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a b s t r a c t

To facilitate the use of robots in small and medium-sized enterprises (SMEs), they have to be easily
and quickly deployed by non-expert users. Programming by Demonstration (PbD) is considered a fast
and intuitive approach to handle this requirement. However, one of the major drawbacks of pure
PbD is that it may suffer from poor generalisation capabilities, as it is mainly capable of motion-
level representations. This work proposes a method to semantically represent a demonstrated skill,
so as to identify the elements of the workspace that are relevant for the characterisation of the skill
itself, as well as its preconditions and effects. This way, the robot can automatically abstract from the
demonstration and memorise the skill in a more general way. An experimental case study consisting
in a manipulation task is reported to validate the approach.

© 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

When it comes to instructing robots to execute certain op-
rations, different methods exist. The first adopted solution was
o program their motions through sets of machine-readable in-
tructions [1,2]. Together with the widespread use of robots,
specially in automotive industries, languages have become more
nd more powerful by adding new functionalities, thus allowing
obots to be employed in an increasing variety of tasks. In face
f this growing complexity, researchers proposed to organise
ode into libraries containing atomic, composable, and reusable
arts. These atomic programs are usually referred to as skills
3–5]. According to [5], skills are atomic functionalities each one
ualified by a set of pre- and postconditions. The use of pre-
nd postconditions allows the robot to have access to a formal
escription of how the skill will modify the state of the world, as
ell as when the state of the world allows the skill itself to be
xecuted.
Nowadays, researchers rather prefer to program robots by

hysically demonstrating trajectories that are then encoded into
set of parameters, see [6] for a review. This trend has been

urther stimulated by the availability on the market of a new
eneration of robotics platforms allowed to be manually guided
y a relatively non-expert technician [7].
Regardless the way robots have been instructed, they surely

iss the awareness and the understanding of what they are
aught. It follows that robots will not be able to autonomously
ompose skills anytime soon. The main reason is to be found in
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921-8890/© 2023 The Author. Published by Elsevier B.V. This is an open access arti
the way programs are memorised in robotics controllers. From
the one hand, instructions have clear meanings for robotic pro-
grammers, thanks to their mnemonic names. On the other hand,
robots are surely not able to automatically compose them, es-
sentially because programs or instructions are not represented
in a way that allows comprehension by the robot. Furthermore,
while being intuitive and fast, Programming by Demonstration
(PbD) does not allow the agent being thought to represent
semantic knowledge of the underlying skill being demonstrated,
thus preventing both the composition and the generalisation in
other contexts.

The term semantic memory has been first proposed by Quil-
ian in his doctoral dissertation [8]. According to Endel Tulving
emantic memory is the

‘‘[...] organised knowledge a person possesses about words and
other verbal symbols, their meaning and references, about rela-
tions among them, and about rules, formulas, and algorithms for
the manipulation of these symbols, concepts, and relations.’’, [9].

espite the use of semantics is definitely not a novel research
ield in computer science, recent works from the robotics com-
unity are gradually demonstrating the benefits of its adoption,
specially for complex tasks. The combined use of sensorimo-
or information and exteroceptive perception has been proposed
n [10] and then exploited in other works. For example in [11],
he authors collect several demonstration to reinforce the model
f preconditions and effects the robot has regarding the skill it
as been taught. In [12] semantic annotations provided by the
rogrammer through natural language are used for grounding
he data acquired in one-shot kinaesthetic demonstrations. The
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Pictorial representation of the approach described in this paper: during a demonstration, a scene understanding engine is fed with the output of perception
nd derives the executable code describing a skill, as well as semantic annotations, specifying preconditions and effects.
roblem of modelling the spatial relationships between objects
o better understand the meaning of manipulation actions is pre-
ented in [13]. Despite the work is primarily focused on human
ctions, the approach is also relevant for robots to understand
he meaning of what they are taught from demonstration, [14]. A
imilar approach has been also proposed by Ramirez-Amaro et al.
n [15] to transfer the semantic representation of human activities
o a humanoid robot. This method has been further exploited
n [16] to automatically generate planning operators. The authors
f [17] propose to combine DMPs (Dynamic Movement Primi-
ives, [18]) with an attentional system that is based on a long
erm memory module, containing the procedural knowledge of
he robot. In [19] an approach that combines PbD and semantics is
resented. The authors developed an algorithm, named semantic
kill recogniser, that classifies the demonstrated trajectory into a
roper skill within a predefined set, as the skill portfolio in [5].
he method proposed in [20] adopts a time series of relational
raphs to model the effects of the demonstrated skill on the
nvironment. Semantic features are then extracted among those
ith high degree of invariance between different demonstrations.
inally, the work described in [21] presents a generative model
f static and dynamic 3D spatial relations between multiple ob-
ects which is then use in combination with natural language to
nstruct a humanoid robot.

