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Abstract— In this paper a novel deep neural network
based integral sliding mode (DNN-ISM) control is proposed
for controlling perturbed systems with fully unknown dy-
namics. In particular, two DNNs with an arbitrary number of
hidden layers are exploited to estimate the unknown drift
term and the control effectiveness matrix of the system,
which are instrumental to design the ISM controller. The
DNNs weights are adjusted according to adaptation laws
derived directly from Lyapunov stability analysis, and the
proposal is satisfactorily assessed in simulation relying on
benchmark examples.

Index Terms— Sliding mode control, deep neural net-
works, uncertain systems.

I. INTRODUCTION

WHEN dealing with systems affected by external distur-
bances and modeling mismatches, an effective tech-

nique is sliding mode control (SMC). In fact, it guarantees
robustness of the controlled system against matched uncer-
tainties thanks to the discontinuous nature of the control
law, which allows to drive the systems states towards the
sliding manifold in a finite time [1]. Classical SMC presents
two main drawbacks. The former is the so-called chattering
phenomenon, caused by the discontinuous nature of the control
signal and affected by its magnitude. The latter is that, in
the time period during which the states are approaching the
sliding manifold, the system is sensitive to the uncertainties.
For chattering reduction, methodologies like higher order SMC
[2], [3], adaptive strategies [4], [5] and internal model principle
based strategies [6] have been proposed.

To improve the robustness of SMC, the ISM paradigm has
been introduced in [7]. The core idea of ISM is to rely on
an additional term called transient function to ensure that the
states lie on the sliding manifold from the initial time instant.
During the years, several improvements to ISM have been
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made, see, e.g., [8] among others, while its efficacy has been
assessed in several works, such as [9], [10].

However, in order to design an ISM control scheme, the
knowledge of the nominal dynamics of the system is required.
In many practical implementations, such a knowledge is not
available and only conservative bounds are retrieved relying
on physical characteristics of the system or experimental data.

In the domain of the control theory, neural networks (NNs)
and deep neural networks (DNNs) have been employed, e.g.,
[11], [12], among many others. However, in many works,
the efficacy of DNNs is assessed only empirically, without
theoretical guarantees. One of the first works in which such
guarantees are provided is [13], in which the weights of the
employed NN are adjusted with adaptation laws obtained
through Lyapunov stability analysis. Similar concepts have
been adopted in other works to approximate the optimal
control law, see, e.g., [14], or to partially estimate the model of
the system [15]. In [16], [17], NNs have been applied also in
the domain of SMC, e.g., [18], [19]. Then, for what concerns
the ISM framework, [19] proposes a couple of two-layer NNs
to estimate the drift term and the control effectiveness of a
particular kind of system, instrumental to the design of the
sliding manifold. This last work gave rise to the so-called
NN-ISM control approach. Such an approach presents two
main limitations. The former is that only systems with scalar
input are considered, while the latter is that NNs with only
two layers are used for the approximation of the dynamics.
When systems exhibit a highly nonlinear dynamics, better
approximation capabilities may be required. As shown for
instance in [20]–[22], NNs with a deep architecture represent
an efficient solution.

Motivated by the results obtained in [19], and with the aim
of overcoming the aforementioned limitations, in this work
we propose a novel DNN-ISM control algorithm. Specifically,
we consider a generic nonlinear system with fully unknown
nominal dynamics. Then, we exploit two DNNs with an
arbitrary number of hidden layers to estimate the drift term and
the control effectiveness matrix, instrumental to the design of
the integral sliding manifold. Despite a more complex archi-
tecture, it allows to reduce the bound on the error between the
approximated function and the real one, and to reduce also the
control gain with beneficial effects in terms of chattering. The
weights of the two DNNs are adjusted relying on adaptation



laws directly obtained from stability analysis. More precisely,
in this paper the considered control problem is addressed for
two specific classes of systems. First, the multi-input case is
taken into account, analysing the tractable case of number of
states being equal to an integer multiple of the number of
inputs. Then, as particular case of the previous one, the class of
single-input systems is discussed. It is worth highlighting that
these systems categories are widely exploited for modeling in
the literature and practical applications. The proposed DNN-
ISM control scheme is finally assessed in simulation on two
benchmark examples.

