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Abstract—Camera navigation in minimally invasive surgery
changed significantly since the introduction of robotic assistance.
Robotic surgeons are subjected to a cognitive workload increase
due to the asynchronous control over tools and camera, which also
leads to interruptions in the workflow. Camera motion automation
has been addressed as a possible solution, but still lacks situation
awareness. We propose an online surgical Gesture Recognition for
Autonomous Camera-motion Enhancement (GRACE) system to
introduce situation awareness in autonomous camera navigation.
A recurrent neural network is used in combination with a tool
tracking system to offer gesture-specific camera motion during
a robotic-assisted suturing task. GRACE was integrated with a
research version of the da Vinci surgical system and a user study
(involving 10 participants) was performed to evaluate the benefits
introduced by situation awareness in camera motion, both with
respect to a state of the art autonomous system (S) and current
clinical approach (P). Results show GRACE improving completion
time by a median reduction of 18.9s (8.1%) with respect to S
and 65.1s (21.1%) with respect to P. Also, workload reduction
was confirmed by statistical difference in the NASA Task Load
Index with respect to S (p < 0.05). Reduction of motion sick-
ness, a common issue related to continuous camera motion of
autonomous systems, was assessed by a post-experiment survey
(p < 0.01).

Index Terms—AI-enabled robotics, computer architecture for
robotic and automation, medical robots and systems, surgical
robotics: Laparoscopy, telerobotics and teleoperation.
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I. INTRODUCTION

A. The Evolution of Vision in Surgery

C LINICAL practice has found in the last two decades a
trustworthy ally in surgical robots, especially in minimally

invasive surgery (MIS), where surgeons particularly benefit from
enhancement of instrumentation, along with improved visual
perception, dexterity and ergonomics compared to conventional
laparoscopic surgery [1]. Many different categories of medical
robots are available on the market, such as the well established
da Vinci surgical system, dVSS, (Intuitive Surgical, Sunnyvale,
CA, USA) which belongs to the surgeon extender category [2].

Surgical techniques and control modalities have changed due
to the deployment of robotic assistance. Visualization modalities
have been particularly affected by this aspect: one of the main
differences is the loss of direct access to the surgical environment
and control over tools and camera. During robot-assisted MIS
(RAMIS), access to the patient’s body is gained through small
incisions for camera and tools, similar to laparoscopic surgery. In
the latter, an assistant is often needed to facilitate an eased work-
flow, alleviating the surgeon from the burden of camera motion.
With the introduction of a surgical robot in between the surgeon
and the patient, the presence of an assistant to manipulate the
camera is no longer required. In this situation, the surgeon is
expected to control both the camera and operating tools.

Specific consoles have been designed to provide the user with
direct control over multiple robotic arms. To allow teleoperation
of both instruments and camera, devices such as the dVSS were
specifically designed with a tailored foot pedal tray. This allows
to quickly switch between tools and camera control, by handling
a couple of manipulators. A drawback resulting from these
interfaces is the impossibility for a single surgeon to control
both camera and tools simultaneously. Due to the high workload,
surgeons may settle for a sub-optimal field of view (FOV) [3].
Surgeons might also allow the tools to be temporarily out of
view, due to the effort required to reposition the camera, which
can lead to injuries to soft tissues or error in the execution of a
surgical procedure [3].

B. Automation in Camera Navigation

To mitigate the above mentioned disadvantages and relying
on robotics control, the autonomous navigation of the camera
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has been explored in the past. The proposed approaches to
autonomous camera navigation can be clustered into reactive,
proactive or combined control strategies [3]. A reactive control
architecture is defined as a system in which data streams such
as eye gaze [4], [5] or tools tracking [6], [7] are used to move
the camera in direct response to changes in these inputs. With
a proactive approach, the system incorporates knowledge of
the surgery and thanks to prediction-based techniques proposes
specific camera viewpoints [8], [9]. With the combination of
reactive and proactive systems, a combined camera control
modality is obtained [10].

However, the proposed works either require semantically rich
instructions from the surgeon or do not rely on procedural
knowledge to constantly be aware of the procedure in progress
and adapt to camera navigation requirements. This latter condi-
tion also results in a continuous - often undesired - motion of
the camera, which may lead to discomfort and nausea for the
operator [6], better known as motion sickness.

C. Situation Awareness in Surgery

Extracting procedural knowledge from surgical tasks’ ob-
jective data is a robust research trend. Also, a robotic system
can serve as an enabling factor to achieve this goal, since it is
intrinsically capable to collect meaningful data. Such systems
in fact capture diverse data streams (e.g., kinematics, video or
data from integrated sensors) simultaneously. These data can be
used to design artificial intelligent solutions to assist clinicians
over multiple tasks, as camera navigation. As suggested in [11],
contextual assistance is crucial and should be guided by the
user’s intent prediction. A robot should learn certain strategies
based on examples or even measurements of the movements
of a human operator. This kind of notion regarding procedural
knowledge can be defined as situation awareness.