Research works focused on the characterisation of skills from
emonstrations are particularly interesting for this work. The
ain challenges in learning actions models through demonstra-

ions is that the robot is only provided with positive exam-
les [11,22].
Once semantic grounding is available in the description of a

asic skill, the program can be automatically constructed through
ompositions, as described in [23,24]. For example, Planning Do-
ain Definition Language (PDDL), [25], can be used to specify

he initial and goal configurations (in [24] they are derived from
isual data), and to plan the sequence of skills to achieve the goal,
sing e.g. [26,27]. Finally, in [28] a neuro-symbolic task planner
s fed with inputs coming from a two-level abstraction: the geo-
etric scene graph spatial poses of objects, and a symbolic scene
raph that represents topological relations among the perceived
bjects.
This paper addresses the problem of generating modular and

xecutable motion instructions from kinaesthetic demonstra-
ions, allowing the robot to autonomously combine these parts
n goal-driven tasks. Semantic annotations are automatically gen-
rated for a skill that is taught by demonstration. The meaning
ssociated to a certain skill is then memorised in order to al-
ow the robot to autonomously reuse such a skill in similar or
2

Fig. 2. Example of an image and the corresponding Semantic Network.

even different tasks. The approach proposes the adoption of a
dynamic Semantic Network that is constantly updated throughout
the demonstration. Upon the completion of a demonstration,
the method automatically generates executable code for future
utilisation of the skill by the robot. In particular, the approach
(sketched in Fig. 1) is capable of

1. providing a basis for the semantic representation of pre-
conditions and effects of a demonstrated skill, for the au-
tomatic composition by e.g. automatic planners;

2. identifying the elements of the scene that are relevant for
the characterisation of the skill, thus to abstract from the
(grounded) demonstration;

3. producing executable and reusable code from a single
demonstration.

2. Methodology

The first mathematical tools adopted to represent relations
between concepts, and therefore their semantic relationships,
are the so-called Semantic Networks or Labelled Graphs, see [29].
Semantic Networks are essentially graphs consisting of nodes, de-
noting objects or concepts, directed arcs, denoting the existence
of relationship between them, and arc labels that further specify
these relations. As an illustrative example, Fig. 2 reports an image,
together with the corresponding Semantic Network.

In the context of programming by demonstration, the follow-
ing definition of Semantic Network is considered.

Definition 1 (Semantic Network). A Semantic Network (SN) is a
dynamic oriented graph Gk = ⟨Nk, Ak, fk⟩, where, at every discrete
time instant k, Nk is the set of nodes, Ak ⊆ N2

k is the set of
arcs, and fk is a function fk : Ak → L that defines labels, from

a predefined set L, associated to a certain arc.
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Fig. 3. Example of the dynamics to be adopted to update the grounding of the
predicate is_close_to(a, b).

We further introduce the set

k = {⟨η, µ, f ((η, µ)) |η, µ ∈ Nk, (η, µ) ∈ Ak ⟩}

s the set of triplets in the SN at discrete time k.
The SN just introduced is a generalisation of the Semantic

etworks described in [29], allowing for both spatial, and tem-
oral inference on the state of the workspace. In fact, nodes, arcs
nd their labels are not necessarily static, as they might change
ccording to the dynamics of the environment.

efinition 2 (Update Function). At any discrete time instant k,
he network Gk is updated through a suitable Update function
: G × Y → G, that maps the current network Gk to the one at

he next time instant Gk+1 based on current sensing data yk ∈ Y ,
.e. Gk+1 = h (Gk, yk).

The evolution of the workspace can be then described by
eans of the dynamical system Gk+1 = h (Gk, yk). At any time

nstant, the arcs present in the SN can be used for the grounding
f predicates. As an example, consider the relationship between
wo objects a and b. The automaton in Fig. 3 represents the up-
ate function h (·, ·) that can be adopted to modify the Semantic
etwork Gk based on sensed data yk, thus to derive Gk+1.
With the aim of characterising how a robotic agent is capa-

le of applying changes to the environment, we first need to
ntroduce the concept of skill.

efinition 3 (Skill). A skill is an atomic time-limited action that
n intelligent agent can perform. The skill has unique entry and
xit points, at least in case of success, and cannot be interrupted
n favour of another skill.

In order to semantically characterise the skill from one demon-
tration, three major issues arise: (a) how to characterise the
ffects on the environment to be attributed to the execution
f the skill, (b) how to extract preconditions of the skill, and,
c) which reference frame is the most suitable to abstract the
emonstrated motion. The three problems are further addressed
n the following.

The first two are needed in order to allow the robot to au-
onomously reuse the skills taught by demonstration, [30], while
he latter is essential to correctly report the demonstrated motion
o the most suitable reference frame.