Notation: Given A ∈ Rn×m, then vec(A) ∈ Rnm is the
vectorization operation. Given a real square matrix A ∈ Rn×n,
then sλ(A) and λ(A) are the greatest and smallest singular
values of A. Given two matrices A ∈ Rm×n and B ∈ Rp×q ,
their Kronecker product is denoted as A⊗B ∈ Rpm×qn. Given
a ∈ Rnm, the inverse of the vectorization operation is defined
as vec−1(a) =

(
vec(Im)⊤ ⊗ In

)
(Im ⊗ a) ∈ Rn×m. Given

a DNN Υ(x) : Rp → Rq , characterized by kΥ ∈ N hidden
layers, the number of neurons in the jth layer is LΥj

∈ R>0,
for j = 1, . . . , kΥ + 1 with LΥ0

= p and LΥkΥ+1
= q. Given

the matrices Ai, i = 1, 2, . . . , N , with compatible dimensions

one has that
↶∏N
i=1Ai = ANAN−1 . . . A1, and

↶∏p−1
i=p = 1.

Given f(x) : Rn → Rm, then f ′ ∈ Rn×m is its Jacobian.

II. PRELIMINARIES ON ISM AND PROBLEM STATEMENT

In this section, the dynamical system considered in the paper
is introduced. Moreover, the main features of ISM control,
originally presented in [7], are recalled. Consider the nonlinear
system

ẋ = f(x(t)) +B(x(t))u(t) + h(t), x(0) = x0, (1)

where x ∈ Ω is the system states, with Ω ⊂ Rn being a
compact set containing the origin, f : Ω → Rn represents the
drift dynamics, B : Ω → Rn×m is the control effectiveness
matrix, and both functions are bounded and belong to C0(Ω).
Then, u ∈ Rm is the control vector, while h : R≥0 → Rn

represents the perturbation vector. The following assumption,
common in the sliding mode control theory, is needed.

A1: The uncertainty h is such that h ∈ H, where H ⊂ Rn is a
compact set containing the origin, with sh := suph∈H∥h∥
known.

To counteract the effect of the external perturbation, an ISM
controller can be designed [7]. In particular, the control action
is defined as u = u0 + u1, with u0 ∈ Rm being a bounded
control law which makes the state x∗ ∈ Rn an asymptotically
stable equilibrium point for the nominal dynamics, that is (1)
with h = 0, while u1 ∈ Rm is a discontinuous control signal
whose aim is to make the system robust against uncertainties.
Since in the case of m > 1, system (1) is multi-input-multi-
output, possibly coupled, and nonlinear, the discontinuous
control law is defined according to the unit vector approach
[1], i.e.,

u1 = −ρ σ(x)

∥σ(x)∥
, (2)

where ρ ∈ R>0 is a constant gain chosen so that the worst
realization of the perturbation is dominated, while σ(x) :
Rn → Rm is the integral sliding variable, defined as

σ(x) = σ0(x) + z(x), σ(x0) = 0. (3)

The term σ0 : Rn → Rm is chosen by the designer, for
instance as a linear combination of states. The term z(x) :
Rn → Rm appearing in (3) is instead the so-called transient
function, and its dynamics is defined as

ż = −∂σ0(x)
∂x

(f(x) +B(x)u0) , z(x0) = −σ0(x0), (4)

with ∂σ0(x)
∂x ∈ Rm×n. Then, suitably defining the stabilizing

control law u0 and the discontinuous control gain ρ, a sliding
mode is enforced. As a result, the robustness of the controlled
system against matched disturbances h can be proved [7].

III. DEEP NEURAL NETWORK-BASED
DYNAMICS APPROXIMATORS

As described in [7] and highlighted in (4), the knowledge
of the drift term f and the control effectiveness matrix B
is required to design an ISM control. In this paper, the
nominal model of the system is considered fully unknown
[19]. Therefore, the aim of this section is to introduce two
DNNs which estimate the unknown terms.