Situation awareness can intra-operatively support the physi-
cians by reducing the workload while enhancing safety, detect-
ing hazardous surgical events [12], or even performing surgical
gesture recognition. Indeed, awareness in surgical tasks has
been approached by the segmentation of procedures into pre-
determined actions. Based on the desired granularity, actions
have been divided into dexemes, surgemes, activities, phases,
procedures and states, from finest to coarsest [13]. Artificial
intelligence (AI) is more and more used to achieve gesture
recognition during surgical procedures and it is able to provide
targeted feedback regarding the ongoing process [14], [15] as
well as automating surgical tasks or sub-tasks [16]. Nevertheless,
the combination of both situation awareness and the automation
of camera navigation is still an open challenge in surgical
robotics.

Gesture recognition methods can be classified based on the
data type that is used as input, hence kinematic data, video
streams or a combination of both. Hidden Markov Models
(HMM) were first employed to classify motion segments us-
ing kinematic data [17], [18], lately outperformed by Linear
Dynamical Systems (LDS) [19]. The first approach to gesture
recognition using both kinematic and video data was proposed

with Conditional Random Fields (CRF) [20], but it was only
with Deep Neural Networks (DNN) that the research community
found a powerful instrument capable of fine-grained surgeme
recognition. Temporal Convolutional Networks (TCN) were
introduced to capture long-range temporal dependencies [21],
thanks to pooling operations, but experienced imprecise identifi-
cation of surgemes’ boundaries. Later on, 3D CNNs [22] or Spa-
tial Temporal Graph Convolutional Networks (ST-GCN) [23]
were proposed to efficiently process also higher-dimensional
signals, achieving better performance with respect to spatial
and spatio-temporal models. Due to their ability to compute
predictions sequentially in time, Recurrent Neural Networks
(RNN) have been used to capture long-term dynamics in sur-
gical kinematic data. Thanks to their sequential nature, RNNs
can handle signals of different lengths in real time, allowing
online gesture recognition. To alleviate gradient descent is-
sues and hyperparameter sensitivity, Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) have been widely
used, achieving the best classification performance [24]. In
addition to that, a multi-task learning approach has been pro-
posed in [25] to both identify surgemes and progress of the
surgical task. Furthermore, works based on unsupervised or
semi-supervised learning approaches were presented, which
tackled large data necessity issues, since labels are required
only for testing, obtaining promising results, as described
in [13].

Nevertheless, to the best of our knowledge, no solution has
been proposed that takes advantage of online gesture recognition
to enhance camera navigation with situation awareness.

D. Research Hypothesis

We designed an online Gesture Recognition system for
Autonomous Camera-motion Enhancement (GRACE) during
RAMIS to introduce situation awareness in autonomous camera
navigation. Given the performance shown by RNNs in the
literature [24], [25] the system comprises two LSTM models
working in parallel to perform online gesture recognition.

We designed and tested GRACE during a suturing task. This
type of surgical process segmentation is well-suited to low-
level analysis. As described in [26], different suturing sub-tasks
require specific camera adjustments, and specific human gaze
patterns can be defined when performing suturing tasks [27],
depicting salient regions inside the FOV.

The aim of this work is to test the advantages introduced by
situation awareness in autonomous camera navigation during
a suturing task, by analysing completion time, workload and
motion sickness reduction.

We initially implemented a proof-of-concept of the proposed
approach in virtual reality [28]. This work preliminarily vali-
dated our research hypothesis, showing the benefits introduced
by surgical procedure knowledge on camera automation. Thus,
it paved the way to design and integrate GRACE on a real
robotic surgical system, while also introducing online gesture
recognition with recurrent neural networks. Specifically, the da
Vinci Research Kit (dVRK) [29] shown in Fig. 1(a), an open
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Fig. 1. dVRK setup & GRACE architecture: main components of dVRK system are shown in (a), along with the suturing pad inserted inside a mannequin. The
user handles a pair of manipulators to teleoperate two Patient Side Manipulators (PSM) and an Endoscopic Camera Manipulator (ECM). Kinematic data coming
from both PSMs is then fed into two parallel recurrent neural networks (b), each composed by two LSTM layers, two Dropout and Batch Normalization layers,
followed by a fully connected layer (FC), with a final softmax activation function for gesture classification. Based on the recognized gesture, the camera is moved
over the suturing pad, shown in (c).

research platform derived from the first generation dVSS, was
deployed to complete the study.

