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Abstract: Stabilizing a reference trajectory for a nonlinear system is a common, non-trivial task
in control theory. An approach to solve this problem is to approximate the nonlinear system
along the trajectory as an uncertain linear time-varying one, and to solve an optimization
problem featuring Linear Matrix Inequality (LMI) constraints to derive a stabilizing, smooth,
gain-scheduled control law. Such an approach is extended here by considering a set of reference
trajectories instead of a single one, such that switching among them is permitted. These
switching events are commonly encountered in industrial plants, such as energy generation
systems, and are of high relevance in practice. The approach allows one to derive a gain-scheduled
control law guaranteeing asymptotic stability also during the switching and accounting for the
linearization errors. Simulation results on a chemical system highlight the effectiveness of the
method.
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1. INTRODUCTION

A common approach to control of industrial systems is to
generate a set of admissible open-loop trajectories which
are to be stabilized by corresponding feedback laws. Gen-
erating admissible open-loop trajectories can be done ef-
ficiently via open-loop optimal control Lee and Markus
(1967), flatness Sun et al. (2022), iterative learning control
Cobb et al. (2017), physical insight or possibly trial and
error. However, the design of a stabilizing feedback still
remains a challenge, especially when the trajectory is al-
lowed to be cyclic or have forks due to decisions in a higher
level planner. Indeed, industrial systems are often operated
along cyclic trajectories, obtained by switching between
different operating modes. High-level decision layers may
command a switch between predefined reference trajecto-
ries and possibly also between different control algorithms.
Examples are systems for manufacturing Konter and Thu-
mann (2001) or power generation, such as airborne wind
energy systems Fagiano et al. (2021). While a substantial
amount of work has been carried out on stabilizing a single
reference trajectory, the same does not hold when consid-
ering such switching behaviors. The current approaches to
evaluate close-loop stability in these cases include brute-
force analysis via Monte Carlo simulations, the study of
the overall system as a hybrid one where the discrete
state represents a selection of the mode of operation, or
nonlinear model predictive control. All these solutions,
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however, appear to be not tractable either in the off-line
phase or in real-time operation, especially for relatively
fast dynamics.
In this paper, we propose an approach that guarantees
asymptotic stability of the trajectories of interest also
across the reference switching events, and it is computa-
tionally tractable off-line and very efficient on-line since it
yields a smooth, gain-scheduled feedback law suitable for
implementation on embedded systems with fast sampling
rates. Further, we propose a novel method to estimate the
basin of attraction for the stabilized trajectories.
In the remainder, we understand a forking trajectory
as a reference trajectory along which a given state at
a specific time may have two successors, depending on
a decision, of which the outcome is not known a-priori
during the design process of the feedback. To address
the resulting stabilization problem, we extend a recently
proposed approach based on LMIs Kessler and Fagiano
(2023). The main idea is to consider the points (or regions)
in the state space where switches can occur as nodes, and
each trajectory as a set of directed edges connecting two
such nodes. Then, we extend the result in Kessler and
Fagiano (2023) by considering all possible successors for
each node, instead of one distinct successor as done for
single-trajectory problems. After presenting the method
and its theoretical properties, we showcase its behavior on
a chemical plant model.

2. PROBLEM FORMULATION

We consider a nonlinear, time-invariant system in discrete
time k:
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systems, and are of high relevance in practice. The approach allows one to derive a gain-scheduled
control law guaranteeing asymptotic stability also during the switching and accounting for the
linearization errors. Simulation results on a chemical system highlight the effectiveness of the
method.
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1. INTRODUCTION

A common approach to control of industrial systems is to
generate a set of admissible open-loop trajectories which
are to be stabilized by corresponding feedback laws. Gen-
erating admissible open-loop trajectories can be done ef-
ficiently via open-loop optimal control Lee and Markus
(1967), flatness Sun et al. (2022), iterative learning control
Cobb et al. (2017), physical insight or possibly trial and
error. However, the design of a stabilizing feedback still
remains a challenge, especially when the trajectory is al-
lowed to be cyclic or have forks due to decisions in a higher
level planner. Indeed, industrial systems are often operated
along cyclic trajectories, obtained by switching between
different operating modes. High-level decision layers may
command a switch between predefined reference trajecto-
ries and possibly also between different control algorithms.
Examples are systems for manufacturing Konter and Thu-
mann (2001) or power generation, such as airborne wind
energy systems Fagiano et al. (2021). While a substantial
amount of work has been carried out on stabilizing a single
reference trajectory, the same does not hold when consid-
ering such switching behaviors. The current approaches to
evaluate close-loop stability in these cases include brute-
force analysis via Monte Carlo simulations, the study of
the overall system as a hybrid one where the discrete
state represents a selection of the mode of operation, or
nonlinear model predictive control. All these solutions,
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however, appear to be not tractable either in the off-line
phase or in real-time operation, especially for relatively
fast dynamics.
In this paper, we propose an approach that guarantees
asymptotic stability of the trajectories of interest also
across the reference switching events, and it is computa-
tionally tractable off-line and very efficient on-line since it
yields a smooth, gain-scheduled feedback law suitable for
implementation on embedded systems with fast sampling
rates. Further, we propose a novel method to estimate the
basin of attraction for the stabilized trajectories.
In the remainder, we understand a forking trajectory
as a reference trajectory along which a given state at
a specific time may have two successors, depending on
a decision, of which the outcome is not known a-priori
during the design process of the feedback. To address
the resulting stabilization problem, we extend a recently
proposed approach based on LMIs Kessler and Fagiano
(2023). The main idea is to consider the points (or regions)
in the state space where switches can occur as nodes, and
each trajectory as a set of directed edges connecting two
such nodes. Then, we extend the result in Kessler and
Fagiano (2023) by considering all possible successors for
each node, instead of one distinct successor as done for
single-trajectory problems. After presenting the method
and its theoretical properties, we showcase its behavior on
a chemical plant model.

