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Abstract

This work presents a set of dynamic filters for estimating the relative roto-translational state and the main parameters of a nonco-
operative target from an observing chaser satellite during close proximity operations. The proposed different options address a wide
range of design possibilities for the architecture of the relative navigation system. All filters are derived from a common, general, core
shaped as a dynamic multiplicative extended Kalman filter using dual quaternions. This allows exploiting the advantages of handling the
pose (i.e., attitude and position) in a multiplicative fashion, while improving the accuracy in the estimation of the angular and linear
relative velocities, as well as enabling the estimation of some meaningful parameters of the target spacecraft (e.g., the ratios of the
moments of inertia, position and orientation of the principal axes frame). Moreover, by adopting relative kinematics and dynamics equa-
tions in dual quaternions, the inherent coupling of the six degrees-of-freedom motion is addressed with no approximations. All filters
take as observations only the noisy pose measurements from an electro-optical device. For each proposed formulation, numerical sim-
ulations are carried out to show the behavior of the filter within a scenario representative of close-range target inspection at conclusion of
the mid-range rendezvous.
� 2023 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Several multi-satellite missions that require close prox-
imity operations (CPOs) are currently under consideration
by the space community. These span from on-orbit servic-
ing activities to inspect, repair, and therefore provide life
extension to damaged satellites to active debris removal
missions devoted to guarantee the long-term sustainability
of the space environment (e.g., removal of critical large
inoperative targets, periodical support to large constella-
tion assets). The time and space scales of CPOs demand
for the capability to estimate onboard and in real-time
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the relative 6 degree-of-freedom (DoF) relative state
between the target and chaser satellites. In addition, some
critical phases such as final approach and capture of the
target rely on a motion planning based on the prediction
obtained propagating in time the estimated solution.
Accordingly, to guarantee the accuracy needed, mass iner-
tia properties and location of the center of mass of the tar-
get should be also known. Since inoperative satellites are de
facto partially unknown targets - due to possible damages,
unknown status at end of life, and system deterioration in
space - the estimation of the main target parameters
becomes also necessary during CPOs.

The architecture of the close-range relative navigation
system mainly depends on the level of cooperation of the
target satellite (Opromolla et al., 2017). Disregarding the
detailed design, a filtering scheme is always a key building
org/licenses/by/4.0/).
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block to refine the information provided by the sensing
devices and to perform a motion prediction in case of data
gaps in the observations. In this work the focus is on non-

cooperative targets, which can be inoperative satellites or
spacecraft not designed to actively support CPOs. In this
case, the navigation system can only employ (active and/
or passive) electro-optical sensors to observe the target
object (Opromolla et al., 2017). The common feature of
these devices is the impossibility to perform a direct mea-
surement of the relative angular rate nor of the relative lin-
ear velocity w.r.t. the target. The architecture of close-
range relative navigation systems can be categorized into
loosely- and tightly-coupled design approaches
(Opromolla et al., 2017; Pasqualetto Cassinis et al., 2019;
Pasqualetto Cassinis et al., 2021). In the first option, the
state/parameters estimation and the filtering scheme are
addressed by two separate sequential functional blocks.
Accordingly, the sensor data processing unit provides a
set of pseudo-measurements to the filter, which then incor-
porates them in the measurement update step. In the
tightly-coupled configuration, instead, the sensors’ data
processing and the filtering task are performed by a single
functional block. Hence, the observations are the direct
measures of features detected on the target. This work pro-
poses a filtering scheme whose general structure can serve
crosswise the aforementioned possible architectures of the
close-range navigation system, with the possibility to refine
the knowledge of the parameters while reconstructing the 6
DoF relative state.

An overview of the navigation filters for CPOs investi-
gated in recent years to perform relative pose (i.e., position
and attitude) estimation is provided in Pasqualetto Cassinis
et al. (2019): the general approach is to design two separate
filters to estimate the translational and rotational motions.
The identification of target’s parameters is also mainly
addressed as a separate problem. For example, Sheinfeld
and Rock (2009) and Benninghoff and Boge (2015), respec-
tively propose a free and a constrained least squares prob-
lem for the estimation of the location of the center of mass
and the moments of inertia. Nonetheless, both works lack
realism since they assume to know all the dynamical quan-
tities (with noise). Overall, the implementation of different
filters specialized on specific relative navigation related sub-
problems impacts the complexity of the whole guidance
navigation and control (GNC) system. It increases the
number of sub-units, interfaces between them, GNC oper-
ative modes, and complexity of the correlations between
GNC modes and phases of the CPOs (e.g., inspection, final
approach, capture). Specifically, this design philosophy
introduces an artificial splitting of phenomena that are
interconnected: the relative translational motion depends
on the rotational one and the rotational dynamics is func-
tion of the inertia properties of the target body. This leads
to introducing approximations that may impact the quality
of the estimated solution in terms of achievable accuracy
and robustness of the estimation process.
2

As for the simultaneous estimation of the 6 DoF state
and target parameters, Aghili and Parsa (2009) proposed
an additive, discrete, noise adaptive, extended Kalman fil-
ter (EKF). Such filter receives the measurements of a fea-
ture detected on the target to deliver full state, ratios of
the inertia moments, and position and orientation of the
target principal axes frame. The peculiarity of their
approach is to structure the state so that most of the
parameters appear in the observation matrix rather than
in the system dynamics. Nonetheless, they introduce sev-
eral approximations on the motion. The relative transla-
tional dynamics is described through the Clohessy-
Wiltshire equations, which decouples the translational
and rotational sub-parts of the state transition matrix.
The chaser is assumed controlled to follow a constant
angular rate, which makes the time derivative of the rela-
tive error quaternion function of the absolute angular rate
of the target rather than of the relative one. This explains
the hybrid formulation of the rotational state where the
variables are the relative quaternion and the absolute angu-
lar rate of the target. Pesce et al. (2017) proposed an algo-
rithm to estimate pose and target inertia properties, though
it is specifically suited for the vision-based stereo-vision
application.

As for the consideration of the inherent coupling
between rotational and translational motions, several
works exploited the dual quaternion (DQ) framework.
The DQ, in fact, is a compact representation of the roto-
translational displacement between a couple of reference
systems and the DQ algebra allows handling the
rotation-translation components through the same opera-
tions. In this context, Filipe et al. (2015) proposed a
kinematic-only DQ-based multiplicative extended Kalman
filter (MEKF). It is designed as a continuous-discrete Kal-
man filter, which can be specified to the case where the
observations are only the relative pose between the target
and chaser satellites. They showed that handling the whole
pose is a multiplicative fashion, through the DQ formula-
tion and the extension of the error quaternion concept to
DQs, improves the pose estimation accuracy for small val-
ues of the measurement update rate, which is likely to
occur in noncooperative CPOs. Hou et al. (2017) proposed
a DQ EKF to estimate 6 DoF state, target inertia ratios,
and location of the center of mass. In their formulation
the absolute state of the target appears in the filter state.
Accordingly, the kinematic part retains the approach of
Filipe et al. (2015), since it is independent from the choice
of the considered reference systems. The dynamics part is
included as in Aghili and Parsa (2009), though written as
the DQ-based absolute dynamics of the target. As for the
measurement equations, the observations are expressed in
the inertial frame. This implies that the covariance matrix
of the measurements should take into account also the
the errors on the knowledge of the chaser’s attitude and
absolute position, since the relative navigation sensors are
embarked on the chaser spacecraft. In addition, as the ori-
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entation of the target’s principal axes frame is not esti-
mated, there is the implicit hypothesis that the arbitrary
frame w.r.t. which the observations are taken is directly
the principal frame of the target. It is emphasized that,
the DQ representation combines linear and angular quan-
tities. Hence, when the absolute state of a satellite is used,
the numerical values of the variables associated with linear
and angular motions have rather different scales and, if not
properly handled, the DQ operations would introduce on
the rotational part non-negligible numerical errors. A fur-
ther work exploiting the DQ formulation has been pro-
posed by Yuan et al. (2019). This employes the approach
of Hou et al. (2017), though considering two satellites
observing the target object in order to implement a fault-
tolerant federal EKF strategy. Clearly this requires a very
specific design of the space segment, making it not applica-
ble to the standard case of one chaser observing the target
object. Razgus et al., 2017 developed a DQ EKF for the
relative navigation during asteroid circumnavigation,
showing capability to estimate in a more accurate fashion
the relative pose and gyroscope’s drifts compared to a con-
ventional Cartesian filter development. Nonetheless, the
satellite relative dynamics around the asteroid is modeled
as a perturbed two-body problem (with the asteroid as
the main attractor), which in this paper is denoted as to
the absolute rigid body dynamics. Accordingly, such filter
development cannot be applied to the satellite CPOs case.
Moreover, the measurement update step in such asteroid
application benefits from the availability of gyroscopes to
provide a direct measurement of the angular rate. So far,
the relative dynamic equations in DQ have been used to
design 6 DoF controllers for target tracking and formation
flying applications (Filipe and Tsiotras, 2015; Wang and
Sun, 2012). As far as the authors know, there are no appli-
cations of satellite relative navigation that take advantage
of the DQ-based relative dynamic equations.

This work presents a dynamic filtering scheme for simul-
taneous relative 6 DoF state and parameters estimation
using dual quaternions. In particular, since both measure-
ment and relative dynamics equations are nonlinear func-
tions of the state, the EKF technique has been adopted,
in view of possible future spaceborne applications. The
core filter is developed in continuous time with discrete
measurement models. This approach has been chosen in
preparation of supporting future applications in which
more sensors are used, with possibly different measurement
rates. The inherent coupling between the translational and
rotational motions is taken into account by employing the
DQ parametrization and no approximations on the motion
are introduced. Moreover, the DQ formulation renders the
6 DoF relative dynamics equations in a very compact and
simple fashion, formally equivalent to the quaternion-
based rotation-only relative dynamics. Indeed, the com-
plexity in play is embedded into the dual quaternion alge-
bra. In the paper it is shown that, by expanding the DQ-
based equations in components, the relative translation
dynamics simplifies to the difference of the absolute trans-
3

lation dynamics of the two satellites. If the Cartesian rela-
tive angular rate, position, and linear velocity were used in
the state, instead, a convenient choice to obtain compact 6
DoF equations would be to derive the rotation-only part as
in Segal and Gurfil (2009) and the relative translation in the
moving frame attached to the target s/c. Although this
result is also quite compact, the advantage of handling
the rotation-translation components through the same
operations is lost.

As a result, the original contributions of this work can
be summarized as follows:

1. the development of a dynamic version of the DQMEKF
able to improve the accuracy of the estimation of the
dual velocity component and to enable the estimation
of the full set of target parameters (i.e., ratios of the
moments of inertia, position and location of the princi-
pal axes reference frame). It therefore inherits the
continuous-discrete formulation, the dual error quater-
nion concept, and the use of the vector part of the
quaternion as three-parameter attitude representation
from the kinematic-only DQ MEKF of Filipe et al.
(2015). As for the dynamics, instead, the DQ formula-
tion of the equations of the 6 DoF relative motion are
used. Differently from Hou et al. (2017), where the abso-
lute dynamics was employed, this provides a consistent
formulation in the relative variables. This aspect eases
the physical insight for CPO applications and minimizes
the impacts of numerical issues related to the DQ alge-
bra. As for the measurement equation, two formulations
are proposed, depending on whether each observation is
expressed as the couple of quaternion and relative dis-
placement or as the pose unit dual quaternion. In this
latter case it is demonstrated that the propagation of
the measurement errors through the nonlinear definition
of the pose unit DQ produces negligible effects. Accord-
ingly, a constant definition of the measurement covari-
ance matrix can be employed in both formulations.
Finally, the constant parameters defining position and
orientation of the target principal axes are also cast as
a unit DQ variable, unlike the formulation of Gaias
and Lovera (2022), where an Aghili and Parsa-like
approach has been retained. This aspect makes the
whole DQ formulation of the filter consistent and sim-
plifies the expressions of the measurement sensitivity
matrices.