To validate the benefits introduced by GRACE, we performed
a user study comparing GRACE both with the current foot pedal
camera control modality and a state of the art System for Camera
Autonomous Navigation (SCAN) [7].

II. METHODS

In this section, we introduce the GRACE system, first ad-
dressing Situation Aware Camera Motion Automation and then
the System Validation. The first subsection describes the segmen-
tation of the suturing task into four surgemes, the LSTM based
gesture recognition model and the autonomous camera control
architecture. The second subsection presents the experimental
setup, the acquisition protocol, the validation of the classifying
model and the evaluation metrics.

A. Situation Aware Camera Motion Automation

1) Suturing Task: the proposed work focuses on the suturing
task, decomposing it into surgemes. Different suturing surgemes
require adjustments of the FOV [26] and are associated to
specific human gaze patterns [27]. As done by [26], we identify
the suturing sub-task as a repetition of: finding a suitable position
for needle insertion (Needle Positioning - NP), push (Tissue Bite
- TB) and pull (Suture Throw - ST) of needle and thread through
the tissue. Reaching for the Needle - RN - has been added to
label cases in which the needle is not handled by the grippers.
Note that this refers only to the action of placing the stitching
material through the tissue, therefore the knot tying phase is not
considered.

2) Online Gesture Recognition: to allow camera motion with
situation awareness, we devised a deep learning model capable
of performing online gesture recognition. This system is based
on two LSTM models working in parallel, designed specifically
for each arm. They have been trained separately to recognize
respectively RN or ST for the left arm, RN, NP or TB for the
right arm. The final classification corresponds to the gesture
recognized with the highest confidence score from the two
models. Given the necessity to work in real-time, we did not

include video as input data, due to its higher computational cost
and time.

We selected the needle grippers’ end effector pose (6), open-
ing angle (1), linear velocity (3), angular velocity (3), joint
state (3) and relative distance (1), resulting in a 17 dimensional
feature. The time window length is equal to 5 timestamps,
resulting in overlapping windows with a data input shape of
5× 17 acquired at 30 Hz.

The model architecture is shown in Fig. 1(b): a two-layer
LSTM model with respectively 128 and 64 hidden units,
with kernel regularizer l1 = 0.001, two Dropout layers with
dropoutrate = 0.2 and 0.3, two Batch Normalization layers
withmomentum = 0.99, followed by a dense layer, with a final
softmax activation function for gesture classification. We used
the Adam optimizer with a starting learning rate lr = 0.001,
and at each training iteration we computed the classification loss
using the categorical cross-entropy. We selected early stopping
as the criterion to stop model training, monitoring the loss with
a patience of 200 epochs. When learning was stuck for more
than 40 epochs, learning rate reduction was applied by halving
lr until a minimum of 10−5.

Given the fact that every gesture can be repeated in different
positions in space, in order to remove the positional dependency
we preprocess the input matrix by subtracting the tool’s initial
position from each subsequent position. As a result, every clas-
sified gesture will have the (X,Y, Z) origin fixed at (0,0,0) for
the first timestamp.

3) Situation Aware Camera Motion: the autonomous camera
motion modality is shown in Fig. 1(b) and (c). According to
the output of the online gesture recognition, the camera motion
system sets the scene center (SC) by relying on the kinematics
tracking of the tools’ 3D position. Hence, no image segmentation
is needed. The camera motion system has been developed on
the da Vinci Research Kit, which allows for open access to the
robot’s kinematics. The laws for camera motion during each
gesture were derived from [27], which reports that specific
human gaze patterns can be defined when performing a suturing
task. Specifically, the camera motion was implemented based
on the recognized gesture, as follows:
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Fig. 2. Gestures & situation aware camera motion: the suturing environment is shown, with stitches’ entry and exit points (red circles) on the suturing pad.
(a) Needle Positioning: PSMs tips are tracked and their midpoint (M) is projected (P) on the preferential line, defined by the user at the start of the task. Given the
linear shape of the suturing path, the preferential line is straight and ideally aligned with the red path displayed in the figure. Scene Center (SC) is then obtained
weighting P and PSM1 position: the higher the weight, the closer SC will be to P. (b) Tissue Bite. (c) Suture Throw: equivalent tracking criteria are used to define
SC with respect to PSM2.

� Reaching for the Needle: the camera holds a steady posi-
tion, waiting for the task to start or to hold the needle again
after having lost its grip.