2. PROBLEM FORMULATION

We consider a nonlinear, time-invariant system in discrete
time k:
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x(k + 1) = f(x(k), u(k)), (1)
where x ∈ X ⊆ Rn is the state and u ∈ U ⊆ Rm

the input vector. Associated with this nonlinear system
we consider a digraph G consisting of a finite set of
nodes V ⊂ X, representing discrete reachable states of
interest, and edges E ⊆ V × V connecting these nodes;
each edge thus represents the input value that steers the
system from a node to another one in one time step.
For the sake of compactness, we refer to the elements
in V with their index i and denote its cardinality as
M = |V|. Correspondingly, we denote the edges as E =
{Vi, Vj}=̃{i, j}. We denote with F the map associating an
edge to a specific input, implicitly assuming it is unique

F : E → U
F(E = {i, j}) ∈ {u ∈ U|xj = f(xi, u)}.

For each node Vi ∈ V we denote by N out(i) the set of out-
neighbors of the node. For each edge E ∈ E, we denote
with E− the node in V which is left by the edge and by
E+ the node in V which is entered by the edge. We denote
by W a set of walks in G. Each walk Wr ∈ W represents
a reference trajectory of interest for the nonlinear system
(1):

Wr = {(xWr,ℓ
ref , uWr,ℓ

ref )}, ℓ = 0, . . . , NWr

W = {Wr}, r = 1, . . . , Nr

Let r̄(k) and ℓ̄(k) be the indices denoting the active
reference trajectory and the active node in that trajectory
at time k, respectively. Then, we can specify xref(k) and
uref(k) as follows:

xref(k) = x
Wr̄(k),ℓ̄(k)

ref

uref(k) = u
Wr̄(k),ℓ̄(k)

ref .

Though this definition masks the dependency on r̄(k)
and ℓ̄(k), for the sake of brevity, this dependency is as-
sumed to be implicitly known. For a given state-input pair
(x(k), u(k)), ∆x(k) := x(k)− xref(k) denotes the tracking
error and ∆u(k) := u(k) − uref(k) denotes the input
deviation from the reference. We consider the presence
of desired sets where these deviations shall lie during the
whole considered time interval, given by ∆x(k) ∈ ∆X,
∆u(k) ∈ ∆U, ∀Wr ∈ W, ∀k = 0, . . . NWr , containing the
origin in their interior.
We consider the following assumptions, where A⊕B is the
Minkowski sum of the two generic sets A and B:

A⊕ B .
= {a+ b : a ∈ A, b ∈ B} .

Assumption 1. The sets ∆X and ∆U are compact, non-
empty and contain the origin in their interior.
Assumption 2. ∀Wr ∈ W and each ℓ = 0, . . . , NWr

,
function f : Rn × Rm → Rn in (1) is differentiable in
the set (

{xWr,ℓ
ref } ⊕∆X

)
×
(
{uWr,ℓ

ref } ⊕∆U
)
.

For simplicity, in the remainder we consider a hypercuboid
for the inputs ∆umin ≤ ∆u(k) ≤ ∆umax, which is also a
very common case in practice.
As mentioned, we want to consider trajectories that may
have cycles, merge with other trajectories, or forks. Con-
sidering the graph formalism, wherever forks or merges
occur, there will be nodes with multiple successors or
predecessors respectively. The precise task is to design
a (generally) time-varying, feedback controller C(∆x, k)

such that the origin of the closed-loop system describing
the error dynamics

∆x(k + 1) =

f (∆x(k) + xref (k), uref (k) + C(∆x(k)))− f (xref (k), uref (k))
(2)

is asymptotically stable for each trajectory
(xref(k), uref(k)) , k = 0, . . . , NWr

,Wr ∈ W (3)
as well as for the overall trajectory obtained by any
possible switching events allowed by the graph G.