Let xh =
[
x⊤ 1

]⊤ ∈ Rn+1, since both f and B
are continuous, then, by virtue of the so-called universal
approximation property [23], there exist two ideal DNNs,
namely Φ(xh) : Rn+1 → Rn and Ψ(xh) : Rn+1 → Rnm,
characterized by kΦ, kΨ > 2 hidden layers, which approximate
the nominal dynamics of (1) as

f(x) = Φ(xh) + εΦ(x), (5)
vec(B(x)) = Ψ(xh) + εΨ(x), (6)

where εΦ(x) : Ω → Rn and εΨ(x) : Ω → Rnm are the so-
called approximation errors. More in depth, the DNNs can be
written as

Φ(xh) = V ⊤
kΦ
ϕkΦ

◦ · · · ◦ V ⊤
1 ϕ1 ◦ V ⊤

0 xh (7)

Ψ(xh) = U⊤
kΨ
ψkΨ

◦ · · · ◦ U⊤
1 ψ1 ◦ U⊤

0 xh, (8)

where Vj ∈ RLΦj
×LΦj+1 , with j = 0, 1, . . . , kΦ, and Uj ∈

RLΨj
×LΨj+1 , with j = 0, 1, . . . , kΨ, are the ideal weights of

DNNs. Finally, ϕj(·), with j = 1, 2, . . . , kΦ, and ψj(·), with
j = 1, 2, . . . , kΨ, are the activation functions of Φ(x) and
Ψ(x), respectively, both being C1 and Lipschitz continuous.

Since vec−1(Ψ(xh) + εΨ) = B(x), let vec−1(Ψ(xh))
(i) ∈

Rn be the ith column of vec−1(Ψ(xh)), with i = 1, 2, . . . ,m.
Consider the matrix UkΨ ∈ RLkΨ

×nm written as the concate-
nation of different sub-matrices U (i)

kΨ
∈ RLkΨ

×n, horizontally

stacked as UkΨ
=
[
U

(1)
kΨ

U
(2)
kΨ

. . . U
(m)
kΨ

]
. Then, the

expression of vec−1(Ψ(xh))
(i) is given by

vec−1(Ψ(xh))
(i) = (U

(i)
kΨ

)⊤ψkΨ ◦ · · · ◦ U⊤
1 ψ1 ◦ U⊤

0 xh. (9)



In order to design the proposed approach, it is convenient
to express the DNNs in a recursive way, defining the output
of the generic jth layer. For Φ(xh), one has

Φj =

{
V ⊤
j ϕj(Φj−1) if j = 1, 2, . . . , kΦ,

V ⊤
0 xh if j = 0,

(10)

where Φj ∈ RLΦj+1 . Meanwhile, the output of the jth layer
of Ψ(xh) is given by

Ψj =

{
U⊤
j ψj(Ψj−1) if j = 1, 2, . . . , kΨ,

U⊤
0 xh if j = 0,

(11)

with Ψj ∈ RLΨj+1 . Note that, recursively substituting values
of Φj−1 and Ψj−1 in (10) and (11), respectively, one has that
Φ(xh) ≡ ΦkΦ

and Ψ(xh) ≡ ΨkΨ
.

Let vec−1(ΨkΨ
)(i) = (U

(i)
kΨ

)⊤ψkΨ
(ΨkΨ−1) ∈ Rn be the

ith column deriving from vec−1(ΨkΨ
), corresponding to the

output of the last layer of Ψ(xh). By virtue of the boundedness
of f(x) and B(x), the following assumption about the ideal
DNNs holds.
A2: There exist known constants sV , sU, sεΦ, sεΨ ∈ R>0 such

that,

supxh∈Ω∥Vj∥ ≤ sV , supxh∈Ω∥Up∥ ≤ sU,
supxh∈Ω∥εΦ∥ ≤ sεΦ, supxh∈Ω∥vec−1(εΨ)∥ ≤ sεΨ

with j = 0, 1, . . . , kΦ, p = 0, 1, . . . , kΨ, and i =
1, 2, . . . ,m.

Since the ideal DNNs (7) and (8) are not known, their
approximation is used to estimate the model (1), i.e.,

f̂(x) = Φ̂(xh), vec(B̂(x)) = Ψ̂(xh). (12)

In particular, Φ̂(xh) : Rn+1 → Rn and Ψ̂(xh) : Rn+1 → Rnm

are defined as

Φ̂(xh) = V̂ ⊤
kΦ
ϕkΦ

◦ · · · ◦ V̂ ⊤
1 ϕ1 ◦ V̂ ⊤

0 xh (13)

