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ABSTRACT State of Charge (SOC) estimation is vital for battery management systems (BMS), impacting
battery efficiency and lifespan. Accurate SOC estimation is challenging due to battery complexity and limited
data for training Machine Learning based models. Transfer learning (TL) leverages pre-trained models,
reducing training time and improving generalization in SOC estimation. In this paper, 8 different transfer
learning techniques are examined, which were applied in four different models (LSTM, GRU, BiLSTM,
and BiGRU) for SOC estimation. These transfer learning techniques have been applied to three datasets
for re-training the models and results have been compared with the same models defined by Bayesian
Hyperparameter Optimization. The TL4 and TL5 techniques consistently stood out as among the most
efficient in both accuracy and computational time.

INDEX TERMS Transfer learning, lithium-ion battery, machine learning, state of charge.

NOMENCLATURE
SOC State of Charge.
BHO Bayesian Hyperparameter Optimization.
RNN Recurrent Neural Network.
LSTM Long-Short Term Memory.
BiLSTM Bidirectional Long-Short Term Memory.
GRU Gated Recurrent Unit.
BiGRU Bidirectional Gated Recurrent Unit.
MMD Maximum Mean Discrepancy.

I. INTRODUCTION
Batteries, among the advanced energy storage technolo-
gies [1], have become an integral part of various applications,
from smartphones and laptops to electric vehicles and
renewable energy systems [2]. The vital link of batteries,
coupled with BMS, ensures the optimal performance, safety,
and longevity of battery-powered devices and systems [3].
The accurate estimation of battery performance indicators

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Wang .

such as the SOC, which refers to the remaining available
energy in the battery relative to its maximum capacity, the
State of Health (SOH) [4], the State of Power (SOP) and
eventually the Remaining Useful Life (RUL) [5] is extremely
important. There are several methods for estimating SOC [6],
SOH [7], and SOP [8]. Moreover, SOC estimation prevents
overcharging, extends battery life, avoids power failures,
and enhances performance. Generally, SOC estimation relied
on complex mathematical models based on electrochemical
principles, requiring deep understanding, complex calcula-
tions, and extensive calibration. However, these methods
struggle with real-world complexities, resulting in inaccurate
estimations. Machine Learning (ML) has gained attention
for SOC estimation, using data-driven algorithms to cap-
ture intricate relationships between battery parameters and
SOC. By training ML models on large datasets, these
algorithms generate accurate real-time estimations. However,
the data-driven model may not be working effectively with a
small amount of data while a large amount of data may lead to
a huge computational burden [9]. The application of Transfer
Learning (TL) has gained significant interest in recent
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years because it allows for solving different tasks starting
from a pre-trained Neural Network (NN). It often yields
better results and requires less training time. As reported
in [10], a Convolutional Neural Network (CNN) model was
used as the source domain, with its pre-trained parameters
transferred to the target domain. The network structure
remained unchanged. The experiments demonstrated that
this transferred model achieved higher performance with
an accuracy score of 0.80 compared to the non-transferred
model, which only achieved an accuracy of 0.64.

Recent publications in the field of SOC estimation for
Electric Vehicle BMS address the challenge of accurate SOC
estimation amid factors like temperature variations, aging,
and inter-cell inconsistencies [11], [12]. In this review [13]
the classifications of model-based and data-driven based
SOC estimation are explained in terms of estimation
model/algorithm, benefits, drawbacks, and estimation error.
In [14] a 4th order model-based extended Kalman filter (EKF)
was designed and the SOC estimation results overcame the
presented non-averaged model. Researchers in [15] propose
a TL and domain adaptation method, but note the difficulty
in achieving the same target space for online SOC estimation.
They developed a new SOC differential processing method
and a combined TL approach, successfully validating it with
real battery pack data from China First Automobile Work,
achieving precise SOC estimation with less than a 1.5% error.

Another research paper [16] focuses on SOC estimation
through cloud-based BMS (C-BMS) applications. Feature
extraction techniques, such as Empirical Mode Decompo-
sition (EMD) and Long Short-Term Memory (LSTM) were
used to construct a SOC estimation model. TL and adaptive
weighting strategies improved accuracy, with maximum
errors of 2.2% and 1.3%. Furthermore, [17], a research paper,
suggests applying TL to reduce the need for extensive training
data and improve SOC estimation efficiency. Considering
the importance of lithium-ion batteries (LIBs), a study
investigated the ML model’s ability to predict SOC in
cylindrical LIBs under different charge-discharge cycles,
aiming to enhance prediction accuracy. Lastly [18], a review
emphasises the challenges in accurately estimating the SOC
of LIBs, highlighting nonlinear behaviour, environmen-
tal variations, and discrepancies between laboratory and
real-world conditions in LIB SOC modelling and estimation.

However, choosing the most appropriate TL technique
presents a trade-off among computing time, estimation
errors, and other characteristics. Therefore, the underlying
research question of this paper revolves around identifying
the best-fitted TL technique for SOC estimation, considering
the aforementioned trade-off.