.1. Representing the effects of a skill

The first problem to be addressed is to let the robotic agent
epresent the effects on the environment caused by the execution
f a certain skill. Therefore, consider the internal representations
f the environment the robotic agent has, at discrete time k,
efore starting the demonstration of a certain skill s, say Gk, and

after its completion, Gk+λ, λ > 0, see Fig. 4 for an example.
Furthermore, define the two sets

Π+k+λ|k,s = {τ |∈ Πk+λ, /∈ Πk }

Π− = {τ |τ ∈ Π , τ /∈ Π }
k+λ|k,s k k+λ

3

Table 1
Predicates changing their values throughout the demonstration of the skill will
be either in Π−k+λ|k,s or in Π+k+λ|k,s , Π=k+λ|k,s in turn will contain the invariants.

Gk+λ

τ ∈ Πk+λ τ /∈ Πk+λ

Gk
τ ∈ Πk τ ∈ Π=k+λ|k,s τ ∈ Π−k+λ|k,s
τ /∈ Πk τ ∈ Π+k+λ|k,s –

The two sets Π+k+λ|k,s and Π−k+λ|k,s contain the triplets that are in
Πk+λ (i.e. in the SN Gk+λ) and were not in Πk (i.e. in the SN Gk),
and those that were in Πk but are no longer in Πk+λ, respectively.
For completeness, we also introduce Π=k+λ|k,s which contains the
triplets that were both in Gk and in Gk+λ, i.e.

Π=k+λ|k,s = {τ |τ ∈ Πk, τ ∈ Πk+λ }

Notice that the three sets Π+, Π−, and Π= form a partition of
all the available triplets (see Table 1).

Consider again the example of Fig. 4, the three sets are

Π+k+λ|k,s =
{
⟨n5, n4, on_top⟩, ⟨n5, n7, on_top⟩

}
Π−k+λ|k,s =

{
⟨n3, n5, holding⟩

}
,

and
Π=k+λ|k,s = {⟨n1, n2, on_top⟩, ⟨n7, n4, close_to⟩,

⟨n6, n3, has⟩} ,

respectively. In this case, the robotic agent may easily infer that
executing skill s would result in having placed the green cylinder
n5 on top of both the yellow cube n4 and the magenta cube n7
(as per the two triplets contained in Π+k+λ|k,s ), while the gripper
n3 will be no longer holding the cylinder n5 (triplet in Π−k+λ|k,s ).

It should be clear that the two sets Π+k+λ|k,s and Π−k+λ|k,s can
be used to characterise the effects of skill s, playing the role of
the add list and of the delete list of STRIPS (STanford Research
Institute Problem Solver, [26]), respectively.

Back to the example of stacking the green cylinder in Fig. 4,
after one demonstration of the skill, the corresponding effect
would be represented as follows

:effect (
and (on_top ?x ?y)

(on_top ?x ?z)
(not (holding ?g ?x))

)

With the aim of generalising any further autonomous execution
of the skill, notice that the effect is referred to generic nodes
g, x, y, and z (specific types, i.e. g begin a gripper, x being a
cylindrical object, y and z being cubes will be specified within
the precondition as it will discussed next).

As the environment is open, i.e. the robotic agent is not the
only one capable of modifying it, the triplets contained in the
two sets are not necessarily caused by the execution of the skill
s. Unfortunately, the only way to refine the knowledge of the
effects a certain skill produces on the environment is to rely on
additional information, coming from either new demonstrations,
from human explicit inputs [12], or as an output of a learning
strategy run throughout the autonomous execution of the skill
by the robot, [31,32].

2.2. Representing the preconditions of a skill

Differently from effects, preconditions are properties of the
environment that must hold true prior to the execution of the
skill, since only in this case the skill itself might produce the
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Fig. 4. Example of demonstration of a skill together with the SN before (Gk) and after (Gk+λ) the demonstration. Node n1 represents the red pyramid, n2 the blue
cube, n3 the gripper, n4 the yellow cube, n5 the green cylinder, n6 the robot, while node n7 represents the magenta cube. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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desired effects. Understanding whether or not the current state
of the environment allows the robot to execute a certain skill can
be seen as a classification problem to be learnt [22]. However,
the main issue in learning a model of preconditions through
demonstrations is that the robot is only provided with positive
examples, i.e. successful demonstrations of skills [11]. Facing this
intrinsic limitation of learning from demonstration would require
interaction with the demonstrator, either directly, [11,12,33], or
indirectly through negative examples to learn from, [22], or in
simulation [34]. Finally, it is worth reminding that based on the
assumption of an open world, approaches like skill chaining, [35,
36], are not practical e.g. in collaborative executions or in case of
demonstrations taken place without a meaningful order, as they
assume the environment can be only modified by one agent.