2. The implementation of the filtering scheme to deliver
state and parameters estimation with a general structure
that can be specified to address a wide range of design
possibilities for the architecture of the close-range navi-
gation system. This has been made possible by writing
the measurement equation for a generic point of the tar-
get s/c and by expressing it into a convenient reference
frame to simplify its expression as function of the filter
general state. The availability of a general filtering
scheme allows simplifying structure and interfaces of
the GNC system, since the same filter unit can be used
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as backbone of different GNC modes. Moreover, this
fosters the flexibility of the navigation system, since a
refinement of the parameters becomes possible in multi-
ple phases of the CPOs. At the same time, if required by
specific situations (e.g., poor identifiability of the param-
eters due to very low angular rate) the filter settings may
be tuned to reduce the number of parameters effectively
estimated. This is easily obtained for example by adjust-
ing the initial covariance values associated to the initial
guess of the filter. To show the flexibility of the proposed
approach, the paper provides the expressions that the
main design variables take in four possible applications
that span from loosely- to tightly-coupled architecture
solutions. For each of the provided examples, numerical
simulations are carried out to show the behavior of the
filter within a scenario representative of close-range tar-
get inspection at conclusion of the mid-range
rendezvous.

After this introduction, the paper is structured as
follows.

Section 2, after a brief mathematical background neces-
sary to derive the developments of the paper, recalls the
DQ representations of absolute/relative 6 DoF kinematics
and rigid body dynamics. These latter are compared to
their classical counterparts. Section 3 first introduces refer-
ence systems and definitions to characterize the close-range
CPOs scenario. Afterwards, it presents in detail the core
general structure of the MEKF for 6 DoF state and param-
eters’ estimation of noncooperative targets. Section 4 lists
possible specific applications of the filter when dealing with
different architectures of the relative navigation system.
Finally, prior to Conclusions, Section 5 provides a set of
numerical simulations associated with the specific cases
previously introduced.

2. Coupled 6-DoF relative motion

This section describes the model of the coupled
rotational-translational relative motion that constitutes
the backbone of the subsequent filter design. The attitude
is parametrized in unit quaternions, following the most
widely used approach in attitude estimation (Crassidis
et al., 2007). The pose of a reference frame with respect
to another one is written as a unit dual quaternion, whose
real part conveys the rotation between the axis whereas the
dual part is function of the translation between the origins
of the two reference frames (Filipe et al., 2015).

2.1. Mathematical preliminaries

This subsection recalls definition and main properties of
quaternions and dual quaternions, which are essential for
deriving the results presented in this work. For additional
details on quaternions and dual quaternions algebra, the
Reader is referred to Filipe et al. (2015); Filipe and
Tsiotras (2015); Filipe and Tsiotras (2013b).
4

2.1.1. Quaternions

In this work a quaternion is represented as the ordered

pair q ¼ q0; �qð Þ, where q0 2 R and �q ¼ q1 q2 q3½ �T 2 R3 are
respectively scalar and vector part of the quaternion
defined as q ¼ q0 þ q1iþ q2jþ q3k with q0; q1; q2; q3 2 R

and i; j; k satisfying i2 ¼ j2 ¼ k2 ¼ �1; i ¼ jk ¼ �kj;
j ¼ ki ¼ �ik, and k ¼ ij ¼ �ji (Filipe et al., 2015). Vector
quaternions are quaternions with zero scalar part 0; �qð Þ;
whereas scalar quaternions are quaternions with zero vector

part q0; �0
� �

, with �0 ¼ 03�1. The sets of quaternions, vector

quaternions, and scalar quaternions are denoted respec-
tively, by H ¼ q : q ¼ q0 þ q1iþ q2jþ q3k; q0;f q1; q2;
q3 2 Rg; Hv ¼ q 2 H : q0 ¼ 0f g, and Hs ¼ q 2 H :f
q1 ¼ q2 ¼ q3 ¼ 0g. Identity and null quaternions are

denoted by 1 ¼ 1; �0
� �

and 0 ¼ 0; �0
� �

, respectively. The def-

initions of the basic operations between quaternions are
reported in Table 1, where a; b 2 H and k 2 R.

The multiplication of a 4-by-4 matrix with a quaternion
is defined as M � q ¼ M11q0 þM12�q;M21q0 þM22�qð Þ with

M11 2 R;M12 2 R1�3;M21 2 R3�1, and M22 2 R3�3 (Filipe
and Tsiotras, 2013b). The bijective mapping between the

set of quaternions and R4 is denoted by �½ � H ! R4, where

q½ � ¼ q0 q1 q2 q3½ �T.
A unit quaternion is defined as a quaternion that belongs

to the set Hu ¼ q 2 H : q � q ¼ qq� ¼ q�q ¼ 1f g. The orien-
tation of the frame Yf g with respect to Xf g can be

expressed by the unit quaternion qYX ¼ cos /
2

� �
; sin /

2

� �
�n

� �
which conveys the rotation from Xf g to Yf g, with �n and
/ Euler axis and angle of the rotation. For
�180 < / < 180 deg, the scalar part of the unit quaternion
is given by:

qYX;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �qYXk k2

q
: ð1Þ

The coordinates of a vector �v can be transformed from one
to the other system through:

vY ¼ q�YX v
X qYX vX ¼ qYX v

Y q�YX ð2Þ

where vX ¼ 0;�vXð Þ 2 Hv is the vector quaternion from �v
written in Xf g.
2.1.2. Dual quaternions

A dual quaternion is represented as q̂ ¼ qr þ �qd , where
� is the dual unit defined by �2 ¼ 0 and � – 0, whereas qr
and qd are respectively the real part and dual part quater-
nions. A dual vector quaternion is formed from vector
quaternions as 0; �qrð Þ þ � 0; �qdð Þ; whereas a dual scalar

quaternion is formed from scalar quaternions as

qr0; �0
� �þ � qd0; �0

� �
. The sets of dual quaternions, dual vec-

tor quaternions, and dual scalar quaternions are denoted
respectively by Hd ¼ q̂ : q̂ ¼ qr þ �qdð Þ; qr; qd 2 Hf g;
Hv

d ¼ q̂ : q̂ ¼ qr þ �qdð Þ; qr; qd 2 Hvf g, and
Hs

d ¼ q̂ : q̂ ¼ qr þ �qdð Þ; qr; qd 2 Hsf g. Identity and null

dual quaternions are denoted by 1̂ ¼ 1þ �0 and



Table 1
Basic operations between quaternions.

Operation Definition Belonging to

Addition aþ b ¼ a0 þ b0; �aþ �b
� � 2 H

Multiplication by a scalar ka ¼ ka0þ; k�að Þ 2 H

Multiplication ab ¼ a0b0 � �a � �b; a0�bþ b0�aþ �a� �b
� � 2 H

Conjugation a� ¼ a0;��að Þ 2 H

Dot product a � b ¼ a0b0 þ �a � �b; �0� � 2 Hs

Cross product a� b ¼ 0; b0�aþ a0�bþ �a� �b
� � 2 Hv

Norm ak k2 ¼ a � a ¼ aa� ¼ a�a 2 Hs
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0̂ ¼ 0þ �0, respectively. The basic operations between dual

quaternions are recalled in Table 2, where â; b̂ 2 Hd .
The multiplication of a 8-by-8 matrix with a dual

quaternion is defined as MHq̂ ¼ M11 � qrþð
M12 � qdÞ þ � M21 � qr þM22 � qdð Þ, with M11;M12;M21;

M22 2 R4�4 (Filipe and Tsiotras, 2013b). The bijective map-

ping between the set of dual quaternions and R8 is denoted

by �½ � Hd ! R8, where q̂½ � ¼ qr½ �T qd½ �T
h iT

. The operator �

Hd ! R6 so that q̂ ¼ �qr½ �T �qd½ �T
h iT

is introduced to extract

the vector parts from both real and dual parts.
A unit dual quaternion is defined as a dual quaternion

that belongs to the set
Hu

d ¼ q̂ 2 H : qr � qr ¼ 1 and qr � qd ¼ 0f g. Considering
two reference systems Yf g and Xf g, such that the origin
of Yf g is translated by �rYX with respect to the origin of
Xf g and the attitude of Yf g with respect to Xf g is given

by the unit quaternion qYX, the pose of a reference system
Yf g with respect to Xf g can be expressed by the unit dual

quaternion q̂YX (read from Xf g to Yf g):

q̂YX ¼ qYX;r þ �qYX;d ¼ qYX þ �
1

2
rXYX qYX

¼ qYX þ �
1

2
qYX r

Y
YX ð3Þ

where the real part is the unit quaternion qYX, and the dual
part is defined differently if the translation between the ori-
gins is written in Xf g or in Yf g. The quantity �rYX conveys
the distance between the points Y and X, which denote the
origins of the corresponding reference systems, taken as the
vector Y-X. Since q̂YX 2 Hu

d , the scalar part of the dual
quaternion can be computed as:
Table 2
Basic operations between dual quaternions.

Operation Definition

Addition âþ b̂ ¼ ar þ bð
Multiplication by a scalar kâ ¼ karð Þ þ �ð
Multiplication âb̂ ¼ arbrð Þ þ �

Conjugation â� ¼ a�r þ �a�d
Dot product â � b̂ ¼ ar � brð Þ
Cross product â� b̂ ¼ ar � bð
Norm âk k2 ¼ â � â ¼ â
Swap âs ¼ ad þ �ar

5

qYX;d;0 ¼
��qTYX �qYX;d

qYX;0

: ð4Þ

The translation between the origins is extracted from the
unit dual quaternion through:

rXYX ¼ 2qYX;d q
�
YX rYYX ¼ 2q�YX qYX;d ð5Þ

which are linear in qYX. The change of reference system for
a dual quaternion quantity ŵ is performed through:

ŵY ¼ q̂�YX ŵ
X q̂YX ŵX ¼ q̂YX ŵY q̂�YX : ð6Þ
2.2. Dual quaternion representation of the rotational and
translational kinematic equations

The rotational and translational kinematic equations of
the motion of the Yf g frame with respect to the Xf g one
can be written compactly in terms of dual quaternions as
Wu et al. (2005, 2015):

d
dt
q̂YX ¼ _̂qYX ¼ 1

2
x̂X

YX q̂YX ¼ 1

2
q̂YX x̂

Y
YX ð7Þ

where x̂Z
YX 2 Hv

d is the dual velocity of Y w.r.t Xf g written

in the frame Zf g. The components of x̂Z
YX are defined dif-

ferently, depending on whether the frames are moving or
not. By considering an inertial frame If g and a body-
fixed frame Bf g attached to a spacecraft, the dual velocity
in If g is expressed as:

x̂I
BI ¼ xI

BI þ � _rIBI þ rIBI � xI
BI

� � ð8Þ
where the real part xI

BI is the angular rate of the body w.r.t.