3. PROPOSED APPROACH AND MAIN RESULTS

We propose a partitioning followed by the construction of
an uncertain system and propose a gain-scheduled, linear
feedback. Around each node xi ∈ V and edge E ∈ E
we extend the discrete value xi and ui = F(E) to a set
by adding the allowed deviation employing the Minkowski
sum. Based on these sets, we define the uncertain error
dynamics

∀E ∈ E :

AE =

{
A =

∂f

∂x

����
(x,u)

, (x, u) ∈ E− ⊕∆X×F(E)⊕∆U

}

BE =

{
B =

∂f

∂u

����
(x,u)

, (x, u) ∈ E− ⊕∆X×F(E)⊕∆U

}

To each edge E ∈ E, we associate an uncertain linear
system

∀E ∈ E : SE = (AE × BE).

We call the graph of uncertain linear systems associated
with G the uncertain linear time varying (LTV) system

S = (G,S)
S(E) = SE .

(4)

Let us denote EWr,0 to EWr,NWr−1 the edges of a walk Wr.
The uncertain LTV system obtained along a walk Wr ∈ W
is denoted

SWr
= {SEWr,0

, . . . , SEWr,NWr
−1
}.

For the sake of brevity, given a node i that is part of a
trajectory, we let V̄i be the union of i itself and its out-
neighbors, i.e.

V̄i = {i} ∪ N out(i).

For each walk Wr, let us further introduce the set of
admissible scheduling sequences, Πr:

Πr
.
=




πr =
{πr(0),
. . . ,
πr(NWr

)}

�����������

πr(ℓ) ∈ [0, 1]NWr

NWr∑
i=1

πi(ℓ) = 1

πr,i(ℓ) ∈ [0, 1], ∀i ∈ {ℓ, ℓ+ 1}
πr,i(ℓ) = 0, ∀i /∈ {ℓ, ℓ+ 1}




(5)
where πi(ℓ) denotes the ith entry of vector π(ℓ). We
associate to each node a feedback gain Ki, which is to be
designed. Correspondingly, each reference state xWr,ℓ

ref at
step ℓ of the trajectory Wr will have an associated feedback
gain KWr,ℓ. Then, for chosen scheduling sequences πr ∈
Πr, r = 1, . . . , Nr, we consider a controller with the
following structure:
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where πi(ℓ) denotes the ith entry of vector π(ℓ). We
associate to each node a feedback gain Ki, which is to be
designed. Correspondingly, each reference state xWr,ℓ

ref at
step ℓ of the trajectory Wr will have an associated feedback
gain KWr,ℓ. Then, for chosen scheduling sequences πr ∈
Πr, r = 1, . . . , Nr, we consider a controller with the
following structure:

C(∆x, r̄(k), ℓ̄(k)) = −
NWr̄∑
j=1

KWr̄,jπr̄,j(ℓ̄(k))

� �� �
K(r̄(k),ℓ̄(k))

∆x(k). (6)

In this last paragraph we address the extension to ro-
bust control. The model we employ is a generalization
of Takagi-Sugeno Fuzzy models, which consider a linear
parameter varying plant and an additive uncertainty as
a polytopic set of matrices López-Estrada et al. (2019);
the method can be applied to a graph of systems, where
a Takagi-Sugeno Fuzzy model is associated with each
edge. The type of stability we establish is polyquadratic
Lyapunov stability, cf. Daafouz and Bernussou (2001). To
examine the effect of additive disturbance, well-known
methods that exploit Lyapunov stability can be used,
for example the methods described in Khalil and Grizzle
(2002) in the chapter “Stability of Perturbed Systems“.

3.1 Computing the Feedback Gains

In this section, we provide a result that allows one to
compute Ki such that the uncertain LTV system (4) is sta-
bilized and therefore each trajectory (3) is stabilized with
a gain-scheduled control law. Then, in Section 3.2 we de-
rive sufficient conditions on the initial perturbation ∆x(0)
guaranteeing that the actual trajectories (∆x(k),∆u(k))
belong to ∆X × ∆U, ∀k = 0, . . . , NWr ,Wr ∈ W, thus
achieving consistency of the obtained trajectories with our
standing assumptions.
Let us first assume that for any walk Wr=̃{wr,i =
wr,1, . . . , wr,NWr

} ∈ W the following hard-switching
scheduling sequence π̄r ∈ Πr is used:

π̄r ∈ Πr : πr(ℓ) ∈ {0, 1}NWr (7)
i.e. where all except one of the elements in π̄ are 0. The
element with value 1 pertains to the node representing
∆xref(k).
Lemma 3. (Gain-scheduled Stabilizability of the uncer-
tain LTV system). The uncertain LTV system (4) can be
asymptotically stabilized at the origin along a reference
walk Wr ∈ W by a controller of the form (6) if there exist
matrices Gi ∈ Rn×n, Ri ∈ Rm×n and Qi ∈ Sn×n

++ such that

0 ≺
[
Gi +GT

i −Qi (·)
AGi −BRi Qj

] ∀i = 1, . . . ,M
∀j ∈ {i,N out(i)}
∀(A,B) ∈ SE

(8)

In this case, a stabilizing controller is the feedback law
(6) with the gains Ki = RiG

−1
i and the hard-switching

scheduling sequence π̄r (7).