With the aim of extracting the largest amount of cues from
a single demonstration, without requiring a direct interaction
with the teacher, a first guess regarding possible preconditions
of a skill taught by demonstration is contained as triplets in
the set Π−k+λ|k,s , i.e. triplets that were in Πk but are no longer
in Πk+λ. The rationale behind this attempt is straightforward. If
the execution of the skill has the effect of invalidating a certain
relationship between objects in the scene (i.e. putting a triplet
in the delete list), such a relationship should be present before
the execution. In the example of Fig. 4, the set Π−k+λ|k,s was
represented by the single triplet ⟨n3, n5, holding⟩, which clearly
onstitutes a precondition for the execution of the skill.
There are conditions, i.e. triplets, that have to be considered

s preconditions though their grounding is not effected by the
xecution. In the example of Fig. 4, the vicinity of the yellow
nd magenta cubes has to be somehow represented within the
reconditions. A possible way to handle this case consists in using
=

k+λ|k,s , i.e. the set of (invariant) triplets that are present both
t the beginning and at the end of the demonstration. However,
ithout further pruning of unnecessary conditions, this would

ead to an over-specified set of preconditions. In fact, while triplet
n6, n3, has⟩ would be now considered as a precondition, the
ame would apply to ⟨n1, n2, on_top⟩, limiting the possibility
o execute the demonstrated (stacking a cylinder on top of two
ubes) skill only in situations where a pyramid is stacked onto a
ube. To avoid these possibilities, we define a set of nodes, called
odes of interest (NoI), as the nodes that appear in some triplets
f Π+k+λ|k,s or Π−k+λ|k,s , i.e.

oI = { η | ⟨η, µ, f (η, µ)⟩ ∈ Π+k+λ|k,s ∪Π−k+λ|k,s∨

⟨µ, η, f (µ, η)⟩ ∈ Π+k+λ|k,s ∪Π−k+λ|k,s }

ased on this definition, only triplets in Π=k+λ|k,s referring to
lements in NoI , say ϵNoI

(
Π=k+λ|k,s

)
, will be considered as precon-

itions. In other words, if ⟨η, µ, f (η, µ)⟩ and ⟨η, ν, f (η, ν)⟩ are
ither in Π−k+λ|k,s or Π+k+λ|k,s , then ⟨µ, ν, f (µ, ν)⟩ ∈ Π=k+λ|k,s will

e listed as precondition.

4

With reference again to the example of Fig. 4, as already
previously mentioned the set Π=k+λ|k,s contains ⟨n6, n3, has⟩ as
ell as ⟨n1, n2, on_top⟩, ⟨n7, n4, close_to⟩. While the first two
riplets will not be considered as preconditions, the latter will, in
act

oI = {n3, n4, n5, n7}

oes not contain n6 and n3 nor n1 and n2, but contains both n7
nd n4. Hence, after one demonstration, the preconditions of the
kill will be modelled as follows

paramaters (?g ?x ?y ?z)
precondition (
and (is_a_gripper ?g)

(is_a_cylinder ?x)
(is_a_cube ?y)
(is_a_cube ?z)
(close_to ?y ?z)
(holding ?g ?x)

otice that, though the skill has been demonstrated on spe-
ific instances of objects (the green cylinder, the yellow and the
agenta cubes), for generalisation, the skill is represented with

espect to generic classes of objects x, y, and z, etc., with the
reconditions of x being a cylinder, y and z being cubes, etc.

.3. Representing skills taught by demonstration in suitable coordi-
ates

After a skill has been demonstrated once, the corresponding
otion has to be encoded into a reduced number of parameters.
he next problem to face regards the identification of the object
he skill refers to, and consequently selection of the most suitable
oordinate system to represent the demonstrated motion. Before
roceeding, we assume that, at every discrete time instant k,
ach node n ∈ Nk of the SN is further specified by its pose
T nk ∈ SE (3) relative to the world coordinate system. One first
ssue regards the space where the skill has to be represented,
.e. either the joint/actuation space, or the operational space. The
atural choice is towards the operational space, so as to decouple
he particular robot kinematic structure from the representation
f the skill. We then assume that the raw demonstration of a
kill s is preliminarily stored in terms of the state of the gripper
gi ∈ {0, 1} (e.g. open or closed) as well as by a set of waypoints
n wT gi ∈ SE (3) specified in the world coordinate system:

s =
{(

σgi ,
wT gi

)
|k ≤ i ≤ k+ λ,

w
}

σgi ∈ {0, 1} , T gi ∈ SE (3)
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Fig. 5. Decision-tree for the frame selection procedure: it returns the most suitable reference frame A ∈ SE (3) to represent the waypoints wT gi that are collected in
he world reference frame (here predicate close_to is representative of any possible spatial relation symbol [13], as e.g. on_top, next_to, etc.).
here subscript g stands for the node representing the gripper in
he SN, i is a discrete time instant, while w is the world frame.

