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Abstract: Anorexia nervosa (AN) and bulimia nervosa (BN) are eating diseases characterized by
extreme eating behaviours impacting both mental and physical health. Aberrant musculoskeletal
adaptations due to malnutrition affect motor abilities such as postural control and gait. To date,
limited data is available with regards to gait symmetry in AN and BN. The aim of this study was to
characterize inter-limb asymmetry during gait in two cohorts affected by AN and BN, respectively,
using the synchronized cyclograms and to compare it with a healthy weight group. A total of 14 AN,
17 BN, and 11 healthy-weight females were assessed via 3D gait analysis. Gait spatio-temporal
parameters were computed together with angle–angle diagrams, which were characterized in terms
of their geometric features. Individuals with AN and BN were characterized by reduced speed and
cadence and an abnormal increase in the duration of the double support phase with respect to the
healthy controls. With respect to inter-limb symmetry, asymmetries were detected in both groups,
with individuals with BN exhibiting significantly larger cyclogram areas at the hip joint with respect
to the other groups (323.43 degrees2 vs. 253.74 degrees2 vs. 136.37 degrees2) and significantly higher
orientation angle and Trend Symmetry at both knee and ankle joint. The cyclogram analysis suggests
the presence of an altered gait symmetry in individuals with BN. In the AN group, it is possible
to observe a similar trend; however, this is not statistically significant. Overall, the findings of this
study may provide a novel perspective on the motor control dysfunction linked to eating disorders
and aid clinicians in selecting a suitable rehabilitation scheme targeted at enhancing motor stability
and control.

Keywords: eating disorders; anorexia; bulimia; gait; kinematics; symmetry; rehabilitation

1. Introduction

Eating disorders (EDs) are life-threatening syndromes characterized by extreme be-
haviors that can lead to significant impairments in both physical and mental health [1].
Distorted body shape perception and attitudes towards obsessive weight control play a
key role in the onset of an ED, which mainly occurs in early-to-late adolescence [2], but
it can also present across the entire lifespan [3,4] in both males and females [5,6]. Recent
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findings showed that the lifetime prevalence rates of anorexia nervosa (AN) might be up to
4% among females and 0.3% among males; regarding bulimia nervosa (BN), up to 3% of
females and more than 1% of males suffer from this disorder during their lifetime [7]. The
wide range of complications and comorbidities associated with EDs, either in the physical
or psychiatric sphere [8–11], severely impact the quality of life and social function [12,13].
Among the recognized EDs, AN and BN are the most widespread [9,12] both in adolescents
and young adults [14,15].

AN is characterized by self-starvation, leading to severe underweight as well as the
adoption of behaviors preventing weight gain, such as compulsive exercise [16]. Due to
its impact on the cardiovascular system [17] and increased suicide tendencies [18], AN is
associated with the highest mortality rate among EDs [7]. In terms of prognosis, about
50% of affected individuals achieve full recovery and 30% improve, whilst 20% remain
chronically ill [14,19]. On the contrary, those with BN are usually not underweight, but
they experience continuous cycles of binge eating and purging accompanied by recurrent
compensatory behaviors (i.e., self-induced vomiting, abuse of laxatives and diuretics,
fasting, and excessive exercise) that may lead to severe dysfunctions of the digestive system
and electrolyte and chemical imbalances. Such issues negatively affect several important
organ functions [12,15].

However, it is noteworthy that both conditions have the potential to deteriorate the
overall body motor functions; significant weight loss or excessive gains may contribute
in fact to central and peripheral disorders, leading to aberrant musculoskeletal adapta-
tions [20], impaired performance of the sensorimotor system, and, eventually, disability [21].
In this context, functional motor assessment in AN and BN might contribute to raising
awareness for specific impairments associated with such conditions and specifically address
them with tailored training or rehabilitation programs.