� Needle positioning: the camera tracks the weighted SC, as
in Fig. 2(a). SC is weighted in between the projected tools’
midpoint (P) and the patient side manipulator (PSM1)
tip, with the aim of minimizing the incidence of motion
sickness. The user defines the preferential line for midpoint
projection at the task’s outset, if necessary, and can modify
it during task execution. Pressing a pedal on the foot pedal
tray, the user is able to draw a line point-by-point in 3D
space using the tip of the surgical tools. Users may proceed
without defining a line: in this case P coincides with M, and
SC is weighted accordingly.

� Tissue bite: the camera acquires a steady zoomed-in posi-
tion, as in Fig. 2(b), to promote a sharp and fixed FOV over
the stitch.

� Suture throw: to conclude the suture, needle and thread
must be pulled through the stitch, as in Fig. 2(c). For this
gesture, the camera follows the same behaviour imple-
mented for needle positioning on PSM2.

To allow tools to remain within the FOV, we proposed an
adjustable zoom based on the tools’ tip distance. Camera’s Tip
(CT) started at 9cm - value set to match the task workspace -
from the tracked scene center, and the position was adjusted as
follows:

CT = SC − (0.09 + z · d) R

|R| (1)

where SC is the Scene Center in Cartesian space, R is the
vector connecting SC to CT, z = 0.35 is a weighting value
for zooming range and d represents the distance between the
tools’ tips. As a result, tools moving apart from each other result
in the camera zooming out, allowing for a continuous view
of the instrumentation, even when larger FOVs are required.
This solution has been introduced to accommodate both narrow
views, necessary for TB when tools are in close proximity, and
wide views, preferable for both ST and NP.

B. System Validation

1) Experimental Setup: the setup used for our user study
is shown in Fig. 1(a). The master console of a dVRK is the
surgeon’s side of the robot. It is equipped with a foot-pedal tray,
two Master Tool Manipulators (MTMs) and a stereo viewer for
visualization of the surgical environment. On the patient’s side
of the robot, there are two Patient Side Manipulators (PSMs),
holding the surgical tools, and an Endoscopic Camera Manipu-
lator (ECM), holding the camera. A plastic mannequin contains
a magnetic pad holding in position a latex non-tear film, as a
substitute for soft tissues, with the stitches’ entry and exit points
as in Fig. 2. The pad can be positioned as desired on the red
ferromagnetic surface inside the mannequin, as in Fig. 1(a),
thanks to two magnets placed under it which allow a steady
hold. The last element composing the experimental setup is the
surgical needle with thread, used to suture the pad with the
help of needle grippers, or Large Needle Drivers, attached to
the PSMs.

2) Acquisition Protocol: we performed a user study with 10
non-medical users (20 to 27 years, 9 males, 1 female, all right
handed). Each user completed the suturing task in 3 modalities:
camera navigation with foot pedal control (P), as in clinical
dVSS systems, continuous tools’ tips midpoint tracking (S), as
in [7], and the GRACE system (A).

To complete the suturing task, participants had to pick up the
needle and perform a total of 11 stitches, as in Fig. 2. Each
camera motion modality was tested 2 times, for a total of 6
repetitions per subject. The FOV proposed at the beginning of
every task repetition was such as to not allow a complete view
of all the stitches.

The vast majority of previous works relied on the JIGSAWS
dataset [17] to train and test their models. However, due to its
lack of camera motion, we collected synchronized kinematic and
video data during the suturing task performed with the camera
foot pedal control modality to build a new dataset, comprehen-
sive of camera adjustments. We later performed offline manual
labeling: the resulting dataset, with a dimensionality of more
than 150 k labelled features windows, was used to train the
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Fig. 3. Objective & subjective metrics: both objective (completion time, foot pedals, covered distance) and subjective (NASA TLX) metrics are shown. Groups
are labeled based on camera motion modality, as follows: camera foot pedal (P), SCAN (S) [7], GRACE (A). Statistically significant differences are presented by
pairs, identified by the extremes of the black horizontal lines. In the boxplots, the median is identified by a white-edged black dot, the first and the third quartiles
are depicted as bold line edges, the whiskers are represented by thin line edges, while outliers are identified as rings.

LSTM based model that we designed to perform situation aware
autonomous camera motion (A).1

As a consequence, all the experiments started with 2 repeti-
tions with the P modality. To allow the process described in the
previous paragraph (i.e., labeling and model training), the other
4 repetitions were performed after 2 weeks. This also allowed to
minimize any learning effect from the P repetitions. For a direct
comparison, the S and A repetitions were performed during the
same day. Again, to minimize the influence of any learning effect
on the results, permuted block randomization was used to define
the order of the 4 repetitions with the S and A modalities for each
user.

