite element methods [15], numerical sim-

ulation [16] and geometrical acoustics [17]. As a matter of

fact, the directivity of sound sources impacts on the accu-

racy of room acoustics simulation [17] and it was shown to

be relevant for auralization [18].
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In [19], the authors demonstrated that users are able

to perceive differences between omnidirectional and direc-

tional sound sources, however the evaluation is limited to a

single-tone dependent directivity pattern. In the work [20],

it was shown that fluctuations occurring in the directivity

patterns due to the movements of the musician influence

the perception of listeners both in anechoic and reverberant

conditions. More recently, in [21], the difference between

frequency-dependent directivities and an average directiv-

ity pattern has been investigated proving the importance

of modelling specific frequency-dependent directivities by

means of listening tests.

Several studies [22–26] focus on the analysis of voice

directivity patterns. In particular, [23, 25] analyze the pat-

terns associated to held or isolated vowels and consonants

from speech and singing voice [24]. Interestingly, the re-

sults on mouth and vocal tract configurations [26] showed

their impact on the directivity pattern shape.

As far as the musical instruments are concerned, most

of the works put the emphasis on accurate measurement

procedures. Typically, the directional sound pressure is

acquired in anechoic environments and under controlled

conditions [6, 7]. Alternatively, near-field acoustic holog-

raphy [27, 28] has been employed for the evaluation of the

directional sound radiation using scanning microphone ar-

rays [29]. More recently, a flexible procedure for measur-

ing the directivity pattern of sound sources that works in

low-reverberant environments was introduced in [8].

In [9], the directivity patterns of forty one orchestral

instruments have been acquired and analyzed. The in-

struments were played by musicians, rather than mechani-

cally excited, showing that the presence of the player body

has the effect of smoothing the patterns. Nevertheless, al-

though [9] draws an interesting analysis of the patterns, the

evaluation is mainly limited to graphical inspection with-

out a systematic comparison of the directivity patterns.

As a matter of fact, the quantitative and objective com-

parison of directivity patterns is still an open challenge.

In the literature, some simple metrics have been proposed

[30–33]. Although effective, the interpretation of the re-

sults and the quantification of the differences might not be

easily interpreted. In general, most of the proposed metrics

rely on the correlation between the directivity patterns, ei-

ther in the spherical harmonics domain [30] or in the spa-

tial domain [32]. In [30], the authors employed the nor-

malized cross correlation (NCC) over the spherical har-

monics coefficients of the directivity patterns. The anal-
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ysis assessed similarities of partials at a given frequency

generated by different played pitches. In [34], a rotation-

invariant version of the NCC has been proposed to com-

pare the directivity patterns of the data sets in [9,35], which

have been made available through [36]. The devised met-

ric has been used to find similarities across the partials of

one instrument or between different instruments and a vi-

sualization of the corpus through MultiDimensional Scal-

ing (MDS) [37] has been provided.

More recently, in [38], a novel set of metrics has been

introduced, which includes the Jaccard similarity index

(JSI) and the centers of mass distance (CMD) in addition

to NCC. Both JSI and CMD are derived from the anal-

ysis of the so-called principal radiation regions, namely

angular regions of the directivity pattern which exhibit the

highest sound energy radiation. In [38], the metrics are

used for the characterization of directivity patterns of pres-

tigious historical violins enabling the quantitative compari-

son of the instruments. Nonetheless, the analysis is limited

to a small set of 10 instruments and the conclusions drawn

by the analysis of each metric, although relevant, are not

readily combined.

In this work, we aim to exploit available similarity met-

rics for directivity patterns in a comprehensive and sys-

tematic fashion. Considering the problem of musical in-

strument retrieval based on the directivity pattern features

[34, 39], we introduce novel distances, namely the Jaccard

similarity distance (JSD) based on JSI, and the directivity

index distance (DID) derived from the so-called directivity

index (DI), which are combined with the CMD in a cumu-

lative Directivity Pattern Distance (DPD). The proposed

distances are blind with respect to the source type, be-

cause they work directly on the directivity values. There-

fore, ideally they can be applied on any kind of sound

sources, including musical instruments of different fami-

lies. The joint adoption of multiple distances allows us to

take into account different aspects of the directivity pat-

terns without limiting the comparison to a single metric.

