
Analyzing the Reliability of Alternative Convolution
Implementations for Deep Learning Applications

Cristiana Bolchini, Luca Cassano, Antonio Miele, Alessandro Nazzari, Dario Passarello
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, Italy
first name.last name@polimi.it

Abstract—Convolution represents the core of Deep Learning
(DL) applications, enabling the automatic extraction of fea-
tures from raw input data. Several implementations of the
convolution have been proposed. The impact of these different
implementations on the performance of DL applications has been
studied. However, no specific reliability-related analysis has been
carried out. In this paper, we apply the CLASSES cross-layer
reliability analysis methodology for an in-depth study aimed at:
i) analyzing and characterizing the effects of Single Event Upsets
occurring in Graphics Processing Units while executing the
convolution operators; and ii) identifying whether a convolution
implementation is more robust than others. The outcomes can
then be exploited to tailor better hardening schemes for DL
applications to improve reliability and reduce overhead.

Index Terms—Convolutional Neural Networks, Deep Learning,
Error Simulation, Fault Injection, Reliability Analysis.

I. INTRODUCTION AND RELATED WORK

Deep Learning (DL) applications, e.g., Convolutional Neu-
ral Networks (CNNs), are increasingly being adopted for
perception tasks in a large variety of application fields, also
including safety- and mission-critical ones (e.g., automotive,
robots, and aerospace). As an example, we may mention the
Advanced Driver Assistance System in the automotive sce-
nario [1], where lanes and tracks detection, the identification
of pedestrians and obstacles, and the recognition of road signs
and traffic lights are often automated via CNNs (e.g., [2]).

When designing solutions for this kind of market, though,
design standards (such as the ISO 26262 for automotive [3])
specify safety-related requirements to be guaranteed. Typi-
cally, these standards request high reliability based on the sys-
tem’s criticality, fault detection, and management capabilities.
In the mentioned application contexts, one of the sources of
failures commonly considered is soft errors, e.g., Single Event
Upsets (SEUs) [4]. Although such faults have traditionally
been considered a concern in the space domain, it has been
demonstrated that they may cause significant effects also at
ground level [5], where an average rate of two SEUs every
thousand billion hours has been estimated at ground level.
Given an estimated number of cars traveling in Europe in 2019
at 268 million [6], we would observe a car suffering from a
fault every 3.7 hours, which may be a concern. Therefore,
digital systems and the executed applications exploited in
this application context require reliability-related analysis and
possible countermeasures.

DL applications exhibit extremely high requirements in
terms of computing power due to the large number and
the size of the executed elaborations and associated parame-
ters. Therefore, classical redundancy-based fault detection and
mitigation techniques, such as Duplication with Comparison
or Triple Modular Redundancy, may be unfeasible because
of the excessive performance overhead [7]. Recently, much
effort has been devoted to developing selective-hardening and
approximation-based techniques tailored for the specific DL
application context to limit such costs. For example, in [8],
the network layers are selectively duplicated based on the
probability of a fault corrupting a layer to affect the entire
application outcome.

Moreover, two peculiarities of DL applications are that
i) they are inexact by nature, and ii) they generally present an
internal information redundancy (in terms of layers, neurons,
weights) caused by over-design w.r.t. the requirements of the
specific application. From the reliability point of view, these
characteristics represent novel opportunities for defining and
tailoring new hardening techniques with a reduced cost and
overhead. A few examples are the approach in [9], where
the training process is enhanced by introducing hardware
faults, and the approach in [10], where the range of corrupted
values is selectively restricted to reduce the magnitude of the
generated error in the final output. To be able to tailor a hard-
ening solution that introduces a limited overhead and mitigates
the actual effects of hardware faults and their criticality, an
accurate fault injection/simulation tool needs to be adopted,
and the mitigation strategy could focus on the most relevant
and critical elements in the system.