Before starting the task, each participant was given an in-
troductory speech, in which the main components of the Master
Console were described, and 5 minutes of training, during which
they could familiarize themselves with the robotic platform. The
suturing environment was displayed on the stereo viewer inside
the Master Console, in which the users placed their head.

The experiments were carried out after Institutional Review
Board (IRB) approval (protocol number: HIRB00000701) with
oral consent from participants. The official NASA Task Load
Index (TLX) iOS App has been used for measuring the subjective
workload.

3) Online LOUO Validation: we performed the Leave One
User Out (LOUO) approach to validate our model. Validation
has been performed online during suturing task completion, for
every user. To be able to do so, we trained both LSTM models 10
times, each time leaving out the labeled data coming from one
user, obtaining 10 different versions. Every model was then used
to perform online gesture recognition only for that specific user
whose data was not used for training. Doing so, the gestures
to be recognized given as input to the model always came
from a never seen before user. Once the acquisition process
was completed, the gestures’ ground truth was obtained by

1The dataset is available at (https://github.com/paso04/Autonomous-
Camera-Motion)

offline manual labeling, and later on compared with the gesture
recognition model output for validation. The same approach was
later used for the user study, employing 10 user-specific models
to perform online gesture recognition.

4) Models Performance: the evaluation of the LSTM models
has been conducted through the comparison of the ground truth
against the online classified gestures. Results were analysed
based on macro-averaged F1 score and categorical accuracy.
Macro-averaging allows for extension to multi-class classifica-
tion - treating all classes equally - from a binary situation in
which metrics are computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(3)

with True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). Accuracy is limited in evaluating
precision and recall information; consequently, the macro F1
score is employed.

5) Comparative Metrics: both objective and subjective met-
rics were defined to analyze the user study outcomes.

To evaluate users’ performance from an objective point of
view, we selected 6 quantifiable metrics: completion time, num-
ber of foot pedals presses (clutch and camera) and total covered
distance for PSM1, PSM2 and ECM. The clutch pedal addresses
how many times users had to readjust their masters’ position due
to a bad positioning of the surgical tools: whenever the clutch
pedal is pressed, masters can be moved freely without causing
any motion of the PSMs.

After completion of the study, every user was asked to com-
plete a NASA Task Load Index (TLX) [30] for every camera
control modality. The NASA TLX addresses the subjective
workload, as an overall score based on a weighted average of
rating on six sub-scales (mental demand, physical demand, tem-
poral demand, performance, effort, frustration). Additionally,
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each user filled out a post experiment questionnaire to primarily
inquire about motion sickness.

Given the relatively small sample size, we applied the
Wilcoxon signed rank test to perform non-parametric statistical
significance tests using the signrank() command in MATLAB.
We considered repetitions with different camera control modali-
ties to build two populations with paired observations of a certain
metric, and statistically significant results were assessed at dif-
ferent values of p as follows: * for p < 0.05, ** for p < 0.01,
*** for p < 0.001. The results of statistical tests are reported
as pM−N

met , where met is the observed metric and M, N are two
camera control modalities.

III. RESULTS AND DISCUSSION

Every user who took part in the study completed the suturing
task 2 times for each camera motion modality. The final aim of
the study is to determine whether a situation aware autonomous
camera control modality benefits the user during a suturing task,
compared to both the current foot pedal control and a state of
the art autonomous camera motion system. Results of gesture
recognition coming from the user-specific models are shown in
the confusion matrix in Fig. 4, and categorical accuracy and
F1 score are reported. Both objective and subjective results are
shown in Fig. 3.

A. Models Performance

Results in Fig. 4 are obtained by calculating the confusion
matrix of all 20 repetitions of modality A performed with
user-specific models. With a similar approach, macro-averaged
F1 score and categorical accuracy are 0.84. Errors in kinematics
may affect the performance of the models as well as the tracking
precision of the tool tips. In this context, it is noteworthy to report
that the first generation of the da Vinci robot may present position
inaccuracies up to the order of a millimeter [31]. Nevertheless,
automation of camera motion does not require sub-millimeter
accuracy, in contrast to automation of surgical tasks involving
grasping [31]. Therefore, we consider performance results suffi-
cient for our application. Also, the vast majority of misclassified
gestures fall at the boundaries of consecutive gestures. Such a
result can be explained by two main factors: manual annotation,
which may present inaccuracy, and latency. With the latter, we
refer to the computational time required by the models to rec-
ognize the performed gesture and subsequently decide whether
or not to move the camera. In fact, it took approximately 30ms
to perform a single online gesture classification. This led to the
system’s working frequency reduction from 30Hz to 7Hz; as a
result, gesture progress at the boundary may be recognized with
variable delay.