Moreover, the introduced DPD provides a single-valued

solution that represents the distance between the directiv-

ity patterns combining the information provided by each

considered metric.

Although the proposed distances can be applied on dif-

ferent musical instruments, we tested them on a data set of

violin directivities. As a matter of fact, violins represent an

interesting case study due to the highly variability of direc-

tivity patterns among the instruments [40, 41]. The corpus

contains a total of 18 instruments equally divided between

10 historical and 8 modern high-quality violins. To the

best of our knowledge, this is the largest data set of vio-

lin directivity patterns evaluated in the current literature.

The analysis allowed us to observe interesting similarities

among the instruments, identifying relevant information in

the data set. In particular, modern instruments are rela-

tively distant from the historical ones. Moreover, thanks to

the adoption of DPD, we could identify clusters of histori-

cal instruments made by one violin maker and two modern

“twin” violin. Similarly to [34], we exploit the MDS tech-
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Figure 1. Example of directivity pattern D(φ, θ, ω) of a

Genelec 8030A at 1.4 kHz, taken from [43]. The principal

radiation region P is delimited by a solid black line, while

the center of mass r is marked by a black cross. The refer-

ence system is reported from top and frontal views.

nique for the visualization of the data set, which allows

us to graphically assess the distances between the instru-

ments observing the clusters of similar violins within. The

obtained results pave the way to the retrieval of musical

instruments according to their directional sound radiation

and open novel perspectives for the exploitation of direc-

tivity pattern databases.

2. SIMILARITY METRICS FOR DIRECTIVITY

PATTERNS

Let us define the directivity pattern of an acoustic source as

the square-integrable function D(·) ∈ L
2(S2) describing

the energy of the directional sound radiation. The directiv-

ity pattern is thus defined over a unit sphere comprising all

the possible directions of emission. It follows that the di-

rectivity pattern can be conveniently expressed through the

widely adopted spherical harmonics expansion [5,8,13] as

D(φ, θ, ω) =
N∑

n=0

n∑

m=−n

Cm
n (ω)Y m

n (φ, θ), (1)

where φ ∈ [0, 2π] and θ ∈ [0, π] are the azimuth and

inclination angles, respectively, Cm
n (ω) are the spherical

harmonics coefficients associated with the source directiv-

ity pattern and Y m
n (φ, θ) is the spherical harmonic of de-

gree n and order m [42]. It is worth noting that the di-

rectivity pattern (1) depends on the temporal frequency ω.

Moreover, in (1), we assumed the directivity pattern to be

band-limited being N the maximum expansion order. In

Fig. 1, an example of a loudspeaker directivity pattern is

reported.

2.1 Data model

2.1.1 Binary directivity pattern

In [38], the principal radiation region of a directivity pat-

tern is defined as the set of adjacent directions P that cor-

respond to the maximum acoustic energy emission. In par-

ticular, given a threshold value τ , the principal radiation

region is defined as

P(ω) =
{
(φ̄p, θ̄p) : DdB(φ̄p, θ̄p, ω) ≥ τ

}
, (2)

where τ = −3 dB and

DdB(φ, θ, ω) = 10 log10

(
D(φ, θ, ω)

max(D(φ, θ, ω))

)
(3)

represents the normalized directivity pattern in decibel

scale with max the function extracting its maximum value.
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In Fig. 1, the principal radiation region P is delimited by a

solid black line.

The thresholding procedure in (2) allows one to define

the binary directivity pattern indicating the principal radi-

ation region as

D̄(φ, θ, ω) =

{
1 (φ, θ) ∈ P(ω)
0 otherwise

. (4)

The adoption of the binary patterns is preferable rather

than considering only the direction of the maximum, i.e.

a single point, in the directivity pattern. As a matter of

fact, the binary pattern indicates the regions of high energy

emission, i.e. principal radiation, which can have arbitrary

shape and extension accordingly to the overall directional

characteristics of the directivity pattern.