This paper compares pre-trained Recurrent Neural Net-
work (RNN) models, as reported in a previous study [19],
applied to three LIB datasets (two public and one private)
for the SOC estimation with different Transfer Learning
approaches and source-target datasets combination.

For this reason, the two open datasets publicly available
represent the source for the model building and the private

one, obtained by the authors, is the target. This is the
typical situation when there is a lack of data for training
an ML model: open datasets are useful tools and TL is
often adopted to accomplish the task on the private target-
related problem. A comprehensive comparative analysis was
conducted, examining the behavior of TL across various
datasets and different RNN solutions. Even though there is
extensive research around this topic, differently from what
is usually found in literature where only a pair of datasets
are considered [20], here three different datasets are used
both as a source and target of the adopted TL techniques.
Furthermore different combinations of freezing, tuning and
minimization of the discrepancy between the target and
source dataset, the models were tested dataset-specific
and layer-specific aspects. Finally, a comparative analysis
between several TL techniques and a Bayesian Hyperparam-
eter Optimization (BHO) algorithm for predicting the battery
SOC is presented. Finally, by evaluating computing time,
estimation errors, and relevant characteristics, the aim is to
identify the most effective approach, enhancing performance
and efficiency. All the aforementioned points are a novelty
with respect to the current state-of-the-art [20], [21].

The paper is structured as follows: Section II presents the
various TL techniques applied, and Section III presents the
datasets that were used to train and test the model. Section IV
introduces the models used to apply the TL techniques in this
paper. In Section V there is a presentation of the results of
the models while in Section VI an extensive discussion is
included. Lastly, in Section VII, there is a conclusion of the
overall paper.

II. TRANSFER LEARNING TECHNIQUES
One significant challenge in the realm of ML pertains
to the requirement that data both in the training and
the test share a common feature space and distribution.
Nonetheless, this assumption often fails in practical scenarios
or when data can be easily outdated. In such instances,
the successful application of knowledge transfer can yield
substantial improvements in the learning process. In recent
times, the concept of TL [22] has arisen as a novel learning
framework aimed at addressing this intricate challenge [23].
The objective of TL is to transfer the knowledge gained
from one dataset (the source) to a new dataset (the target)
and to expedite the network-building process improving
the computational efficiency, which is crucial in real-time
applications.

Most commonly used for our purposes is the TL technique
of ‘‘feature extraction’’, which involves combinations of
freezing pre-trained layers and training new layers on top.
A more sophisticated technique uses the Maximum Mean
Discrepancy (MMD) method [20] for the training of the
dense layers. MMD is a technique used in domain adaptation,
which aims to transfer knowledge from a source domain to a
target domain. MMD training involves training the NN layers
to minimise the discrepancy between the source and target
domain distributions. In this case, the training of the RNN
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layer and the dense layers occurs in different steps. All the
characteristics of the different TL techniques are summarized
in Table 1.

A. FINE-TUNING (TL1)
The first technique is a typical fine-tuning technique, where
all the layers of the NN, including the recurrent layers and
dense layers, are subject to updates [18]. The weights and
biases of each layer are initialised with pre-trained weights
obtained from a related task or domain. Then, during the
training phase, these weights are adjusted using backprop-
agation and gradient descent, where the error between the
predicted SOC values and the ground truth SOC values is
minimised. This fine-tuning process enables the network to
adapt to the specific SOC estimation task and improve its
performance by refining the learned representations in each
layer.

B. PARTIAL FINE-TUNING (TL2)
This technique consists of a partial fine-tuning of theNN [21].
The initial recurrent layer and the initial dense layer can
be used as static feature extractors in two-layer models by
‘freezing‘ their weights and biases. In the case of three-
layer models, this concept extends to the first two recurrent
layers and the first two dense layers. These layers have
already learned representations from the pre-training phase,
and their purpose is to provide useful features to the last
recurrent layer and to the last dense layer. The goal is to
leverage the knowledge captured by the pre-trained layers
while only updating the weights and biases of the third
recurrent layer and the third dense layer. This approach can be
useful when you have limited training data or want to avoid
overfitting [24].

C. FEATURE EXTRACTION 1 (TL3)
This approach is characterized by the utilization of the
MMD technique applied to the dense layers [20]. The
primary objective is to facilitate the alignment of learned
feature representations with the targeted feature distribution
for SOC estimation. The process involves minimizing the
discrepancy between these distributions, thereby enabling the
NN to more effectively encapsulate pertinent data patterns
and relationships. This, in turn, enhances the performance
of SOC estimation. This technique can be beneficial when
you have limited labelled training data but have access to
pre-trained models or similar tasks [21]. It allows leveraging
the pre-trained representations while fine-tuning specific
layers and favouring the alignment of feature distributions
using MMD.