If g, written in If g. In the dual part, the quantity _rIBI is

equal to the absolute linear velocity vIBI, since If g is an iner-
Belonging to

rÞ þ � ad þ bdð Þ 2 Hd

kadÞ 2 Hd

arbd þ adbrð Þ 2 Hd

2 Hd

þ � ad � br þ ar � bdð Þ 2 Hs
d

rÞ þ � ad � br þ ar � bdð Þ 2 Hv
d

â� ¼ â�â 2 Hs
d

2 Hd
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tial frame. The dual velocity in Bf g is computed from x̂I
BI

using Eq. (6), to obtain:

x̂B
BI ¼ xB

BI þ � vBBI � rBBI � xB
BI

� � ¼ xB
BI þ �_rBBI ð9Þ

As for the dual part, the former version is function of the
absolute linear velocity of the point B written in Bf g
(Wu et al., 2005), the latter version is function of the com-
ponent _rBBI relative to the frame Bf g (Filipe et al., 2015),

since in the moving frame vBBI ¼ _rBBI � xB
BI � rBBI. The deriva-

tion of Eq. (7) is demonstrated in Appendix C of Wu et al.
(2005), making use of Plücker lines.

By introducing a further reference system Df g attached
to a second spacecraft, it holds:

q̂BD ¼ q̂�DI q̂BI ¼ qBD þ �
1

2
qBD r

B
BD ¼ qBD þ �

1

2
rDBDqBD ð10Þ

and the relative dual velocity x̂B
BD 2 Hv

d is given by:

x̂B
BD ¼ xB

BD þ � _rBBI � _rBDI � xB
DI � rBBD

� �
¼ xB

BD þ � _qB;
ð11Þ

which can also be written as x̂B
BD ¼ x̂B

BI � x̂B
DI and has the

relative angular rate between the bodies xBD in the real
part and the relative linear velocity _q in the dual part.
The relative dual velocity x̂D

BD can be computed from Eq.
(11) and q̂BD using Eq. (6). Note that Eq. (7) is formally
equivalent to the quaternion-based rotation-only kinematic
equation. Moreover, no hypothesis on the origin and axes
orientation of the moving frames have been introduced so
far.

2.3. Dual quaternion representation of the rigid body

dynamic equations

The 6 DoF equations of the rigid body dynamics of a
satellite are given by (Filipe and Tsiotras, 2013c):

MBH _̂xB
BI

� �s
¼ f̂ B

B � x̂B
BI � MBH x̂B

BI

� �s� � ð12Þ

where now Bf g denotes the body-fixed reference frame
with origin in the center of mass B of the satellite. The term

f̂ B
B 2 Hv

d is the dual force applied to the spacecraft about its
center of mass B written in Bf g. This is a dual vector

quaternion with parts f B
B;r ¼ 0; �f B

B

� �
and f B

B;d ¼ 0;�sBB
� �

,

with �f B
B total external force vector applied to the satellite

and �sBB total external moment vector applied to the space-
craft about its center of mass. The quantity MB is termed
dual inertia matrix and defined as:

MB ¼

1 01�3 0 01�3

03�1 mBI3 03�1 03�3

0 01�3 1 01�3

03�1 03�3 03�1
�IB

2
6664

3
7775 ð13Þ

where mB is the mass of the satellite, 0i�j is the zero matrix

of size i� j, In the identity matrix of dimension n, and �IB
the mass moment of inertia of the satellite about its center
6

of mass B written in the frame Bf g. As explained in Filipe
and Tsiotras (2013c), the definition of the symmetric matrix

of Eq. (13) allows to compute the inverse of MB as MBð Þ�1

and supports the H multiplication between 8�8 matrices
and dual quaternions. The meaning of Eq. (12) becomes
evident by carrying out the dual quaternion operations.
For the vector part of the real quaternion one obtains:

�€rBBI ¼
1

mB

�f B
B ð14Þ

which is the translational dynamics of a rigid body relative
to moving body-frame Bf g (Wang and Yu, 2010). For the
vector part of the dual quaternion one obtains:

�_xB
BI ¼ �I�1

B �sBB � �I�1
B �xB

BI � �IB �x
B
BI

� � ð15Þ
which are the Euler equations for the rotational dynamics.

2.4. Dual quaternion representation of the relative dynamic

equations

The 6 DoF equations of the relative dynamics between
two satellites are given by (Filipe and Tsiotras, 2013b):

_̂xB
BD

� �s
¼M�1

B H f̂ B
B� x̂B

BDþ x̂B
DI

� �� MBH x̂B
BDþ x̂B

DI

� �s� �h i
� q̂�BD _̂xD

DI q̂BD
� �s

� x̂B
DI� x̂B

BD

� �s
ð16Þ

where Df g denotes the body-fixed reference frame with ori-
gin in the center of mass D of the second satellite. This is
derived from the difference of the absolute dynamics of

both satellites _̂xB
BD

� �s
¼ _̂xB

BI

� �s
� _̂xB

DI

� �s
, noting that the

swap of the addition is equal to the addition of the swaps.
Moreover, to derive Eq. (16) the dual quaternion counter-
part to the classical transport theorem (see Proposition 1 of
Filipe and Tsiotras (2013b)) is used to compute the time
derivative of v̂Y 2 Hv

d known such derivative of the dual
vector quaternion in Xf g:
_̂vY ¼ q̂�YX

_̂vX � x̂X
YX � v̂X

� �
q̂YX: ð17Þ

Formally, Eq. (16) is equivalent to the quaternion-based
rotation-only relative dynamics (e.g., see Eq. (5) of Filipe
and Tsiotras (2013a) or Eq. (19) of Segal and Gurfil
(2009) to the net of one rotation, since this is written in
Df g instead of in Bf g). This is obvious for the dual part,

since the real part of the relative dual velocity is the relative
angular rate. As for the real part of Eq. (16), by carrying
out the dual quaternion operations one obtains:

�€rBBD ¼ 1

mB

�f B
B �

1

mD

�f B
D ð18Þ

which is the difference of the absolute translational dynam-
ics of the two spacecraft written in the moving frame Bf g.
Whereas, if the operations are performed keeping the terms

function of �_qB, the following equations are obtained:
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�€qB ¼ �aBBD þ �xB
DI � �rBBD

� �� �xB
DIþ

þ�rBBD � �_xB
DI � 2�xB

DI � �_qþ �_q� �xB
BD

ð19Þ

where �aBBD is the acceleration due to the total relative exter-
nal forces. Eq. (19) is equivalent to Eq. (4) of Cao and
Misra (2015), to the net of the rotation necessary to express
it in Bf g: the last term of Eq. (19) is the transport contribu-
tion when writing the relative dynamics of the body B w.r.t
the satellite D (i.e., B-D) though expressed in the moving
frame Bf g.

3. Noncooperative spacecraft pose and parameters

estimation in loosely- and tightly-coupled navigation systems

This section introduces the space segment during prox-
imity operations to perform close-range navigation around
a noncooperative target satellite. Afterwards, it describes
the core structure of a multiplicative extended Kalman fil-
ter using dual quaternions to perform pose and parameters
estimation of the target satellite.

3.1. Reference systems and navigation system’s architectures

The space segment during CPOs is composed of a chaser
satellite and a target object flying into two neighboring
orbits. The chaser is equipped with a relative navigation
system to observe and estimate the relative state of the tar-
get spacecraft with respect to itself. In order to support safe
operations, which involve the prediction of the motion of
the target object, an accurate knowledge of the 6 DoF rel-
ative state is required in real-time.

The following reference systems are introduced: If g the
inertial reference system taken as the Earth mean equator
and equinox (EME) of J2000 with origin denoted by I;
Df g a chaser body-fixed reference with origin D in its cen-

ter of mass and axes oriented as the chaser principal axes;
Bf g a target body-fixed reference with origin B in its center

of mass and axes oriented as the target principal axes; Gf g
a target body-fixed reference with origin G in the geomet-
rical center of the spacecraft and axes arbitrarily defined.
Fig. 1. Reference syst
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Fig. 1 a) depicts how the pose unit dual quaternions
relate to each other (e.g., q̂BD as in Eq. (10) and
q̂GD ¼ q̂BDq̂GB). Dashed connectors denote unit DQs that
are function of time, q̂GB is constant within the hypothesis
of rigid body of the target. Without loss of generality, the
frame of the relative navigation sensor on the chaser is
assumed coincident with Df g, since both mounting posi-
tion and orientation on the chaser are assumed known or
calibrated accurately. Fig. 1 b) focuses on the relationship
between principal and geometrical axes of the target satel-
lite. Accordingly, the coordinates of a generic feature Pi on
the target are given by: �rBPiB ¼ �rBPiG þ �rBGB. Following the

assumption of rigid body, all the parameters of the target
are constant quantities. Moreover, without loss of general-
ity, all the arbitrary frames associated with each detected
feature Pi are oriented as the geometric reference frame
(i.e., qPiB ¼ qGB).

To date, the proposed architectures of close-range nav-
igation systems present either a tightly-coupled or loosely-
coupled structure (Opromolla et al., 2017; Pasqualetto
Cassinis et al., 2019; Pasqualetto Cassinis et al., 2021).
The first option combines the sensor data processing and
the filtering task into a single functional block. The
loosely-coupled option splits the pose estimation and the
filtering scheme in two separate sequential blocks. Accord-
ingly, the pose estimation algorithm provides a set of
pseudo-measurements to the update step of the filter. In
order to perform pose determination of noncooperative
targets, electro-optical sensing devices are usually
employed given their mass and power consumption fea-
tures (Opromolla et al., 2017). These devices these collect
the radiations reflected and/or directly emitted by the tar-
get in the optical spectrum. Depending on the specific tech-
nology used, examples of possible sensor outputs are the
3D data sets gathering multiple echoes coming from an
assigned field of view or the pixel coordinates on an image
corresponding to a feature detected on the target. Since this
work focuses on the filtering scheme, the data collected by
the sensors are assumed as the measurements expressing
the relative quaternion and displacement between a point
ems during CPOs.
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of the target and fDg. Accordingly, for tightly-coupled
configurations, an additional relation between the
technology-dependent expression of the observations and
the quaternion-displacement measurements is generally
required (e.g., for example using the perspective-n-points
equations if vision-based image processing is regarded
(Pasqualetto Cassinis et al., 2021)).

Fig. 2 summarizes the possible sets of the variables to be
estimated, depending on the architecture of the navigation

system in use. Note that the state n 3ð Þ embodies the most
general formulation for the loosely-coupled case as well
as the simplest formulation of tightly-coupled problems,
where only one feature is detected. The considered sets
are composed of the subset of variables that express the 6
DoF relative state, namely: the unit dual quaternion of
the relative pose q̂BD and the dual vector quaternion of
the relative dual velocity x̂B

BD. The second subset comprises
the collection of the additional target parameters to be esti-
mated. Here, �pB denotes the vector of the inertia ratios of
the target so defined:

�pB ¼ px py pz
� �T 2 R3

px ¼ Iyy�Izz
Ixx

; py ¼ Izz�Ixx
Iyy

; pz ¼ Ixx�Iyy
Izz

ð20Þ

with I ii principal moment of inertia of the target w.r.t. the i
axis. As it is well known the principal moments of inertia
are not structurally identifiable from torque-free motion
measurements alone. For this reason the inertia ratios will
be considered as parameters to be estimated (Aghili and
Parsa, 2009; Sheinfeld and Rock, 2009). The quantities
q̂GB and q̂PiB convey the pose of the geometric frames,
either with origin in G or Pi, w.r.t. Bf g. Finally, the quan-
tities �rBPiB express the coordinates of the generic feature Pi

written in Bf g. Further details on how the variables’ sets
relate to the architecture of the navigation system are pro-
vided later in Section 4.
3.2. Dual quaternion multiplicative extended Kalman filter

This section describes the core structure common to all
the filters that estimate the states listed in Fig. 2. The gen-
eral filter is designed as a MEKF in the continuous time
Fig. 2. Possible variable states in relation to the d
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domain using dual quaternions. The foundation is inher-
ited from the dual quaternion based kinematic MEKF of
Filipe et al. (2015). Though here it is enhanced by including
the relative dynamics, which enables dynamic filtering and
parameters estimation.