2.1.2 Centers of mass

Although the binary pattern (4) provides a comprehensive

representation of the principal radiation regions, it is con-

venient to further identify a “preferred” direction of emis-

sion for each region. Therefore, we define the center of

mass for a principal radiation region P as [38]

r(ω) =
1

M

∑

p∈P(ω)

mprp, (5)

where rp =
[
sin θ̄p cos φ̄p, sin θ̄p sin φ̄p, cos θ̄p

]T
are the

points belonging to the set defined in (2). In practice, the

directions of P are weighted using the corresponding en-

ergy value in the normalized pattern, namely

mp =
D(φ̄p, θ̄p, ω)

max(D(·, ω))
, with M =

∑

p∈P(ω)

mp. (6)

The center of mass of the directivity pattern is marked in

Fig. 1 by a black cross.

2.2 Distance Metrics

In order to compare the directivity patterns of acoustic

sources within a data set, we rely on a set of metrics re-

cently proposed in [38]. Differently from customarily di-

rectivity pattern comparisons, where a single metric is con-

sidered, the employment of multiple metrics allows us to

take into account different characteristics that are captured

by each metric.

2.2.1 Jaccard Similarity Distance (JSD)

According to [38], we define the Jaccard similarity index

(JSI) between two binary directivity patterns as

JSIk,j(ω) =
|D̄k(ω) ∩ D̄j(ω)|

|D̄k(ω) ∪ D̄j(ω)|
, (7)

where ∩ is the intersection operator and ∪ is the union be-

tween the binary patterns of the kth and jth sources. From

the definition in (7), it follows that JSIk,j(ω) = 1 when

two binary patterns match exactly, while JSIk,j(ω) = 0
when the corresponding principal radiation regions do not

overlap. In order to interpret the JSI in terms of a distance,

we introduce the JSD metric as

JSDk,j(ω) = 1− JSIk,j(ω), (8)

so that the JSD decreases up to 0 when two principal radi-

ation regions are matched and the maximum value of JSD
is 1, indicating two completely disjoint regions.

2.2.2 Center of Mass Distance (CMD)

The CMD is defined in order to compute the distance be-

tween two centers of mass as [38]

CMDk,j(ω) = arctan

(
|rk(ω)× rj(ω)|

rk(ω) · rj(ω)

)
, (9)

where × and · denote the vectorial cross and dot products,

respectively. As in [33], when multiple centers of mass are

present inside the directivity patterns, the vectors r (5) are

selected in order to retain the lowest CMDk,j(ω) values.

2.2.3 Directivity Index Distance (DID)

The directivity index (DI) is a well-known feature that de-

scribes the directionality of a sound source [33]. In par-

ticular, the DI measures how much energy is concentrated

around the principal directions of a directivity pattern. In

this work, we consider the DI of the normalized directivity

patterns defined as

DIk(ω) =
1

∫ 2π

0

∫ π

0
D̂k(φ, θ, ω)dφdθ

, (10)

where D̂k is the normalized directivity pattern of the kth

source in linear scale. The DI in (10) is computed with

respect to the maximum value of the directivity pattern,

which in case of normalized patterns is equal to 1. It fol-

lows that high DI values occur for directivity patterns with

large principal radiation regions, and vice versa.

In order to compare two directivity patterns in terms of

their DI values, we define the DID as

DIDk,j(ω) =

√
(DIj(ω)−DIk(ω))

2
, (11)

where DIk and DIj are the DI (10) of the kth and jth

sources, respectively.

2.2.4 Directivity Pattern Distance (DPD)

In order to conveniently compare two sound sources in

terms of their directivity features, we introduce an over-

all metric that combines the previously defined JSD, CMD
and DID into a scalar value. Hence, we define the so-called

directivity pattern distance DPD metric as

DPDk,j= JSDk,j+
CMDk,j

max(CMDk,j)
+

DIDk,j

max(DIDk,j)
, (12)

where JSDk,j ,CMDk,j ,DIDk,j denote the mean of the

three distance metrics over the frequency axis. It must be

noted that the values of CMDk,j and DIDk,j in (12) are

normalized with respect to the maximum value encoun-

tered in the data set under analysis, such that all the com-

ponents of the sum vary within the same dynamic range,

i.e. between 0 and 1, and thus have the same relative im-

portance in the definition of DPD.
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3. EVALUATION

3.1 Data set of violin directivity patterns

The proposed methodology is applied to a data set of vi-

olin directivities. The data set includes the frequency-

dependent directivity patterns of eighteen violins, includ-

ing ten historical violins made between the 16th and 17th

centuries and eight modern violins made during the last

two centuries. For all the instruments, the owners provided

consent for the usage of the results in an anonymous fash-

ion. For this reason, and for the ease of reading, we will

denote all the historical violins with labels H1–H10, while

we will refer to the modern ones as M1–M8.