Proof. By considering each edge E ∈ E a reference
trajectory, stability under Feedback (6) with the gains
Ki = RiG

−1
i and the hard-switching scheduling sequence

π̄ (7) along each edge is proven by Lemma 3.1 in Kessler
and Fagiano (2023). In what follows, we prove stability of
any uncertain LTV system S under Feedback (6). Consider
the node first node of the reference trajectory’s (3) walk
Wr, denoted wr,1 = i. If the trajectory ends in i, this
concludes the proof, because each node is stabilized. Else,
there will be a successor j ∈ N out(i). In virtue of LMI
(8) the uncertain linear systems ∀j ∈ N out(i) : {S{i;j}}
are stable under the proposed feedback law. From node j

onward, it is equivalent to consider the tail of Wr, Wr,+ =
Wr\{wr,1}. Observe that by construction Wr,+ ∈ W, thus,
Wr,+ is stabilized and the proof applies recursively, until
Wr,+ consists of only one node and the proof is concluded.

We now state our main result, which generalizes Lemma
3 to any gain scheduling sequence πr ∈ Πr and to
deal with asymptotic stability of the nonlinear system
(2) (instead of its uncertain LTV approximation) under
the standing assumptions along any walk Wr ∈ W.
Asymptotic stability of the nonlinear trajectory can be
guaranteed by a control law with associated Lyapunov
function for the closed loop uncertain LTV system (4),
depending polytopically on π, according to the following
Theorem.
Theorem 4. (Gain-scheduled Stabilizability of the nonlin-
ear system along compatible reference trajectories). Con-
sider the model (1) and a reference trajectory compatible
with (V,E) (xref(k), uref(k)), k = 0, . . . , NWr

,Wr ∈ W.
Let Assumptions 1 and 2 hold. Consider a feedback con-
troller of the form (6) with any scheduling sequence πr ∈
Πr. Further assume that the close loop state-input pertur-
bation trajectories, (∆x(k),∆u(k)), belong to ∆X×∆U for
all k = 0, . . . , NWr

. Then, the model (2) is asymptotically
stable at the origin if there exist matrices Gi ∈ Rn×n,
Ri ∈ Rm×n Qi ∈ Sn×n

++ , i = 1, . . . ,M, such that

0 ≺
[
Gi +GT

i −Qi (·)
AGi −BRi Qj

] ∀i = 1, . . . ,M

∀j, ĵ ∈ {i,N out(i)}
∀(A,B) ∈ Sĵ

(9)

and in between any two subsequent partitions {i, j} ∈ E
a set of stabilizing feedback gains Ki for control Law (6)
is given as

Ki ∈ Co{RiG
−1
i , RjG

−1
j }, (10)

where Co denotes the convex hull.

Proof. We first establish stability of the system (1) under
feedback law (6) with any scheduling sequence πr ∈ Πr

and gains Ki along each individual edge by applying
Theorem 3.1 in Kessler and Fagiano (2023). In virtue of
Proposition 3.1 in Kessler and Fagiano (2023) the nonlin-
ear system’s dynamics are covered by the uncertain LTV
system (4). This holds true for any trajectory compatible
with (V,E), because ∀E ∈ E the uncertain LTV system
SE is stabilized. The proof can be extended to not only
consider individual edges, but the whole graph and and
uncertain LTV system (4) as done in the proof of Lemma
3 concluding the proof.

To obtain the Feedback (6) from suitable matrices Ki each
KWr,j is assigned to the Ki with i corresponding to the
index of the node in the trajectory.
Concluding this Section, we define the closed-loop uncer-
tain LTV system and solutions of uncertain LTV systems
in form (4). Let each node Vi ∈ V be associated with a set
of linear feedback gains Ki. For each edge E ∈ E consider
the linear construction

∀E ∈ E :

AE,κ = {A−BK : A ∈ AE , B ∈ BE , K ∈ KE−}
the closed loop system. We call the graph of uncertain
linear closed-loop systems associated with G the uncertain
LTV system
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Sκ = (G,Sκ)

Sκ(E) = AE,κ.
(11)

Next, we shall define solutions to the autonomous uncer-
tain LTV systems (11). We denote by