To date, motor functions mainly assessed in individuals with AN and BN are gait and
postural control, which are performed with marker-based optoelectronic motion capture
(MoCap) systems. In particular, it was observed that individuals with BN are characterized
by balance impairments that may increase the risk of falling compared to healthy individu-
als [22]. Indeed, during assessment under two quiet-standing conditions (i.e., eyes open
and eyes closed), young females with BN exhibited greater displacement of the center of
mass (CoM). This displacement, particularly in the antero-posterior direction, was more
pronounced compared to an age-matched control group with a healthy weight. Interest-
ingly, no significant alterations of CoM excursion were observed in a group of women with
AN. Consequently, it can be hypothesized that musculoskeletal factors associated with
body weight fluctuations play a significant role in reduced postural control rather than
absolute Body Mass Index (BMI) values [22]. With respect to gait, in both Eds, the pattern
was found to be significantly impaired with respect to healthy individuals [21]. In particu-
lar, those with ED exhibited reduced step length and speed as well as altered kinematics
at the hip and pelvis level on the sagittal and frontal plane as a result of neuromuscular
adaptations [21,23]. For instance, in individuals with BN and AN, increased pelvis range of
motion (ROM) in the transversal plane due to pelvic anteversion was observed, resulting
in increased hip flexion in the frontal plane. In particular, in those with BN, the forward
pelvic tilt is caused by the increased shear torque on the lumbosacral spine due to cyclic
body weight gain and abdominal fat, whilst in AN it is mainly caused by the reduced tone
and strength of the spinal and pelvic muscles [21,24,25].

In contrast, scarce information is available on inter-limb coordination, which is the
relationship between the position of limbs throughout the gait cycle [26]. Inter-limb
coordination, which is one of the expressions of postural stability and is strictly impli-
cated in the harmonious and optimized performance of both simple and complex motor
tasks, can be evaluated through the analysis of symmetry. Although human gait is never
perfectly symmetric, the existence of marked asymmetries has been associated with distur-
bances originating from either musculoskeletal anomalies or altered motor control. Thus, a



Symmetry 2023, 15, 2200 3 of 12

proper assessment of symmetry may represent a tool to unravel coordination issues and
their features.

The simplest approach to quantifying the symmetry of gait is based on the com-
putation of discrete values computed according to the observed difference between the
contralateral limbs in terms of spatio-temporal parameters [27]. Although convenient and
easy to use, this technique does not consider the temporal evolution of the gait features
and neglects kinematic aspects. To overcome such drawbacks, more complex methods
relying on the lower limb kinematics [28] have been developed. Waveform-based methods
exploit the whole kinematic data associated with a certain lower limb joint angle with
time throughout the whole gait cycle and thus enrich the information content useful to
quantify symmetry. This approach was successfully applied in the last decade to investi-
gate inter-limb coordination in several pathologic populations affected by both neurologic
(neuropathies, stroke, Parkinson’s disease, and multiple sclerosis) [28–32] and orthopaedic
conditions [33–35]. In most cases, the use of waveform-based methods resulted more
effective in detecting subtle alterations of gait with respect to discrete symmetry indices.
Among them, the measurement of relative joint motion (graphically expressed as a relative
motion plot, angle–angle diagram, or cyclogram) represents the most widespread approach.
In short, a cyclogram is a left–right diagram built using the angular position of two lower
limb contralateral joints across the gait cycle, regardless of time, which allows for symmetry
quantification through several geometrical or mathematical features [36,37].

Several studies pointed out that gait asymmetries are often associated with impaired
balance and increased energy cost during locomotion [38,39], which is a combination of
issues that increases the risk of falls with consequent traumatic injuries and fractures. In
AN individuals, who are characterized by low bone mineral density due to the deprivation
of vital substances for bone metabolism and skeletal health [40], falls are likely to result in
clinically relevant fractures with long-term consequences and disability [41,42]. In addition,
deviations in gait symmetries increase the metabolic and mechanical energy cost during
walking [43], which can have important implications for patients with reduced caloric
intake and impaired motor function. For these reasons, it appears important to investigate
the effects of gait asymmetries in EDs. Due to the potential associated with the application
of bilateral cyclograms, in this study, we propose a retrospective study that characterizes
lower-limb asymmetries during gait in women with AN and BN, including comparisons
with a control group (CG) of healthy-weight individuals. As individuals with AN and
BN were previously demonstrated to present reduced gait smoothness and symmetry by
applying other investigation methods [21], it was hypothesized that the application of
cyclograms could uncover noteworthy elements related to inter-limb asymmetry in patients
with EDs.

