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ABSTRACT
In this paper, we provide an overview of the approach we used as
team Gabibboost for the ACM RecSys Challenge 2023, organized
by ShareChat and Moj. The challenge focused on predicting user
activity in the online advertising setting based on impression data,
in particular, predicting whether a user would install an advertised
application using a high-dimensional anonymized feature vector.
Our proposed solution is based on an ensemblemodel that combines
the strengths of several machine learning sub-models, including
CatBoost, LightGBM,HistGradientBoosting, and two hybridmodels.
Our proposal is able to harness the strengths of our models through
a distribution shift postprocessing and fine-tune the final prediction
via a custom build pessimistic rescaling function. The final ensemble
model allowed us to rank 1st on the academic leaderboard and 9th
overall.

KEYWORDS
ACM RecSys Challenge 2023; Recommender systems, Machine
Learning, Online Advertising

ACM Reference Format:
Paolo Basso, Arturo Benedetti, Nicola Cecere, Alessandro Maranelli, Sal-
vatore Marragony, Samuele Peri, Andrea Riboni, Alessandro Verosimile,
Davide Zanutto, and Maurizio Ferrari Dacrema. 2023. Pessimistic Rescaling

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

RecSysChallenge ’23, September 19, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1613-3/23/09.
https://doi.org/10.1145/3626221.3627288

and Distribution Shift of Boosting Models for Impression-Aware Online Ad-
vertising Recommendation. In ACM RecSys Challenge 2023 (RecSysChallenge
’23), September 19, 2023, Singapore, Singapore. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3626221.3627288

1 INTRODUCTION
The ACM RecSys Challenge 2023, organized by ShareChat and Moj,
focuses on the role of impressions in the online advertising setting
[5]. Impressions, also called exposure data or past exposures, con-
tain the previous recommendations to users, meaning the items
or products displayed on users’ screens [15, 16]. Impressed items
usually come from the existing recommendation system, a search
function, or business rules. The goal of the challenge is to predict
whether a user will install an advertised application or not, given
a feature vector representing information about the user and the
advertisement. The proposed final solution is an ensemble to com-
bine the predictions of several models. The source code of our final
model and the documentation are publicly available on GitHub.1

The paper is structured as follows. In Section 2 we provide an
overview of the problem, analyze the dataset, and the evaluation
metrics used in the challenge. In Section 3 we describe how we
split the dataset to exploit the temporal information and how we
preprocessed the features. In Section 4 we describe the models that
we employed as well as the ensembling technique. In Section 5 we
discuss the results and draw conclusions.

2 PROBLEM FORMULATION AND DATA
ANALYSIS

In this section, we formulate the competition task and describe the
data analysis we performed.
1https://github.com/recsyspolimi/recsys-challenge-2023-sharechat

33

https://orcid.org/0009-0005-6459-0358
https://orcid.org/0009-0006-0439-1485
https://orcid.org/0009-0004-8486-6844
https://orcid.org/0009-0000-2231-704X
https://orcid.org/0009-0000-3797-1490
https://orcid.org/0009-0004-3927-5359
https://orcid.org/0009-0003-5029-9100
https://orcid.org/0009-0000-1814-9338
https://orcid.org/0009-0009-8382-8850
https://orcid.org/0000-0001-7103-2788
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3626221.3627288
https://doi.org/10.1145/3626221.3627288
https://github.com/recsyspolimi/recsys-challenge-2023-sharechat
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626221.3627288&domain=pdf&date_stamp=2023-12-30


RecSysChallenge ’23, September 19, 2023, Singapore, Singapore Basso et al.