∆XWr (∆x0) = {∆x(0) = x0,∆x(1), . . . ,∆x(NWr )}
a trajectory of ∆x(k) starting in ∆x0 associated with a
walk Wr ∈ W.
Definition 5. (Solutions of the autonomous System (11)).A
trajectory ∆XWr

(∆x0) s called a solution to a system in
form (11) along a walk Wr = w1, . . . , wNWr

∈ W starting
in ∆x0 if and only if

∆x(0) = x0

∀k = 0, . . . , NWr
− 1 : ∆x(k + 1) ∈

{x ∈ Rn : ∃A ∈ A{wk,wk+1},κ : x = Ax(k)}.
(12)

3.2 Basin of attraction

Analogously to our prior work, we continue by establishing
a basin of attraction for any compatible trajectory such
that the bounds
∀Wr ∈ W : ∆x(k) ∈ ∆X, ∆u(k) ∈ ∆U ∀k = 0, . . . , NWr

are satisfied. We start by defining invariant ellipsoids, then
consider the strongly connected components in G first,
then show, that it is sufficient to consider the condensation
digraph C{G} and conclude by establishing a basin of
attraction for a set of trajectories. A definition of the con-
densation digraph can be found in Bullo (2020) along with
further references. A box-constraint ∆u(k) ∈ ∆U ∀k =
1, . . . , NWr can be enforced analogously to Kothare et al.
(1996); Cuzzola et al. (2002) and extending the semidef-
inite programs accordingly is straight forward. For the
sake of compactness and brevity, we focus on enforcing
constraints on ∆x.
Let us define an invariant ellipsoid for S associated with a
graph (V,E). We call an ellipsoid

E(Q) = {x ∈ Rn : xTQ−1x ≤ 1}, Q ∈ Sn×n
++ ,

where Sn×n
++ denotes the set of positive-definite, symmetric

n× n matrices, invariant, if the following holds:
∀k ∈ N : x(0) ∈ E(Q) =⇒ x(k) ∈ E(Q).

In the trivial case, that there is a constant Lyapunov
function for S, i.e. Q1 = Q2 = . . . = QM , E(Q1) is an
invariant ellipsoid, see Boyd et al. (1994).
Let us now consider a strongly connected graph G. For all
possible walks with associated trajectories we aim to find
the worst-case expansion of ∥∆x(k)∥ under feedback (6),
which can be understood as an H∞-norm of S under the
proposed feedback.
Definition 6. (H∞-norm of a walk ∥Wr∥∞).Given a
walk Wr ∈ W and a trajectory (xref(k), uref(k)), k =
0, . . . , NWr compatible with the graph
V = Wr,E = {{V1,V2}, . . . , {VM−1,VM}} and the
uncertain LTV system S induced by Wr under feed-
back (6) with solutions {∆x(0),∆x(1), . . . ,∆x(NWr )} =
∆XW (∆x0), ||Wr||∞ is defined as follows:

||Wr||∞ =

maximize
∆x0∈∆X,k=1,...,NWr ,∆x(k)∈∆XWr (∆x0)

||∆x(k)||
||∆x0||

The next result provides an upper bound to ∥Wr∥∞
Lemma 7. (Upper bound on the H∞-norm of a walk
||Wr||∞). Given a walk Wr ∈ W, |Wr| = NWr

and the
uncertain LTV system S induced by Wr under feedback
((6)) with LMIs (9) being feasible, then an upper bound
on ||Wr||∞ is given by γ∗λmax(Q1)/λmin(Q1) with γ∗ being
the minimum of

minimize
γi∈R+,γ∈R+

γ

γ1 = 1

γNWr
QNWr

≼ γQ1

∀i = 1, . . . , NWr
− 1 :

γiQi ≼ γi+1Qi+1.

(13)

Proof. Recall, that along each trajectory, the Lyapunov
function of the closed-loop uncertain LTV system is nega-
tive decrescendandt along each edge. Thus, for each edge
{i; j} ∈ E, it holds that

x ∈ E(Qi) =⇒ x+ ∈ E(Qi),

therefore from any node i the ellipsoid Qi will be mapped
into Qi while transitioning along the edge {i; j}. Further,
for all except for the last node in W each node’s invariant
ellipsoid contains the previous node’s invariant ellipsoids
in virtue of LMIs (13). Thus, ||Wr||∞ is given by the
minimum, γ∗, of the semidefinite program

minimize
γ

γ

γMQM ≼ γQ1,

searching the minimum scaling of Q1 until it contains
γMQM . Finally the term λmax(Q1)/λmin(Q1) accounts for
the shape of the initial ellipsoid.

Next, we establish an upper-bound for the H∞-norm of
cycles in a graph.
Lemma 8. (Upper bound on the H∞-norm of a cycle
||C||∞). Given a cycle C ∈ W, consider the walk WC =
C, |WC | = NC , then ||C||∞ = ||WC ||∞.