Concerning the collection of modern violins, it is note-

worthy that the instruments labeled with M1–M6 are fine

violins selected among the candidates of the “Antonio

Stradivari International Triennial Competitions of Stringed

instrument making”. The competition, held in the city of

Cremona since 1976, embraces both Cremonese and inter-

national competitors. Moreover, violins M7 and M8 were

made by a Cremonese luthier and are known as “twin vi-

olins”. The twin violins were built by employing the very

same block of tonewood and following the same geomet-

rical model. As a matter of fact, previous research already

showed the high similarity in all the spatial characteristics

of their sound.

The patterns were collected experimentally through the

measurement procedure described in [8] and were evalu-

ated at varying frequency within the range [200, 5000] Hz
using a 4th-order spherical harmonics expansion in (1).

The instruments are played by one professional violin-

ist who is free to move and play comfortably, while the

source position and orientation are estimated by the system

enabling the measurement of the directivity as described

in [8]. The data processing pipeline and the computation

of the metrics is developed using the MATLAB software.

3.2 Analysis of the metrics

To assess the significance of the proposed distance metrics,

we first compare the frequency-averaged values of JSD,

CMD and DID computed over the set of violin directivity

patterns to those obtained for the same data with a com-

monly used similarity metric, namely NCC. The NCC
metric provides a measure of the element-wise similarity

between two patterns. In order to properly compare the

previously defined distances with the baseline, the NCC
between the patterns of the k-th and l-th violins is formal-

ized in terms of a distance as

NCCk,l= 1−
1

S

S∑

s=1

D̂k(φ, θ, ωs)D̂l(φ, θ, ωs)

∥D̂k(φ, θ, ωs)∥∥D̂l(φ, θ, ωs)∥
, (13)

where ωs is the s-th frequency at which the directivity pat-

terns are evaluated, with s = 1, . . . , S and S the total num-

ber of frequency bins in the data set. In this way, NCCk,l

is close to zero when two patterns are similar and reaches

a value equal to 2 when they are inversely correlated.

Fig. 2 shows a comparison between all the metrics under

study. For any possible pair of metrics, a 2D scatter plot is

(e)

(c)(b)(a)

(d) (f)

Figure 2. Comparison between proposed distance met-

rics (JSD,CMD,DID) and Normalized Cross Correlation

(NCC). For each combination of metrics, a 2D scatter plot

of the corresponding frequency-averaged values is shown.

Z-score normalization is applied to ensure the same dy-

namic range along the axes [44]. Linear regression is per-

formed to analyze the correlation between the metrics. The

regressed line and the R2 value, measuring the degree of

correlation, are highlighted in red.

reported. The coordinates of the markers in the plot corre-

spond to the two distances for all the possible pairs of vio-

lins in the data set. Z-score normalization is applied to the

resulting values to ensure the same dynamic range along

the axes [44]. The scatter plots in the first row show the

comparison between NCC (13) and each of the proposed

metrics, while the scatter plots in the second row present

the comparison between JSD, CMD and DID only. By in-

specting the resulting distributions of points, it is possible

to highlight correlations between the metrics.

On the one hand, it can be noticed that some pairs of

metrics exhibit a point distribution that concentrates along

a line. A linear trend, in fact, can be observed in Fig. 2a

and 2b, showing the (NCC, JSD) and (NCC,CMD) point

distributions, respectively. Although less emphasized, a

similar trend can be noticed in Fig. 2d and 2e, reporting the

distribution of (JSD,CMD) and (JSD,DID), respectively.