D. HYBRID MODEL (TL4)
Similar to TL2, TL4 strikes a balance between freezing and
fine-tuning layers, with exclusive training for dense lay-
ers [21]. This allows the dense layers to learn pertinent data
relationships using pre-trained representations from recurrent

layers. Freezing recurrent layers trims trainable parameters,
preventing overfitting and lowering computational demands,
speeding up training. Nevertheless, there’s a trade-off, as fine-
tuned dense layers might miss subtle temporal dependencies
without adapting recurrent layers. This approach is less
suitable if pre-trained recurrent layers don’t align well with
SOC estimation.

E. ADAPTIVE HIDDEN STATES (TL5)
By limiting the training to the final recurrent layer, this
TL technique significantly reduces computational costs but
carries the potential drawback of insufficiently capturing the
requisite patterns for precise SOC estimation, reducing the
model performance [21]. Such methods can also encounter
gradient flow issues, potentially leading to vanishing gra-
dients during backpropagation in the third recurrent layer,
hindering learning. Additionally, fine-tuning a single layer
heightens the risk of overfitting due to limited parameter
updates, which may impede generalization to new data.
To mitigate these risks, ample representative training data
and a well-pre-trained model are essential. In this scenario,
as the employed models demonstrated strong SOC predictive
capabilities, it is the most advisable technique.

F. FEATURE EXTRACTION 2 (TL6)
This technique for the 2-layer models is the same as the
previous feature extraction technique (TL3), but in the case
of 3-layer models, the second recurrent layer is frozen, while
the dense layers undergo MMD aiming to align learned
feature representations with the target feature distribution
for the SOC estimation [20]. Here, freezing the second
recurrent layer is useful to study how the importance of
acquired features (which generally increase at higher levels)
influences TL, harnessing the pre-existing representations.
This approach proves to be particularly beneficial when there
is a scarcity of labelled training data, yet access to pre-trained
models or analogous tasks is accessible [21].

G. FEATURE EXTRACTION 3 (TL7)
This technique is also a feature extraction method [20],
but unlike the previous cases, the first recurrent layer is
frozen while fine-tuning is applied to the remaining recurrent
layers. As for the dense layers, similar to the previous feature
extraction cases, they undergo MMD tuning, to align learned
feature representations with the target feature distribution
for SOC estimation. In this context, it is also interesting
to observe how the different levels of the recurrent layers
influence TL accuracy, offering insights into the effectiveness
of feature representation at various NN stages.

H. FEATURE EXTRACTION 4 (TL8)
In this instance, akin to the prior technique, an approach
centred on feature extraction is employed [20]. However,
in this method, the final recurrent layer remains unaltered,
while the lower recurrent layers, which are theoretically
presumed to capture less critical features, undergo fine-tuning
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TABLE 1. Main features of the adopted TL Techniques.

in conjunction with the dense layers through the MMD
technique. This mirrors the TL3 approach, where the
MMD method is applied to the dense layers to ensure
alignment of the learned feature representations with the
targeted feature distribution. By minimizing the differences
between these distributions, the NN becomes more adept at
capturing essential data patterns and relationships [21]. This
configuration also offers an opportunity to examine how the
alteration of lower-level recurrent layers, as opposed to the
final layer, affects the overall accuracy and effectiveness of
TL.

I. TRAINING PROCEDURE
All the selected techniques are summarised schematically for
the 2-layer and the 3-layer models in Table 2. There exists
a correlation between the outlined TL techniques, as adding
one additional layer, both one RNN and one dense, to the
2-layer architecture, would make it correspond to its 3-layer
architecture. The additional layer is depicted in Figure 3
highlighted in red. This is the rationale behind considering
them as equivalent.

TABLE 2. 2 and 3-layer models layout with TL techniques.

The dataset preprocess was the same as in [19],
where the network inputs were normalized using the
minimum-maximum normalization technique, as described
in [25], which scales the measurements to a range between
0 and 1. To apply the TL techniques, the Keras Library [26]
was employed to re-train the pre-trained models. The
training process utilized the Adam optimization algorithm,
as outlined in [27], which is a stochastic optimizationmethod.
The learning rate was set to 0.001 as the models were
already pre-trained and it should be adapted to the new
dataset. Similarly to [19] the Huber loss was used as the
loss function [28] for the fine-tuning process, while the
network underwent training for a total of 1000 epochs,
and an early stopping strategy was implemented, triggering

cessation if no improvement in validation loss occurred
within 50 consecutive epochs.

For the sake of reproducibility, the TL techniques were
executed on a computer equipped with an Intel i-910900KF
processor, boasting a clock speed of 3.70 GHz, a memory
capacity of 64 GB DDR4, and an NVIDIA GeForce
GTX 1650 GPU.

J. EVALUATION METRICS
The purpose of this research is to compare the SOC
estimation accuracy of different TL techniques and to analyse
how these techniques perform on different datasets and
different types of NNs. Together with the execution time, the
mean absolute error (MAE) and the root mean square error
(RMSE) were used:

MAE =
1
n

n∑
j=1

|SOCi − ˆSOCi| (1)

RMSE =

√√√√1
n

n∑
i=1

(SOCi − ˆSOCi)2 (2)

where SOCi and ˆSOCi are the real value and the predicted
value by the model, respectively.