Ψ̂(xh) = Û⊤
kΨ
ψkΨ

◦ · · · ◦ Û⊤
1 ψ1 ◦ Û⊤

0 xh, (14)

where V̂j ∈ RLΦj
×LΦj+1 , with j = 0, 1, . . . , kΦ, and Ûj ∈

RLΨj
×LΨj+1 , with j = 0, 1, . . . , kΨ, are the estimates of the

ideal weights of DNNs.
As it occurs for the ideal DNNs, it is possible to express

the output of the jth layer of (13) and (14), i.e., Φ̂j and Ψ̂j ,
as reported in (10) and (11), respectively. The only change
is that the estimates of the ideal weights, i.e., V̂j and Ûj ,
must be used. Note that, for sake of readability, the activation
functions ϕj(Φj−1) and ψj(Ψj−1) will be referred as ϕj and
ψj , respectively. Moreover, we will indicate ϕ̂j = ϕj(Φ̂j−1)

and ψ̂j = ψj(Ψ̂j−1).
In the following, the difference between the output of the

ideal DNNs and the ones with estimated weights is defined for
each layer j. For what concerns Φj , adding and subtracting
V ⊤
j ϕ̂j one has

Φ̃j = Φj − Φ̂j = Ṽ ⊤
j ϕ̂j + V ⊤

j (ϕj − ϕ̂j), (15)

with j = 1, 2, . . . , kΦ, Ṽj = Vj − V̂j and Φ̃0 = Ṽ ⊤
0 xh. Since

ϕj(Φj−1) is not known, ϕj can be approximated using first
order Taylor approximation around Φ̂j−1, obtaining

ϕj(Φj−1) = ϕj(Φ̂j−1) + ϕ̂′jΦ̃j−1 +O2(Φ̃j−1), (16)

where ϕ̂′j = ϕ′j(Φ̂j−1) ∈ RLΦj
×LΦj , while O2(z) denotes

term of order two [13]. Note that, such an approximation is
instrumental only to derive the weight update laws, without
interfering with the nonlinear approximation capabilities of
the adopted DNNs. Exploiting the fact that Vj = Ṽj + V̂j and
substituting (16), one can reformulate (15) as

Φ̃j = Ṽ ⊤
j ϕ̂j + V̂ ⊤

j ϕ̂
′
jΦ̃j−1 +∆Φj , (17)

where ∆Φj
= Ṽ ⊤

j ϕ̂
′
jΦ̃j−1 + V ⊤

j O
2(Φ̃j−1). Moreover, since

Ṽ ⊤
j ϕ̂j = vec(Ṽ ⊤

j ϕ̂j) = vec(ϕ̂⊤j ṼjILΦj+1
), it is true that

Ṽ ⊤
j ϕ̂j =

(
ILΦj+1

⊗ ϕ̂⊤j

)
vec(Ṽj) [24]. Hence, the error as-

sociated with the jth layer can be then reformulated as

Φ̃j =
(
ILΦj+1

⊗ ϕ̂⊤j

)
vec(Ṽj) + V̂ ⊤

j ϕ̂
′
jΦ̃j−1 +∆Φj , (18)

with Φ̃0 =
(
ILΦ1

⊗ x⊤h
)
vec(Ṽ0). By iteration (see Lemma 1

in [15]), one can write

Φ̃kΦ
=

kΦ∑
j=0

ΛΦj
vec(Ṽj) +

kΦ∑
j=1

ΞΦj
∆Φj

, (19)

where ΞΦj
∈ Rn×LΦj+1 and ΛΦj

∈ Rn×(LΦj
LΦj+1

) are given
by

ΞΦj
=

↶
kΦ∏

p=j+1

V̂ ⊤
p ϕ̂

′
p, ΛΦj

= ΞΦj

(
ILΦj+1

⊗ ϕ̂⊤j

)
, (20)

with ΛΦ0 = ΞΦ0

(
ILΦ1

⊗ xh
)
.

As for Ψ, the error at the jth layer, up to the penultimate
one, can be computed following the same reasoning made for
Φ. In particular, for j = 0, 1, . . . , kΨ − 1, it is possible to
express the errors as

Ψ̃j =
(
ILΨj+1

⊗ ψ̂⊤
j

)
vec(Ũj) + Û⊤

j ψ̂
′
jΨ̃j−1 +∆Ψj

, (21)

with Ψ̃0 =
(
ILΨ1

⊗ x⊤h
)
vec(Ũ0) and ∆Ψj

∈ RLΨj+1 defined
as ∆Ψj

= Ũ⊤
j ψ̂

′
jΨ̃j−1 + U⊤

j O
2(Ψ̃j−1).