The full state of the system is defined as:

nm tð Þ ¼ q̂BD½ �T x̂B
BD

� �T
sBT

h iT
2 Rm ð21Þ

where sBT denotes a generic collection of constant parame-
ters of the target to be estimated. In the quaternion MEKF
framework, the concept of error quaternion is introduced to
cope with the singularity problems of minimum-parameter
representations of the attitude. The quaternion MEKF per-
forms an unconstrained estimate of a three-component
error quaternion, while using a correctly normalized four-
component reference quaternion to retrieve the global
non-singular attitude estimate (Markley, 2003). The dual

error quaternion is defined in analogy to the error quater-
nion as (Markley, 2003; Filipe et al., 2015):

dq̂BD ¼ ~̂q�BD q̂BD ð22Þ
and represents the roto-translation error from the esti-

mated pose ~̂qBD to the true one. As performed in Filipe
et al. (2015), the vector part of the quaternion is directly
chosen as three-component parametrization of the attitude.
Accordingly, the state propagated inside the filter becomes:

xn tð Þ ¼ dq̂BD
T

x̂B
BD

T
sBT

h iT
2 Rn ð23Þ

with n 6 m� 4ð Þ, having used the �� operator introduced in
Section 2.1.2 to extract the vector quaternions. The filter
state evolves according to:

_xn tð Þ ¼ f n xn tð Þ; tð Þ þ gn�p xn tð Þ; tð Þwp tð Þ ð24Þ

where f n is composed of d
dt dq̂BD;

d
dt x̂

B
BD (from Eq. (16)), and

_sB ¼ 0q�1. The quantity wp is the process noise included in
the filter design, which is taken as:

wp tð Þ ¼ ��Ts ��Tf ��Ts
� �T

; ��i 2 R3 i ¼ s; f ; and ��s 2 Rq

ð25Þ
ifferent architectures of the navigation system.
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with ��i zero-mean Gaussian white noise process to respec-
tively account for: unmodeled relative disturbance torques
(��s), unmodeled relative disturbance forces (��f ), and ficti-
tious noise on the constant parameters (��s). For each pro-
cess noise component, the covariance is:

E ��i tð Þ��Ti sð Þ	 
 ¼ Rid t � sð Þ ð26Þ
with Ri either 2 R3�3 or 2 Rq�q, symmetric positive defined
matrix taken as r2

i I3 or r
2
i Iq. The standard deviation values

rs; rf , and rs are tunable parameters of the filter. The over-
all process noise covariance matrix is then:

R ¼ diag Rs;Rf ;Rs

� �
: ð27Þ

Following the EKF approximation, the estimated state

~xn tð Þ is propagated through _~xn tð Þ � f n ~xn tð Þ; tð Þ. And, by
defining the state estimation error as
Dxn tð Þ ¼ xn tð Þ � ~xn tð Þ, the covariance matrix of the state
estimation error is given by:

Pn�n tð Þ ¼ E Dxn tð ÞDxTn sð Þ	 
 2 Rn�n: ð28Þ
The covariance matrix has to be also propagated in time.
Hence, the first-order approximation of the time derivative
of the state error Dx is introduced:

d
dt
Dx tð Þ ¼ Fn�n tð ÞDx tð Þ þGn�p tð Þw tð Þ ð29Þ

where:

Fn�n tð Þ , @f n xn tð Þ; tð Þ
@xn

����
~xn tð Þ

; Gn�p tð Þ , gn�p ~xn tð Þ; tð Þ

ð30Þ
with Fn�n tð Þ being the Jacobian of f n evaluated at the cur-
rent estimate ~xn tð Þ, assembled from the linearization of
d
dt dq̂BD and Eq. (16). Gn�p tð Þ introduces the process noise

contributions and will be detailed later in Section 4 case
by case.

3.2.1. Linearization of the time derivative of the dual error

quaternion

The time derivative of the dual error quaternion is writ-
ten as:

d
dt
dq̂BD ¼ � 1

2
~̂xB
BD dq̂BD þ 1

2
dq̂BD x̂B

BD ð31Þ

by using the definition of Eq. (22) and the approximation
that the estimated dual quaternion evolves in time accord-
ing to Eq. (7). This latter is the result of the usual EKF
technique of approximating the expectation of a nonlinear
function (in this case of q̂ and x̂) by the same nonlinear

function of their expectations (~̂q and ~̂x) (Markley, 2003;
Filipe et al., 2015). For the sake of conciseness, the follow-
ing short-hand notation is introduced for the dual error

quaternion: dq̂BD ¼ dqþ �dB with dq ¼ dqBD ¼ dq0; dq
� �
9

and dB ¼ dB0; dB
� �

. Accordingly, the Jacobian of d
dt dq̂BD

w.r.t. the 6-DoF relative state part of xn tð Þ is denoted by

Fkin tð Þ 2 R6�12 and computed as:

Fkin tð Þ,
@ d

dtdq̂BD;r

� �
@dq

@ d
dtdq̂BD;r

� �
@dB

@ d
dtdq̂BD;r

� �
@xB

BD

@ d
dtdq̂BD;r

� �
@ _qB

@ d
dtdq̂BD;d

� �
@dq

@ d
dtdq̂BD;d

� �
@dB

@ d
dtdq̂BD;d

� �
@xB

BD

@ d
dtdq̂BD;d

� �
@ _qB

2
664

3
775
��������
~̂qBD ; ~̂xB

BD

ð32Þ
which results in:

Fkin tð Þ ¼
� ~xB

BD
�

h i
03�3

1
2
dq0I3 03�3

� ~_qB�
h i

� ~xB
BD

�
h i

1
2
dB0I3

1
2
dq0I3

2
64

3
75

�
� ~xB

BD
�

h i
03�3

1
2
I3 03�3

� ~_qB�
h i

� ~xB
BD

�
h i

03�3
1
2
I3

2
64

3
75

ð33Þ
where �a�½ ��b ¼ �a� �b. The approximations introduced in
Eq. (33) are motivated by the fact that dq0 � 1 since it is
the scalar part of the small error quaternion, whereas

dB0 ¼ � 1
2
dr � dq, with dr ¼ �rBBD � ~�rBBD, is null within the

first-order approximation.
3.2.2. Linearization of the relative dynamics equations

The Jacobian of d
dt x̂

B
BD w.r.t. the 6-DoF relative state

and the vector of inertia ratios �pB is denoted by

Fdyn tð Þ 2 R6�15 and computed as:

Fdyn tð Þ,
@ _̂xB

BD;r

� �
@dq

@ _̂xB
BD;r

� �
@dB

@ _̂xB
BD;r

� �
@xB

BD

@ _̂xB
BD;r

� �
@ _qB

@ _̂xB
BD;r

� �
@�pB

@ _̂xB
BD;d

� �
@dq

@ _̂xB
BD;d

� �
@dB

@ _̂xB
BD;d

� �
@xB

BD

@ _̂xB
BD;d

� �
@ _qB

@ _̂xB
BD;d

� �
@�pB

2
6664

3
7775
���������
~̂qBD ; ~̂xB

BD
;~�pB

ð34Þ

which, using the _̂xB
BD expression from Eq. (16), results in:

Fdyn tð Þ ¼
@ _̂xB

BD;r

� �
@dq

03�3

@ _̂xB
BD;r

� �
@xB

BD

03�3

@ _̂xB
BD;r

� �
@�pB

03�3 03�3 �~_q�
h i

�2 ~xB
DI

�
h i

03�3

2
664

3
775

ð35Þ
with

In Eq. (36), �uB ¼ Ixx
Iyy
; IzzIyy

; IxxIzz

h iT
and the 3� 3 matrix quan-

tities Ma �; �ð Þ, Mb �; �ð Þ, Maa �; �ð Þ, Np �ð Þ, F2p �; �; �ð Þ, and
F3p �; �; �ð Þ as well as the derivation of Eqs. 35,36 are pro-



@ _̂xB
BD;r

� �
@dq

¼ 2 Mb ~xB
BD; ~�uB

� �
þMa ~xB

BD; ~�uB
� �

þMaa ~�pB; ~xB
DI

� �
þ ~xB

BD
�

h in o
~xB
DI

�
h i

� 2 ~_xB
DI

�
h i

@ _̂xB
BD;r

� �
@xB

BD

¼ Maa ~�pB; ~xB
BD

� �
þMa ~xB

DI; ~�uB
� �

þMb ~xB
DI; ~�uB

� �
� ~xB

DI
�

h i
@ _̂xB

BD;r

� �
@�pB

¼ Np ~xB
BD

� �
þ F2p ~xB

BD; ~x
B
DI; ~�pB

� �
þ F3p ~xB

BD; ~x
B
DI; ~�pB

� �
þNp ~xB

DI

� �
: ð36Þ
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vided in the Appendix Section A. The assembly of Fkin tð Þ
and Fdyn tð Þ into Fn�n tð Þ is provided later in Section 4.
3.2.3. Predictor step

The predictor step of the filter performs state and
covariance time update. Accordingly, between the generic
time instances tkþ and t kþ1ð Þ� , the full state as defined in
Eq. (21) is propagated as:

~n kþ1ð Þ� ¼ ~nkþ þ
Z t kþ1ð Þ�

tkþ
f n tð Þ; 0; tð Þdt ð37Þ

where ~nk is the estimated full state at time tk and one-step of
the fifth-order DOPRI5 integrator of Dormand and Prince
(1980) is employed. After each integration step, the unit
dual quaternion structure is re-imposed through (Filipe
et al., 2015):

qBD;r

� � ¼ qBD;r½ �
qBD;r½ �k k

qBD;d

� � ¼ I4 � qBD;r½ � qBD;r½ �T
qBD;r½ �k k2

� 
qBD;d

� �
:

ð38Þ

The covariance is propagated linearly. Given the typical
time steps used in noncooperative pose estimation prob-
lems (corresponding to measurements update rates of
1 Hz or faster), the following approximation for the state
transition matrix U can be adopted:

U Dtð Þ ¼ In þ Fn�n tkþð ÞDt ð39Þ
where Dt ¼ t kþ1ð Þ� � tkþ and Fn�n is defined in Eq. (30). By
denoting U Dtð Þ ¼ Uk;kþ1, the propagation of the covariance
matrix is performed as (Montenbruck and Gill, 2001):

Pn�n t kþ1ð Þ�
� � ¼ Uk;kþ1 Pn�n tkþð ÞUT

k;kþ1 þQn�n t kþ1ð Þ�
� � ð40Þ

where Qn�n tð Þ is the contribution of the process noise com-
puted through:

Qn�n t kþ1ð Þ�
� � ¼ CT

n�n t kþ1ð Þ�
� �

Dn�n t kþ1ð Þ�
� � ð41Þ

with

Cn�n

Dn�n

� �
t kþ1ð Þ�
� � ¼ e

�F2n�2n tkþð ÞDtð Þ 0n�n

In�n

� �
ð42Þ

and
10
�F2n�2n tkþð Þ ¼ �Fn�n tkþð Þ Gn�p tkþð ÞRp�pG
T
n�p tkþð Þ

0n�n FT
n�n tkþð Þ

" #
:

ð43Þ
As for the propagation of the process noise, the approach
of Hou et al. (2017) is used, though swapping Fn�n tkþð Þ and
�Fn�n tkþð Þ in the diagonal of �F2n�2n (see Eq. (43)))) to

obtain CT
n�nDn�n instead of Cn�nD

�1
n�n in Eq. (41).