In this study, our sample is composed only of women, according to the availability of
hospitalized individuals with a diagnosis of ED in San Giuseppe Hospital (IRCCS Istituto
Auxologico Italiano, Piancavallo, Italy); this prevalence is in line with the literature that
reported a higher incidence of EDs in females [7].

2. Materials and Methods
2.1. Participants

A total of 42 adult females, divided into three different groups, were recruited in this
study on a voluntary basis and their characteristics are summarized in Table 1. Of them
14 were affected by AN (Anorexia Group: age: 33.0 (10.6) years; BMI: 16.0 (2.1) kg/m2) and
17 by BN (Bulimia Group: age: 26.9 (8.3) years; BMI: 20.8 (3.2) kg/m2).

All of them received a diagnosis of ED, specifically, anorexia nervosa (including the
binge-purging subtype) and bulimia, through the EDI-3 test administered by a specialized
physician and were hospitalized at San Giuseppe Hospital (IRCCS Istituto Auxologico
Italiano, Piancavallo, Italy) for a nutritional rehabilitation program. All the patients were
required to be free from cardiovascular, neurological, or orthopaedic conditions able to
severely affect gait and postural control, as well as from psychiatric comorbidities. In addi-
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tion, patients with severe malnutrition, defined by a BMI < 13 kg/m2 were not considered
eligible for this study. A group of 11 unaffected women recruited among the hospital staff
served as controls (Control Group: CG; age: 41.3 (9.9) years; BMI: 21.7 (2.0) kg/m2). They
showed normal flexibility in all of the major joints, normal muscle strength in the lower
limbs as assessed by manual muscle testing, normal balance score at the Tinetti scale, and
no clinically evident gait abnormalities.

This study was approved by the Ethical Committee and conducted in accordance
with the 1964 Helsinki Declaration and its latest amendments, as well as with the ethical
standards of the institute. Written informed consent was signed by all participants.

Table 1. Anthropometric and clinical features of participants. Values are expressed as mean (SD).
Univariate analysis of variance (ANOVA) was used to investigate the existence of possible differences
in the demographic characteristics. Multivariate analysis of variance (MANOVA) was used to
investigate the existence of possible differences between the anthropometric characteristics of the
three groups.

Anorexia
(n = 14)

Bulimia
(n = 17)

Control Group
(n = 11)

Age 33.0 (10.7) 26.9 (8.4) a 41.4 (9.9)
Body Mass (kg) 42.5 (7.3) a,b 56.4 (8.6) 54.5 (6.1)
Height (cm) 162.9 (7.6) 164.7 (3.3) a 158.4 (5.0)
BMI (kg/m2) 16.0 (2.1) a,b 20.8 (3.2) 21.7 (2.0)

The CI 95%, p-values were considered significant if p < 0.05 for ANOVA and p < 0.017 (p < 0.05/3 after Bonferroni
correction) for MANOVA. The symbols a and b denote statistically significant differences between the control
group and individuals with bulimia, respectively.

2.2. Methods

All participants underwent an instrumented 3D gait analysis (GA) at the Motion
Analysis Laboratory of San Giuseppe Hospital. This facility is equipped with an optoelec-
tronic BMI system composed of six cameras (VICON, Oxford Metrics Ltd., Oxford, UK;
sampling rate: 100 Hz) and two force platforms (Kistler, Winterthur, CH). Prior to the GA
execution, participants’ anthropometric characteristics were collected (i.e., height, body
weight, anterior superior iliac spine distance, pelvis thickness, knee and ankle width, and
leg length). A set of 22 spherical retro-reflective markers were placed on specific anatomical
landmarks on participants’ bodies according to the set-up (Figure 1) proposed by Davis
et al. [44]. In order to perform the GA, participants were asked to walk barefoot along an
8 m walkway at their natural pace. Each subject performed up to five trials in order to
guarantee the reproducibility of the results in terms of kinematics.