2.1 Problem formulation
The dataset for this edition of the ACM RecSys Challenge 2023 was
issued by Sharechat. The dataset contains 3.485.852 impressions,
coming from the Sharechat and Moj users, sampled from a period of
22 days. Each impression represents an application advertisement
shown to a user and is characterized by 79 features and two binary
labels, one indicating whether the advertisement was clicked or not
(is_clicked) and the other whether the application was installed
or not (is_installed). The challenge task is binary classification:
given the impressions of the first day after the training data (the
23rd day) the goal is to predict whether the associated application
was installed or not. A secondary goal is to predict whether an
advertisement was clicked or not. The evaluation metric is binary
cross-entropy, normalized by a constant that was not disclosed.
We will refer to the negative or positive class with respect to the
is_installed label.

2.2 Data analysis
In the dataset each impression has 79 features, we refer to them as
f_i with i being the feature identifier. The meaning of each fea-
ture was not disclosed, except for the date. The lack of information
on the feature semantics did not allow us to perform a traditional
feature engineering process based on domain knowledge. We only
know the semantics of f_1, which represents the number of the day.
The features can be grouped in three: from f_2 to f_32 they have
categorical values, from f_33 to f_41 they have boolean values
and from f_42 to f_79 they have numerical values. Considering, in
particular, the label is_installed, the data is strongly unbalanced
towards negative samples, only 17% of the impressions are associ-
ated with the application being installed. Our analysis focused on
five main aspects:

• Understanding the meaning of the features: we looked
for patterns in features that could inform us about their
meaning. The only interesting patterns we discovered were
for f_9 and f_11. Feature f_9 turned out to be periodical
every 7 days, so it likely represents the day of the week in
which the impression was shown; feature f_11 consists of 24
distinct values with a periodic pattern, so it likely represents
the hour of the day in which the impression was shown. Fea-
ture f_7 has a constant value for every impression, therefore
it is not informative and we decided to remove it.

• Analysis of the value distribution: we obtained useful
insights from a mathematical analysis of the numerical fea-
tures, by relying on the probability density distributions and
on statistical properties like mean and covariance. An exam-
ple is feature f_64, which has a huge range of values, with
a maximum value over 1012, a mean value over 109, and a
very large standard deviation.

• Counter features: looking at the values of the numerical
features, we discovered that many of them likely represent
counters.2 By normalizing these features based on the small-
est non-zero value we obtained natural numbers. The ma-
jority of values is zero, with the distribution of the others
following a decreasing exponential trend. This suggests those

2In particular: f_42, f_44 to f_50, f_52 to f_57, f_60 to f_63 and f_71 to f_79.

features represent counters and therefore we processed them
in a different way compared to the other numerical features.

• Behavior during different days: to assess whether the
behavior of the features varies we plotted their value distri-
bution on different days. We discovered a weekly periodicity,
which we used to define the data splitting, as described in
Section 3.1. We were also able to identify days with anoma-
lous behaviors, for example, day 52, in which the mean and
variance of many numerical features differ greatly from those
of the overall training data.

• Correlation analysis: this was the most useful analysis
and allowed us to highlight important similarities among
features. For numerical features we compared correlation
matrices obtained using 3 different correlation coefficients:
Pearson correlation [18], Kendall Tau [13], and Spearman
rank correlation [19]. All these methods showed similar re-
sults, highlighting clusters of features with very high cor-
relation. We identified two features that carried the same
information, f_43 and f_66, of which we kept only one.
For categorical features, we used Cramer’s V correlation [7],
which highlighted a very strong correlation among many
features. In particular, we observed that all the features from
f_22 to f_29 carried either the same or very similar informa-
tion. In particular, within this group of features, we identified
many nested relationships. For instance, the categories of
f_23 are sub-categories of f_25, which are sub-categories
of f_26, and similarly for other couples of features.

3 DATA PREPROCESSING AND FEATURE
ENGINEERING

In this section, we describe the data splitting and preprocessing
adopted, based on the findings of the data analysis.