3.2.4. Corrector step

In the corrector step, both state and covariance matrix
are updated based on the information brought by a new
observation. At the filter level, the measurement obtained
from the sensing device or from its specific data processing
unit can be modeled as the noisy attitude and noisy relative
distance between a point Q on the target and the chaser ref-
erence frame Df g (i.e., position and mounting direction of
the sensor on the chaser are known or calibrated
accurately):

qQD;m �rDQD;m : ð44Þ
Accordingly, depending on the architecture of the naviga-
tion system, Q may be a feature detected on the target (de-
noted by Pi), hence related to the pixel coordinates on an
image through the perspective-n-points equations
(Pasqualetto Cassinis et al., 2021), or the origin of the geo-
metric frame (G) as extracted by a 3D point cloud, or
directly the center of mass B, if some knowledge on the
mass distribution of the target is available to support the
pre-processing algorithms. The pose of Q w.r.t. Df g is
computed with Eq. (3) and it is related to the target-
chaser relative pose q̂BD through:

q̂QD ¼ q̂BDq̂QB : ð45Þ
In our formulation, the term q̂QB is a constant parameter of
the target, which by referring to the general structures of
full and EKF states of Eqs. (21) and (23), is contained in
s. The dual error quaternion associated with q̂QB is defined
as:

dq̂QB ¼ q̂QB
~̂q�QB : ð46Þ

By denoting with tk the generic instant of time at which a
new observation is provided, the measurement equations
of the filter are written as:
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zm tkð Þ ¼ hm x tkð Þð Þ þ vm tkð Þ 2 Rm ð47Þ
where zm and hm are respectively the actual and the modeled
observations; vm is the measurement noise assumed to be a
discrete Gaussian white noise contribution, with zero mean

and covariance Rm�m ¼ E vmvTm
� � ¼ r2

vIm.The measures’ sen-

sitivity matrix is defined as:

Hm�n tkð Þ , @hn xn tð Þð Þ
@xn

����
~xn tk�ð Þ

2 Rm�n ð48Þ

and is evaluated at the estimated state immediately before
the new observation. For the quaternion MEKF the most
convenient way to present quaternion measurements is in
terms of the adopted 3-dimensional parametrization to
express the deviation between the observed and estimated
attitudes (Markley, 2003). Extending this principle to the
dual quaternion MEKF, the measurement equation to a
single point of reference Q is written as:

z6 tkð Þ ¼ ~̂qQB tk�ð Þ ~̂q�QD tk�ð Þ q̂QD;m tkð Þ
� �

~̂q�QB tk�ð Þ 2 R6 ð49Þ
which conveys the deviation between observed and esti-
mated poses of Q w.r.t. Df g, expressed in Bf g. This latter
rotation has been introduced to simplify the expression of
the measurement equation as function of the filter state
xn, which is then given by:

h6 tkð Þ ¼ dq̂BD tkð Þdq̂QB tkð Þ : ð50Þ
Accordingly, Hm�n is only composed of the identity matrix

blocks that convey the sensitivity w.r.t. dq̂BD and dq̂QB.
Again, within the first-order approximation, the magnitude
of the scalar parts of the error quaternion components
tends to 1. Note that the general expression of Eq. (49) cov-
ers all the cases of system state encompassed in Fig. 2,
depending on the role assumed by Q. In the simplest form,
when B is directly sensed, it simplifies to Eq. (45) of Filipe
et al. (2015). In the case that the observations are provided
to the filter as measured quaternion and relative displace-
ment separately, the methodology just explained applies
to the quaternion observation, whereas for the distance
the vector measurement model approach of Markley
(2003) is to be employed, as detailed in Gaias and Lovera
(2022). At this point, the optimal Kalman state update is
computed as:

DH~xn tkð Þ ,
DHd~̂qBD tkð Þ
DH ~̂xB

BD tkð Þ
DH~sB tkð Þ

2
664

3
775 ¼ Kn�m tkð Þ z6 tkð Þ ð51Þ

where Kn�m tkð Þ is the Kalman gain given by (Montenbruck
and Gill, 2001):

Kn�m tkð Þ ¼ Pn�n tk�ð ÞHT
m�n tkð Þ

Hm�n tkð ÞPn�n tk�ð ÞHT
m�n tkð Þ þRm�m tkð Þ� ��1

:
ð52Þ

The covariance update is performed using the numerically
more stable formulation provided in (Montenbruck and
Gill, 2001):
11
Pn�n tkþð Þ ¼ In �Kn�m tkð ÞHm�n tkð Þ½ �Pn�n tk�ð Þ
In �Kn�m tkð ÞHm�n tkð Þ½ �Tþ
þKn�m tkð ÞRm�m tkð ÞKT

n�m tkð Þ:
ð53Þ

where Pk� is the state covariance right before tk and Rm�m is
the covariance of the measurement noise.

3.2.5. Reset
The state update operation for a standard EKF is

accomplished by ~xn tkþð Þ ¼ ~xn tk�ð Þ þ DH~xn tkð Þ. In the MEKF
framework, instead, a reset operation must be explicitly
carried out in order to set to zero the postupdate value

of dq tkþð Þ prior to the time update step (Markley, 2003).
As for the dual quaternion MEKF, first the scalar compo-

nents of real and dual parts of DHd~̂q are reconstructed from

DHd~̂q using Eq. (50) of Filipe et al. (2015). For the sake of
completeness, it is here recalled the expression assumed
when the attitude error is smaller than 180 deg:

DHd~̂q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DHd~̂qr

��� ���2
r

;DHd~̂qr

 !
þ

þ� � DHd~̂qr
T
DHd~̂qdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� DHd~̂qr

�� ��2
q ;DHd~̂qd

0
@

1
A ð54Þ

which makes use of Eqs. (1) and (4). Afterwards, the pose
components of the state are updated in compliance to the
definition of the dual error quaternion (i.e., reported in
Eqs. (22) and (46) for the states considered in this work).
Ad example, for the target-chaser relative pose it becomes:

~̂qBD tkþð Þ ¼ ~̂qBD tk�ð ÞDH~̂qBD tkð Þ : ð55Þ
4. Multiplicative extended Kalman filters for 6 DoF relative

state and parameters estimation

This section shows how the general structure of the dual
quaternion MEKF described in Section 3.2 specifies to
address a set of particular cases, covering the needs of both
loosely- and tightly-coupled architectures of the close-
range navigation system.

4.1. Kinematic MEKF for state estimation

The first case is the simplest realization of the dual
quaternion MEKF to achieve a kinematic estimation of
the relative 6-DoF state only. This option suits a loosely-
coupled architecture approach, where the sensor data pro-
cessing unit is able to provide (pseudo) measurements of
the principal axis frame Bf g directly. Hence, with reference
to Eq. (44), Q is actually B, and the filter aims at refining
the input measurements while reconstructing the full 6-
DoF relative state. Essentially this realization is the dual
quaternion MEKF of Filipe et al. (2015) in the special case
with no angular or linear velocity measurements (note that

the component b̂ of Filipe et al. (2015) is �x̂B
BD). In this



G. Gaias, M. Lovera Advances in Space Research xxx (xxxx) xxx
work, the covariance is propagated linearly instead of inte-
grating numerically the Riccati equation, to reduce the
computational effort while achieving comparable perfor-
mance. In this specific case, the full state of the system is

the n 1ð Þ of Fig. 2, and all the design variables of the filter
become:

x 1ð Þ
12 tð Þ ¼ dq̂BD

T
x̂B

BD

T
h iT

w 1ð Þ
6 tð Þ ¼ ��Tx ��Tv

� �T
F 1ð Þ

12�12 tð Þ ¼ Fkin;6�12 tð Þ
06�12

� �

G 1ð Þ
12�6 ¼ 06�6

I6

� �

H 1ð Þ
6�12 ¼ I6 06�6½ �

�H 1ð Þ
6�12 tð Þ ¼ I3 03�3 03�3 03�3

03�3 2~R tð Þ 03�3 03�3

� �
:

ð56Þ

where H 1ð Þ
6�12 is the measure sensitivity matrix when the

observations are provided in dual quaternion form (i.e.,

q̂BD;m), �H
1ð Þ
6�12 is the measure sensitivity matrix when relative

attitude and distance observations are provided separately

(i.e., qBD;m and �rDBD;m), and
~R tð Þ ¼ R ~̂q�BD;r tð Þ

� �
denotes the

rotation matrix associated with the conjugate of the esti-

mated quaternion. From the structure of F
1ð Þ
12�12 it can be

noted that the relative angular and linear velocities are
modeled as constants (up to the effect of process noise).
Accordingly, their time varying behavior has to be caught
by the process noise components ��x tð Þ and ��v tð Þ. This
implies that the tuning of the filter varies depending on
the rotational motion of the target satellite (in the close-
range region the domain of the relative linear velocities is
limited to comply with relative trajectories suitable for
close-range navigation over extended periods of time).

4.1.1. Propagation of measurement noise

The measurements of Eq. (44) can be modeled as the
true quaternions affected by some 3D vector component
errors:

qm ¼ qþ�q

qþ�qk k with q ¼ q0; �qð Þ �q ¼ 0; ��q
� �

rm ¼ r þ �r with r ¼ 0;�rð Þ �r ¼ 0; ��rð Þ
: ð57Þ

Accordingly, both the normalization to obtain a unit
quaternion and the construction of the unit dual quater-
nion through Eq. (3) are nonlinear functions of the error
components ��q and ��r. Following the approach of Aghili
and Parsa (2009), here the propagation of the measurement
errors is modeled, to formulate a state-dependent measure-
ment covariance matrix (SDR) able to convey the first-
order error propagation effects on the filter measurement
equation of Eq. (47).

To this end, the measured quaternion is approximated
as (Aghili and Parsa, 2009):
12
qm � qþ I4 � qqT
� �

�q: ð58Þ
and the quaternion part of the measurement equation of

Eq. (49) (related to the real part of ~̂q�q̂m) is given by:

zq;3 tkð Þ ¼ ~̂q�q̂m
� �

r
¼ dq tkð Þ þ �vq;3 tkð Þ

� dq tkð Þ þ ~q� tkð Þ�q tkð Þ ð59Þ
where � is used to extract the vector part from a quaternion.