When considering DL applications, design optimization
generally targets its main operator, i.e., the convolution. In
most CNN applications, convolution operations exploited for
feature extraction from raw input data take more than 60-70%
of the overall execution time. Numerous efforts have been
devoted to implementing an efficient convolution operator.
Among them, the three most popular ones are based on
General Matrix Multiplication (GEMM) [11], on the Fast
Fourier Transform (FFT) [12] and on the Winograd’s filtering
algorithm [13]. Given the prominent role of the operator, also
reliability-related properties and characteristics should be kept
into consideration for effective and possibly efficient hardening
solutions. On the one hand, the performance, in terms of
execution time, of the various implementations running on a979-8-3503-1500-4/23/$31.00 ©2023 IEEE

Graphics Processing Unit (GPU) have been analyzed in [14].
Furthermore, in various studies, the convolution layer has
been identified as the most critical one concerning vulner-
ability. Past studies have partially addressed the analysis of
the resilience of the some implementations, e.g., in [15],
Winograd-based convolution is addressed without referring
to any specific architecture. Indeed, no study analyzes in
a systematic way the various implementations, as discussed
in [16].

To fill this gap, this paper presents an in-depth cross-
layer reliability analysis of the three previously mentioned
convolution implementations with respect to hardware faults.
Our goal is a comparative analysis of the resilience of different
implementations of the convolution operator against SEUs
affecting the GPU executing the application. To this end, a
systematic and detailed analysis of the behavior of DL applica-
tions under the presence of faults is paramount, and we exploit
CLASSES [17], a cross-layer methodology and framework for
the analysis of the effects of SEUs affecting DL applications.
The analysis is divided into two parts: i) architecture-level
fault injection is exploited to understand which errors are
observed on the output tensors of the CNN operators when
faults are injected, and ii) application-level error simulation
allows to study of how the observed errors propagate through
the subsequent CNN layers to the output.

We believe that the outcomes of such analysis may enable
the definition of better-tailored hardening schemes for DL
applications, improving reliability with limited overhead. We
first derive the most common error models for the three con-
sidered convolution implementations. Then we exploit them
in error simulation on three CNN applications, namely LeNet,
AlexNet, and ResNet, to understand how errors are propagated
and how vulnerable the applications are to faults.

The paper is organized as follows. Section II and III present
the background on CNNs and the experimental framework.
Section IV and V describe the derived error models and their
exploitation. Finally, last section draws the conclusions.

II. CNN AND CONVOLUTIONS

Convolutional Neural Network [18] are one of the most
popular DL architectures. They are widely used for perception
activities to extract a semantic representation from the input
images and consequently to accomplish high-end tasks, such
as classification, object detection, and image segmentation.
CNNs are internally organized in a sequence of layers that
process tensors. A tensor is a 4D structure of numerical values
organized as a set of N 3D matrices; each 3D matrix is a
stack of C channels, being 2D matrices with the same size,
height H , and width W . Layers may include several types of
operators; the most relevant is the convolution one, used to
automatically “learn” and extract features from the input.

The convolution operator receives two tensors:
• I, a set of N 3D input data matrices having sizes Ci, Hi,

and Wi, and
• F, a set of Cf 3D filters of constant weights having sizes
Ci, Hf , and Wf .

The result of the convolution is a new tensor having sizes
N ×Cf ×Ho×Wo, where each numerical value is computed
according to the following formula:

On,c,h,w =

Ci−1∑
x=0

Hf−1∑
y=0

Wf−1∑
z=0

Fc,x,y,z · In,x,h+y,w+z (1)

where n ∈ [0, N), c ∈ [0, Cf), h ∈ [0, (Hi − Hf + 1)),
and w ∈ [0, (Wi − Wf + 1)). In this work, we focus on
DL applications exploited in on-board computing, where a
single image at a time is typically processed. Therefore, in
the present context, N = 1 and thus I and O are 3D matrices.
Due to the large number of values in the I and F tensors and
to the complexity of the math operations in Equation 1, the
convolution represents the most compute-intensive operation
in the CNN model and various implementations have been
investigated, among which the most relevant ones are [14]:

• GEMM [11]: the algorithm is based on the reshaping
of the two input matrices, I and F, by replicating their
elements multiple times and disposing of them in such
a way that the convolution operation can be computed
as a General Matrix Multiplication (GEMM), whose
implementation is highly optimized on GPU.

• FFT [12]: this algorithm exploits the Convolution Theo-
rem stating that the Fourier transform of the convolution
of two inputs is equal to the product of the Fourier
transforms of the same two inputs. Thus, the algorithm
applies the Fourier transform to I and F to compute the
convolution as a simple multiplication.