3.1 Data split
The impressions in the data have a temporal order, therefore per-
forming a training-validation split with random sampling is not
ideal. Given that the task of the challenge is to classify impres-
sions from the day after the training data and assuming that the
impressions within a day are distributed in a very similar way, we
sampled the data by holding-out entire days to prevent overfitting
and encourage the model’s generalization. We identified two differ-
ent splitting strategies that we applied to different methods. First,
assuming that the closer two days are in time, the more they will
be characterized by a similar feature distribution, we used the last
available day in the training set as validation. Second, we hypothe-
size that the data distribution exhibits a periodic behavior within
a week, with each day being similar to the corresponding day in
different weeks. For this reason in this second split, the validation
data is the same weekday of the test set but one week prior. Finally,
since a single day may not contain enough data for a consistent
validation set, we decided to also include the day preceding the
selected one.

3.2 Preprocessing
Based on the data analysis we applied the following preprocessing:
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Outliers removal: In numerical features that did not contain
counters, we removed the outliers and replaced them with
the mean feature-wise using the Mean and Standard Devia-
tion Method [3].

Cyclic encoding of the date: We mapped the feature repre-
senting the date (f_1) into two new features by applying
the sine and the cosine functions. This encoding technique
allows to capture the cyclic nature of the data while main-
taining a continuous numerical representation and keeping
an equal relative distance between the original points. We
decided to repeat the cyclic sequence every seven days.

Preprocessing of f_9: This feature shows cyclic behavior ev-
ery seven days. Hence, assuming it is time-dependent and
that the difference between users is only due to their dif-
ferent time zones, to better capture its semantics for each
training day we changed its value with the mode computed
on the same day.

Feature selection: We decided to remove features that were
constant or highly correlated, as described in Section 2.2,
and we performed backward feature selection to remove
detrimental features.

Anomalous days: As stated in Section 2.2, some days exhibit
different behavior compared to others; in particular days 48,
50, and 52. Therefore, we removed them from the training
data.

Hand-crafted features: We created new features to use dur-
ing the training phase of the models by performing pairwise
multiplication within a group of correlated features, found
with the correlation analysis. The idea is to better exploit the
‘correlation’ information and capture more nuanced patterns.

4 PROPOSED SOLUTION
In this section, we describe the structure of the final model, all its
components, and the techniques we used to merge them to obtain
the final result. In addition, we also describe some of the ideas that
proved unsuccessful to provide a more comprehensive overview
of our work. We start with the description of the models that were
combined in our final ensemble, which we refer to as sub-models,
and then describe the final ensemble.

4.1 CatBoost
CatBoost is a gradient boosting algorithm [17] particularly effective
when working with datasets that contain a mix of numerical and
categorical features. The preprocessing used are Cyclic encoding
of the date and Outliers removal (see Section 3). Additionally, we
sorted the training impressions by date because CatBoost can lever-
age the temporal order of the dataset.3 After the hyperparameter
tuning CatBoost reached the best score among all the sub-models.
Notice that some noisy features were dropped following the feature
selection method as described in Section 3.2.

4.2 LightGBM and HistGradientBoosting
LightGBM and HistGradientBoosting are gradient boosting frame-
works that use tree-based learning algorithms [11, 12]. Both meth-
ods generally allow to obtain accurate models with fast training
3This was done using the hyperparameter has_time [1].

times [6, 8, 10]. The training data was preprocessed as follows: Pre-
processing of f_9 , Feature selection, Anomalous days, Hand-crafted
features (see Section 3.2).

LightGBM. Despite the noise removal attempts, LightGBM showed
a huge variance in its performance. To address this issue we in-
creased the regularization of the model to reduce the impact of
noise in categorical features.4 Good results on the validation data
have also been achieved by optimizing the focal loss function [14]
instead of the normalized entropy in the training phase; unfortu-
nately a similar improvement did not materialize on the public
leaderboard.

HistGradientBoosting. We applied an additional preprocessing
for this method by considering as categorical features only those
having less than a certain number of distinct values which was
treated as a hyperparameter. 5

4.3 Ensemble Models
The ensemble models are built using the available features and
include, as additional ones, the predictions computed by some of
the sub-models. To this end, the following models were trained:

• A LightGBM containing as features both LightGBM and Hist-
GradientBoosting predictions;

• A HistGradientBoosting containing as features both Light-
GBM and HistGradientBoosting predictions.