The term ~q� tkð Þ�q tkð Þ can be written as T tkð Þ��q tkð Þ with
T tkð Þ ¼ ~q0I3 � �~q�½ � 2 R3�3: ð60Þ
As a result, the quaternion block of the SDR matrix is
computed as:

Rq;3�3 tkð Þ ¼ E �vq;3 tkð Þ�vTq;3 tkð Þ
h i

¼ T tkð Þr2
qI3 T

T tkð Þ ð61Þ

where rq is the standard deviation of the error quantity ��q.
The measurement equation associated to the dual part

of ~̂q�q̂m is given by:

zd;3 tkð Þ ¼ ~̂q�q̂m
� �

d
¼ dB tkð Þ þ �vd;3 tkð Þ

� dB tkð Þ þ �T tkð Þ ��q tkð Þ
��r tkð Þ

� � ð62Þ

where the short-hand notation introduced in Section 3.2.2

is used for dB. The quantity �T tkð Þ is computed by carrying
out the dual quaternion operations and retaining only the
first-order contributions, to obtain:

�T tkð Þ ¼ �~q0I3 �~�r�
h i

1
2
I3

h i
2 R3�6 ð63Þ

where the approximations dq0 � 1 and dq � �0 have been
also employed. Then the block of the SDR matrix associ-
ated with the dual part of the measurement equation
becomes:

Rd;3�3 tkð Þ ¼ E �vd;3 tkð Þ�vTd;3 tkð Þ
h i

¼ �T tkð Þdiag r2
qI3; r

2
r I3

� �
�TT tkð Þ

ð64Þ

where rr is the standard deviation of the error quantity ��r.
The overall SDR matrix is structured as:

R;6�6 tkð Þ ¼ diag Rr;3�3 tkð Þ;Rd;3�3 tkð Þð Þ : ð65Þ
4.2. Dynamic MEKF for state and inertia ratios estimation

This second realization of the filter is the dynamical
enhancement of the previous case, in the attempt to
improve the estimation accuracy of the dual velocity com-
ponent as well as to enable the estimation of the target iner-
tia ratios’ vector. The so-obtained filtering scheme is
suitable for a loosely-coupled navigation system, where
again the sensor data processing unit is able to provide
(pseudo) measurements of the principal axis frame Bf g
directly (i.e., Q = B) while the filter allows refining the
knowledge of the target mass inertia properties. In this
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case, the full state of the system is n 2ð Þ of Fig. 2, and all the
design quantities of the filter become:

x 2ð Þ
15 tð Þ ¼ dq̂BD

T
x̂B

BD

T
�pTB

h iT
w 2ð Þ

6 tð Þ ¼ ��Ts ��Tf
� �T

F 2ð Þ
15�15 tð Þ ¼

Fkin;6�12 tð Þ 06�3

Fdyn;6�15 tð Þ
03�15

2
64

3
75

G 2ð Þ
15�6 tð Þ ¼

06�6

Z6�6 tð Þ
03�6

2
64

3
75

H 2ð Þ
6�15 ¼ H 1ð Þ

6�12 06�3

h i
�H 2ð Þ

6�15 tð Þ ¼ �H 1ð Þ
6�12 tð Þ 06�3

h i

ð66Þ

with

Z6�6 tð Þ ¼ J3�3 �pBð Þ 03�3

03�3 I3

� �

J3�3 �pBð Þ ¼ diag 1;
1�py
1þpx

; 1þpz
1�px

� �
:

ð67Þ

The main differences w.r.t. Eq (56) are: the structure of
F15�15 is now based on the Jacobian of the dual quaternion
relative dynamics equations (as derived in Section 3.2.2),
the process noise components now represent unmodeled
relative disturbance angular and linear accelerations, and
with reference to G15�6, the effect of the process noise on
the rotational dynamics is now function of �pB with the
functional expression of J3�3 �pBð Þ. Note that, since the rota-
tional relative dynamics equations are written as _xB

BI � _xB
DI,

the relative process noise component can be expressed as:

��sBD ¼ J3�3 �pBð Þ��sB � ~RJ3�3 �pDð Þ��sD : ð68Þ
where the torque perturbation for each body i is defined as
(see Aghili and Parsa (2009)):

��si ¼
sx
Ixx

;
sy
Ixx

;
sz
Ixx

� �T
: ð69Þ

Hence, Eq (67) states that the unmodeled torque distur-
bances on the chaser can be neglected, since the distur-
bances affecting the known chaser satellite can be
modeled very precisely. Numerical evidence shows that this
approach allows a faster convergence to the true value of
�pB w.r.t. employing I3�3��sBD , as performed in Gaias and
Lovera (2022). The component ��f represents the relative
disturbance accelerations, which in ADR scenarios are
mainly composed of the differential J 2 and aerodynamic
drag contributions; both are small indeed in the close-
range region thanks to cancellation effects.

4.3. Dynamic MEKF for state and parameters estimation

This section describes a dynamic MEKF to estimate the
inertia ratios of the target and the position and orientation
13
of the target principal axes frame. Accordingly, this is the
extension of the basic dynamic MEKF to retrieve the full
set of estimable target parameters. As depicted in Fig. 2,
this realization can support both loosely- and tightly-
coupled approaches. In the first case, the filter receives
the noisy pose measurements of the geometric frame Gf g
w.r.t. Df g (i.e., in Eq. (44) Q = G). This is a very realistic
approach, since pose determination algorithms - either pro-
cessing LiDAR or visual images data - generally rely on
wireframe models of the target satellite (Opromolla et al.,
2017; Pasqualetto Cassinis et al., 2019). However, the esti-
mation of the q̂GB pose becomes mandatory to achieve a 6-
DoF solution that can be propagated in time to obtain an
accurate prediction as required by certain close proximity
operations. In a tightly-coupled approach, instead, the
observations are measures of a Point of Reference (PoR)
on the target, which represents a detected feature
(Q = P). This case is here mentioned to introduce the
tightly-coupled perspective, since in reality more than one
feature is required to unambiguously resolve the pose of
an object (Fischer and Bolles, 1981).

In both cases, for this realization the full state of the sys-

tem is n 3ð Þ of Fig. 2 (i.e., P = G), and all the design quan-
tities of the filter become:

x 3ð Þ
21 tð Þ ¼ dq̂BD

T
x̂B

BD

T
�pTB dq̂GB

T
h iT

w 3ð Þ
12 tð Þ ¼ w 2ð Þ

6 �T6;c

h iT
F 3ð Þ

21�21 tð Þ ¼ F 2ð Þ
15�15 tð Þ 015�6

06�15 06�6

" #

G
3ð Þ
21�12 tð Þ ¼ G 2ð Þ

15�6 tð Þ 015�6

06�6 I6

" #

H 3ð Þ
6�21 ¼ H 2ð Þ

6�15 I6

h i
�H

3ð Þ
6�21 tð Þ ¼ TG;3�3 tð Þ 06�9 CG;3�3 tð Þ½ �

ð70Þ

with

Ti;3�3 tð Þ ¼
I3 03�3

�2~R ~rBiB
�

h i
2~R

" #

Ci;3�3 tð Þ ¼
I3 03�3

�4~R ~rBiB~q
�
iB

�
h i

2~R

" #
:

ð71Þ

The main differences w.r.t. Eq (66) are: the inclusion of a
fictitious process noise contribution �T6;c to support the esti-

mation of the 6 components of dq̂GB and the structure of
the measurement sensitivity matrices. As expressed in Eq
(50), in fact, the measurement equation is now function

of both dq̂BD and dq̂GB. The main difference between this
realization and the filter developed by the Authors in
Gaias and Lovera (2022) is that the pose of Gf g w.r.t.
Bf g is here expressed in dual quaternion, hence obtaining

a fully consistent dual quaternion-based filtering scheme.
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A further difference is the definition of G21�12, as already
recalled in Section 4.2.
4.4. Dynamic MEKF for state and parameters estimation

using multiple detected features

This last case addresses the dynamic MEKF that suites a
tightly-coupled approach for simultaneous estimation of
the relative 6-DoF state and target’s parameters. For the
sake of explanation, in this realization three features are
detected on the target, denoted by the Pi points,

i ¼ 1; 2; 3. Accordingly, the full state of the system is n 4ð Þ

of Fig. 2: all the arbitrary frames associated with each
detected feature Pi are oriented as the geometric reference
frame (qPiB ¼ qGB) and the 3D vectors �rPjB (with j ¼ 2; 3)

become part of the filter state. The remaining design quan-
tities become:

x 4ð Þ
27 tð Þ ¼ dq̂BD

T
x̂B

BD

T
�pTB dq̂P1B

T
�rP2B

T �rP3B
T

h iT
w 3ð Þ

18 tð Þ ¼ w 3ð Þ
12 �T6;P

h iT
F 4ð Þ

27�27 tð Þ ¼ F 3ð Þ
21�21 tð Þ 021�6

06�21 06�6

" #

G 3ð Þ
27�18 tð Þ ¼ G 3ð Þ

21�12 tð Þ 021�6

06�12 I6

" #

�H 4ð Þ
6�27 tð Þ ¼

TP1;3�3 06�9 CP1;3�3 06�6

TP2;3�3 06�9

I3 03�3

03�3 03�3

03�3 03�3

~R 03�3

TP3;3�3 06�9

I3 03�3

03�3 03�3

03�3 03�3

03�3
~R

2
666664

3
777775

:

ð72Þ
With respect to Eq (70), a further fictitious process noise
contribution �T6;P in included to support the estimation of

the 3-j components of �rPjB. As for the measure sensitivity

matrix, only the formulation where quaternion and dis-
tances are provided separately is reported. In tightly-
coupled approaches, in fact, this matrix has to be pre-
multiplied by the one that conveys how the specific
design-related observations relate to such quaternion and
distances. For example, if the navigation system relies on
image processing, then observations are the 2D pixel coor-
dinates of each Pi on the image and the perspective-n-
points equations are used to compute the partials of the
observation w.r.t. quaternion and distance to Pi (see for

instance the Hint
i terms of Pasqualetto Cassinis et al.

(2021)).
5. Simulations and Results

The performance of the filters described in the previous
section are evaluated into a MATLAB�/Simulink� simula-
tion environment, which models the spacecraft 6 DoF
14
dynamics subject to perturbations and the measurements
from the electro-optical sensor.

To this end, a scenario representative of active debris
removal missions in low Earth orbit is considered. Accord-
ingly, the target satellite orbits into a Sun-synchronous
almost-circular orbit at �775 km of height on the Earth
surface, where the aerodynamic perturbation is too weak
to enable a natural orbit decay. The target satellite is tum-
bling with angular rate of arbitrarily direction and magni-
tude of 10 degrees per second. The chaser spacecraft
observes the target from an almost bounded, centered, pas-
sively safe relative orbit, where this latter aspect is guaran-
teed through parallel relative eccentricity/inclination
vectors. This kind of relative trajectory is an operationally
convenient option to support inspection phases during
close proximity operations (Gaias and Lovera, 2021;
Gaias and Lovera, 2020). As for the satellites, target and
chaser are taken similar to the spacecraft of the Prototype
Research Instruments and Space Mission Technology
Advancement (PRISMA) mission (D’Amico et al., 2013).
In particular, the target is similar to the Tango satellite
with approximately 0:60� 0:80� 0:31 meters size and
principal moments of Ixx ¼ 2:61; Iyy ¼ 1:61, and Izz ¼ 3:54
kg m2. Whereas the chaser is customized on the Mango
satellite. Given the small size of the target object, the mag-
nitudes of the relative eccentricity and relative inclination
vectors are both taken equal to 4 meters. Hence the chaser
has already successfully concluded the mid-range ren-
dezvous and starts observing the target in the close-range
region. During the relative motion, the chaser keeps the
boresight of the electro-optical sensor - in this work
mounted as the y axis of the reference system Df g - direc-
ted towards the target, to keep it in its field of view (Gaias
and Ardaens, 2018). This operational requirement determi-
nes attitude and angular rate of the chaser satellite.