Based on the calculation of MAE and RMSE, the mean µ

and the standard deviation σ are calculated for all the layers
and datasets presented in the next section.

III. CASE STUDIES
The first two open datasets (McMaster and CALCE) were
used both as the ‘‘source’’ and ‘‘target’’, while the third
private one (PoliMi), was employed only as the ‘‘target’’.
This is the typical scenario, when there is a lack of data
and pre-trained models are usually exploiting open data to
transfer the knowledge on a limited ‘‘target’’ dataset. The
main features of the dataset employed in this analysis, are
summarized in Table 3. The three datasets contain dynamic
driving cycles, with McMaster having the highest number,
followed by PoliMi, and finally CALCE, which has a
significantly lower count compared to the first two. It is
also crucial to highlight that the PoliMi dataset is derived
from the McMaster dataset but has been adjusted to account
for the different battery cell ratings used. For example, the
difference among the datasets is well depicted in Figure 2,
where the distribution of the US06 driving cycle samples at
25◦C of the voltage (Figure 2-a) and, for the sake of clarity,
the cumulative density function of the standardized current
samples (Figure 2-b) are shown.
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TABLE 3. Datasets Main Features.

FIGURE 1. Two aspects of the experimental setup of the PoliMi dataset.

A. MCMASTER
The McMaster University [29] dataset encompasses the
results of an experimental setup involving a 3Ah 18650 -
Nickel Manganese Cobalt (NMC) Li-Ion battery cell. The
testing took place within a thermal chamber, spanning six
distinct ambient temperatures ranging from −20, −10, 0,
10, 25, to 45◦C, thereby covering a wide temperature
spectrum. Three different driving cycles were employed:
the Urban Dynamometer Driving Schedule (UDDS), the
Highway Driving Schedule (US06), and the California
Unified Cycle (LA92), along with a variety of hybrid cycles
identified as Mixed1, Mixed2, Mixed3, Mixed4, Mixed5,
Mixed6, Mixed7, and Mixed8. Each of these driving cycles
was conducted under the previously mentioned six ambient
temperature conditions. Data acquisition was performed at a
frequency of 0.1 seconds.

B. CALCE
The Centre for Advanced Life Cycle Engineering (CALCE)
[30] dataset involves testing a 2Ah NMC Li-Ion battery
cell using an Arbin BT2000 battery cycler within a thermal
chamber. The testing occurred at three distinct ambient
temperatures: 0, 25, and 45◦C, representing low, room,

and high-temperature conditions, respectively. Within this
dataset, four driving cycles were employed: the Dynamic
Stress Test (DST), the US06, the Federal Urban Drive
Schedule (FUDS), and the Beijing Dynamic Stress Test
(BJDST). All four driving cycles were executed under the
three ambient temperature conditions mentioned earlier, with
data recorded at a frequency of 1 second.

C. POLIMI
The PoliMi dataset was obtained through laboratory experi-
ments conducted at the battery laboratory, involving six LIBs
(LG 2.5Ah 18650 NMC) subjected to testing on a Neware
battery tester depicted in Figure 1. Multiple driving cycles,
namely UDDS, US06, LA92, and Mixed 1-6 (created by
randomly combining the initial three driving cycles), were
applied to each battery cell. Furthermore, the cells were
subjected to various temperatures (−20◦C, −10◦C, 0◦C,
10◦C, 25◦C, 35◦C), with data recorded at a sampling rate of
0.1s.

IV. PRETRAINED MODELS USED
The models used in this study are obtained from a previous
work of the authors [19]. These models are composed of
an input layer receiving a time series of 30 seconds of the:
terminal voltage, current, and surface temperature. In the
next step, multiple recurrent layers are stacked on top of
each other, where recurrent layers are a type of RNN layer
designed to capture sequential dependencies in the data.
Four different types of RNNs were used: the LSTM, the
GRU, the BiLSTM and the BiGRU. Following the recurrent
layers, there are multiple dense layers, also known as ‘‘fully
connected layers’’, take the features extracted by the recurrent
layers and map them to the desired output.
The pre-trained model, as described in [19], was generated

for each dataset using BHO, incorporating a recurrent layer.
This process resulted in models with hyperparameters close
to the optimal parameters (according to BHO). The BHO
explored a hyperspace where the number of recurrent and
dense layers ranged between 2 and 3, and the number of units
within each layer varied between 4 and 64 with a step of 4.
The initial dense layers utilized a linear activation function,
while the leaky ReLU (Rectified Linear Unit) was employed
for the final dense layer. Optimization was carried out using
the Adam optimizer with a learning rate of 0.00001. The
Huber loss function was chosen as the loss metric, combined
with an early stopping technique, which would terminate
the training process if no improvement was observed for
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FIGURE 2. In the three analysed datasets of the US06 driving cycle samples at 25◦C.

