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Abstract— The early detection of Mild Cognitive Impairment 

(MCI) is fundamental to initiate treatments for delaying the onset 

of dementia. Currently, the Mini Mental State Examination 

(MMSE) is one of the most common clinical scales used by 

geriatricians to assess cognitive function. A deviation of 1 to 3 

points from the maximum score (30) is considered as sign of 

relevant cognitive decline. However, objective and affordable tools 

are needed to complement the screening process. The quantitative 

analysis of handwriting represents a suitable solution, as the 

gesture is significantly impaired in MCI subjects in terms of time, 

speed, fluency and applied pressure. This works presents the 

development and testing of classification models able to separate 

subjects at risk of cognitive decline (MMSE <= 28) from controls 

(MMSE > 28), starting from free-content handwriting data 

acquired with a smart ink pen, used on paper, from which 36 

indicators were computed. Data were collected in 2 phases. The 

former involved 45 subjects and served for models training. In the 

latter, data were acquired from 23 subjects in a domestic 

longitudinal framework and were partially used for model 

refinement, but mainly for testing. Three different algorithms 

were tried (support vector machine, random forest and Catboost) 

The best test performances on the longitudinal data were obtained 

by a Catboost classifier, achieving accuracy 93.33%, precision 

88.89%, recall 100% and f1 score 94.12%. The results support the 

use of computerized handwriting analysis as screening tool for 

cognitive decline detection. 
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I. INTRODUCTION 

The ageing phenomenon is responsible for the increasing 
prevalence of neurological chronic pathologies [1]. Among 
these, dementia holds a huge burden, for both the patients and 
the healthcare system, as no disease-modifying treatments are 
currently available [2]. The Mild Cognitive Impairment (MCI) 
is considered a precursor of dementia [1], [2]. Subjects with 
MCI can live independently but exhibit a higher degree of 
cognitive decline compared to healthy age-matched individuals 
[2]. The prevalence of MCI in the population aged over 60 years 
old is 17.3%, while the rate of conversion to dementia is around 
10-15% patients per year [3]. In this context, the identification 
of the first signs of cognitive decline plays a fundamental role. 
The early detection would indeed allow starting a treatment plan 

able to delay the onset of dementia [1]–[3]. To date, the 
screening procedure for MCI is performed by general 
practitioners and geriatricians through clinical scales, the Mini 
Mental State Examination (MMSE) being one of the most used 
[4]. It allows the quick evaluation of the subject’s cognitive 
status in different domains, including language, attention and 
memory [4]. The score ranges from 0 to 30, which indicates 
cognitive integrity. In the healthy population aged over 60 years 
old, scoring 30 in the MMSE, a relevant cognitive decline has 
been demonstrated for reductions of 1 to 3 points [5]. However, 
to foster the early screening, the clinical scale should be 
complemented by objective assessment methods [2]–[4]. In 
recent years, increasing attention has been devoted to the 
monitoring of one’s condition in the home setting through 
sensorized daily-use objects, able to collect data with high 
frequency [6]. For the MCI early screening, the quantitative 
analysis of the handwriting process has been proposed as a valid 
support tool [7]. Indeed, the brain alterations causing the 
disorder have a direct effect on the organizational and motor 
processes involved in the handwriting generation [7]. Lack of 
coordination, reduced smoothness and velocity were found in 
MCI during sentence dictation and copying [8]. In [9], subjects 
with MCI exhibited significantly greater time both with the pen 
on sheet and in air, coupled with lower applied pressure while 
performing copying tasks. The importance of pressure and 
kinematic features for distinguishing between controls and MCI 
subjects was furtherly confirmed in [10], where classification 
models sensitivity and specificity ranged from 73.9 to 100%, 
according to the considered task. These studies gathered the data 
through digitizers, which record the 2D coordinates on the pen 
on the screen and the applied pressure, while the subjects 
performed a set of standardized writing tasks under the operator’ 
supervision. For home monitoring purposes, however, the 
digitizer represents a technological barrier for elders and does 
not allow an ecological data acquisition, hindering its 
introduction in such a scenario. This work aims at overcoming 
these limitations, proposing a novel approach for the early 
detection of cognitive decline in the home setting from writing 
activity performed using a smart ink pen [12]. 