Consecutive gestures TB and NP show the higher misclassi-
fication values, as a result of their similarity in the execution,
especially at the borders. Stronger results can be achieved by
fusing multiple data streams. Incorporating video as input data
would allow for estimation of needle pose and distance to
tissue. Specifically, distance to tissue can be key in classify-
ing NP and TB at the borders [32], where the LSTM model
encounters challenges. NP and TB gestures get mixed in most

Fig. 4. Models performance: gesture recognition results - obtained by user-
specific models - are shown in the normalized confusion matrix, along with
macro-averaged categorical accuracy and F1 score.

cases due to their similarity during the transition from a fine
position adjustment to find the correct stitch’s insertion point
(NP) to the start of the actual biting process (TB). This step
witnesses minimal motion of the instruments, making the sole
discriminative kinematic feature the orientation of the tools.
Ultimately, incorrect detection of surgical gestures produces a
sub-optimal FOV selection and camera instability, which result
in mitigation of the beneficial effects introduced by situation
awareness.

B. Comparative Metrics

The results demonstrate statistical differences in completion
time, foot pedal tray usage and camera covered distance. As
expected, the introduction of an autonomous control for camera
motion reduced significantly the completion time, with respect
to pedal camera control, for both SCAN (pS−P

time < 0.05) and
GRACE (pA−P

time < 0.01). GRACE improved completion time by
a median reduction of 18.9s (8.1%) with respect to S and 65.1s
(21.1%) with respect to P.

Regarding clutch pedal and camera pedal total presses,
the same statistical difference is shown for both au-
tonomous modalities, respectively pA−P

clutch, p
S−P
clutch < 0.01 and

pA−P
camera, p

S−P
camera < 0.001. This illustrates the fact that during

camera motion performed with the current traditional approach,
hands are prone to fall into uncomfortable positions, which
require the use of the clutch pedal for repositioning. In addition,
the results can be explained by the autonomous nature of both
SCAN and GRACE systems, which do not require any human
input to directly control the camera, hence no camera pedal
usage.

No reduction in the PSMs covered distance can be noted,
but remarkable differences are shown for the ECMs covered
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distance. Even though for both autonomous navigation sys-
tems the covered distance is higher than the current camera
control, we can notice a noteworthy statistical difference, with
pA−S
ECMdistance < 0.001, between GRACE (A) and SCAN (S).

This result is given by two main factors: introduction of situation
awareness and projection of camera center over the preferential
line designated by the user at the beginning of every task.
Indeed, online gesture recognition enhances camera motion by
instructing the autonomous tracking system when to move the
camera, while the projection of the point to be tracked over the
line in 3D space further reduces unnecessary ECM movements,
with the potential to reduce the incidence of motion sickness.

This suggests that automation in camera motion may not be
sufficient to enhance the surgical outcome. In fact, a continu-
ous motion of the camera, in particular when performing fine
gestures such as biting the tissue, may be undesired, leading
to motion sickness. The introduction of situation awareness
with GRACE is able to drastically reduce unnecessary camera
movements.

In order to complete the suturing task, the evaluated camera
motion modalities required different levels of effort from the
users. Such a result is confirmed by the NASA TLX subjective
evaluation. A statistically significant difference between A and S
demonstrates that GRACE is able to reduce the user’s overall
workload with respect to SCAN. However, no significant dif-
ference in terms of workload was found between A and S with
respect to P. This result can be explained by the users’ feedback in
post experiment questionnaires. Indeed, results show that, while
completing the task with modality P, users generally completed
stitches even with sub-optimal camera FOV (P = 3.5± 0.85
on a 0 - optimal - to 5 - suboptimal - scale). This suggests a
decreased workload due to the fact that they partially skipped
the effort to reposition the camera.

Furthermore, users reported a reduction of motion sickness
(sickReduction) using GRACE (A) compared to SCAN (S)
(A = 0.8± 1.0,S = 3± 1.6on a 0 - minimum - to 5 - maximum
- motion sickness scale, with pA−S

sickReduction < 0.01), confirm-
ing that situation awareness reduced the incidence of discom-
fort related to a continuous motion of the camera, typical of
modality S.

IV. CONCLUSION AND FUTURE WORKS

This letter presents an architecture to enhance camera naviga-
tion during a suturing task performed in robot-assisted surgery,
thanks to the deployment of a system for online surgical Ges-
ture Recognition for Autonomous Camera-motion Enhancement
(GRACE). The system is based on two processes working
together: online gesture recognition and kinematics-based tool
tracking.