As for the error associated with the last layer, i.e., j = kΨ,
it can be computed column-wise as

vec−1(Ψ̃kΨ)
(i) =

(
In ⊗ ψ̂⊤

kΨ

)
vec(Ũ

(i)
kΨ

)+

+ (Û
(i)
kΨ

)⊤ψ̂′
kΨ

Ψ̃kΨ−1 + vec−1(∆ΨkΨ
)(i). (22)

Exploiting its recursive nature, it can be written as

vec−1(Ψ̃kΨ)
(i) = Λ

(i)
ΨkΨ

vec(Ũ
(i)
kΨ

) + vec−1(∆ΨkΨ
)(i)+

+

kΨ−1∑
j=0

Λ
(i)
Ψj

vec(Ũj) +

kΨ−1∑
j=1

Ξ
(i)
Ψj

∆Ψj
, (23)

where Ξ
(i)
Ψj

= (Û
(i)
kΨ

)⊤ψ̂′
kΨ

↶∏kΨ−1
l=j+1Û

⊤
l ψ̂

′
l ∈ Rn×LΨj+1 , while

Λ
(i)
Ψj

= Ξ
(i)
Ψj

(
ILΨj+1

⊗ ψ̂⊤
LΨj

)
∈ Rn×LΨj

LΨj+1 , with Λ
(i)
Ψ0

=

Ξ
(i)
Ψ0

(
ILΨ1

⊗ x⊤h
)

and Λ
(i)
ΨkΨ

=
(
In ⊗ ψ̂⊤

kΨ

)
.



u1 = −ρ σ
∥σ∥

+

+

ẋ = f +Bu+ h
∫

u0

DNN1

DNN2

ż in (24)

σ0

∫+

+

x

Φ̂

Ψ̂

z

u

σ

Fig. 1: The proposed DNN-ISM control scheme.

IV. DNN-ISM CONTROL SCHEME

The aim of this section is to introduce the proposed DNN-
ISM control scheme, illustrated in Fig 1.

Relying on the estimation introduced in (12), it is possible
to approximate the dynamics of the transient function (4) as

ż = −∂σ0
∂x

(
Φ̂(xh) + vec−1(Ψ̂(xh))u0

)
, (24)

with z(x0) = −σ0(x0).
The adaptation laws for the weights of the DNNs are

directly derived from the stability analysis. As for Φ̂, the
weights of the layers j = 0, 1, . . . , kΦ are adapted with

vec
(
˙̂
V j

)
= proj

(
ΓΦjΛ

⊤
Φj

∂σ0
∂x

⊤
σ

)
, (25)

where ΓΦj
∈ RLΦj

LΦj+1
×LΦj

LΦj+1 is a diagonal gain matrix.
For what concerns Ψ̂, its weights are updated as

vec
(
˙̂
U j

)
= proj

(
ΓΨj

(
m∑
i=1

u0,i(Λ
(i)
Ψj

)⊤

)
∂σ0
∂x

⊤
σ

)
(26)

for the layers j = 0, 1, . . . , kΨ−1, where u0,i is the ith element
of the vector u0, while for the last layer one has

vec

(
˙̂
U

(i)

kΨ

)
= proj

(
ΓΨkΨ

u0,i(Λ
(i)
ΨkΨ

)⊤
∂σ0
∂x

⊤
σ

)
, (27)

where ΓΨj
∈ RLΨj

LΨj+1
×LΨj

LΨj+1 , for j = 0, 1, . . . , kΨ. The
operator proj(·) is the projection operator defined as in [25]
and it ensures that vec(V̂j) ∈ BΦ

j and vec(Ûj) ∈ BΨ
j , with

BΦ
j := {θV ∈ RLΦj

LΦj+1 : ∥θV ∥ ≤ sV } and BΨ
j := {θU ∈

RLΨj
LΨj+1 : ∥θU∥ ≤ sU}.

The presence of the projection operator, along with
A2, allows to determine bounds for the residual terms in
(19) and (23), i.e.,

∑kΦ

j=1 ΞΦj∆Φj , and vec−1(∆ΨkΨ
)(i) +∑kΨ−1

j=1 Ξ
(i)
Ψj

∆Ψj
. In particular, since proj(·) bounds the es-

timated weights, and the activation functions are chosen
with bounded gradients, the norms of both ΞΦj

and Ξ
(i)
Ψj

are bounded. Moreover, due to the fact that the terms of
order two in the Taylor expansions are bounded as de-
tailed in [13], there exist known constants cΦ, cΨ ∈ R>0

such that the inequalities
∥∥∥∑kΦ

j=1 ΞΦj
∆Φj

∥∥∥ ≤ cΦ, and∥∥∥vec−1(∆ΨkΨ
)(i) +

∑kΨ−1
j=1 Ξ

(i)
Ψj

∆Ψj

∥∥∥ ≤ cΨ hold.