• Winograd [13]: a third approach exploits Winograd’s
minimal filtering algorithm. The algorithm is based on
specific transformations for the computation of the FIR
filter to minimize the number of multiplications by re-
placing them with less expensive additions.

These three algorithms have been systematically analyzed
from a performance point of view, targeting the GPU device.
To the best of our knowledge, no similar analysis exists to
evaluate their resilience against hardware faults.

III. EXPERIMENTAL FRAMEWORK AND SETUP

In this work, we adopted the CLASSES methodology [17] to
perform error modeling and simulation for the considered im-
plementations of the convolution operator. CLASSES adopts
a cross-layer approach that can be summarized as follows:

• Architecture-level fault injection is applied on the
single DL operators to define errors models describing
the effects of faults on the operator’s output tensors, thus
allowing to identify a set of recurrent corruption patterns
and to define the associated error models;

• Application-level error simulation, exploiting the previ-
ously defined error models, is executed on the entire DL
application to evaluate the propagation of the errors and
the functional effects on the final outputs, thus enabling
the robustness analysis of the overall application.

The strength of such an approach is to combine the advantages
of both methodologies. We exploit the accuracy of fault

error
modelscuDNN

z

on entire CNN

NVBitFI
fault

injector

error modeling
visual

inspection
automatic
classifier

CLASSES
error

simulator
TensorFlow Resilience

report
z

on single CNN operator

Figure 1: The experimental framework.

injection to define realistic and accurate error models and the
flexibility and higher speed of error simulation in tackling the
resilience analysis of an entire application.

We updated CLASSES with more recent and popular li-
braries and tools; the obtained framework is shown in Figure 1.
Since we target NVIDIA GPUs, we adopt cuDNN [19] as DL
library to implement test programs for the single convolution
to be used in the architecture-level fault injection experiments.
All three considered convolution algorithms are already inte-
grated into cuDNN.

The fault injection experiments have been carried out using
NVBitFI [20], a microarchitectural-level tool able to corrupt
GPU registers’ content during the execution of a program, i.e.,
the convolution operators in our case. The original version
of NVBitFI offers a limited set of fault models that can
capture only the effects of faults affecting the execution of a
single thread. At the microarchitectural level, this fault model
represents the effect of physical faults corrupting a single
streaming processor, that is, the datapath of a single lane
of the SIMD processing unit of a GPU, called streaming
multiprocessor1. To consider also faults in the control unit,
able to affect the entire group of threads executed in lock-
step (called warp), we adopt the NVBitFI extension proposed
in [22], where a warp-level fault model is defined to corrupt all
the results of the 32 threads executed together. We here report
the analysis results targeting a GeForce 3060 NVIDIA GPU,
implementing the Ampere architecture. Finally, the definition
of the error models is performed by means of the semi-
automated approach proposed in CLASSES2.

IV. ERROR MODELS DEFINITION

For each implementation of the convolution, we executed a
campaign considering 16,000 fault injection experiments for
the single-thread fault model, and 16,000 for the warp-level
fault model. Input tensors have been varied in every fault
injection experiment to avoid any dependence of the results
on the input values. Moreover, we kept the results for the two
fault models separate, since there is no literature discussing the
relative frequency of occurrence of the two types of faults.

For each fault injection campaign, i.e., a convolution imple-
mentation and a fault model, the corrupted output tensors have
been visually inspected to extract recurrent corruption patterns.

1For further information on the basic GPU architecture, please refer to [21]
or subsequent white papers of more recent NVIDIA GPU architectures.

2The CLASSES environment, and the supporting error modeling tools can
be downloaded from https://github.com/D4De/classes

Such activity is semi-automated and applied iteratively. First,
a subset of the corrupted output tensors is manually analyzed
with the help of a tool that graphically shows the tensors
and highlights the erroneous values. After a corruption pattern
has been identified a relevant number of times, a Python
classification tool is instructed to recognize it, and the entire
set of corrupted tensors is then processed with such a tool.
This process is repeated on the subset of not classified tensors
until they all fall into a defined corruption pattern3. This
analysis results in a set of spatial patterns that can be described
algorithmically, thus representing a set of error models.

Once spatial patterns have been identified, we analyzed the
domains and the magnitude of the erroneous values within the
corrupted output tensors for every convolution implementation
and fault model. For instance, an erroneous value may be set
to Not-a-Number or a large floating point value. Each error
model is annotated with this additional information.