Proof. Due to monotonic descent of the Lyapunov func-
tion, ∆x(0) ∈ E(Q1) =⇒ ∆x(NC) ∈ E(QNC

) = E(Q1),
traversing the cycles at least once is a contracting opera-
tion and it is sufficient to consider the norm of the walk
of a single traversal of the cycle.
Remark 9. A survey on methods to find all circuits, there-
fore all cycles, in a directed graph is given in Mateti and
Deo (1976). An efficient algorithm is proposed in Johnson
(1975).

Next, we aim to bound the H∞-norm of a connected
component GC . Let ∀Vi ∈ V : C(Vi) = {C ∈ C : Vi ∈ C}
be the set of all cycles containing a node Vi. We define the
H∞-norm of a node Vi as

||Vi||∞ = maximize
C∈C(Vi)

||C||∞.

Next, we associate with each edge E = {i, j} an H∞-norm
||E = {i, j}||∞ = ||W = {i, j}||∞.

Let the graph Ḡ = (V̄, Ē) be obtained by performing a
nodes splitting on G with weights ||Vi||∞ on the nodes
and ||E||∞ on the edges and denote by P̄ be the set
of paths in Ḡ. Note, that without a node splitting, we
would associate a weight on the nodes which poses an issue
with most algorithms on digraphs, since they consider
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Sκ = (G,Sκ)

Sκ(E) = AE,κ.
(11)

Next, we shall define solutions to the autonomous uncer-
tain LTV systems (11). We denote by

∆XWr (∆x0) = {∆x(0) = x0,∆x(1), . . . ,∆x(NWr )}
a trajectory of ∆x(k) starting in ∆x0 associated with a
walk Wr ∈ W.
Definition 5. (Solutions of the autonomous System (11)).A
trajectory ∆XWr

(∆x0) s called a solution to a system in
form (11) along a walk Wr = w1, . . . , wNWr

∈ W starting
in ∆x0 if and only if

∆x(0) = x0

∀k = 0, . . . , NWr
− 1 : ∆x(k + 1) ∈

{x ∈ Rn : ∃A ∈ A{wk,wk+1},κ : x = Ax(k)}.
(12)

3.2 Basin of attraction

Analogously to our prior work, we continue by establishing
a basin of attraction for any compatible trajectory such
that the bounds
∀Wr ∈ W : ∆x(k) ∈ ∆X, ∆u(k) ∈ ∆U ∀k = 0, . . . , NWr

are satisfied. We start by defining invariant ellipsoids, then
consider the strongly connected components in G first,
then show, that it is sufficient to consider the condensation
digraph C{G} and conclude by establishing a basin of
attraction for a set of trajectories. A definition of the con-
densation digraph can be found in Bullo (2020) along with
further references. A box-constraint ∆u(k) ∈ ∆U ∀k =
1, . . . , NWr can be enforced analogously to Kothare et al.
(1996); Cuzzola et al. (2002) and extending the semidef-
inite programs accordingly is straight forward. For the
sake of compactness and brevity, we focus on enforcing
constraints on ∆x.
Let us define an invariant ellipsoid for S associated with a
graph (V,E). We call an ellipsoid

E(Q) = {x ∈ Rn : xTQ−1x ≤ 1}, Q ∈ Sn×n
++ ,

where Sn×n
++ denotes the set of positive-definite, symmetric

n× n matrices, invariant, if the following holds:
∀k ∈ N : x(0) ∈ E(Q) =⇒ x(k) ∈ E(Q).

In the trivial case, that there is a constant Lyapunov
function for S, i.e. Q1 = Q2 = . . . = QM , E(Q1) is an
invariant ellipsoid, see Boyd et al. (1994).
Let us now consider a strongly connected graph G. For all
possible walks with associated trajectories we aim to find
the worst-case expansion of ∥∆x(k)∥ under feedback (6),
which can be understood as an H∞-norm of S under the
proposed feedback.
Definition 6. (H∞-norm of a walk ∥Wr∥∞).Given a
walk Wr ∈ W and a trajectory (xref(k), uref(k)), k =
0, . . . , NWr compatible with the graph
V = Wr,E = {{V1,V2}, . . . , {VM−1,VM}} and the
uncertain LTV system S induced by Wr under feed-
back (6) with solutions {∆x(0),∆x(1), . . . ,∆x(NWr )} =
∆XW (∆x0), ||Wr||∞ is defined as follows:

||Wr||∞ =

maximize
∆x0∈∆X,k=1,...,NWr ,∆x(k)∈∆XWr (∆x0)

||∆x(k)||
||∆x0||

The next result provides an upper bound to ∥Wr∥∞
Lemma 7. (Upper bound on the H∞-norm of a walk
||Wr||∞). Given a walk Wr ∈ W, |Wr| = NWr

and the
uncertain LTV system S induced by Wr under feedback
((6)) with LMIs (9) being feasible, then an upper bound
on ||Wr||∞ is given by γ∗λmax(Q1)/λmin(Q1) with γ∗ being
the minimum of

minimize
γi∈R+,γ∈R+

γ

γ1 = 1

γNWr
QNWr

≼ γQ1

∀i = 1, . . . , NWr
− 1 :

γiQi ≼ γi+1Qi+1.