The system was integrated with the da Vinci Research Kit [29]
and a user study was carried out to test its effectiveness with
respect to state-of-the-art camera navigation. 10 subjects com-
pleted a suturing task in 3 camera motion modalities (man-
ual, continuous tool tracking and GRACE). Results show that
the proposed architecture is capable of reducing the burden
associated to camera motion with respect to both the current

control and state of the art autonomous tracking systems. Every
user completed a post experiment questionnaire and results
corroborate the hypothesis of motion sickness reduction thanks
to the introduction of situation awareness, with respect to the
state-of-the-art continuous non-aware tracking system, called
SCAN [7]. Furthermore, reduction in overall workload with
respect to SCAN demonstrates that situation awareness is a key
factor in exploiting the beneficial effects brought by autonomous
navigation. The fusion of an autonomous tracking system with
an online model for gesture recognition further improved the
overall surgical flow, not only relieving the surgeon from control-
ling the camera but also reducing its motion. Situation awareness
allows for an intelligent motion of the camera by removing
unnecessary movements that could cause motion sickness.

To improve the significance of the results, a larger population,
including medical experts, should be involved in future studies.
To further validate the method’s generalizability and better
transfer results from a dry lab to a real surgical scenario, uncer-
tainties in the form of noise must be added, repeating also the
experiments with P = M , when no preferential line is defined.
In addition, further qualitative assessments of the surgical task
should be performed. Also, the extension of gesture recognition
to multiple surgical tasks is key towards of the general applica-
bility of the proposed method. The fusion of both kinematic
and video input data may result in higher performances for
real-time gesture recognition. In particular, the extraction of
meaningful features such as the distance of the needle from soft
tissues, unattainable from kinematics alone, would reduce the
uncertainty of the system in classifying gestures at the borders.
To evaluate the model’s ability to generalize, an evaluation of
GRACE with models trained on single users’ dataset should be
carried out and compared to the presented results.

REFERENCES

[1] K. Moorthy et al., “Dexterity enhancement with robotic surgery,” Surg.
Endoscopy Other Interventional Techn., vol. 18, no. 5, pp. 790–795, 2004.

[2] R. H. Taylor, A. Menciassi, G. Fichtinger, P. Fiorini, and P. Dario, “Med-
ical robotics and computer-integrated surgery,” in Springer Handbook of
Robotics. Berlin, Germany: Springer, 2016, pp. 1657–1684.

[3] A. Pandya et al., “A review of camera viewpoint automation in robotic and
laparoscopic surgery,” Robotics, vol. 3, no. 3, pp. 310–329, 2014.

[4] S. Ali et al., “Eye gaze tracking for endoscopic camera positioning:
An application of a hardware/software interface developed to automate
AESOP,” Stud. Health Technol. Inform., vol. 132, pp. 4–7, 2008.

[5] D. W. Hansen, H. H. Skovsgaard, J. P. Hansen, and E. M/ollenbach, “Noise
tolerant selection by gaze-controlled pan and zoom in 3D,” in Proc. Symp.
Eye Tracking Res. Appl., 2008, pp. 205–212.

[6] T. D. Col et al., “Automating endoscope motion in robotic surgery: A
usability study on da Vinci-assisted ex vivo neobladder reconstruction,”
Front. Robot. AI, vol. 8, 2021, Art. no. 707704.

[7] T. D. Col, A. Mariani, A. Deguet, A. Menciassi, P. Kazanzides, and E.
De Momi, “SCAN: System for camera autonomous navigation in robotic-
assisted surgery,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,
pp. 2996–3002.

[8] B. Li, B. Lu, Z. Wang, F. Zhong, Q. Dou, and Y.-H. Liu, “Learning laparo-
scope actions via video features for proactive robotic field-of-view con-
trol,” IEEE Robot. Automat. Lett., vol. 7, no. 3, pp. 6653–6660, Jul. 2022.

[9] O. Weede, H. Mönnich, B. Müller, and H. Wörn, “An intelligent and
autonomous endoscopic guidance system for minimally invasive surgery,”
in Proc. IEEE Int. Conf. Robot. Automat., 2011, pp. 5762–5768.

[10] C. Gruijthuijsen et al., “Robotic endoscope control via autonomous instru-
ment tracking,” Front. Robot. AI, vol. 9, 2022, Art. no. 832208.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 31,2024 at 11:45:34 UTC from IEEE Xplore.  Restrictions apply. 



8270 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 12, DECEMBER 2023

[11] A. D. Dragan, S.S. Srinivasa, and K. C. Lee, “Teleoperation with intelli-
gent and customizable interfaces,” J. Hum.-Robot Interact., vol. 2, no. 2,
pp. 33–57, 2013.