Since the world coordinate system is not necessarily the best
ne to allow for the reusability of the skill, a more convenient
rame to represent the waypoints in Ds has to be selected. The fol-
owing options are available for the transformation in a suitable
eference frame of a generic waypoint wT gi captured at discrete
ime instant i:

(a) the pose of a generic node n of the SN at time instant k+λ

(wT nk+λ
), i.e. at the end of the demonstration, or

(b) the pose of a generic node n of the SN at time instant k
(wT nk ), i.e. immediately before the demonstration.

The problem at hand actually entails two subproblems: (1) which
node n has to be accounted as relevant for the skill, and (2) at
which time instant, either k or k + λ the position of node n has
to be considered.

As already stated, the execution of a skill s can be characterised
in terms of the two sets Π+k+λ|k,s and Π−k+λ|k,s , containing triplets
that deserve attention, as they are somehow related to the skills.
Therefore, it is natural to select the reference node n among those
listed in one of the two sets. This approach differs substantially
from the one described in [19] where all possible pairs of nodes
are considered, while somehow recalls the attentional system
presented in [17].

The approach adopted in this work is inspired by the classifi-
cation of human actions introduced in [15] which is based on the
human hand, the tool, and the object the tool is possibly acting
on.

Assume the gripper is holding an object o at the beginning of
he demonstration. Then, if the same object will turn out to be no
onger held by the robot but close enough to any other object n at
the end of the skill, then the node n and its pose at the end of the
skill is considered as significant for the execution of the skill itself,
like in ‘‘stack o on n’’ or ‘‘insert o in n’’. The waypoints wT gi will
e then referred to frame wT nk+λ

(as in option (a)). Otherwise, all
aypoints are referred to world frame, like in ‘‘place o’’ (option
a) or option (b), as the world frame does not move).

In turn, if the demonstration terminates with the robot hold-
ng object o not held at the beginning, the pose of the same object
at the beginning of the execution is considered (as in ‘‘grasp o’’),
nd the waypoints in Ds will be referred to wT ok (as in option
b)). Finally, if none of the options above apply, the skill either
egins and terminates with the gripper holding an object o, or no
bject is interacting with the gripper all along the demonstration.
n the former case, if the object o is close to another object n at the
nd of the skill, like in ‘‘using o on n’’, the waypoints wT will be
gi

5

then referred to frame wT nk+λ
(as in option (a)), or to world frame

otherwise. In the latter case, no specific meaning for this skill can
be inferred, and all waypoints are referred to world frame.

The overall procedure is formalised in the decision-tree re-
ported in Fig. 5. The outcome of the decision-tree consists in
a matrix A ∈ SE (3) to be used to transform all waypoints in
Ds. First, all waypoints are computed in frame A, i.e. ηT gi =(
A−1

)
wT gi , k ≤ i ≤ k + λ. Algorithm 1 can be finally adopted

to generate reusable code (Doosan Robotics Language, DRL, is
assumed here) for the execution of the skill. Referring to the
example of Fig. 4, i.e. the stacking of the green cylinder on top
of the yellow and magenta cubes, the following code will be
generated automatically:

def fn_skill_0(g, x, y, z):
DR_USER=set_use_cart_coord(z, ref=DR_WORLD)
movel(posx(0,0,200,0,0,0), ref=DR_USER)
movel(posx(0,0,100,0,0,0), ref=DR_USER)
gripper_open(g)
movel(posx(0,0,-100,0,0,0), ref=DR_USER)

Consistently with the decision-tree in Fig. 5, the motion will be
referred to yellow cube z, as ⟨g, x, holding⟩ ∈ Π−k+λ|k,s and
⟨x, z, on_top⟩ ∈ Π+k+λ|k,s .

By collecting preconditions, effects, and robot executable code,
one would finally obtain the representation of the demonstrated
skill as in Fig. 1.

3. Comparison with related methods and possible limitations

This Section discusses related methods from the state of the
art, highlighting the main differences with the approach proposed
in this work.

First of all, the approach adopted to describe the scene by
means of a Semantic Network (SN) together with the Update
function, Gk+1 = h (Gk, yk), differs substantially from the ones
in the literature that propose to update the graph based on
measurements only, Gk = h (yk), [13]. In the example of Fig. 3,
a simple hysteretic (hence dynamic) behaviour has been in-
troduced to prevent chattering of the grounding of predicate
is_close_to(a, b). The presence of this dynamics allows the
method to be more robust in face of sensing noise.