2.3. Data Analysis

Raw data (i.e., 3D marker’s trajectories) were processed using the dedicated motion
tracking software Nexus (Nexus, version 1.8., Vicon, Oxford Metrics Ltd., Oxford, UK).
Three out of five trials consistent in terms of spatio-temporal parameters and kinematics
were selected for each participant and considered for further analysis. The selected trials
were imported into the software module Polygon (Polygon, version 2.4, Vicon, Oxford
Metrics Ltd., Oxford, UK) to compute the following variables:

Spatio-temporal gait parameters (i.e., gait speed, stride length, cadence, stance, and
double support phase duration).

The dynamic range of motion (ROM) of hip, knee, and ankle joints is calculated as
the difference between the minimum and the maximum flexion-extension angles (hip and
knee) and dorsi-plantar flexion angle (ankle) observed during the gait cycle.

Hip, knee, and ankle kinematics in the sagittal plane (hip and knee flexion-extension
and ankle dorsi-plantarflexion angles during the gait cycle). All the graphs obtained from
the GA were normalized as % of the gait cycle.
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Figure 1. Markers’ placement according to the Davis protocol [44].

Starting from the sagittal kinematics, the following bilateral cyclogram features
(Figure 2) were computed through a dedicated script developed under Matlab environment
(version R2023, The MathWorks Inc, Natick, MA, USA):

• Area (degrees2) is defined as the area enclosed by the cyclogram [45]. When the gait is
perfectly symmetric, left and right joints are in the same angular position during each
gait phase, thus resulting in a null area. The more asymmetrical the gait, the more the
area increases.

• Cyclogram orientation (φ, degrees) is calculated according to the procedure described
by Goswami [36,37], which, in short, exploits the properties of generalized moments to
identify and classify plane closed curves. In particular, orientation is computed as the
absolute value of the angular difference between the 45◦ line (i.e., perfect symmetry)
and the orientation of the principal axis of inertia of the cyclogram. High φ angles
indicate reduced inter-limb symmetry.

• The Trend Symmetry Index (dimensionless) is calculated as described by Crenshaw
et al. [46]. The index is computed through an eigenvector analysis and used to assess
the similarity of the waveforms corresponding to right and left leg angular trends
across the gait cycle for each joint. Trend Symmetry values increase together with
gait asymmetries.

2.4. Statistical Analysis

The existence of possible differences in inter-limb coordination associated with the
presence of ED was assessed using one-way multivariate analysis of variance (MANOVA)
in which the participant’s status (i.e., AN, BN, and CG) was the independent variable and
dependent variables, respectively: the 7 spatio-temporal parameters, the 3 previously listed
symmetry indexes at hip, knee, and ankle joints, and the 3 dynamic ROMs. The level of
significance was set at p = 0.05, and the effect sizes were assessed using the eta-squared (η2)
coefficient. Univariate ANOVAs were carried out as a post-hoc test by reducing the level
of significance to p = 0.01 (0.05/5) for spatio-temporal parameters and p = 0.017 (0.05/3)
for the symmetry indexes and dynamic ROMs after a Bonferroni correction for multiple
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comparisons. All analyses were performed using the IBM SPSS Statistics v.20 software
(IBM, Armonk, NY, USA).
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3. Results

The comparisons between spatio-temporal parameters of gait, symmetry indexes, and
dynamic ROMs across the three groups are summarized in Tables 2–4.