[12] M. S. Yasar and H. Alemzadeh, “Real-time context-aware detection of un-
safe events in robot-assisted surgery,” in Proc. IEEE 50th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., 2020, pp. 385–397.

[13] B. van Amsterdam, M. J. Clarkson, and D. Stoyanov, “Gesture recognition
in robotic surgery: A review,” IEEE Trans. Biomed. Eng., vol. 68, no. 6,
pp. 2021–2035, Jun. 2021.

[14] Y. Gao et al., “JHU-ISI gesture and skill assessment working set (JIG-
SAWS): A surgical activity dataset for human motion modeling,” in Proc.
MICCAI Workshop: M2cai, 2014, vol. 3, no. 3.

[15] S. S. Vedula et al., “Analysis of the structure of surgical activity for a sutur-
ing and knot-tying task,” PLoS One, vol. 11, no. 3, 2016, Art. no. e0149174.

[16] T. D. Nagy and T. Haidegger, “A dVRK-based framework for surgical sub-
task automation,” Acta Polytechnica Hungarica, vol. 16, no. 8, pp. 61–78,
2019.

[17] N. Ahmidi et al., “A dataset and benchmarks for segmentation and recog-
nition of gestures in robotic surgery,” IEEE Trans. Biomed. Eng., vol. 64,
no. 9, pp. 2025–2041, Sep. 2017.

[18] L. Tao, E. Elhamifar, S. Khudanpur, G. D. Hager, and R. Vidal, “Sparse
hidden Markov models for surgical gesture classification and skill eval-
uation,” in Proc. Int. Conf. Inf. Process. Comput.- Assist. Interv., 2012,
pp. 167–177.

[19] B. Varadarajan, “Learning and inference algorithms for dynamical sys-
tem models of dextrous motion,” Ph.D. dissertation, The Johns Hopkins
University, Baltimore, MD, USA, 2011.

[20] L. Tao, L. Zappella, G. D. Hager, and R. Vidal, “Surgical gesture segmen-
tation and recognition,” in Proc. Int. Conf. Med. Image Comput. Comput.-
Assist. Interv., 2013, pp. 339–346.

[21] C. Lea, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional
networks: A unified approach to action segmentation,” in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 47–54.

[22] I. Funke, S. Bodenstedt, F. Oehme, F. V. Bechtolsheim, J. Weitz, and S.
Speidel, “Using 3D convolutional neural networks to learn spatiotemporal
features for automatic surgical gesture recognition in video,” in Proc. Int.
Conf. Med. Image Comput. Comput.- Assist. Interv., 2019, pp. 467–475.

[23] D. Sarikaya and P. Jannin, “Towards generalizable surgical activity
recognition using spatial temporal graph convolutional networks,” 2020,
arXiv:2001.03728.

[24] R. DiPietro et al., “Segmenting and classifying activities in robot-assisted
surgery with recurrent neural networks,” Int. J. Comput. Assist. Radiol.
Surg., vol. 14, no. 11, pp. 2005–2020, 2019.

[25] B. van Amsterdam, M. J. Clarkson, and D. Stoyanov, “Multi-task recurrent
neural network for surgical gesture recognition and progress prediction,”
in Proc. IEEE Int. Conf. Robot. Automat., 2020, pp. 1380–1386.

[26] R. D. Ellis et al., “Task analysis of laparoscopic camera control schemes,”
Int. J. Med. Robot. Comput. Assist. Surg., vol. 12, no. 4, pp. 576–584,
2016.

[27] A. A. Awale and D. Sarikaya, “Using human gaze for surgical activity
recognition,” in Proc. IEEE 30th Signal Process. Commun. Appl. Conf.,
2022, pp. 1–4.

[28] N. Pasini, A. Mariani, A. Munawar, E. D. Momi, and P. Kazanzides,
“A virtual suturing task: Proof of concept for awareness in autonomous
camera motion,” in Proc. IEEE 6th Int. Conf. Robot. Comput., 2022,
pp. 376–382.

[29] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor,
and S. P. DiMaio, “An open-source research kit for the da Vinci
surgical system,” in Proc. IEEE Int. Conf. Robot. Automat., 2014,
pp. 6434–6439.

[30] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (task load
index): Results of empirical and theoretical research,” Adv. Psychol.,
vol. 52, pp. 139–183, 1988.

[31] Z. Cui et al., “Caveats on the first-generation da Vinci research kit: Latent
technical constraints and essential calibrations,” IEEE Robot. Automat.
Mag., 2023.

[32] C. Lea, G. D. Hager, and R. Vidal, “An improved model for segmentation
and recognition of fine-grained activities with application to surgical
training tasks,” in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2015,
pp. 1123–1129.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 31,2024 at 11:45:34 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