The problem of automatically deriving preconditions and ef-
fects is addressed in several different ways in the literature,
ranging from supervised [22] and unsupervised learning [11,37],
to skill chaining [17]. The work that mostly resembles the one
described in this paper is the one from Liang et al. [33]. Triplets
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Algorithm 1 Pseudocode to derive DRL code for the execution of the demonstrated skill. Notice that waypoints saved by the
demonstrator will be referred to a suitable reference frame A ∈ SE (3) automatically selected according to the decision-tree in Fig. 5.
Require: Ds,A1,A2, . . . ,An, η

1: out← ‘‘def fn_skill_0(’’
2: for each i ∈ [1, n− 1]
3: out.append (‘‘A_’’+ i+ ‘‘, ’’)
4: out.append (‘‘A_n):\n’’)
5: if η > 0 ▷ skill relative to an object in position Aη (will be known online)
6: A = Aη

7: out.append (‘‘ DR_USER=set_user_cart_coord(A_+ η + ‘‘, ref=DR_WORLD)\n’’)
8: else
9: A = I

10: for each p ∈ Ds
11: σgi ← p [0]
2: wT gi ← p [1]
3: ηT gi ←

(
A−1

)
wT gi

14: e← euler_angles
(
ηT gi

)
5: out.append

(
‘‘ movel(posx(’’

)
6: out.append

(
ηT gi [0] [3] + ‘‘,’’ + ηT gi [1] [3] + ‘‘,’’ + ηT gi [2] [3] + ‘‘,’’ +

)
7: out.append (e [0] + ‘‘,’’ + e [1] + ‘‘,’’ + e [2])
8: if η > 0
9: out.append (‘‘),ref=DR_USER)\n’’)
0: else
1: out.append (‘‘),ref=DR_WORLD)\n’’)
2: if σgi ∧ ¬σgi−1
3: out.append

(
‘‘ gripper_open()\n’’

)
4: else if ¬σgi ∧ σgi−1
5: out.append

(
‘‘ gripper_close()\n’’

)

b
⟨

t
e
d
T

before and after the demonstration are compared to select pre-
conditions and effects. However, differently from the present
work, in [38] the effects are only characterised by triplets that
appear after the demonstration. A similar approach is adopted
also in [16], where preconditions and effects are taken from the
state of the environment before and after the demonstration,
respectively, after being pruned from irrelevant triplets.

The present work proposes to characterise the effects using
oth Π+k+λ|k,s and Π−k+λ|k,s . Despite this might seem a marginal
ifference, consider once again the demonstration reported in
ig. 4. As already mentioned, after the single demonstration, the
wo sets would be Π+k+λ|k,s =

{
⟨n5, n4, on_top⟩, ⟨n5, n7, on_top⟩

}
,

nd Π−k+λ|k,s =
{
⟨n5, n7, holding⟩

}
, respectively. According to

he method in [38], the effects of the execution of the skill would
e characterised only through the triplet in Π+k+λ|k,s , i.e.

effect (
(on_top ?x ?y)
(on_top ?x ?z)

n turn, consistently with the method described in this paper, the
ffects of the skill will be characterised as follows:

effect (
and (on_top ?x ?y)

(on_top ?x ?z)
(not (holding ?g ?x))

he proposed characterisation is able to capture the capability of
he skill of nullifying (some of) the preconditions. We believe that
his feature will be particularly relevant in planning, and espe-
ially in those methods using backward skills chaining, [35,36],

s the skill will be automatically discarded (thus reducing the

6

ranching factor) if the state to be reached is characterised by
n3, n5, holding⟩.

Moreover, differently from other methods in the literature,
he proposed approach is focusing on what is changed in the
nvironment with respect to when the skill is started being
emonstrated, without the need of pruning redundant triplets.
hanks to the definition of ϵNoI , preconditions are extended from

considering removed triplets, only. The definition of ϵNoI , that is
used to pick relevant invariant triplets to be regarded as precon-
ditions, can be regarded as the neighbourhood nodes of triplets
whose grounding has changed during the demonstration. Notice
that, differently from other works using the Euclidean distance
or spatial relations, [13,21], between nodes as a vicinity metrics,
the definition of ϵNoI is based on (generic) semantic relationships
between nodes.

Finally, some of the methods in the literature, [11,14,17],
adopts DMPs to encode the demonstrated motion, while other
methods provide directly executable code in the native program-
ming language, [12,33]. In our opinion, the native programming
language of the robot and the interpolation capabilities of its
controller are the natural choice. To support this claim, consider
a skill in which the robot is supposed to align an object to
another one. We observed that technicians tend to demonstrate
this operation by first bringing the robot to the final position,
then retracting the robot along the approach direction to save
a waypoint, and eventually bringing back the robot to the final
position to save the final point. The use of DMPs in this situation
would result in an unnecessary back-and-forth motion, whilst the
use of waypoints to be specified by the demonstration would
definitely avoid this problem.