In the following we discuss the outcomes of the two
analyses, with respect to spacial patterns and value domains.

A. Spatial Patterns
The list of recurrent spatial patterns is the first output of the

previously described process for the semi-automated analysis
of the corrupted output tensors; ten are the patterns emerging
from the campaign, shown in Figure 2. Tables I and II report
the occurrence frequencies of every corruption pattern for the
three convolution implementations for the single thread and
in the warp-level fault models as well as the total number of
obtained corrupted tensors, respectively. The description of the
ten emerged patterns is the following:
(a) Single Point: a single erroneous value is found in the

output tensor.
(b) Same Row: all the erroneous values are located on the

same row of a single channel. It is also possible to have
non-corrupted values between two erroneous ones.

(c) Bullet Wake: similar to Same Row model, but the erro-
neous values are located along the channel axis. It is also
possible to have channels without erroneous values on the
axis.

(d) Skip X: erroneous values are located with a stride equal
to X positions in the linearized tensor.

(e) Single Block: there is a single corrupted channel, where
all the erroneous values are adjacent and the cardinality is
comprised between 10 and 64.

(f) Single Channel Alternated Blocks: multiple nonadjacent
blocks of at least 16 consecutive erroneous values located
in the same channel.

(g) Full Channel: more than 70% of the values of the same
channel are erroneous.

(h) Multichannel Block: an extension of the Single Block
model where multiple channels are corrupted, each with
a single block pattern.

(i) Shattered Channel: a combination of the Bullet Wake and
Single Map Random models where erroneous values are

3The tool defined for supporting this process can be downloaded from
https://github.com/D4De/cnn-error-classifier.

(a) Single Point (b) Same Row (c) Bullet wake (d) Skip X (e) Single Block

(f) Single Channel
Alternated Block

(g) Full Channel (h) Multichannel
Block

(i) Shattered Chan-
nel

(j) Random

Figure 2: Spatial patterns for the corrupted tensors.

located on a line along the channel axis and at least one
channel is randomly corrupted.

(j) Random: either a single channel or multiple ones are
corrupted with an irregular pattern.

The two tables show that the identified spatial patterns
are identical for the six fault injection campaigns, while the
occurrence frequencies vary significantly.

The results reported in the tables show that the FFT im-
plementation is the most vulnerable to faults. In almost half
of the runs, the output tensor is corrupted, with a number
of corrupted tensors almost twice as much w.r.t. those for
the GEMM implementation, and also considerably higher than
the Winograd one. Moreover, the most recurrent error pattern
for the FFT implementation of the convolution is the Full
Channel; the corruption of an entire channel will make the
entire CNN produce an erroneous result with a very high
probability (as discussed in detail in the next section). Indeed,
a single faulty thread, or a group of 32 faulty ones (due to
the warp-level fault model), affecting the computations in the
frequency domain, completely corrupts the entire result in the
space domain. On the other hand, when looking at the GEMM
convolution, the most frequent corruption pattern is the Single
Point when considering the single thread fault model, and the
Single Block when considering the warp-level fault model.
Indeed, GEMM implements a spatial convolution where each
thread computes a single value of the output tensor; therefore,
most of the time, the fault will affect a single value, or a group
of 32 values, belonging to the same warp computation. In the
GEMM convolution, multiple erroneous values may appear
only when the fault affects shared memory resources, thus
propagating errors among multiple threads. Finally, results do
not show any relevant trend for the Winograd implementation.
So, no conclusion can be drawn at this point.

B. Erroneous Values Domains

The second analysis we perform is on the domains the
erroneous values belong to, to understand how faults affect the

Table I: Occurrence frequencies of the corruption patterns for
the single thread fault model

GEMM FFT Winograd
a) Single Point 75.75% 0.75% 22.69%
b) Same Row 0.76% 0.34% 14.81%
c) Bullet Wake 20.57% 0% 5.96%
d) Skip X 0.1% 3.13% 17.75%
e) Single Block 1.56% 17.65% 2.14%
f) Single Channel Alternated Blocks 0% 1.27% 0.06%
g) Full Channel 0% 68.19% 2.89%
h) Multichannel Block 0.03% 1.33% 0.09%
i) Shattered Channel 0% 2.04% 15.11%
j) Random 1.23% 5.30% 18.50%
corrupted tensors 3835 7613 4665