The presence of linearity in these point distributions

can be interpreted as due to correlation, i.e. shared in-

formation, between the metrics under analysis. This can

be particularly true for NCC and JSD, which both mea-

sure the degree of pattern matching by definition. More in-

terestingly, however, correlation can be observed between

CMD and NCC. We can thus conclude that two violins

with similar principal directions of radiation tend to ex-

hibit highly matching directivity patterns. Furthermore,

JSD and CMD can be used instead of NCC to provide two

similarity measures by looking at the pattern shape and at

the principal direction of radiation separately without los-

ing information. Indeed, Fig. 2d shows that JSD and CMD
are less correlated than when considering NCC.

On the other hand, Fig. 2c and Fig. 2e do not exhibit

a linear distribution. We can interpret this evidence as the

absence of correlation between DID, NCC and CMD. As

a matter of fact, DID measures the difference in the direc-

tivity index of two patterns, which is related to the energy

distribution, and thus extracts an energy-related informa-
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(a) (b) (c)

Figure 3. Evaluation of violin similarity based on JSD (a), CMD (b) and DID (c). The elements inside the matrices are

obtained by averaging the frequency-dependent distance values. Pairs of similar violins are denoted with dark blue colors,

while dissimilar violins are highlighted in yellow. Hierarchical clustering algorithms are employed to sort the elements

inside the resulting matrices. The resulting dendrograms are reported above each distance matrix.

tion that is not captured by the other metrics.

A quantitative measure of the correlation between the

metrics under analysis can be evaluated by performing lin-

ear regression on each point distribution. The regressed

lines are denoted in red inside each 2D scatter plot. The

regression accuracy is assessed in terms of the coefficient

of determination R2, which is related to the Pearson cor-

relation coefficient in the case of simple linear regression.

The resulting R2 values are reported as an inset inside each

plot. According to [45], the values range between 0 and

1, and moderate and strong correlation occurs for values

greater than 0.3 and 0.6, respectively.

It can be noticed that the pair (NCC, JSD) shows mod-

erate to strong correlation, with R2 = 0.57. Moderate cor-

relations can be observed for (NCC,CMD), (JSD,CMD)
and (JSD,DID), with R2 = 0.42, R2 = 0.33 and

R2 = 0.38, respectively. Finally, no correlation occurs

for (NCC,DID) and (CMD,DID), with R2 = 0.09 and

R2 = 0.03, respectively.

3.3 Violins clustering based on similarity metrics
In order to group musical instruments that exhibit a sound

emission with similar spatial characteristics, the proposed

distance metrics can be used together with classical clus-

tering methods. In this case, hierarchical clustering meth-

ods are employed, based on the generation of dendrograms

[46]. In particular, the proposed similarity metrics are used

for the iterative definition of the dendrogram. It is worth to

underline, that the adopted clustering algorithm does not

require any training data and it is applied directly on the

computed similarities. Fig. 3 shows the distance matrices

assessing the pairwise similarity between all the violins in

the data set under study. The matrix elements in Fig. 3a,

3b and 3c are obtained using the frequency-averaged JSD,

CMD and DID values, respectively. Pairs of similar vi-

olins are highlighted with dark blue colors, while dissim-

ilar violins are colored in yellow. The elements of each

distance matrix are sorted according to the leaf order of a

dendrogram tree. The Ward’s method [47] is used to gener-

ate the tree branches, such that similar violins concentrate

inside the matrix.

By inspecting the resulting distance matrices, it is note-

worthy that the order of the elements in the matrix varies

depending on the specific distance considered. However,

expected groups of violins can be highlighted. In Fig. 3a,

the subsets of historical and modern violins are clearly dis-

tinguished, being placed at the top-left and bottom-right

corners of the JSD matrix, respectively. In particular, the

twin violins (M7-M8) exhibit the minimum JSD value

in the matrix and the remaining modern violins (M1-M6)

cluster together. The same behavior occurs also in Fig. 3b

and 3c, although at different locations inside the matrices.

Regarding the historical violins, H1 appears to be very

different with respect to the rest of the data set. In particu-

lar, high values are encountered for JSD and DID, which

are related to the pattern shape and energy, respectively.