(13)

Proof. Recall, that along each trajectory, the Lyapunov
function of the closed-loop uncertain LTV system is nega-
tive decrescendandt along each edge. Thus, for each edge
{i; j} ∈ E, it holds that

x ∈ E(Qi) =⇒ x+ ∈ E(Qi),

therefore from any node i the ellipsoid Qi will be mapped
into Qi while transitioning along the edge {i; j}. Further,
for all except for the last node in W each node’s invariant
ellipsoid contains the previous node’s invariant ellipsoids
in virtue of LMIs (13). Thus, ||Wr||∞ is given by the
minimum, γ∗, of the semidefinite program

minimize
γ

γ

γMQM ≼ γQ1,

searching the minimum scaling of Q1 until it contains
γMQM . Finally the term λmax(Q1)/λmin(Q1) accounts for
the shape of the initial ellipsoid.

Next, we establish an upper-bound for the H∞-norm of
cycles in a graph.
Lemma 8. (Upper bound on the H∞-norm of a cycle
||C||∞). Given a cycle C ∈ W, consider the walk WC =
C, |WC | = NC , then ||C||∞ = ||WC ||∞.

Proof. Due to monotonic descent of the Lyapunov func-
tion, ∆x(0) ∈ E(Q1) =⇒ ∆x(NC) ∈ E(QNC

) = E(Q1),
traversing the cycles at least once is a contracting opera-
tion and it is sufficient to consider the norm of the walk
of a single traversal of the cycle.
Remark 9. A survey on methods to find all circuits, there-
fore all cycles, in a directed graph is given in Mateti and
Deo (1976). An efficient algorithm is proposed in Johnson
(1975).

Next, we aim to bound the H∞-norm of a connected
component GC . Let ∀Vi ∈ V : C(Vi) = {C ∈ C : Vi ∈ C}
be the set of all cycles containing a node Vi. We define the
H∞-norm of a node Vi as

||Vi||∞ = maximize
C∈C(Vi)

||C||∞.

Next, we associate with each edge E = {i, j} an H∞-norm
||E = {i, j}||∞ = ||W = {i, j}||∞.

Let the graph Ḡ = (V̄, Ē) be obtained by performing a
nodes splitting on G with weights ||Vi||∞ on the nodes
and ||E||∞ on the edges and denote by P̄ be the set
of paths in Ḡ. Note, that without a node splitting, we
would associate a weight on the nodes which poses an issue
with most algorithms on digraphs, since they consider

weighted digraphs with weights solely on the edges. The
node splitting associates with each node a pair of nodes
connected by an edge with the weight of the node, thus
yielding a suitable, weighted digraph. A precise definition
of node splitting is given in Trevisan (2011). We propose
the following bound on the H∞-norm of all walks inside a
connected component:
Lemma 10. (Upper bound on the H∞-norm of all walks
inside a connected component GC).The H∞-norm of GC

is given by
||GC ||∞ = maximize

P∈P̄
||P ||∞. (14)

Proof. By construction, any walk Wr ∈ W can be
considered a path P ∈ P, with P being the set of paths
in G after replacing the cycles it contains by their first
node. For each cycle replaced, the increase of the error
bound from visiting a node can be at most ||Vi||∞. Further,
along the path P , the increase of the error is bounded
by ||P ||∞. It remains to determine the path with the
maximum product of its own norm and those of the nodes.
This exact operation is implemented in Equation (14) by
searching for the path with the maximum H∞-norm in Ḡ.
Remark 11. A method to compute all paths in a directed
graph is laid out in Thorelli (1966).

The last step is to establish a H∞-norm of the closed-loop
uncertain LTV system (11). Consider the condensation
graph C{G}. Analogously as in the last step, for each
node in it, associate with the node the H∞-norm of the
represented connected component, for each edge the H∞-
norm of an edge and perform a node splitting to obtain the
weighted digraph G̃. Because the condensation digraph
always is a tree, the set of walks is equal to the set of
paths denoted W̃. We propose the following upper bound
Lemma 12. (Upper bound on the H∞-norm of all walks
inside a graph G). Let G̃ be obtained by constructing
C{G}, upper-bounding the H∞-norm of all nodes and
edges in C{G} and performing a node splitting. Let W̃
be the set of all walks in C{G}. The H∞-norm of G is
given by

||G||∞ = maximize
W∈W̃

||W ||∞. (15)

Proof. For each connected component GC visited, the
error can increase at most by ||G||∞. Further, along any
walk W̃ ∈ W̃, the increase of the error is bounded by
||W̃ ||∞ and node splitting accounts for visiting connected
components. Thus, the maximum increase of the error in
G is given by Equation (15).