3.1. Spatio-Temporal Parameters of Gait

Table 2 reports the values of the spatio-temporal parameters calculated for the three
groups analyzed. In particular, the statistical analysis found a significant main effect of
group (F (10,70) = 16.64, p < 0.001, Wilks λ = 0.09, η2 = 0.70) on spatio-temporal parameters of
gait. From the follow-up analysis, it emerged that individuals with ED were characterized
by significantly altered values of most investigated parameters, even though there were
some differences. In fact, those of the AN group exhibit slightly yet significantly reduced
speed (−12%, p = 0.045) and cadence (−8%, p = 0.03), with respect to unaffected individuals,
and increased duration of double support phase (which resulted more than doubled,
p < 0.001), with respect to both BG and controls. In contrast, those of the BG group were
characterized by increased stance and double support phase duration, with respect to
unaffected individuals. In both groups of individuals with ED, the step length was found
to be shorter than the controls, but statistical significance was not achieved.
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Table 2. One-way multivariate analysis of variance was used to investigate the existence of differences
in spatio-temporal parameters of gait between healthy controls, individuals with anorexia, and
individuals with bulimia. Values are expressed as mean (SD).

Control Group Bulimia Anorexia

Gait speed (m/s) 1.35 (0.22) 1.27 (0.11) 1.18 (0.14) a

Step length (m) 0.66 (0.08) 0.65 (0.04) 0.63 (0.06)
Cadence (steps/min) 122.31 (7.81) 116.66 (6.98) 112.29 (7.08) a

Stance phase (% of GC) 58.33 (1.54) 60.10 (1.34) a 59.17 (1.43)
Double support (% of GC) 8.45 (1.92) 20.26 (2.60) a 19.30 (2.82) a,b

The 95% CI p-value was considered significant if p < 0.01 (p = 0.05/5 after Bonferroni correction). The symbols a and
b denote statistically significant differences between healthy controls and individuals with bulimia, respectively.
GC: Gait Cycle.

3.2. Dynamic ROM

Table 3 reports the dynamic ROM values calculated for the three groups. In this case,
the statistical analysis did not detect any significant main effect associated with the group
(F (6,74) = 0.61, p = 0.717, Wilks λ = 0.91, η2 = 0.05).

Table 3. One-way multivariate analysis of variance was used to investigate the existence of differences
in dynamic ROM between healthy controls, individuals with anorexia, and individuals with bulimia.
Values are expressed as mean (SD).

Control Group Bulimia Anorexia

Hip ROM (◦) 48.63 (6.19) 45.90 (4.73) 45.47 (3.81)
Knee ROM (◦) 64.16 (4.58) 61.27 (6.62) 62.11 (4.25)
Ankle ROM (◦) 31.80 (5.66) 29.21 (5.75) 29.73 (4.02)

The 95% CI p-value was considered significant if p < 0.016 (p = 0.05/3 after Bonferroni correction).

3.3. Gait Symmetry Indexes

Table 4 reports the cyclogram’s parameters for the three tested groups, while diagrams
of Figure 3 show two examples of cyclograms calculated in the case of unaffected indi-
viduals compared with those with either anorexia or bulimia. Looking at the results, it is
possible to observe that both AN and BG groups exhibited values of cyclogram parameters
higher with respect to unaffected individuals (except for the case of the area at the knee
joint). MANOVA detected a significant main effect of the individual’s status on symmetry
indexes in all three joints. In particular, for the hip (F (10,70) = 2.04, p = 0.041, Wilks λ = 0.60,
η2 = 0.23), for the knee (F (10,70) = 4.47, p < 0.001, Wilks λ = 0.37, η2 = 0.39), and for the
ankle (F (10,70) = 2.66, p = 0.008, Wilks λ = 0.52, η2 = 0.27). However, the post-hoc analysis
revealed that differences actually associable with the presence of ED involve the BG group
only. In fact, the BG group was characterized by orientation and Trend Symmetry Indexes
that were significantly higher with respect to the control group. Similarly, the mean values
of the cyclogram area were found to be higher than those calculated for healthy individuals
for all three joints; however, these differences were found to be significantly larger only at
the hip level (323.43 vs. 136.37 degrees2, p = 0.027). As regards the AN group, the post-hoc
analysis did not detect significant alterations of any cyclogram’s parameter with respect to
the other two groups.