Table II: Occurrence frequencies of the corruption patterns for
the warp-level fault model

GEMM FFT Winograd
a) Single Point 0.37% 0.01% 0%
b) Same Row 0% 0.05% 0.12%
c) Bullet Wake 1.25% 0% 0.14%
d) Skip X 20.82% 1.54% 15.34%
e) Single Block 63.31% 11.3% 5.12%
f) Single Channel Alternated Blocks 0% 0.38% 4.33%
g) Full Channel 0.1% 70.5% 9.21%
h) Multichannel Block 13.93% 8.9% 9.96%
i) Shattered Channel 0.19% 5.76% 59.06%
j) Random 0.03% 1.56% 5.72%
corrupted tensors 4803 8784 5870

corrupted values in the output tensor and the error magnitude.
This analysis can help investigate hardening solutions based
on the expected values distribution, as in [23], [24]. In this
perspective, it is essential to differentiate whether or not
the erroneous values in the corrupted tensor fall within the
nominal range. Indeed, past studies [10] showed how corrupted
values sensibly exceeding the nominal range have a high
probability of propagating to the final CNN output, leading
to misclassification.

We identified three relevant erroneous values domains: i) In-
range when the erroneous values fall within the same range

a b c d e f g h i j
GEMM

0

25

50

75

100
Do

m
ai

n
Di

st
rib

ut
io

ns
 %

a b c d e f g h i j
FFT

0

25

50

75

100

a b c d e f g h i j
Winograd

0

25

50

75

100

In-range
Out-of-range
NaN
Mix

(1) Single thread faults

a b c d e f g h i j
GEMM

0

25

50

75

100

Do
m

ai
n

Di
st

rib
ut

io
ns

 %

a b c d e f g h i j
FFT

0

25

50

75

100

a b c d e f g h i j
Winograd

0

25

50

75

100

(2) Warp-level faults

Figure 3: Distribution of erroneous values domains in the corrupted tensors.

of the correct values; ii) Out-of-range, when we observe a
positive/negative spike, with the erroneous values exceeding
the expected range; and Not-a-number (NaN). Moreover, in
several corrupted tensors, we observed a combination of erro-
neous values belonging to two or more of the above classes;
we label this case as Mix.

Figure 3 reports the distributions of the erroneous values
domains for every convolution implementation and every spa-
tial distribution for the single thread and the warp-level fault
models. For the sake of space, in the plots, we used the same
alphabetic labels for the spatial distribution as in Figure 2.
When considering the single thread fault model, it can be
noticed that the erroneous values are almost equally distributed
between In-range and Out-of-range, with an always limited
percentage of Mix cases. On the other hand, when considering
the warp-level fault model, we can observe a more significant
percentage of Mix cases. However, most erroneous values fall
in the Out-of-range domain. Finally, NaN corruptions appear
in about 0.6%, 4%, and 0.8% of the cases for the GEMM,
FFT, and Winograd convolutions, respectively.

V. APPLICATION-LEVEL ANALYSIS AND EXPLOITATION

We exploited the defined error models in application-level
error simulations of three CNNs, namely, LeNet, AlexNet,
and ResNet, to study how the resilience of the overall ap-
plication varies when considering different convolution imple-
mentations. For each CNN and each fault model, i.e., single
thread and warp-level, we ran an error simulation campaign
consisting of 10,000 experiments. In each campaign, the error
models have been injected, assuming the occurrence proba-
bilities for the spatial distributions and the erroneous values
domains previously presented. Results are reported in Table III
providing the operator vulnerability, i.e., the probability that a

Table III: Error simulation results

Impl. Fault Op. % Misclassifications
Model Vuln. LeNet AlexNet ResNet

GEMM thread 24% 20.09% 36.13% 27.85%
warp 30% 81.63% 83.21% 75.99%

FFT thread 48% 81.84% 88.09% 59.02%
warp 55% 85.42% 94.38% 77.20%

Winograd thread 29% 43.90% 49.38% 39.55%
warp 37% 90.87% 95.52% 89.59%

hardware fault produces an error on the operator output and
the percentage of misclassifications over the total number of
error simulations. Operator vulnerability has been computed
through the results of architecture-level fault injection reported
in Table I and II; indeed, these values are independent of the
specific CNN application.