Firstly, already available data, related to free handwriting 
tasks, were used to build classification models able to identify 
the presence of cognitive decline, following the classic machine 
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learning. paradigm (train-test split, cross validation, testing). 
Secondly, a longitudinal data acquisition campaign was 
conducted in the context of the European project ESSENCE. 
Users were provided with a smart ink pen to be used at home, 
without any supervision, for 10 weeks. A small portion of the 
longitudinal data was used to retrain the developed models. 
Then, the models were applied on the remaining data, to 
evaluate the user’s cognitive status. 

II. MATERIALS AND METHODS 

The handwriting data were collected with the smart ink 
presented in [11], which is used on paper as a normal pen, 
guaranteeing a more user-friendly execution with respect to the 
digitizer. The acceleration and angular velocity signals are 
recorded by a 6-axis inertial measurement unit, while the force 
exerted on the writing surface by a sensor connected to the pen 
tip. Both sensors operate with a sample frequency of 50Hz.  

Participants recruitment was divided in two phases. The first 
phase was devoted to the collection of the data necessary for the 
training of the classification algorithm (this data acquisition 
phase is labelled “DC1” in the following). To this aim, 
Politecnico di Milano (Italy) and Fundación para la Formación 
e Investigación de los Profesionales de la Salud de Extremadura 
(FS, Spain) recruited participants according to the following 
inclusion criteria: i) being older than 60 years old; ii) showing 
sufficient cognitive ability, quantified by a Mini Mental State 
Examination (MMSE) score ≥ 24. Subjects were asked to use 
the smart ink pen on paper in tasks of writing production, under 
the supervision of an operator. They had to write content free 
texts and/or a grocery lists in their native language. The protocol 
was approved by the ethical committee of Politecnico di Milano 
(opinion n. 10/2018) and by the Comité de Ética de la 
Investigación de Badajoz (29/06/2021). In the second phase, 50 
users were enrolled in Spain by FS and provided with a smart 
ink pen to be used at home for approximately 10 weeks. The 
subjects had to be older than 65 years old and be non-frail or pre-
frail. The users were instructed to perform a battery of controlled 
tests and, in addition, to use the smart ink pen to write freely 
whenever they felt like, in their native language. The data 
acquisition of unconstrained handwriting activity was ecological 
and completely transparent to the subjects. The smart ink pen 
started the data acquisition when moved, stored the data on its 
on-board memory at the end of the activity and transmitted the 
data to a cloud server every night. Thus, despite using the pen, 
no user’s interaction was required. The data coming from the 
unconstrained activity (named “DC2”) were used in this study, 
mostly for the classification algorithms testing. The Comité de 
Ética de la Investigación de Badajoz (29/06/2021) approved the 
second data collection phase. In both recruitment phases, all 
participants were evaluated with the MMSE. The MMSE score 
was the selected outcome for the cognitive decline classification 
problem. According to [5], participants were divided in Controls 
(C), if MMSE score > 28, and at Risk (R) if MMSE score <= 28. 

Given the findings related to the handwriting in MCI, the 
handwriting data were processed in MATLAB 2021b to extract 
36 indicators in the temporal, kinematic, pressure and 
smoothness domains. The indicators are presented hereafter. 

Time: Number of strokes (continuous segments in which the 
pen is in contact with the paper) normalized by the execution 

time (RelStrokeNum [#/s]). Mean time spent on sheet 
(meanOnSheet [s]) and its coefficient of variation (Onsheet_CV 
[dimensionless]), percentage of time spent on sheet 
(OnSheetRatio [dimensionless]). Mean time spent in air 
(meanInair [s]) and its coefficient of variation (Inair_CV 
[dimensionless]). Mean time spent in air (meanInair_nopause 
[dimensionless]) and its coefficient of variation 
(Inair_nopause_CV [dimensionless]) excluding pauses (in air 
moments longer than 2 seconds). Ratio between mean time spent 
in air and mean time spent on sheet with (AirSheet_Ratio_pause 
[dimensionless]) and without (AirSheet_Ratio_NOpause 
[dimensionless]) pauses. Absolute number of pauses 
(PauseNum [#]) and number of pauses normalized by the 
execution time (PauseNum_Rel [#/s]), mean pause duration 
(meanPause [s]) and its coefficient of variation (PauseCV 
[dimensionless]). 