As per the selection of the reference frame in which way-
points or trajectories are represented, the object closest to the
end-effector is typically adopted, [11,33,38], or alternatively the
decision is left to the user [12]. We believe that our approach



A.M. Zanchettin Robotics and Autonomous Systems 166 (2023) 104452

m
d
a
i

w
c
t
s

Table 2
Summary of the comparison with existing methods in terms of how preconditions and effects are extracted from the demonstration, how motion is interpolated,
and which landmark in the scene is used to represent waypoints.
Paper Preconditions Effects Motion Landmark

Abdo et al. [11] Based on clustering DMP, [18] Closest object
Stenmark et al. [12] Not covered Not covered Programming language User defined
Savarimuthu et al. [14] Learning, from [37] DMP, [18] Not specified
Diehl et al. [16] Extracted from Πk Extracted from Πk+λ Not covered Not covered
Caccavale et al. [17] Chaining, similar to [35,36] DMP, [18] Not specified
Kroemer at al., [22] Binary classification (random forests) Not covered Not covered Not covered
Liang et al. [33] Π−k+λ|k,s Π+k+λ|k,s , Π−k+λ|k,s Programming language Closest object, from [38]
Alexandrova et al. [38] Π−k+λ|k,s Π+k+λ|k,s only Just waypoints Closest object

This work Π−k+λ|k,s , portion of Π=k+λ|k,s Π+k+λ|k,s , Π−k+λ|k,s Programming language Decision tree, see Fig. 5
Table 3
Set of arc labels L (PDDL predicates), and corresponding meaning.
Label From To Meaning

is_occupying_spot Object Spot Object is occupying spot
is_spot_empty Spot, s – ∄obj : is_occupying_spot(obj, s)
is_holding Gripper Object Object is held by the gripper
is_gripper_empty Gripper, g – ∄obj : is_holding(g, obj)
is_stacked_on Object Object The first object is above the other (as in [13])
is_clear_from_top Object – The object can be grasped
is_an_object any – Node is an object
is_a_gripper any – Node is a gripper
is_a_spot any – Node is a spot
based on the decision-tree of Fig. 5 is striving for a more infor-
mative selection, being also based on other semantic predicates,
rather than just on ones describing vicinity of objects.

Overall, the method proposed in this work is the sole si-
ultaneously capable of deriving executable code from a single
emonstration that is semantically annotated with preconditions
nd effects. A more schematic comparison with related methods
s reported in Table 2.

Limitations of the presented method are primarily related to
hich extent a single demonstration is informative to completely
haracterise the skill in terms of effects and preconditions. Al-
hough the introduction of the nodes of interest that is used to
electively add preconditions from invariant triplets in Π=k+λ|k,s ,
the method may be still not capable of correctly interpreting
relevant preconditions as ⟨n6, n3, has⟩ in Fig. 4.

Though the characterisation of the effects also through Π−k+λ|k,s
can be beneficial, the same set may contain triplets that one would
not consider as preconditions, at least if the aim is to generalise
as much as possible from a single demonstration. For example,
consider once again the demonstration of Fig. 4. As after being
placed the green cylinder (n5) would be on top of the yellow cube
(n4), the triplet ⟨n5, n4, on_top⟩ would be considered as an effect,
as already discussed. This is definitely a suitable representation
if one meant to demonstrate the stacking of a cylinder onto a
cube, but poorly generalisable as a more generic placing skill.
Therefore, either the skill will be planned/executed just to stack
a cylinder onto a cube, or additional demonstrations, starting
from different conditions, have to be provided to characterise the
generic placing capability. Despite this seems to be a limitation
in the generalisation capabilities of the method, the stacking
skill substantially differs from a more generic placing skill in the
effects it has on the object below within the stack, if present.
A picking skill will be saved to represent the placing action for
objects that will be alone in the scene, while the stacking skill
will further characterise the specific effects the action has on the
object that will result below within the stack. On the other hand,
relaxing the definition of ϵNoI

(
Π=k+λ|k,s

)
so to consider triplets

having at least one element NoI would list unnecessary triplets
as precondition.
 b

7

Fig. 6. Layout for the experimental validation showing the robot, its gripper,
the three cubes, the three available spots (two of them occupied), and the user
interface. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

4. Experimental verification

The verification experiments consist in demonstrating to a
Doosan M0609 robot some manipulation skills. The manipulator
is equipped with a Camozzi CGPS-L-32 pneumatic parallel grip-
per. The task consists in manipulating three cubes (yellow, red,
and green), starting from an arbitrary configuration to reach an
arbitrary goal. The workspace of the robot is monitored through
a Microsoft LifeCam USB camera (with a resolution of 1280x720
pixels) that is used to locate the parts through Aruco tags. The ex-
perimental setup1 is shown in Fig. 6, showing the robot together
with its gripper, the three cubes, and the three spots. The PDDL
domain consists in the predicates listed in Table 3. The grounding
of predicates is performed using a SN, see Definition 1, and a
corresponding Update function, see Definition 2, fed with the
positions of objects (including the gripper). As already mentioned