As a first consideration, the FFT convolution presents the
highest operator vulnerability and the highest percentage of
misclassifications when considering single-thread faults. When
considering the warp-level fault model, we may notice a
very high misclassification probability for all the convolution
implementations, thus confirming that the corruption of 32
threads has a more disruptive effect. More in detail, the FFT
convolution is the worst for LeNet and AlexNet, while for
ResNet, the Winograd convolution presents results worse than
the other two implementations.

Using the adopted two-level analysis framework, we better
investigated the actual causes of these results. First, we notice
that the erroneous values domain highly affects the capabil-
ity of the CNN to classify correctly. For every convolution
implementation, Table IV reports the misclassification proba-
bility associated with the four erroneous values domains and
irrespective of the spatial patterns (for the sake of space, these
values have been averaged on the three CNN applications). It

Table IV: Mis-classifications vs. Erroneous Values Domains

Domain GEMM FFT Winograd
thread warp thread warp thread warp

In-Range 5.22% 27.82% 50.29% 55.72% 14.30% 40.57%
Out-of-Range 62.28% 85.12% 93.15% 93.23% 74.92% 87.59%
NaN 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Mix 38.73% 53.97% 73.49% 73.57% 59.06% 53.97%

Table V: Mis-classifications vs. Spatial Patterns with Clipping

Spatial pattern GEMM FFT Winograd
thread warp thread warp thread warp

Single Point 2.00% 2.11% 2.61% 0.00% 2.02% -
Same Row 8.76% - 10.83% 0.00% 3.46% 6.56%
Bullet Wake 13.70% 7.82% - - 11.62% 8.13%
Skip X 14.53% 14.65% 28.28% 43.26% 15.35% 35.88%
Single Block 34.59% 26.40% 32.43% 32.29% 30.10% 27.49%
Single Channel Alt. - - 36.40% 34.78% 14.07% 35.95%
Full Channel - 27.60% 57.90% 60.78% 57.42% 63.68%
Multichannel Block 22.97% 56.26% 53.05% 49.84% 59.51% 56.11%
Shatter Channel - 44.68% 54.89% 57.43% 28.77% 38.23%
Random 21.79% 19.11% 35.27% 43.48% 16.45% 36.31%

can be noticed that NaN values always cause misclassifica-
tions; at the same time, Out-of-range erroneous values cause
misclassification in up to the 93.15% of the cases, while the
effect of In-range errors is much less severe.

To handle misclassifications, past approaches, e.g., [10],
proposed clipping-based strategies to clamp the erroneous val-
ues within the nominal range. Nevertheless, these approaches
have not been validated on accurate error models; single
erroneous values are generally only considered. As we demon-
strated in the previous section, more complex spatial patterns,
counting on multiple erroneous values, may be produced
by faults. Therefore, we analyzed how effective clipping-
based error correction methodologies would be when dealing
with errors counting multiple erroneous values. For the three
convolution implementations, Table V reports misclassification
probabilities associated with every spatial distribution after
applying a clipping strategy (again, these values have been
averaged on the three CNN applications). It can be observed
that, as reported in the literature, the effect of single erroneous
values is absorbed in most cases; on the other hand, more com-
plex spatial patterns still cause misclassifications regardless of
the clipping.

VI. CONCLUSIONS

We presented an in-depth analysis of the effects of faults
on three convolution implementations accelerated on GPUs.
First, we extracted a rich and realistic set of error models
defined in terms of spatial distribution and domains of the
erroneous values and the associated occurrence probabilities.
Then, we identified GEMM as the most resilient convolution
implementation. Finally, we demonstrated that error correction
approaches based on clipping are ineffective against complex
errors presenting multiple erroneous values and that more
advanced strategies are still required.

REFERENCES

[1] M. Campbell, M. Egerstedt, J. How, and R. Murray, “Autonomous
driving in urban environments: approaches, lessons and challenges,”
Philosophical Trans. of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 368, no. 1928, pp. 4649–4672, 2010.

[2] Z. Ouyang, J. Niu, Y. Liu, and M. Guizani, “Deep CNN-Based Real-
Time Traffic Light Detector for Self-Driving Vehicles,” IEEE Trans.
Mobile Computing, vol. 19, no. 2, pp. 300–313, 2020.