Conversely, the same violin is more similar to other histor-

ical violins concerning the principal directions of radiation.

Fig. 4 shows the results of violin clustering based on the

proposed overall metric DPD. On the left, the dendrogram

computed with the Ward’s method is shown, while on the

right the resulting distance matrix is reported, with the ele-

ments sorted following the dendrogram hierarchy. Pairs of

violins characterized by DPD values close to either zero or

the maximum are colored in green or white, repsectively.

Typically, clusters can be extracted from the hierarchy

of the dendrogram tree by applying a thresholding with re-
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Figure 4. Violin clustering based on the proposed DPD metric. Small distance values correspond to pairs of similar violins

and are highlighted in green, while pairs of dissimilar violins exhibit high distance values and are highlighted in white. The

elements inside the matrix are sorted according to the dendrogram tree, shown on the left. Clustering is performed by

thresholding the dendrogram tree. The threshold is denoted with a cyan line, while the resulting clusters are colored in red.

spect to the tree height. We decide to subdivide the dendro-

gram at a height equal to 1.9, i.e. the mean value between

the height of the lowest branch in the tree and the height

of its root, denoted with a vertical dashed cyan line. As a

result, seven clusters are identified inside the data set: (i)

three consisting of a single violin (i.e. H1, H10 and H3),

(ii) one cluster made of five historical violins (i.e. H4-H6-

H7-H8-H9), (iii) one cluster made of two historical violins

and the twin violins (i.e. H2-H5-M7-M8), (iv) one clus-

ter with four modern violins (i.e. M3-M4-M5-M6) and (v)

one cluster with two modern violins (i.e. M1-M2).

The obtained clusters are coherent with the similarities

extracted from the single proposed metrics. In particular,

the distinction between historical and modern violins and

the high similarity between the twin violins (M7-M8) are

emphasized by the DPD. Moreover, hierarchical cluster-

ing based on DPD is able to recognize a cluster with five

historical violins i.e. H4-H9-H6-H8-H7. Remarkably, the

instruments belonging to this cluster have been made by

the same luthier.

3.3.1 Visualization of the data collection through MDS

Given the similarity analysis of the violin directivity pat-

terns based on the proposed DPD metric, the employment

of MultiDimensional Scaling methods (MDS) allows one

to easily visualize and navigate the collection of data [37].

In practice, MDS methods enable the mapping of the vio-

lins into a multidimensional space so that the similarities

between the musical instruments in the data set are pre-

served.

Fig. 5 shows a 3D representation of the data set based on

MDS. In this case, the coordinate system results from the

use of Nonclassical MDS with the distance matrix shown

in Fig. 4 as input. Each marker in the scatter plot corre-

sponds to a violin, and the same marker color is used to

denote violins belonging to the same cluster.

4. CONCLUSION

In this paper, we tackle the problem of directivity patterns

comparison by introducing a novel distance metric denoted

Figure 5. 3D representation of the violin data set based

on Multidimensional Scaling. Nonclassical MDS is ap-

plied on the resulting DPD matrix to map the violins into

a three-dimensional space. Each marker in the scatter plot

corresponds to a violin. The same marker color is used for

violins belonging to the same cluster.

as DPD, which is based on a combination of different sim-

ilarity metrics and features of the patterns. This approach

allows one to compactly compare the similarity of directiv-

ity patterns exploiting the different information provided

by JSD, CMD and DID. The considered metrics are com-

pared within each other and with respect to the well-known

NCC, highlighting that they provide mutually uncorrelated

information.

We analyzed a data set of directivity patterns of 18 vi-

olins divided between 10 historical and 8 modern instru-

ments. Through the use of DPD, we were able to iden-

tify clusters of similar instruments among which a set of

historical instruments made by the same maker and two

“twin” violins. Finally, the MDS technique enabled the vi-

sualization of the violin data collection starting from the

computed distances.

We foresee the application of the proposed approach for

the retrieval of musical instruments based on directivity

pattern characteristics. This opens new perspectives for the

navigation of data sets of directivity patterns which can be

used to provide a more realistic acoustic presence of musi-

cal instruments within spatial audio applications.
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