To satisfy x(k) ∈ ∆X, we propose the following, where
B(∆X) = maximize

l∈{ℓ∈R+:{x∈Rn:||x||2≤ℓ}⊆∆X}
{l}

denotes the largest euclidean norm-ball fitting inside ∆X.
Theorem 13. (Minimal basin of attraction of S with
bound ∀W ∈ W : ∀k = 1, . . . , NW : ∆x(k) ∈ ∆X).Let
ρ = ||G||∞ be an upper bound ρ on H∞-norm of the set
of uncertain LTV system S under feedback (6). A minimal
basin of attraction is given by

∆x(0) ∈ {x : ρ||x||2 ≤ B(∆X)}. (16)

Proof. In virtue of Lemma 12

∀Wr ∈ W : ∀k ∈ 0, . . . , NWr
:

∆x(0) ∈ {x : ρ||x||2 ≤ B(∆X)}
=⇒ ∆x(k) ∈ B(∆X)

=⇒ ∆x(k) ∈ ∆X.
Remark 14. The provided estimates are conservative, be-
cause they hold for the entire uncertain system (4). Fur-
ther, the methods proposed here do not account for a
minimum decrease of the Lyapunov function, which can
further improve this result. In case that there are multiple
sources in C{G}, a better result is obtained by computing
each source’s basin of attraction individually.

4. SIMULATION RESULT

We demonstrate our result on a continuously stirred tank
reactor (CSTR) inspired by Müller, Matthias A and An-
geli, David and Allgöwer, Frank and Amrit, Rishi and
Rawlings, James B modeled in continuous time as

r1(t) = 103x1(t)
2e−1/x3(t) + 400x1(t)e

−0.55/x3(t)

r2(t) = 103x1(t)
2e−1/x3(t)

ẋ(t) = f(x(t), u(t)) =

[
1− r1(t)− x1(t)

r2(t)
u(t)− x3(t)

]

where ẋ
.
=

x(t)

dt
and t is the continuous time variable.

The first two states are the concentration of the waste
and the harvested products, respectively. The third state
represents the temperature which is controlled by the
heating power u provided to the system. The constraints
are given by x1, x2, x3 ≥ 0, 0.0 ≤ u ≤ 0.499. All variables
in the model are normalized.
As laid out in Bailey et al. (1971); Müller, Matthias A and
Angeli, David and Allgöwer, Frank and Amrit, Rishi and
Rawlings, James B the CSTR is operated most profitably
in a periodic operation. Another mode of operation is
to maintain the optimal steady state. We aim to design
a gain-scheduled controller and feed forward trajectories
such that the CSTR can be driven from steady-state
operation to periodic operation and back to steady-state
operation. This control problem features cyclic operation
of the plant and a forking set of reference trajectories. For
the simulation, we assumed a sinusoidal disturbance on
the temperature influx and used a fourth-order Runge-
Kutta integration with sampling rate h = 0.02. Our simu-
lation result showing two cycles in shown in Figure 1. As
expected, the system is stabilized and deviates less from
the reference trajectory under our proposed feedback. Fur-
ther, rigorous stability guarantees are provided. To upper-
bound the H∞-norm of the closed loop system, the cyclic
operation is analyzed first. Then, the condensation digraph
is formed, resulting in a path-graph, whose H∞-norm
upper-bounds the closed-loop system as in Lemma 12.
Regarding the theoretical guarantees, employing invariant
ellipsoids, we can show that the region of attraction for a
6.4% deviation in any coordinate is bounded by the box
{∆x ∈ R3 | |∆x1| ≤ 4.8%, |∆x2| ≤ 0.8%, |∆x3| ≤ 2.5%}.

5. CONCLUSION

We proposed an approach to stabilization of trajectories
containing cycles and possibly merging points or forks. By
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Fig. 1. Stabilizing the CSTR from steady state to a cyclic
trajectory and back to steady state. Dashed: reference
trajectory, continuous: closed-loop trajectory, dotted:
open-loop trajectory.

considering the set of trajectories as a graph, where the
states are the nodes and the edges represent control inputs
steering the system from one node to the next, LMI con-
ditions for stability of a single trajectory have be extended
to cover any transition in the resulting graph. We then
presented a result on finding the basin of attraction for the
whole graph of trajectories. The results are demonstrated
on a CSTR operated in the optimal steady state or cyclic
operation.
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