Kinematics: Number of inversions per stroke in acceleration 
(NCA_REL [#/s]) and angular velocity (NCG_REL [#/s]), 
normalized by stroke duration. Mean of the absolute difference 
between consecutive peaks in angular velocity (CPDG_AVG 
[degrees/s]) and its coefficient of variation (CPDG_CV 
[dimensionless]). Pen inclination in the horizontal plane (TILT 
[degrees]), its coefficient of variation (TILT_CV 
[dimensionless]) and variance (TILT_VAR [(degrees(s)2]). 

Pressure: Mean pressure exerted while the pen is on sheet 
(meanPonsheet [arbitrary]), computed as the mean of all non-
zero pressure values, and difference between the maximum and 
median exerted pressure (P_OVS [arbitrary]). Mean pressure 
computed as the mean of each stroke mean pressure (meanP 
[arbitrary]) and its coefficient of variation (P_CV 
[dimensionless]). Mean of the absolute difference between 
consecutive peaks in pressure (CPDP_AVG [arbitrary]) and its 
coefficient of variation (CPDP_CV [dimensionless]). Number 
of inversions per stroke pressure (NCP_REL [#/s]) normalized 
by stroke duration. 

Smoothness: Logarithmic dimensionless jerk of acceleration 
(LDLJ_A_median [dimensionless]) and angular velocity 
(LDLJ_A_median [dimensionless]). Spectral arc length of 
angular velocity (Sx_median [dimensionless]), computed with 6 
different thresholds for noise removal (x represent one of the 
possible thresholds among 10, 20, 30, 40, 45, 50%). 

The computed indicators were exploited to build 
classification algorithms able to separate C from R. Three 
different algorithms were trained using Python 3.8.10, namely 
Support Vector Machines (SVM), Random Forest (RF) and 
Catboost. Different training strategies were adopted. Two 
different indicator sets were considered: the first included all the 
36 computed indicators (ALL), while the second removed the 
temporal features which include the pauses in their computation 
(NP): PauseNum, PauseNum_Rel, meanPause, PauseCV, 
meanInair, Inair_nopause_CV and AirSheetRatio_pause. This 
choice was made to investigate the contribution of pauses in the 
discrimination task, as one could expect a higher pause 
occurrence in people with reduced cognitive capabilities. Then, 
three different datasets sets were considered, starting from the 
one including DC1 only, named DS0. This dataset included all 
the available samples from the DC1 subjects. The remaining two 
sets progressively added data from DC2 to DC1: DS1) DC1 and 



 

 

at maximum one sample from each DC2 subjects; DS2) DC1 
and at maximum two samples from each DC2 subjects. The 
rationale was to simulate the workflow of a real monitoring 
application where, starting from a model built on already 
available data, the same model is updated with the newly 
acquired data to add information related to the subjects under 
examination. Given the longitudinal data availability, depicted 
in section III, a maximum of two sample per subjects was added, 
to avoid performing the model testing on too few data. 
Independently of the chosen algorithm, indicators and dataset, 
the following pipeline was adopted. The dataset was divided into 
80% for the model training and 20% for its testing. During the 
training phase, the performances (accuracy, precision, recall, f1 
score) were evaluated with a 5-fold cross-validation. To account 
for the bias due to the train-test split, the models were trained 
and evaluated on four different seeds. Thus, each combination 
of algorithm, indicators and dataset yielded four separate 
classification models. Mean performances on train and test were 
then retained. The models characterized by the best average 
performance were then applied for the classification of all the 
DC2 samples not included in the dataset, to test their 
generalization capability on completely unsupervised 
handwriting samples, not seen during training. This procedure 
was applied to evaluate a real-life scenario, where an already 
developed model is used on unsupervised, newly acquired data 
as a screening support tool. This step included only DC2 
subjects who produced at least 3 handwriting samples. For a 
given combination, each DC2 sample was classified by the four 
models, the final prediction assigned by majority voting. Then, 
the overall prediction (i.e., C or R) for each subject was again 
assigned by majority voting, according to the single sample 
predictions for the subject, and compared with the real MMSE 
score. The Shapley Additive Explanation (SHAP) technique 
[12] was applied to the models used on the unseen data, to gain 
insight about the most important indicators in the prediction. 