Using (1), (5), (6), (24), and (12), and since Φ̃kΦ
= ΦkΦ

−
Φ̂kΦ

and Ψ̃kΨ
= ΨkΨ

− Ψ̂kΨ
, one has

σ̇ =
∂σ0
∂x

[
Φ̃kΦ

+ εΦ + vec−1(Ψ̃kΨ
+ εΨ)u0+

+B(x)u1 + h
]
. (28)

In the following, two main results are introduced for the
specific cases of multi-input and single-input systems, respec-
tively, which are however often used for modeling in many
practical application domains.

A. The multi-input case (κm = n)

Now the stability analysis in the specific multi-input case
κm = n, with κ ∈ N>0 is discussed. For the considered kind
of systems, let σ0 such that

∂σ0
∂x

=
[
G1 G2 · · · Gκ

]
∈ Rm×κm, (29)

with Gp = G⊤
p ∈ Rm×m being positive definite, while the

following assumption holds.

A3: The control effectiveness term B(x) ∈ Rκm×m can
be written as B(x) =

[
B1(x) B2(x) · · · Bκ(x)

]⊤
,

with Bp(x) = B⊤
p (x) ∈ Rm×m being positive semi-

definite. Moreover, at least one Bp is positive definite
and there exists a known constant γ ∈ R>0 such that
λ(Bp) > γ.

The following theorem, instrumental for the choice of the
control gain ρ, is now introduced.

Theorem 1: Consider the nonlinear system (1) in the case
of κm = n, with κ ∈ N>0, control law u, sliding variable as
in (3) and (24), and the weight adaptation laws (25), (26), and
(27). If A1, A2, A3, and (29) hold, and

ρ >

∥∥∂σ0

∂x

∥∥ [cΦ +m(cΨ + sεΨ)∥u0∥+ sεΦ + sh
]
+ η̄

minp λ(Gp)γ
(30)

with η̄ > 0, then, a sliding mode σ(t) = 0 is enforced for
t ≥ t̄ ≥ 0.

Proof: Consider a Lyapunov-like candidate function
v(x) : Rn → R selected as

v(x) =
1

2
σ⊤σ +

1

2

kΦ∑
j=0

vec(Ṽj)
⊤Γ−1

Φj
vec(Ṽj)+

+
1

2

kΨ∑
j=0

vec(Ũj)
⊤Γ−1

Ψj
vec(Ũj), (31)

with time derivative equal to v̇(x) = σ⊤σ̇ −∑kΦ

j=0 vec(Ṽj)
⊤Γ−1

Φj
vec(

˙̂
V j) −

∑kΨ

j=0 vec(Ũj)
⊤Γ−1

Ψj
vec(

˙̂
U j).

Substituting (28), (19), (23), and expanding the last term of



the above equation, this can be rewritten as

v̇(x) = σ⊤ ∂σ0
∂x

{
kΦ∑
j=0

ΛΦj
vec(Ṽj) +

kΦ∑
j=1

ΞΦj
∆Φj

+

+

m∑
i=1

[
Λ
(i)
ΨkΨ

vec(Ũ
(i)
kΨ

) + vec−1(∆ΨkΨ
)(i)+

kΨ−1∑
j=1

Ξ
(i)
Ψj

∆Ψj
+

+

kΨ−1∑
j=0

Λ
(i)
Ψj

vec(Ũj)
]
u0,i + εΦ + vec−1(εΨ)u0 +B(x)u1+

+ h(t)

}
−

m∑
i=1

vec(Ũ
(i)
kΨ

)⊤Γ−1
ΨkΨ

vec(
˙̂
U

(i)

kΨ
)+

−
kΦ∑
j=0

vec(Ṽj)
⊤Γ−1

Φj
vec(

˙̂
V j)−

kΨ−1∑
j=0

vec(Ũj)
⊤Γ−1

Ψj
vec(

˙̂
U j).