In the following simulations, rotational and transla-
tional displacements between Gf g and Bf g are respectively

taken as �qGB ¼ 0:026;�0:009; 0:017½ �T (corresponding to a

rotation of � 3:7 degrees) and �rBGB ¼ 0:01;�0:02; 0:02½ �T
meters. Such numerical values emulate the discrepancy
between the two body-fixed frames generated by the use
in the sensor’ processing unit of a wireframe model of the
tiny target satellite with no detailed knowledge of the mass
distribution.

The measurements are modeled through additive white
Gaussian noise affecting the true values as in Eq. (57).
The standard deviation of the noise on the vector part of
the measured quaternion is equal to 0:012 (3r), which cor-
responds to a rotation error of magnitude of � 6 degrees.
The standard deviation of the noise affecting the measure
of relative separation is set equal to 0:015 meters (3r).
These parameters are inline with the values considered in
similar studies published so far (e.g., (Filipe et al., 2015;
Aghili and Parsa, 2009; Hou et al., 2017)).

The initial guess of the filter is set to emulate the knowl-
edge of the relative state at conclusion of the mid-range
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rendezvous. In particular, the center of mass position and
velocity of the target satellite are expected to be known
with respectively decimeter and centimeter per second
accuracy, as obtained by processing angles-only and range
measurements. Based on the results of the AVANTI
(Autonomous Vision Approach Navigation and Target
Identification) angles-only far-range noncooperative ren-
dezvous (Ardaens and Gaias, 2018b; Ardaens and Gaias,
2018a; Gaias and Ardaens, 2018), in fact, below 50 m of
inter-satellite separation the direct measurement of the
range is suggested to improve the accuracy and robustness
of the relative navigation solution. The error on the knowl-
edge of the target angular rate is taken of approximately
0:6 degrees per second to emulate the coarse estimation
of debris angular rate from ground observations. To emu-
late a rendezvous to a partially known target satellite, the
errors on the inertia ratios are taken as 20% of the maxi-
mum inertia ratio.

5.1. Kinematic MEKF

This section presents the performance of the kinematic
MEKF. For the sake of comparison with the work of
Filipe et al. (2015), the sensor provides pose measurements
at 10 Hz. The tunable parameters of the filter are: the state

covariance at initial time P12�12 0ð Þ ¼ 10�4 I12 (see Eq. (40))

and covariance matrix of the process noise R ¼ 10�4 I6 (see
Eq. (27)). Recall that in this formulation the tuning of the
process noise depends on the values of relative angular and
linear rates.

Two simulations are reported respectively to investigate
the effect of employing a state-dependent measurements
covariance matrix (see Fig. 3) and and to compare the
behavior when the pseudo-measurements are provided
directly as a dual quaternion pose or as quaternion and rel-
ative distance separately (see Fig. 4).
Fig. 3. Kinematic MEKF receiving pose measurements: constant
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In all cases the kinematic filter refines well the input
measurements (i.e., yellow points in the left views) and esti-
mates the full relative 6 DoF state with an accuracy in line
with the previously published results (Filipe et al., 2015).
The performance is measured in terms of magnitude of
the estimation error, computed from the scalar part for
the unit error quaternion 2 cos�1 dq0ð Þ and from the 2-
norm of the vector part for vector error quaternions
�q� ~�qk k. As for Fig. 3, it can be noted that the modeling

of the first-order error propagation effects on the filter mea-
surement equation through a SDR (blue) has a negligible
impact w.r.t. the overall estimation accuracy (see results
for constant R in black). Fig. 4 shows how the estimation
accuracy is basically the same when the (pseudo) measure-
ments are either provided directly in dual quaternion form
(black) or as quaternion and relative distance separately
(green). By combining the two aforementioned findings,
when applicable, it is suggested to assemble the observa-
tions into a unit dual quaternion and to use a constant
R. The former simplifies the structure of H (see Eqs.
(56)–(70)); the latter simplifies the computation of the opti-
mal state update (see Eqs. 52,53).
5.2. Comparison between dynamic and kinematic MEKF

This section presents the comparison between the kine-
matic filter (k-MEKF) and its dynamic counterpart (d-
MEKF). To this end, the same scenario of Section 5.1 is
employed. The tuning of the k-MEKF is the same of
before, whereas for the dynamic MEKF it is set:

P15�15 0ð Þ ¼ diag 10�4 I12; 10
�1 I3

� �
and R ¼ 10�6 I6.

Fig. 5 compares the estimation errors in pose and dual
velocity: as expected the dynamic filter improves the accu-
racy of the estimated solution, especially in the velocity
components. This is extremely important in proximity
vs state-dependent (SDR) measurement covariance matrix R.



Fig. 4. Kinematic MEKF receiving either pose or quaternion and relative displacement (qr) measurements.

Fig. 5. Comparison between dynamic (d-, black) and kinematic-only (k-, blue) MEKF.
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operations around noncooperative targets, to plan the rel-
ative attitude at future time and thus to better support
guidance and capture tasks. Moreover, as depicted in the
right view of Fig. 6, the errors in the knowledge of the iner-
tia ratios is nullified in less than 100 s (black plots), making
the relative attitude prediction more reliable. The left view
of Fig. 6, instead, shows the achievable estimation accuracy
in the dual velocity components (for the specific simulation
case under consideration) when the dynamic filter is not
estimating the �pB part of the state - in green - (i.e., the ini-
tial values affected by a 20% error are kept unvaried
throughout the simulation). This is the numerical evidence
of the importance of estimating the main target’s parame-
ters together with the full relative state. As for the proposed
filter structure, enabling the estimation of �pB is simply
achieved by providing proper values to the initial covari-
16
ance components associated to the inertia ratios. As a
result, it has been shown that for loosely-coupled architec-
tures in which only the 6 DoF relative state is reconstructed
using a dynamic filtering scheme allows achieving a more
accurate solution than what achievable by kinematic
schemes. Moreover, the proposed filter can seamlessly
enable the estimation/refinement of the target’s inertia
ratios, while keeping the original loosely-coupled architec-
ture structure. This allows a further improvement of the
estimated solution. Note that, if required to improve the
overall robustness in the presence of very large errors in
the initial conditions, an architecture employing sequential
kinematic and dynamic MEKFs may be considered.

A last simulation is run, introducing the aforementioned
small rotational and translational displacements between
fGg and fBg to emulate the impact of limited knowledge



Fig. 6. Dynamic MEKF with (black) and without (green) estimation of �p.

Fig. 7. Dynamic estimation (state expressed in fBg), when the pose observations are q̂GD;m.
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Fig. 8. Slowly tumbling target: comparison between dynamic (d-, black) and kinematic-only (k-, blue) MEKF.

Fig. 9. Dynamic MEKF for state and parameters estimation fed by either pose or quaternion and relative displacement (qr) measurements: 6 DoF relative
state estimation.
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Fig. 10. Dynamic MEKF for state and parameters estimation fed by either pose or quaternion and relative displacement (qr) measurements: parameters’
estimation.
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of the mass distribution of the target satellite. Accordingly,
the pseudo measurements refer to the geometric reference
system, as output of algorithms that make use of a simple
wireframe model of the target satellite (q̂GD;m). The error
metrics, instead, refer to the quantities expressed in the
principal axes reference frame fBg, to measure the accu-
racy of the estimated solution w.r.t. the true dynamics of
the target. Fig. 7 presents the obtained results in this case,
comparing the performances of kinematic (in blue) and
dynamic (in black) filters. Indeed there is still filtering capa-
bility of the measurement noise (observations are marked
in yellow) and again the dynamic scheme outperforms the
kinematic filter. Nonetheless, the estimated state is affected
by an error that reflects the effective displacement between
the reference systems. This is obvious in the rotational
19
component of the magnitude of the pose error view. As
for the accuracy of the estimation of the dual relative veloc-
ity, one can compare the views Fig. 7 b) and Fig. 5 b),
where the observations were not affected by modeling error
between fGg and fBg. This numerical assessment moti-
vates the need to estimate position and orientation of the
target principal axes frame - in addition to the inertia
ratios, when the observations have been obtained referring
on a geometric frame though an accurate solution is
required.

5.2.1. Inertia ratios estimation for slowly tumbling targets

This subsection shows the behavior of the dynamic filter
when the tiny target satellite tumbles at a slower rate than
what considered so far. This analysis is performed to test
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the filter into a more demanding condition for the estima-
tion of the augmented state. In the specific, the magnitude
of the absolute angular rate of the target is now set as � 4
degrees per seconds; whereas all the other parameters of
the simulation are kept as before. As for the tuning, the
covariance matrix of the process noise for the kinematic fil-

ter is set equal to R ¼ 10�6 I6. Fig. 8 collects the state and
parameters estimation errors for this specific case, using
the same color-code employed in Section 5.2. The inertia
ratios are properly estimated despite the relatively slow
angular rate of the target (see view Fig. 8 c)). As expected,
more time is required to recover the initial error in the
knowledge of the inertia ratios.
5.3. Dynamic MEKF for state and full-set parameters’
estimation

This section presents the performance of the dynamic
MEKF when state and the full set of parameters are esti-
mated and the filter receives as (pseudo) measurements
the pose to the geometric reference system of the target
satellite q̂GD;m. Accordingly, this formulation of the filter
addresses the limitations highlighted in Fig. 7. By referring
to Eq. (70), this case is challenging since a state of dimen-
sion 21 is to be estimated from 6-dimensional observations.
The same scenario employed so far is considered, though
the measurement update rate is now set equal to 1 Hz,
which is a typical feasible value for running the image pro-
cessing algorithms on an onboard processor (Aghili and
Parsa, 2009; Capuano et al., 2019; Pasqualetto Cassinis
et al., 2021).

As for this simulation, the following tuning has been

adopted: P21�21 0ð Þ ¼ diag 10�4 I12; 10
�3 I3; 10

�8 I3
� �

and

R ¼ diag 10�6 I6; 10
�5 I6

� �
. Figs. 9 shows the estimation

error for the state. Fig. 10 presents the error of estimation
Fig. 11. Dynamic MEKF for tightly-coupled approaches fed by qr me

20
of the considered parameters, namely orientation of the
principal axes frame a), position of the center of mass b),
and ratios of the moments of inertia c). For the sake of gen-
erality, also the filter implemented by the Authors in Gaias
and Lovera (2022) - here denoted by the label IWSCFF -
has been considered. This latter, in fact, presents another
possible implementation in the specific case where mea-
sures to a single point of reference are provided. As can
be noted, there is no meaningful difference in terms of per-
formance when the observations are provided in the form
of a unit dual quaternion pose (black) or unit quaternion
and relative displacement separately (blue). The relative 6
DoF state is estimated with the same accuracy of Fig. 5
(case in which the measurements were directly taken w.r.
t. the fBg reference system). This proves the efficacy of
the proposed formulation with augmented estimation state.
In this case, in fact, the estimation of orientation and posi-
tion of fBg is also achieved (see Fig. 10); the initial error
has been set as if fGg were fBg (hence its magnitude
reflects the true roto-translational displacement between
the two considered reference frames). At the same time it
is emphasized that, in the current - more challenging given
the augmented size of the estimation state - case the simu-
lation requires longer time to recover the initial error.
Moreover, it is worth noting that the measurement update
rate has been slowed down from 10 Hz for Fig. 5 (emula-
tion of LiDAR) to 1 Hz for Fig. 10 (emulation of the out-
put of a vision-based image processing). Based on the
numerical investigations, the higher the target angular rate,
the better the capability of the estimated solution to con-
verge to true values. Nonetheless, thanks to the accurate
motion modeling adopted in the filter development, con-
vergence is obtained at a relatively low angular rate of
the target. For the sake of comparison, the results shown
in Aghili and Parsa (2009) for a similar scenario (e.g., tiny
almost symmetrical target spacecraft, comparable inter-
asurements of 3 detected features: 6 DoF relative state estimation.
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satellite distance) have been obtained running the filter at
2 Hz and maximum component of the target angular rate
of � 28 deg/s.
5.4. Dynamic MEKF for state and full-set parameters’

estimation using 3 detected features

This last section addresses the formulation to support
tightly-coupled approaches and it is assumed that 3 fea-
tures are detected on the target satellite. Scenario and mea-
surement update rate are kept as in Section 5.3. By
referring to Eqs. (72), due to the need to estimate the coor-
dinates of the PoRs in fBg, the state becomes of dimension
Fig. 12. Dynamic MEKF for tightly-coupled approaches fed by q

21
27. Nonetheless, now at each measurement update step the
observations’ set is composed of the three poses of the mea-
sured PoRs. The detected features are selected as three ver-
texes of the target spacecraft.