1 A video explaining the proposed method is also available at https://youtu.
e/vq-9mIuBUss.

https://youtu.be/vq-9mIuBUss
https://youtu.be/vq-9mIuBUss
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M

Table 4
Domains collected during the validation campaign, demonstrated arrangements (to be used as initial condition or goal), classification of skills, and success rates
(among the 56 collected problems) for each domain. For interpretation of the references to colour in this table, the reader is referred to the web version of this
article.
Volunteer/Domain #1 #2 #3 #4 #5 #6 #7 #8

Condition (init or goal)

# skills demonstrated 4 6 9 6 6 6 6 4
# pick demonstrations 1 0 2 2 0 1 0 1
# place demonstrations 1 0 2 0 0 1 1 1
# stack demonstrations 2 0 2 1 0 2 0 1
# unstack demonstrations 0 0 1 0 0 2 1 1

Total demonstration time (mm:ss) 3:54 5:03 7:24 6:06 5:38 7:38 8:31 2:14

Success rate 48% 100% 100% 100% 100% 100% 100% 100%
in Section 2, presence of arcs directly determines the grounding
of corresponding predicates.

Volunteers (N = 8 in total, aged 24−42) were selected among
Sc and Ph.D. students of Politecnico di Milano as well as

Camozzi employees. They were instructed to demonstrate skills,
subdivided into pick, place, stack, unstack, etc., from arbitrary
initial conditions, without being informed about the goal. They are
only told to demonstrate a sufficient number of skills the robot
may need to solve arbitrary manipulation task. They interact
physically with the robot, as well as with three buttons: one to
actuate (open/close) the gripper, one to add the current position,
as well as the corresponding state of the gripper, to the list of
waypoints

(
σi,

wT gi

)
in Ds, and the last one to start/stop the

demonstration of one skill. Volunteers are also asked to avoid
manually moving the objects while recording. Volunteers were
just informed about the functionalities provided by each button.
The minimal training received by the volunteers is consistent
with the goal of making the method viable in contexts where
operators have minimal or no experience in robotics. After the
demonstrations, volunteers are asked to rearrange the parts on
the table. The corresponding arrangement will be regarded both
as an initial condition/goal. Each pair initial condition/goal will
define a specific PDDL problem, while the set of demonstrated
skills constitute the PDDL domain. After all the demonstration
were collected, each problem is solved through an online plan-
ner, [39]. A total number of N2

− N = 56 problems and N = 8
possible domains have been collected and used to validate the
approach, with particular focus on its generalisation capabilities.
As a matter of fact, all possible problems can be solved by means
of four PDDL actions: pick, place, stack, and unstack. Therefore,
all the demonstrated skills have been also manually classified
accordingly.

The outcomes of the experiments are summarised in Table 4.
In the 93.5% of the 488 given problems, the planner has been
capable of finding a solution starting from the demonstrated set
of skills (domain). The average demonstration time has been of
248 ± 125 s, corresponding to approximately 1 min per demon-
stration. It is worth noticing that in 7 out of 8 demonstrated
domains, the success rate has been of 100%, while the reduced
success rate corresponding to domain #1 is clearly due to the lack
of the demonstration of the unstack skill, that is responsible of all
failures.

These results confirm the good generalisation capabilities of
the proposed method, as well as the reduced amount of time
requested to demonstrate a meaningful set of skills.

As a possible drawback, we noticed that, for some of the
volunteers, the segmentation of the demonstrations (that fol-
lows immediately from the interaction with the start/stop but-
ton present within the user interface) was different from the
one expected. For example, some of them were demonstrating
non-atomic skills, e.g. complete pick-and-place tasks, rather than
dividing them into single pick and place demonstrations. This
would be probably solved adopting an automatic segmentation
8

method, which is however out of scope in the present work.
In other cases, in turn, the same skill has been demonstrated
multiple times (see for example domains #3 and #6) but starting
from different conditions, e.g. picking from a stack of 2 objects,
and picking from a stack of 3 objects. While the presence of
redundant skills is surely not a problem for finding a solution
to a given problem, it clearly increases the branching factor that
characterises the domain, possibly making slower the search for
a plan. Also in this case, a simple solution would be to employ
a post-processing of the domain to automatically prune identical
skills in terms of preconditions and effects.

5. Conclusions

This work proposes a method to automatically derive planning
domains from a minimum number of demonstrations, together
with the corresponding motion profile for the execution. For a
single skill, the motion profile is generated directly in the pro-
gramming language of the robot and expressed with respect to
the most suitable reference frame that is selected as a function of
the derived preconditions and effects.

Results have shown a good generalisation capability despite
the reduced time spent during the demonstration.

We can conclude that the approach presented in this pa-
per constitutes a promising direction to ease the use of robots,
especially for non-skilled employees.
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