Then, since from [25] it holds that −θ⊤Γ−1proj(z) ≤
−θ⊤Γ−1z, if one applies the adaptation laws (25), (26), and
(27), and substitutes (2), the above equation can be upper
bounded as

v̇(x) ≤ σ⊤ ∂σ0
∂x

{
kΦ∑
j=1

ΞΦj∆Φj +

m∑
i=1

[
vec−1(∆ΨkΨ

)(i)+

+

kΨ−1∑
j=1

Ξ
(i)
Ψj

∆Ψj

]
u0i + εΦ + vec−1(εΨ)u0 + h(t)

}
+

− ρσ⊤ ∂σ0
∂x

B(x)
σ

∥σ∥
. (32)

Moreover, if A1, A2, A3, and (29) hold, equation (32) can
be further bounded as

v̇(x) ≤ ∥σ∥
∥∥∥∥∂σ0∂x

∥∥∥∥{cΦ +m(cΨ + sεΨ)∥u0∥+ sεΦ + sh
}
+

− ∥σ∥ρ
κ∑

p=1

λ(Gp)λ(Bp).

Hence, one obtains v̇(x) ≤ ∥σ∥
∥∥∂σ0

∂x

∥∥{cΦ + m(cΨ +

sεΨ)∥u0∥+sεΦ+sh
}
−∥σ∥ρminp λ(Gp)γ ≤ −η∥σ∥, with η =

ρminp λ(Gp)γ−
∥∥∂σ0

∂x

∥∥ [cΦ+m(cΨ+sεΨ)∥u0∥+sεΦ+sh]. If one
designs ρ as in (30), then v̇(x) ≤ −η∥σ∥ < 0. Exploiting the
boundedness property guaranteed by the projection operator,
the choice of a control gain as in (30) guarantees σ = 0 in a
finite time t̄ ≥ 0.
Note that the previous theorem also implies the boundedness
of the weights of the DNNs. The convergence of such weights
to their ideal values is beyond the scope of the paper, but we
refer to classical paper as [26] for further discussion.

B. The single-input case m = 1

In this section, stability analysis in the case of scalar input,
i.e., m = 1, is performed. The following assumption about the
effectiveness control term can be introduced.
A4: Given B(x) =

[
b1 b2 · · · bn

]⊤ ∈ Rn, then bp ≥ 0,
for p = 1, 2, . . . , n. Moreover, there exists b ∈ R>0 so
that ∥B(x)∥ ≥ b, ∀x ∈ Ω.

The following theorem can be now introduced.
Theorem 2: Consider the nonlinear system (1) in the case

of m = 1, control law u, sliding variable as in (3) and (24),
and the weight adaptation laws (25), (26), and (27). If A1,
A2, A4, and (29) hold, and

ρ >
cΦ + (cΨ + sεΨ)|u0|+ sεΦ + sh+ η̄

b
(33)

with η̄ > 0, then, a sliding mode σ(t) = 0 is enforced for
t ≥ t̄ ≥ 0.

Proof: Consider the Lyapunov-like candidate function as
in (31). Then, performing the same steps as in the previous
section with m = 1 and κ = n, its derivative can be upper
bounded as in (32). Then, if A1, A2, A4, and (29) hold, v̇(x)
can be bounded as

v̇(x) ≤ |σ|
∥∥∥∥∂σ0∂x

∥∥∥∥{cΦ + (cΨ + sεΨ)|u0|+ sεΦ + sh
}
+

− ρ

∥∥∥∥∂σ0∂x

∥∥∥∥ b|σ| ≤ −η|σ|,

where η =
∥∥∂σ0

∂x

∥∥ [ρ b − cΦ + (cΨ + sεΨ)|u0| + sεΦ + sh]. If
one selects ρ so that condition (33) is satisfied, then v̇(x) ≤
−η|σ| < 0, which guarantees σ = 0 in a finite time t̄ ≥ 0.

V. NUMERICAL EXAMPLES

Simulations results on two systems with m = n (i.e., κ = 1)
and m = 1, respectively, are hereafter shown.