Table 4. One-way multivariate analysis of variance was used to investigate the existence of differences
in symmetry parameters of gait between healthy controls, individuals with anorexia, and individuals
with bulimia. Values are expressed as mean (SD).

Parameter Joint Control Group Bulimia Anorexia

Cyclogram area (degrees2)
Hip

136.37 (99.79) 323.43 (236.07) a 253.74 (128.91)
Cyclogram orientation ϕ (degrees) 1.32 (1.03) 23.52 (19.89) a 14.85 (19.04)

Trend Symmetry 1.42 (1.03) 23.33 (19.77) a 14.72 (18.99)
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Table 4. Cont.

Parameter Joint Control Group Bulimia Anorexia

Cyclogram area (degrees2)
Knee

302.05 (163.48) 221.53 (182.96) 375.99 (291.99)
Cyclogram orientation ϕ (degrees) 1.77 (1.68) 24.18 (20.35) a 13.64 (18.11)

Trend Symmetry 1.81 (1.71) 24.20 (20.31) a 13.36 (18.27)
Cyclogram area (degrees2)

Ankle
68.35 (71.35) 87.74 (51.07) 125.91 (73.64)

Cyclogram orientation ϕ (degrees) 3.50 (2.72) 27.47 (21.51) a 17.20 (20.01)
Trend Symmetry 3.59 (2.65) 27.96 (21.12) a 17.44 (20.33)

The 95% CI p-value was considered significant if p < 0.016 (p = 0.05/3 after Bonferroni correction). The symbol a

denotes statistically significant differences with respect to control group.
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Figure 3. Examples of hip–hip cyclograms. The unaffected individual (green curve) is characterized
by a very small area with an inclination close to the 45◦ line (which indicates perfect inter-limb
symmetry). The individual with anorexia nervosa is characterized by a larger cyclogram’s area but
still relatively well-oriented. The individual with bulimia nervosa exhibits a very large cyclogram
with a high orientation angle, thus indicating a very poor inter-limb symmetry.

4. Discussion

The aim of this study was to investigate the presence of inter-limb asymmetries during
gait in female individuals with AN and BN and to compare the results with respect to a
group of unaffected individuals using cyclogram features.

First, it should be mentioned that spatio-temporal parameters of people with EDs are
significantly different from those of healthy controls; this is consistent with the existing
literature. Individuals with EDs exhibit slower walking, in particular in the AN individuals,
as well as a longer duration of double support phase compared with healthy weight
individuals, as reported in a previous study [21]. As walking speed decreases, the duration
of the double support phase increases and yields stability alterations [47]. According to the
reported results, the double support phase duration appears to be more than doubled in
both EDs with respect to controls, a fact that suggests the adoption of a strategy to pursue
stability versus an increased postural instability caused by their conditions. Stability is
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usually connected to the ability to control the center of mass with respect to the base of
the support [22], and since during the double support phase both feet are in contact with
the ground, they can both be used to correct deviations and improve gait control [47].
According to what was reported by Fontana et al. [22], individuals with AN and BN
exhibit reduced postural stability with respect to healthy individuals. The reasons for such
instability can be either linked to psychological or physical factors, like weight fluctuations
and loss of lean mass affecting the musculoskeletal system in both EDs. With respect to
psychopathological aspects, it should not be forgotten that anxiety and the fear of losing
control may also contribute to reduced postural control and stability [48–50]. Since humans
are naturally able to modify the duration of the double support phase by modulating their
speed and an increase in the double support phase increases stability, a motor strategy
involving slow and controlled walking may be the easiest method to improve stability itself
and thus reduce the risk of instability and falls.