50 consecutive epochs out of the total 1000 training epochs.
Based on the findings in [19], the temporal resolution of
the datasets was configured to be 1 second. Then, for a
fair comparison, McMaster and PoliMi datasets are down-
sampled: 1 sample for every 10 was taken to downsample to
1 second and make the data homogeneous with CALCE in
terms of granularity.

In the case of theMcMaster dataset, as documented in [19],
the training phase employed dynamic cycles LA92, UDDS,
US06,Mixed1,Mixed2,Mixed7, andMixed8 at temperatures
of −10, 0, 10, and 25 degrees Celsius. Conversely, the
testing phase utilized Mixed4, Mixed5, and Mixed6 dynamic
cycles. Similarly, for the CALCE dataset, the training dataset
consisted of dynamic cycles BJDST and DST, while the
testing dataset included FUDS and US06 cycles, all at
temperatures of 0, 10, and 25 degrees Celsius. Lastly, the
PoliMi dataset underwent training using dynamic cycles
UDDS, US06, and Mixed1 to Mixed4, and during the
model evaluation, LA92, Mixed5, and Mixed6 cycles were
used, covering temperature conditions of −10, 0, 10, and
25 degrees Celsius.

As observed in [19], the model’s predictive accuracy is
influenced by temperature variations. Notably, the model
exhibits larger errors at lower temperatures, specifically
at 0 and −10◦C, in contrast to its performance at 25◦C.
This temperature-dependent behavior poses a significant
challenge in accurately modeling the battery, highlighting the
potential utility of TL in addressing this challenge.

In the McMaster dataset, after BHO, the use of LSTM
and GRU layers led to a two-layer architecture, while
bidirectional variants required a three-layer model. Similarly,
in the CALCE dataset, models with LSTM layers had a two-
layer architecture, whereas those with GRU, BiLSTM, and
BiGRU layers adopted a three-layer structure. In Figure 3,
the architecture of the pre-trained model is shown.

Subsequently, each of the source models underwent eight
TL techniques when applied to the remaining datasets.

V. RESULT
In the forthcoming two subsections, the analysis of both the
dataset and the layers is analyzed. While the BiLSTM model
showcased superior performance in [19] across both the

McMaster and CALCE datasets, it is imperative to investigate
the performance of TL techniques across various layers and
datasets to gain a more comprehensive perspective.

To facilitate the reading of the results, the labels
of the generated model combine first the name of the
source dataset followed by the target. For example: the
‘‘CALCE_McMaster’’ model, is formulated by applying TL
from the CALCE pre-trained model to the McMaster dataset.

A. DATASET ANALYSIS
The results of each (TL) technique and layer were detailed
per dataset to determine the most suitable TL approach for
each specific dataset. For simplicity, the analysis primarily
showcasedMAE as an indicator, noting that RMSE displayed
a similar trend but wasn’t explicitly presented. Throughout
the presented tables, the ‘BHO’ column means the MAE
on the target dataset when the model was built following
the same procedure as BHO, which was used for training
the pre-trained models later applied in TL. The mean and
the standard deviation of the complete dataset analysis are
presented in Table 4 while the detailed results can be found
in Appendix A.

TABLE 4. MAE mean and standard deviation of TL analysis.

Furthermore, the MAE boxplots are shown in Figure 4.

1) SOURCE DATASET: CALCE
In the context of the McMaster dataset as the target dataset
(Figure 4 - a), the lowest error was observed with the
BiLSTM layer in conjunction with TL4, resulting in an MAE
of 1.369% with a reduction of 29.7% with respect to the
BHO error, closely followed by the BiLSTM layer with
TL5, which yielded an MAE of 1.437% and a reduction of
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FIGURE 3. Comprehensive pre-trained model architecture; in the 2-layer model the 2nd layer (in red) both of the
RNN and the dense layer were omitted. The RNN layer can be one between LSTM and GRU, while the arrow
labelled ‘‘Bi’’ represents the bidirectional layer in the relevant models (BiLSTM or BiGRU).

FIGURE 4. Mean Absolute Error of the estimation models, with the different dataset combination.

26.3% in respect to the BHO error. When considering all the
layers examined, as it can be seen in Table 4, TL5 exhibited
the lowest mean and SD of MAE of 1.499% and 0.039%
respectively, with TL4 as the subsequent best-performing
technique with 1.547% and 0.104% respectively.

In the same way, when PoliMi dataset is the target
(Figure 4 - b), the minimum error was observed with the
BiLSTM layer and TL6, resulting in an MAE of 1.789%with
a reduction of 27.3% with respect to the BHO error, closely
followed by the BiLSTM layer with TL7, which yielded an
MAE of 1.832%with a reduction of 25.6%with respect to the
BHO error. When assessing all the examined layers, as can
be seen in Table 4, it was found that TL6 exhibited the lowest
mean and SD of MAE of 2.307% and 0.499%, respectively.
TL5 emerged as the subsequent best-performing technique
with 2.337% and 0.438%, respectively.