A. Multi-input case: the double tank system

To test the proposal in the case m = n, a double-tank
system, inspired by [27], is considered, whose dynamics is{

ẋ1 = − a1

A1

√
2gx1 +

a2

A2

√
2gx2 +

1
A1
u1 + h1

ẋ2 = − a2

A2

√
2gx2 +

1
A2
u2 + h2,

(34)

where x1, x2, A1 = 0.28m2, A2 = 0.32m2 , a1 = 0.007m2

and a2 = 0.005m2, represent the water levels, the cross-
section of the tanks, and the cross-section of the output valves,
respectively, and g = 9.8m/s2. The disturbance terms are
h1 = 0.4 cos(4t) and h2 = 0.25 sin(0.5t) + 0.125 cos(t). The
DNNs are characterized by, kΦ = 3, with LΦ0

= 3, LΦ1
= 10,

LΦ2
= 50, LΦ3

= 20, LΦ4
= 2, while kΨ = 3, with LΨ0

= 3,
LΨ1

= 10, LΨ2
= 100, LΨ3

= 20, LΨ4
= 4. Moreover,

ΓΦj = 100·ILΦj
and ΓΨj = 100·ILΨj

. The stabilizing control
law has been chosen as u0 = (vec−1(Ψ̂))+[−Φ̂−K(x−x∗)],
with K = 2 · I2, and x∗ =

[
0.75 0.4

]⊤
. The sliding variable

is chosen so that σ0 = (x−x∗). Finally, given h̄ = 0.6, finding
cΦ + ε̄Φ + h̄ = 3.6 and cΨ + ε̄Ψ = 0.15, and η̄ = 0.3, the
control gain is selected as ρ = 1.3 + 0.05|u0|, which satisfies
(30). The system has been simulated for 20 s with a time-step
of 0.005 s and x0 =

[
0.5 0.5

]⊤
. The results of the simulation

are presented in Fig. 2 and Fig. 3, in which it is possible to
see that condition σ = 0 is lost for a transient due to the
adaptation of the weights, and then it is again enforced, as
expected from Theorem 1. Moreover, the system is correctly
controlled towards the desired set-point.



Fig. 2: Water level in the tanks.

Fig. 3: Sliding variable in the double-tank simulation.

B. Scalar case: the Duffing oscillator
To test the proposed algorithm in the single-input case, i.e.,

m = 1, the model of the Duffing oscillator [1, Chapter 1], has
been used. The dynamics are given by{

ẋ1 = x2

ẋ2 = x1(1− x21)− x2 + u+ h2,
(35)

with x1 and x2 being the position and the velocity of the mass,
respectively, while h2 = 0.5 sin(0.5t)+0.25 cos(t). The DNNs
are structured so that kΦ = kΨ = 5, with LΦ0 = LΨ0 = 3,
LΦ1 = LΨ1 = 20, LΦ2 = LΨ2 = 50, LΦ3 = LΨ3 = 50,
LΦ4

= LΨ4
= 50, LΦ5

= LΨ5
= 20, LΦ6

= LΨ6
= 2.

Moreover, ΓΦj
= 550 · ILΦj

and ΓΨj
= 550 · ILΨj

. The
stabilizing control law has been chosen as u0 = Ψ̂+[−Φ̂ −
K(x − x∗)], with K =

[
3 3

]
and x∗ =

[
−1.25 0

]⊤
. The

initial condition is x0 =
[
3 −1

]⊤
. The sliding variable is

chosen so that σ0 =
[
1 1

]
(x − x∗). Moreover, given h̄ =

0.75, finding cΦ + ε̄Φ + h̄ = 1.9 and cΨ + ε̄Ψ = 0.5, η̄ = 0.1,
the control gain is selected as ρ = 2+0.5|u0|, which satisfies
(33). The system has been simulated for 5 s, with a time-step
of 0.0001 s. The results of the simulation are presented in Fig.
4. From the two pictures it is possible to see that that condition
σ = 0 is lost for a very short transient due to the adaptation
of the weights, and then it is again enforced, as expected from
Theorem 2.

(a) System states (b) Sliding variable

Fig. 4: Outcome of the Duffing oscillator simulation in terms
of state phase portrait and sliding variable, with xid being the
state in the case of fully known dynamics and ρ = 1.

VI. CONCLUSIONS

In this paper, we propose a DNN-ISM control algorithm
for nonlinear systems in presence of external disturbances and

in the case of fully unknown dynamics. In particular, the un-
known drift term and control effectiveness matrix are estimated
relying on two DNNs with an arbitrary number of hidden
layers. The weights of the DNNs are adjusted according to
adaptive laws derived from the stability analysis, relying on
two different classes of systems. Finally, the proposal has been
satisfactorily assessed in simulation on a double-tank system
and on the classic Duffing oscillator.
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