With respect to symmetry, the cyclogram analysis suggests the presence of a well-
defined trend characterized by altered symmetry in individuals with BN, whose features
were found to be systematically higher than the healthy controls for hip, knee, and ankle.
Although no significant differences were found in those with AN with respect to the other
groups, a consistent trend of abnormal symmetry can be observed. To the best of our
knowledge, no previous studies specifically investigated inter-limb symmetry of lower
limbs during gait in individuals with a specifically diagnosed ED, and for this reason, there
are no available data for direct comparison. However, previous studies that investigated
gait smoothness in underweight populations using the harmonic ratio (HR), a parameter
associated with step-by-step symmetry [51], showed similar results. HR in the medio-lateral
direction was significantly lower in both underweight children [52] and elderly adults [4]
with respect to healthy weight controls. This lack of symmetry, which is present in both
AN and BN, might be representative of a reduced gait balance and is probably connected
to the musculoskeletal alterations occurring due to malnutrition and weight fluctuations.
Muscle weakness, together with unbalanced caloric intake, may be the cause of unpaired
postural control and gait instability in patients with EDs [21,22].

Although gait asymmetries are also present in AN, those with BN exhibit the highest
alterations in terms of symmetry during gait. Individuals with BN are prone to sudden
and relevant body weight fluctuations, altering the fat/lean mass ratio and thus the mus-
culoskeletal system, also leading to the possible onset of neuropathies due to unbalanced
nutrition and purging cycles [22]. In this context, it can be hypothesized that changes in
terms of gait symmetry and postural control might be more linked to body weight fluc-
tuations rather than to BMI absolute values, as previously reported by Fontana et al. [22].
Overall, the findings of the present study suggest that evaluating inter-limb symmetry
over the entire gait cycle may provide novel and valuable insights into the motor control
impairments linked to EDs, thus supporting clinicians in determining the optimal rehabili-
tation path aimed at improving stability and motor control, optimizing energy costs during
walking, and reducing, for instance, the risk of falls.

However, there are some limitations that should be considered. Firstly, the reduced
number of participants limits, to some extent, the strength of the statistical results. However,
in these pathological states, large experimental samples are difficult to collect because
traditional gait analysis also requires that the patient wears minimal clothing, which
has been shown to cause anxiety in these individuals as they are characterized by body
dissatisfaction and misperception of body size [53]. Secondly, the different mean ages
between groups should also be taken into account. Although there is evidence that BMI
can influence mobility [54], it should also be noted that age can impact the biomechanical
characteristics of the tissues [55,56] and affect body morphometry, especially between fertile
and non-fertile age women [57]. However, the age difference did not seem to substantially
influence the observed outcomes for the considered motor task.

Another limitation may be linked to the choice of assessing gait symmetry only in
female individuals with EDs. Although EDs have been reported to be likely to occur in
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females [58], recent data have shown that their prevalence in men was previously underes-
timated and that the rates of EDs in males are increasing, without differences in terms of
clinical severity with respect to females [7,59–61]. Due to the intrinsic physical differences
between males and females, it could be interesting to also evaluate how musculoskeletal
alterations due to EDs may impact gait symmetry and postural control in males. In addition,
it should be noted that since biomechanical alterations of gait in individuals with EDs are
influenced by a multitude of interconnected factors, it is difficult to understand the specific
mechanisms behind gait changes. As more studies are conducted, our understanding of
these interactions and their impact on gait in AN and BN will continue to develop.

5. Conclusions

This study assessed inter-limb symmetry in individuals with two different EDs
through bilateral cyclograms’ features, and it represents the first study focusing on inter-
limb asymmetry using such a method in individuals with EDs. In this study, the cyclogram
analysis suggests the presence of an altered gait symmetry in individuals with BN; even if
not significant, this can also be observed in those with AN with a consistent trend of abnor-
mal symmetry. This study warrants continued research to enhance the best characterization
of walking strategies in EDs by applying innovative procedures to improve descriptions
of the functional limitations during the walking of these patients. Further research could
be conducted on this theme using other approaches, such as intra-limb coordination, in
order to investigate different aspects of gait. Intra-limb coordination may reveal different
patterns and categories of walking impairment in pathological subjects, uncovering the
mechanisms of lower-limb motor control [62].
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