The design of these ensemble models introduced several challenges,
such as the different behavior of the sub-models between training
set and test set. Consequently, it was quite difficult for the hybrid
models to accurately discern the precise and imprecise predictions
of the sub-models. Another challenge was the choice of the training-
validation split to first train the sub-models, then generate the
predictions on which to train the ensemble models while avoiding
overfitting. We adopted the following approach:

(1) We trained a different LightGBM and HistGradientBoosting
model on the whole training set, excluding a single day that
we used to compute the predictions, starting from the first
day. In this way, to predict the labels of the impressions
belonging to a given day, the models were trained on all the
past and future days.

(2) We repeated this procedure for all the existing training days,
introducing two new features containing the predictions of
each of the two models.

In the end, the two ensemble models were trained in the same way
as described in Section 4.2, using the same hyperparameters used
for the sub-models.

4.4 Distribution Shift Postprocessing
We observed a particular issue with some models such that the pre-
dictions generated did not have the appropriate magnitude, which
resulted in decreased normalized cross entropy. However, these
models were remarkably accurate in establishing an order of the
samples based on the predictions. Essentially, these models excelled

4This was done using the hyperparameter cat_smooth [2].
5This was done using the hyperparameter max_bins.
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at arranging predictions in ascending order from the least confi-
dent to the most confident. On the other hand, their proficiency
in assigning probabilities that minimize the normalized entropy
was comparatively less robust. Based on this observation, we de-
cided to take the ordering produced by a given model A but shift
its predictions by replacing them with the ones produced by our
best-performing model, CatBoost. We applied the following steps:

(1) Use both model A and CatBoost to compute the predictions
for the same batch of impressions;

(2) Order each model prediction values in ascending order;
(3) Assign to the ordered samples of the model A the ordered

predictions of CatBoost.
This allowed us to exploit the diversity of the models and leverage
their respective strengths: the capability of model A to establish a
successful order of the samples and the capability of CatBoost to
estimate a sound probability distribution.

4.5 Unsuccessful Ideas
Not all the models we explored met our expectations and, indeed,
some yielded unsatisfactory results. We report the two most inter-
esting ones because we believe they can provide useful information.

Clustering. Various clustering algorithms were investigated, but
their effectiveness was hindered primarily by the extensive com-
putational time they required. For instance, we experimented with
the k-prototypes algorithm, which can handle a combination of
categorical and numerical features. Unfortunately, the processing
time was excessive. Similar issues arose with the DBSCAN and
KNN algorithms when the categorical features were encoded as
numerical values. Among the clustering algorithms we tested, only
k-means did not encounter this problem. We observed that some of
the clusters identified in the training set were interesting, exhibiting
either a high or low percentage of positive samples. However, these
findings did not carry over to the public leaderboard. In fact, the
test samples were assigned to less informative clusters which was
not helpful for the final classification task.

Autoencoder for anomaly detection. The idea was to train an au-
toencoder [9] with only samples from the negative class, i.e., the
impressions with no interactions, which is the most common. This
method exploits the fact that autoencoders learn to reconstruct nor-
mal (‘negative’) data with a lower error rate compared to abnormal
(‘positive’) data, given that they have not been trained on the latter.
Assuming there is a significant difference between the negative and
positive classes, the reconstruction error for samples belonging to
the positive class should be noticeably higher. Thus, we introduced
a threshold value 𝑡 for the cosine similarity 𝑐 calculated between
the original sample and its reconstructed counterpart. When the
cosine similarity of a sample exceeds the threshold (𝑐 > 𝑡 ), the
sample is classified as belonging to the negative class, otherwise, it
is classified as positive.