[3] Int. Organization for Standardization (ISO), “26262: Road vehicles -
Functional safety,” https://www.iso.org/standard/68383.html, 2011.

[4] T. Karnik and P. Hazucha, “Characterization of soft errors caused by
single event upsets in CMOS processes,” IEEE Trans. Dependable and
Secure Computing, vol. 1, no. 2, pp. 128–143, 2004.

[5] E. Normand, “Single event upset at ground level,” IEEE Trans. Nuclear
Science, vol. 43, no. 6, pp. 2742–2750, 1996.

[6] ACEA - European Automobile Manufacturers’ Association,
“ACEA Report: Vehicles in use - Europe 2019,” https:
//www.acea.be/publications/article/report-vehicles-in-use-europe-2019,
2019, (Accessed on 03/20/2020).

[7] F. F. dos Santos, L. Carro, and P. Rech, “Kernel and layer vulnerability
factor to evaluate object detection reliability in GPUs,” IET Computers
& Digital Techniques, vol. 13, no. 3, pp. 178–186, 2019.

[8] A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Optimizing Selective Protection for CNN Resilience,” in Proc. Int.
Symp. Software Reliability Engineering, 2021, pp. 127–138.

[9] N. Cavagnero, F. F. dos Santos, M. Ciccone, G. Averta, T. Tommasi,
and P. Rech, “Transient-Fault-Aware Design and Training to Enhance
DNNs Reliability with Zero-Overhead,” in Proc. Symp. On-Line Testing
and Robust System Design, 2022, pp. 1–7.

[10] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for
Deep Neural Networks through range restriction,” in Proc. Int. Conf.
Dependable Systems and Networks, 2021, pp. 1–13.

[11] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[12] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala,
Serkan Piantino, Yann LeCun, “Fast Convolutional Nets With fbfft:
A GPU Performance Evaluation,” in Proc. Int. Conf. on Learning
Representations, 2015, pp. 1–17.

[13] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 4013–4021.

[14] M. Jorda, P. Valero-Lara, and A. J. Pena, “Performance Evaluation
of cuDNN Convolution Algorithms on NVIDIA Volta GPUs,” IEEE
Access, vol. 7, pp. 70 461–70 473, 2019.

[15] X. Xue, H. Huang, C. Liu, T. Luo, L. Zhang, and Y. Wang, “Winograd
convolution: A perspective from fault tolerance,” in Proceedings of the
59th ACM/IEEE Design Automation Conference, 2022.

[16] C. Bolchini, L. Cassano, A. Miele, and A. Nazzari, “Selective Hardening
of CNNs based on Layer Vulnerability Estimation,” in Proc. Int. Symp.
Defect and Fault Tolerance in VLSI and Nanotechnology Systems, 2022,
pp. 1–6.

[17] C. Bolchini, L. Cassano, A. Miele, and A. Toschi, “Fast and Accurate
Error Simulation for CNNs Against Soft Errors,” IEEE Trans. on
Computers, vol. early access, pp. 1–14, 2022.

[18] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hub-
bard, and L. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[19] NVIDIA, “cuDNN,” https://developer.nvidia.com/cudnn, accessed:
2023-05-05.

[20] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A
Dynamic Binary Instrumentation Framework for NVIDIA GPUs,” in
Proc. Int. Symp. Microarchitecture, 2019, p. 372–383.

[21] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A Unified Graphics and Computing Architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[22] F. F. dos Santos, J. E. Rodriguez Condia, L. Carro, M. Sonza Reorda,
and P. Rech, “Revealing GPUs Vulnerabilities by Combining Register-
Transfer and Software-Level Fault Injection,” in Proc. Int. Conf. De-
pendable Systems and Networks, 2021, pp. 292–304.

[23] E. Ozen and A. Orailoglu, “Sanity-check: Boosting the reliability of
safety-critical deep neural network applications,” in Asian Test Symp.,
2019, pp. 7–75.

[24] C. Amarnath, M. Mejri, K. Ma, and A. Chatterjee, “Soft Error Resilient
Deep Learning Systems Using Neuron Gradient Statistics,” in Proc. Intl.
Symp. On-Line Testing and Robust System Design, 2022, pp. 1–7.