2) SOURCE DATASET: MCMASTER
In the context of the CALCE dataset as the target dataset
(Figure 4 - c), results are presented in Appendix A - Table 9.
In this case, the lowest error was observed with the BiLSTM
layer with TL2, resulting in an MAE of 1.073% with a

reduction of 16.3% compared to BHO, closely followed by
the LSTM layer with TL4, yielding an MAE of 1.096%
with a reduction of 44.1% with respect to BHO. When
considering all the layers examined, as it can be seen in
Table 4, TL4 exhibited the lowest mean and SD of MAE
of 1.156% and 0.077% respectively, with TL2 as the subse-
quent best-performing technique with 1.170% and 0.114%
and TL5 closely performing with 1.185% and 0.049%,
respectively.

Similarly, the complete results with the PoliMi dataset
as the target (Figure 4 - d) are reported in Appendix A -
Table 10. Here, the lowest error was observed when
combining the BiGRU layer with TL3, resulting in an MAE
of 1.777% with a reduction of 33.4% against BHO, followed
closely by the LSTM layer with TL2 scoring an MAE
of 1.849% with a reduction of 19.1% compared to the
BHO. Upon a comprehensive evaluation of all examined
layers, as can be seen in Table 4, it was determined that
TL3 displayed the lowest mean and standard deviation of
MAE of 1.926% and 0.099%, respectively. Subsequently,
TL4 emerged as the second-best performing technique, with
mean and standard deviation of MAE values of 1.933% and
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0.029%, respectively. TL5 closely followed with values of
1.951% and 0.048%, respectively.

B. LAYER ANALYSIS
In this comprehensive analysis, the results for each TL
technique and each dataset across the range of four-layer
types (LSTM, BiLSTM, GRU and BiGRU) are presented,
allowing to discern the most effective TL technique for
each layer. In this case, RMSE is used as an indicator,
as MAE follows a similar trend, thoughMAE is not explicitly
displayed. The RMSEmean and standard deviation across the
four dataset combinations of the layer analysis are presented
in Table 5, and the relevant Figure 5, while the detailed results
can be found in Appendix A. As mentioned previously in
the Dataset Analysis, the four dataset combinations are: the
CALCE_McMaster, CALCE_PoliMi, McMaster_CALCE,
and McMaster_PoliMi.

FIGURE 5. RMSE mean and standard deviation in the layer analysis.

TABLE 5. RMSE mean and standard deviation for the layer analysis.

Please, note that, as previously stated, being the PoliMi
dataset private, it was used only as a ‘‘target’’ resembling the
most common scenario for TL adoption. In the same way as
before, the ‘‘BHO’’ row represents the RMSE error scored
on the target dataset when themodel was developed following
the identical procedure employed for BHO, which aligns with
the training process of the pre-trained models subsequently
utilized for TL. Within the context of each layer typology,

varying error levels are observed for the four source-target
combinations. More in detail, as reported in Table 5:

1) LSTM
• CALCE_McMaster: the lowest error was observed with
the TL2 technique, resulting in anRMSEof 2.302%with
a reduction of 25.4%with respect to the BHO error. This
was closely followed by TL4 and TL5.

• CALCE_PoliMi: the model generated through the
BHO approach displayed slightly superior performance
compared to all the TL techniques with an RMSE of
4.155%. This combination achieved its lowest error with
the TL6 technique, resulting in an RMSE of 4.164%
closely followed by TL3.

• McMaster_CALCE: the lowest error was observed with
the TL4 technique, yielding an RMSE of 1.546% with a
reduction of 14.9% with respect to the BHO error. This
was closely followed by TL2 and TL3.

• McMaster_PoliMi: the lowest error was observed with
the TL2 technique, yielding an RMSE of 3.814% with a
reduction of 8.17% with respect to the BHO error. This
was closely followed by TL4.

TL4 exhibited the lowest RMSE mean and standard
deviation of 3.044% and 1.167%, respectively. Subsequently,
TL6 emerged as the next best-performing technique with
values of 3.093% for the mean and 1.058% for the standard
deviation of RMSE.

2) BILSTM
• CALCE_McMaster: TL4 scored the lowest error, with
an RMSE of 2.246% and a reduction of 21.2% with
respect to the BHO error. TL8, TL7 and TL5 closely
followed this.

• CALCE_PoliMi: TL6 achieved the lowest error, with a
RMSE of 3.331% and a reduction of 25.2% compared
to the BHO error and TL5 closely followed this.

• McMaster_CALCE: the lowest error was observed with
the TL2 technique, yielding an RMSE of 1.525% with
a reduction of 6.2% with respect to the BHO error. TL4
and TL5 closely followed this.

• McMaster_PoliMi: the lowest error was observed with
the TL8 technique, yielding an RMSE of 3.499% with a
reduction of 21.4% with respect to the BHO error. This
was closely followed by TL3 and TL6.

Here, TL5 exhibited the lowest mean and standard devi-
ation of RMSE values of 2.779% and 0.844%, respectively.
Following closely, TL8 emerged as the next best-performing
technique with values of 2.808% for the mean RMSE and
0.726% for the standard deviation of RMSE. TL6 also
performed well, with mean and standard deviation of RMSE
values of 2.820% and 0.712%, respectively.