III. RESULTS 

The DC1 group included 45 subjects (age median = 75 years, 
age iqr = 13.5 years; MMSE median = 29, MMSE iqr = 3; 27 
female (F), 18 male (M); 23 C, 22 R), while 23 subjects in DC2 
produced at least one free handwriting sample (age median = 69 
years, age iqr = 4.75 years; MMSE median = 29, MMSE iqr = 
2; 23 F, 1 M; 15 C; 8 R), and were included in DS1 and DS2. 
No significant differences in MMSE (p=0.11) emerged between 
the groups (Mann-Whitney U test, 5% significance level). In 
DC2, a minimum of 3 handwriting samples was available for 15 
users (age median = 68 years, age iqr = 3.75 years; MMSE 
median = 29, MMSE iqr = 2.75; 14 F, 1 M; 9 C, 6 R), who were 
considered for the model application in the real scenario. Table 
I summarizes the available samples for the three datasets. 

The best obtained models are reported in Table II. No results for 
SVM are reported, as the performances were poorer. For each 
model, the algorithm, indicator set and dataset are shown. The 
metrics, highlighted in bold for the best performers, are 
presented as mean ± standard deviation on the four seeds, for 
both train and test. The RF model trained with the combination 
ALL + DS0 emerged as the best during training. When 
evaluating the test performances, the emphasis was put on the 
metrics standard deviation rather than the mean, as it reflects the 

variability associated to the different train-test seeds. In this 
sense, the above-mentioned model was again the best in the 
recall. As for the other metrics, the Catboost algorithm built on 
NP + DS2 showed the greatest consistency across the seeds. The 
two models were used to classify the 15 DC2 users in the real-
life application. The resulting confusion matrices are reported in 
table III and IV, respectively. For the RF model, the achieved 
metrics were accuracy 86.67%, precision 77.78%, recall 100% 
and f1 score 87.50%. The relevant indicators for the RF model 
prediction, according to the SHAP analysis on the four seeds, 
mainly belonged to the temporal domain. The following 
indicators exhibited higher values for subjects at Risk compared 
to Controls: meanInair, PauseNum, PauseNum_Rel, and 
meanPause. On the other hand, lower values were observed in 
subjects at Risk for RelStrokeNum and OnSheetRatio. The only 
relevant kinematic indicator was NCG_REL, showing lower 
values in the R group. Lastly, NCP_REL in the force domain 
was found to be lower in subjects at Risk. The Catboost model 
misclassified only one subject, obtaining accuracy 93.33%, 
precision 88.89%, recall 100% and f1 score 94.12%. The SHAP 
analysis confirmed the results obtained by the RF model for the 
indicators which do not depend on pauses. 