4.6 Final Ensemble and Interval Rescaling
The final ensemble is built as depicted in Figure 1, both by weight-
ing the predictions and postprocessing them. The weights have
been chosen empirically, proportionally with respect to the perfor-
mance of the single models. The ensemble combines five different

Figure 1: High-level diagram of the final ensemble model.
Note thatHistGB indicates theHistGradientBoostingmethod.

Figure 2: Prediction values for LightGBM before and after
the distribution shift postprocessing.

models: CatBoost (see Section 4.1), LightGBM and HistogramGradi-
entBoosting (see Section 4.2), two ensembles using LightGBM and
HistogramGradientBoosting (see Section 4.3). The distribution shift
postprocessing (see Section 4.4) is applied to the last four models,
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Model Cross-entropy
CatBoost 6.085
LightGBM 6.114
HistGradientBoosting 6.178
LightGBM-Ensemble 6.095
HistGradientBoosting-Ensemble 6.151
Final Ensemble 6.056
Final Ensemble with Interval Rescaling 6.053
Table 1: Model results obtained on the public leaderboard.

before combining the predictions given by all the models through a
weighted sum, as well as on the result of the final linear combination
of models. The final step in computing the overall model predictions
involves an interval rescaling function, detailed in Equation 1. This
function serves to adjust the model prediction 𝑝 using two thresh-
olds 𝑎 and 𝑏 that can be tuned as hyperparameters. In practice, we
found that this operation makes predictions more pessimistic.

interval rescaling(𝑝) =


0 𝑝 < 𝑎
1

𝑏−𝑎𝑝 + 𝑎
𝑎−𝑏 𝑎 ≤ 𝑝 ≤ 𝑏

1 𝑝 > 𝑏

(1)

5 RESULTS AND CONCLUSIONS
In this section, we describe the experimental protocol and the results
obtained on the public leaderboard.

Experimental protocol. The validation of the models was carried
out using our local resources and Amazon AWS services, using
a validation set that for some models consisted of two days from
the week preceding the test set day, the first one being exactly
seven days before and the second being its previous day, while for
other models was the last two days of the training data. All the
hyperparameters, both of the sub-models and of the postprocess-
ing strategies, have been tuned on the validation set with Optuna
[4], which proved an effective tool in previous challenges [6, 8],
exploring a number of cases in the order of thousands.

Results. Table 1 reports the normalized cross-entropy obtained
by all models on the public leaderboard. We can see that the fi-
nal ensemble provides an improvement compared to all individual
sub-models taken separately. Nonetheless, the results show how
the boosting algorithms alone are able to obtain effective perfor-
mance. We used only models based on gradient-boosted decision
trees. As expected, their performance is very similar. Catboost is
the model that obtains the best results standalone. This can be ex-
plained by the fact that the dataset is a mix of categorical, binary,
and numerical features, and the categorical features proved to be
the most meaningful to predict the label. Indeed, by analyzing the
feature importance of the 15 most important features we can see
that the 6 most important ones are categorical, and a total of 10 out
of 15 are categorical. Therefore Catboost, which was specifically
created to better handle categorical features, slightly outperforms
the other models. We can also see that the ensembling is able to
improve the performance of both LightGBM andHistGradientBoost-
ing slightly. Considering the postprocessing, Figure 2 shows the
difference within the prediction distributions of LightGBM before

and after applying the distribution shift postprocessing. We can see
how the score distribution shifts slightly for predictions around 0.2
while remaining mostly unchanged for high and low values. Re-
garding the interval rescaling postprocessing, the hyperparameter
tuning found the following values 𝑎 = 0.0012, 𝑏 = 1.0060, mean-
ing that the rescaling acts in a pessimistic way by sightly reducing
all the model predictions and achieving a final improvement over
the ensemble model. Overall in our ensemble method, we were
effectively able to combine the predictions coming from different
models by introducing tailored postprocessing steps. This ensem-
ble method allowed us to reach the 1st position on the academic
leaderboard and the 9th overall.
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