3) GRU
• CALCE_McMaster: the lowest error was observed with
the TL8 technique, resulting in anRMSEof 2.399%with
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a reduction of 34.9%with respect to the BHO error. This
was closely followed by TL5 and TL4.

• CALCE_PoliMi: the model generated through the BHO
approach displayed markedly superior performance
compared to all the TL techniques. In this analysis, the
lowest error resulted for the TL3 technique, with an
RMSE of 5.808% closely followed by TL1. Conversely,
this trend is not reflected in the MAE metric, where the
error of the BHO model falls among the highest.

• McMaster_CALCE: the lowest error was observed with
the TL4 technique, yielding an RMSE of 1.565% with a
reduction of 36.3% with respect to the BHO error. This
was closely followed by TL3 and TL2.

• McMaster_PoliMi: the lowest error was observed with
the TL3 technique, yielding an RMSE of 3.858% with a
reduction of 14.7% with respect to the BHO error while
TL4 closely followed this.

In this case, TL3 exhibited the lowest RMSE mean and
standard deviation of 3.459% and 1.577%. Subsequently,
TL4 emerged as the next best-performing technique with
values of 3.485% and 1.698%, respectively, followed by TL5
with values of 3.519% and 1.661%, respectively.

4) BIGRU
• CALCE_McMaster: the lowest error was observed with
the TL6 technique, resulting in anRMSEof 2.525%with
a reduction of 25.1%with respect to the BHO error. This
was closely followed by TL3 and TL2.

• CALCE_PoliMi: TL8 achieved its lowest error, result-
ing in an RMSE of 4.663%. TL6 closely followed this
with an RMSE of 4.725%. In a similar way to the GRU
layer, the model generated through the BHO approach
displayed markedly superior performance compared to
all the TL techniques. In the same way, as for the GRU
layer, that is not mirrored in the MAE metric where the
BHO model error is within the highest.

• McMaster_CALCE: the lowest error was observed with
the TL1 technique, yielding an RMSE of 1.750% with a
reduction of 23.2% with respect to the BHO error. This
was closely followed by TL5 and TL2.

• McMaster_PoliMi: the lowest error was observed with
the TL3 technique, yielding an RMSE of 3.187% with a
reduction of 29.5% with respect to the BHO error while
This was closely followed by TL6.

In this case, TL3 exhibited the lowest RMSE mean and
standard deviation of 3.139% and 1.141%, respectively.
Subsequently, TL6 emerged as the next best-performing
technique with values of 3.202% for the mean of RMSE and
1.104% for the standard deviation of RMSE.

In almost all instances, except in CALCE_PoliMi, nearly
all TL techniques consistently outperformed the corre-
sponding BHO model, as evidenced in the preceding
tables. This observation underscores the inherent advan-
tages of employing TL techniques in achieving superior
results.

C. TRAINING TIME COMPARISON
As mentioned in [19], BHO was used to discover the
nearly optimal models and this took between 5 to 8 hours,
with the equipment described in subsection II-I. This is a
time-intensive procedure, although it ultimately results in
favourable outcomes with notably lower errors.

While implementing the TL techniques, the pre-trained
model undergoes a re-training process and the framework
records the training time in seconds. The resulting training
times typically range from 50 to 100 seconds, which are
significantly shorter than the time required for BHO tuning.
Consequently, for better comparison of the TL techniques
the recorded time is reported in Table 6 and it exclusively
represents the duration of the network training process and
does not encompass data loading and preprocessing.

TABLE 6. Mean and standard deviation Training Time for each TL
technique among all layers and all datasets analyses.

Consistently across various layers and datasets, each TL
technique exhibited a similar training duration. Consequently,
the mean training time was computed and displayed. As it
can be seen in Table 6, among the TL techniques, TL4
stands out as the fastest, boasting a mean processing time of
39.8 seconds and an SD of 6.3s seconds. It is closely followed
by TL5, which records a mean time of 46.4 seconds and a
standard deviation of 14.4 seconds, and TL2, with respective
times of 53.8 seconds and 13.0 seconds. The remaining group
comprising TL6, TL7, and TL8 is not significantly different
in terms of speed, while TL1 and TL3 tend to be the most
computationally time-consuming. Nevertheless, it is impor-
tant to note that none of the techniques pose a significant
processing time burden, especially when compared to their
counterpart BHO model, which requires hours for tuning.
However, for the purpose of the comparison, it’s worth noting
that TL4 and TL5 are more favourable choices when the
training time is critical, especially when related to the dataset
size.

VI. DISCUSSION
The comprehensive analysis presented in this study inves-
tigated the effectiveness of various TL techniques in the
context of SOC estimation. These techniques have been
assessed both in terms of accuracy and computational
efficiency.

A crucial decision in TL is determining which layers of an
NN to freeze or not and which ones to fine-tune. The strategy
behind this selection can heavily affect the SOC estimation
performance of the model and its training time.