IV. DISCUSSION 

Objective screening tools for the early detection of MCI 
constitute an urgent need. Currently, this intermediate stage 
represents the unique window where intervention to delay 
dementia onset is possible. The literature established the 
potential validity of computerized handwriting analysis for 
MCI screening purposes. From these studies, a novel approach 
was proposed in the current work. The focus was shifted from 
standardized tests to unconstrained handwriting activities, to 
monitor the gesture with high frequency in the home scenario, 
rather than in the clinical setting. To this aim, the smart ink pen 
replaced the digitizer for data acquisition. Being used like a 
normal pen, it allows the ecological and transparent recording 
of quantitative data. Despite the different protocol, the obtained 
results were in line with the examined literature. The SHAP 
analysis revealed trends in the temporal domain which 
confirmed the findings in [8], [9], especially for the “in air” 
patterns. Indeed, at Risk subject produced not only a low 
number of strokes per second (i.e., they wrote slowly), but 
exhibited a great time spent with the pen in air. This behavior 
could be related to the cerebral deterioration underlying the 
cognitive decline, which causes impairment in both movement 
planning and execution [7]. Importantly, The SHAP analysis 
adds useful information: knowing the most relevant indicators 
in the model predictions allows understanding the reasons  

TABLE I.  DATASETS COMPOSITION 

 

DS Total Samples 
Control Samples 

(C) 

At Risk Samples 

(R) 

DS0 108 50 58 

DS1 127 60 67 

DS2 142 69 73 



 

 

TABLE II.  PERFORMANCES OF THE BEST DEVELOPED MODELS 

Algorithm Indicators DS Accuracy [%] Precision [%] Recall [%] f1 score [%] 

   Train Test Train Test Train Test Train Test 

RF ALL DS0 88.13±2.98 80.68±7.76 91.07±4.13 84.15±11.8 85.63±2.39 81.25±4.16 87.86±2.84 82.36±6.33 

RF NP DS1 81.97±2.72 83.65±10.1 85.41±3.47 84.71±14.1 79.50±1.96 87.50±8.99 81.37±2.14 85.51±8.36 

Catboost NP DS2 80.00±2.50 80.77±0.00 83.67±4.62 77.98±3.94 77.00±3.46 86.54±7.36 79.07±2.70 81.75±1.31 

behind the outputs produced by the model. The results 
interpretability could foster the model adoption by the 
clinical staff. The sensitivity of the proposed approach 
complies with the requirements (>80%) for being used as a 
screening tool [4]. With respect to the traditional methods, 
the ecological, domestic handwriting data acquisition 
guarantees higher assessment frequency and time savings for 
the healthcare system, while assessing relevant cognitive 
domains for MCI, like attention and planning. The 
classification performances were comparable to the ones in 
[10] where, however, the sample size was small (17 controls 
and 12 MCI) and a test set was absent. Indeed, the added 
value of the current work is found in the training datasets and 
in the double testing procedure. The former contained 
unconstrained samples written by subjects from two different 
countries, allowing the model to infer the intrinsic 
handwriting characteristics associated to cognitive decline, 
regardless the product content and the employed language. 
This supports the robustness of obtained results. The testing 
phase in the real scenario, on the other hand, demonstrated 
the suitability of the approach for the home monitoring of 
handwriting. The obtained results were strongly promising, 
as both tested models were able to correctly identify all the 
subjects in the risk group. High sensitivity is indeed the 
desired characteristics of a screening instrument. This study 
had some limitations. None of the recruited subjects had a 
clinical diagnosis of MCI and the MMSE was the sole 
considered criterion for the separation between groups, while 
the real-life testing included a limited number of users. 
Lastly, the approach does not consider some cognitive 
domains (orientation, decision making) which are typically 
assessed by traditional tools. Future research should consider 
other assessment methods as the outcome for the 
classification problem, test the models on a bigger sample 
size and consider the development of subject-specific  

TABLE III.  CONFUSION MATRIX OF MODEL RF ALL+DS0 

 Prediction R Prediction C 

True R 6 0 

True C 2 7 

TABLE IV.  CONFUSION MATRIX OF MODEL CATBOOST NP+DS2 

 Prediction R Prediction C 

True R 6 0 

True C 1 8 

models. Furthermore, the relationship between handwriting 
indicators and MMSE score could also be studied in a 
regression framework. This way, it would be possible to 
predict the extent of cognitive decline, if any.  

To sum up, this work demonstrated the feasibility of 
home-based, unconstrained handwriting monitoring for the 
detection of the first signs of cognitive decline. The approach 
could be a valuable screening tool, prompting a thorough 
clinical examination in case of classification in the risk group.  
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