As for this simulation, the following tuning has been

adopted: P27�27 0ð Þ ¼ diag 10�4 I12; 10
�2 I3; 10

�8 I3; 10
�6 I6

� �
and R0 ¼ diag 10�6 I6; 10

�5 I6; 10
�4 I6

� �
. The simulations

results are collected in Fig. 11, in terms of full relative state,
and Fig. 12, for the estimated parameters. Note that for
this case the plots refer to the single realization of the filter
provided in Eqs. (72). Referring to Fig. 11, one can note
that the achievable accuracy is in line with the results
obtained so far, though the transient to recover the initial
r measurements of 3 detected features: parameters’ estimation.
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error takes now a little bit more time (see for example
Fig. 9). As for the estimation of the parameters (Fig. 12),
the orientation of fBg a) and the ratios of the inertia
moments c) are properly recovered in a shorter time with
respect to the loosely-coupled architecture (Fig. 10).
Indeed, in this case the filter benefits from receiving obser-
vations of multiple points of references. The b) plot of
Fig. 12, specifically shows the 3 components estimation
error for each of the three PoRs, which basically nullify
after the first 200 s for the scenario under consideration.

6. Conclusion

This work addressed the need of estimating the relative
roto-translational state and the main parameters of a non-
cooperative target from an observing chaser satellite during
close proximity operations. The design principle has been
to attain a filter development that could serve different pos-
sible architectures of the close-range navigation system.
This is motivated by the fact that indeed this kind of filter-
ing activity is a common building block crosswise to the
technical solutions proposed so far. Accordingly, a general
approach is beneficial either to simplify the overall struc-
ture of the guidance, navigation and control system or to
enhance its flexibility and adaptability to support the vari-
ous phases of close proximity operations. Further design
drivers have been the potential to extend this basic develop-
ment to spaceborne implementations and/or to sensor
fusion applications, which exploit a set of sensing devices,
possibly operating at different rates.

In light of these motivations, this work developed a
continuous-discrete, dual quaternion based, dynamic, multi-
plicative extended Kalman filter capable to deliver estimates
of the full relative state, the ratios of the moments of inertia,
and position and orientation of the principal frame of the
target. No approximations on the relative six degrees-of-
freedom motion have been introduced. And, for the sake
of compactness, the equations of the relative roto-
translational kinematics and dynamics have been repre-
sented in dual quaternions. To reflect the available technolo-
gies to observe in space a noncooperative target, the filter
receives only pose measurements with respect to one or mul-
tiple arbitrary frames fixed on the target, depending whether
a loosely- or tightly-coupled architecture is used for the nav-
igation system. To demonstrate the generality of the pro-
posed approach, different realizations have been presented,
supported by an explanation of their possible utilization
and numerical simulations to show their behavior within a
scenario representative of the close-range inspection of a
noncooperative target. Both measurement update rates of
10 and 1 Hz have been employed, to emulate the output
of active laser and passive visual imaging respectively.

Results have shown that the current dynamic formula-
tion outperforms previously published kinematic-only filters
for pose estimation, both in terms of achievable accuracy
and of enabling the estimation of the main target’s parame-
ters. Within the adopted dual quaternion formulation, it has
22
been shown that (when applicable) it is convenient to pro-
vide the observations in terms of unit dual quaternion. This,
in fact, allows reducing the measurement sensitivity matrix
to a very simple form. At the same time, the propagation
effect of the measurement errors through the nonlinear unit
dual quaternion definition have a negligible impact on the
achievable results. This allows employing anyway a constant
covariance matrix of the measurement error.

Depending on the actual needs of the relative navigation
system, the larger the size of the whole state to be estimated
the more challenging the capability to recover the error on
the initial guess. This is a structural characteristic of this
problem, due to the technology limitations of obtaining
only pose measurements from the observations. Out of
the experience collected through numerical investigations
it has been noted that, the faster the angular rate of the tar-
get the shorter the transient to estimate the values of the
inertia ratios. Note that this aspect poses a conflicting
requirement with respect to the data-processing algorithms
either to extract features or to compute the target pose.
Nonetheless, the obtained results have shown that when
only the inertia ratios have to be estimated together with
the relative state, this filter is capable to recover an error
representative of the knowledge realistically available at
the end of the mid-range rendezvous also for very low tar-
get’s angular rate. Furthermore, when the full state is to be
estimated, the current filter outperforms previously pub-
lished results in the capability to converge with lower abso-
lute angular rates of the target.
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Appendix A. This section presents the derivation of Eqs.
35,36. To this end, the vector part of the real quaternion of
the non-swapped Eq. (16) is written as:
�_xB
BD;r ¼ ��I�1

B �xB
BD � �IB �xB

BD

� �� �� �I�1
B �xB

BD � �IB �xB
DI

� �� �
��I�1

B �xB
DI � �IB �xB

BD

� �� �þ
��I�1

B �xB
DI � �IB �xB

DI

� �� �� �xB
DI � �xB

BD

� ��RD2B
�_xD
DI

¼ f 1 �x; �pð Þ þ f 2 dq; �x; �p
� �þ f 3 dq; �x; �p

� �
þf 4 dq; �p

� �þ f 5 dq; �x
� �þ f 6 dq

� �
ð73Þ
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where the f 1 to f 6 contributions have been highlighted
together with the quantities on which they depend. Note
that, for sake of conciseness, sub and superscripts have

been dropped, hence: dq ¼ dqBD; �x ¼ �xB
BD, and �p ¼ �pB.

The functional expressions of the partials of f i w.r.t. the

variables dq; �x, and �p are given by:

@f 1
@ �x ¼ Maa �pB; �xB

BD

� �
@f 1
@�p ¼ Np �xB

BD

� �
; ð74Þ

@f 2
@dq

¼ 2Mb �xB
BD; �uB

� �
~�xB
DI

�� �
@f 2
@ �x ¼ Ma �xB

DI; �uB
� �

@f 2
@�p ¼ F2p �xB

BD; �x
B
DI; �pB

� �
;

ð75Þ

and

@f 3
@dq

¼ 2Ma �xB
BD; �uB

� �
~�xB
DI

�� �
@f 3
@ �x ¼ Mb �xB

DI; �uB
� �

@f 3
@�p ¼ F3p �xB

BD; �x
B
DI; �pB

� �
;

ð76Þ

where �uB ¼ ux; uy ; uz
� �T

= Ixx
Iyy
; IzzIyy

; IxxIzz

h iT
is a further represen-

tation of the ratios of the principal moments of inertia, and

@f 4
@dq

¼ 2Maa �pB; �xB
DI

� �
~�xB
DI

�� �
@f 4
@�p ¼ Np �xB

DI

� �
; ð77Þ

@f 5
@dq

¼ 2 ~�xB
BD

�� �
~�xB
DI

�� �
@f 5
@ �x ¼ � ~�xB

DI
�� �
; ð78Þ

@f 6
@dq

¼ �2 ~�_xB
DI

�
h i

: ð79Þ

The derivatives with respect to dq have been computed
using:

�vB ¼ R qBDð Þ�vD ¼ R dq
� �

R ~qBDð Þ�vD
¼ R dq

� �
~�vB � I� 2 dq�

� �� �
~�vB

ð80Þ

where R �ð Þ is the rotation matrix associated to the proper
quaternion, so that:

@�vB

@dq
¼ 2 ~�vB�
� �

: ð81Þ

By introducing the notation �x ¼ xx;xy ;xz

� �T
for the gen-

eral angular rate vector so that the associated vector

quaternion is x ¼ 0; �xð Þ and �p ¼ px; py ; pz
� �T

for the vector

of the inertia ratios as defined in Eq. (20), the matrix quan-
tities appearing in (74)–(79) are given by:

Maa �p; �xð Þ ¼
0 pxxx pxxy

pyxz 0 pyxx

pzxy pzxx 0

2
64

3
75; ð82Þ

Np �xð Þ ¼
xyxz 0 0

0 xzxx 0

0 0 xxxy

2
64

3
75; ð83Þ

Ma �x; �uð Þ ¼
0 uyxz �xy=uy

�xz=uz 0 uzxx

xy=ux �uxxx 0

2
64

3
75; ð84Þ
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Mb �x; �uð Þ ¼
0 �uxxz uzxy

xz=ux 0 �xx=uy
�xy=uz uyxx 0

2
64

3
75; ð85Þ

F2p �x1; �x2;�pð Þ¼

x1zx2y

1�py
þx1yx2z

1þpz

1þpxð Þx1zx2y

1�pyð Þ2
1�pxð Þx1yx2z

1þpzð Þ2

1�pyð Þx1zx2x

1þpxð Þ2
x1zx2x
1þpx

þx1xx2z
1�pz

1þpyð Þx1xx2z

1�pzð Þ2
1þpzð Þx1yx2x

1�pxð Þ2
1�pzð Þx1xx2y

1þpyð Þ2
x1yx2x

1�px
þ x1xx2y

1þpy

2
666664

3
777775;

ð86Þ
and

F3p �x1; �x2;�pð Þ¼

x1zx2y

1þpz
þx1yx2z

1�py

1þpxð Þx1yx2z

1�pyð Þ2
1�pxð Þx1zx2y

1þpzð Þ2

1�pyð Þx1xx2z

1þpxð Þ2
x1zx2x
1�pz

þx1xx2z
1þpx

1þpyð Þx1zx2x

1�pzð Þ2
1þpzð Þx1xx2y

1�pxð Þ2
1�pzð Þx1yx2x

1þpyð Þ2
x1yx2x

1þpy
þ x1xx2y

1�px

2
666664

3
777775:

ð87Þ
As a result, the partials of Eq. (36) are obtained as:

@ _̂xB
BD;r

� �
@dq

¼ @f 2
@dq

þ @f 3
@dq

þ @f 4
@dq

þ @f 5
@dq

þ @f 6
@dq

@ _̂xB
BD;r

� �
@ �x ¼ @f 1

@ �x þ @f 2
@ �x þ @f 3

@ �x þ @f 5
@ �x

@ _̂xB
BD;r

� �
@�p ¼ @f 1

@�p þ @f 2
@�p þ @f 3

@�p þ @f 4
@�p

: ð88Þ

to be evaluated at the estimated state.
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