Out of all the transfer learning techniques employed,
the training phase for each of them was halted using the
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early stopping technique, which was triggered when further
training would not lead to improved network performance.

Among all the reviewed TL techniques, TL4 and TL5 con-
sistently emerged as the most effective in terms of accuracy,
offering computational advantages at the same time, which
makes them particularly noteworthy. The TL4 technique
consistently performed well across different datasets and
layers. This technique includes freezing the recurrent layers
and training only the dense layers. This suggests that dense
layers are essential for capturing the relevant patterns in the
data, while the recurrent layers’ pre-trained representations
are already suitable for the tasks. Techniques like TL5, which
allows only the last recurrent layer to be trained, suggest that
adjusting the final recurrent layer can be beneficial without
adding too much computational cost.

TL techniques involving MMD (TL3, TL6, TL7 and TL8)
seem to be quite effective in certain scenarios, especially with
the BiLSTM layer, given its role in aligning learned feature
representations of the source and target distributions.

It is important to highlight that the McMaster dataset,
which contains more dynamic driving cycles, seems to have
benefitted the most from TL, especially when it’s used as
a target dataset. The compatibility of McMaster with the
PoliMi dataset could also be an influencing factor. While
the results are promising, not all combinations of source-
target datasets, NN layers, and TL techniques guarantee an
improvement. The case of LSTM with the CALCE_PoliMi
model underlines this aspect.

When extensive datasets are available for the target task,
it’s more feasible to unfreeze more layers or even the entire
network, allowing for more fine-tuning. Conversely, with
limited data available, it is generally a conservative approach
to freeze the former layers and only fine-tune the latter ones,
minimizing the number of trainable parameters.

In these case studies, since both source and target datasets
are on the same task of estimating the SOC of a battery,
more layers can be unfrozen. On the contrary, if the tasks
were different, it would have been better to retain the initial
layers and fine-tune only the last few layers. If the layers
are completely retrained, there’s a risk that the final model
might forget the useful features learned from the source.
By freezing some layers, the original learned features are
preserved.

It is worth highlighting that in certain instances, a negative
transfer learning effect was observed. This was evident in
cases such as TL1 and McMaster_PoliMi, as well as in some
cases involving CALCE_PoliMi. This observation under-
scores a potential limitation of transfer learning techniques,
and it emphasizes the importance of exercising caution and
careful consideration when applying them.

The main finding from this analysis is that strategic freez-
ing of layers can lead to both higher SOC estimation accuracy
and computational efficiency. Focusing on fine-tuning either
of the dense layers exclusively or of the last recurrent layer
seems to represent an optimal approach for the datasets under
scrutiny.

TABLE 7. pre-trained model with CALCE on McMaster.

TABLE 8. pre-trained model with CALCE on PoliMi.

TABLE 9. pre-trained model with McMaster on CALCE.

VII. CONCLUSION
This paper presents a comprehensive study on the application
of eight Transfer Learning techniques that significantly
enhance the accuracy and the computational efficiency of
the estimation of the State of Charge of Lithium batteries.
The accuracy of four pre-trained RNN models is analysed.
In the dataset analysis, these models are built on two public
‘‘source’’ datasets (McMaster and CALCE) and they are
subsequently applied on ‘‘target’’ datasets both by crossing
them, and on a private dataset (PoliMi). These datasets, which
provide comprehensive information on various characteris-
tics and performance measures of LIBs, form the basis of the
models used in this research. Furthermore, in a layer typology
analysis, the different TL techniques are applied to the four
previously defined RNNmodels: LSTM, BiLSTM, GRU and
BiGRU. SOC estimation results are finally compared with the
same models which underwent a Bayesian Hyperparameter
Optimization.

The comparative analysis of the transfer learning tech-
niques, including feature extraction and MMD (TL3, TL6,
TL7 and TL8), reveals the potential of these methods in
improving SOC estimation accuracy, especially with the
BiLSTM layer. The results showed that the impact of the
transfer learning technique on themodel performance heavily
depends on the characteristics and the extension of the
datasets that are employed. In addition, in most cases, the
TL4 and TL5 generally yielded better results than employing
BHO to find the near-optimal hyperparameters of the model,
revealing both higher accuracy and lower computational
effort.

An immediate extension of this work is the application of
these TL techniques to estimate the SOC of batteries with
different chemistries, to validate the robustness and versa-
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TABLE 10. pre-trained model with McMaster on PoliMi.

TABLE 11. RMSE of LSTM to all four TL models.

TABLE 12. RMSE of BiLSTM to all four TL models.

TABLE 13. RMSE of GRU to all four TL models.

TABLE 14. RMSE of BiGRU to all four TL models.

tility of these techniques. Additionally, the TL techniques
presented in this study will be adapted for estimating other
LIB parameters, such as the SOH and SOP. This would further
broaden the scope of these methods, enabling more holistic
management of battery systems.

APPENDIX A
TABLES
See Tables 7–14.
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