
Spyke3D: a new Computer Games oriented
BDI Agent Framework

Luca Palazzo, Gianluca Dolcini, Andrea Claudi, Gianluigi Biancucci
Paolo Sernani, Luca Ippoliti, Lorenzo Salladini, and Aldo Franco Dragoni

Dipartimento di Ingegneria dell’Informazione (DII), Università Politecnica delle Marche, Italy
{l.palazzo, a.f.dragoni, g.dolcini, a.claudi, p.sernani}@univpm.it

Abstract—One of the video game industry main goal is to
meet the players’ ever growing yearning to experience more
immersive and realistic virtual worlds. Modern games usually
answer to this demand with advanced computer graphics and
scripting techniques, rather than opting for “strong” Artificial
Intelligence features, in spite of the scientific community several
calls and proposals.

In this paper we introduce Spyke3D, a Multi-Agent Frame-
work based on Belief-Desire-Intention paradigm, whose purpose
is to support and simplify the developing of human-like logical
structures, in order to bestow more realistic and plausible
behaviours on Non-Player-Characters of the world, providing
a further convincing feeling to the game.

Index Terms—Computer Games, Multi-Agent Systems (MAS),
Beliefs-Desire-Intention (BDI), Expert Systems, Non-Player-
Characters (NPC).

I. INTRODUCTION

The Game Industry has invested heavily, over the years, to
make computer games ever more technically sophisticated. A
high photorealism level, however, doesn’t necessarily mean a
lofty degree of immersion and involvement with the virtual
world. There is a growing demand, especially by seasoned
players, for more plausible NPCs’ behaviours to keep up with
the realism of models and environments [1,2]: one of the most
craved wish is to bring the offline gaming experience closer
to the online one, where, generally, both allies and enemies
are played by human gamers.

AI algorithms have always placed side by side with com-
puter games development, but rarely they can be considered
as belonging to the strong AI concept, as their purpose is to
perform specific tasks (e.g. state space exploration), rather than
reproducing human cognitive processes. There are, however,
several games in which experience itself could be more essen-
tial than victory or defeat, where the player’s avatar constantly
needs, to reach his goals, to relate with the world NPCs: the
application of strong AI features - such as a logical description
of mental attitudes, decision-making and inference processes,
etc. - could way better express this kind of interactions.

Laird and van Lent [3] made a meticulous AI classification
by computer games genres and, for each one, they discrimi-
nated NPCs depending on their role in the game: through this
survey they locate where the adoption of a strong AI may
considerably improve the gaming experience. Dignum [4], in
particular, affirms that such approach is especially suited for
serious computer games, which, more than others, require very
natural and convincing behaviours for NPCs.

Related Works

During the workshop series on “Agent for Games and Sim-
ulation” [5,6], started in 2009, various communication modes
between agents and game engines have been argued, and most
surfaced issues derive from the different nature of their design:
game engines provide a virtual world representation based
on a centralized control of the game; agents are inherently
autonomous and proactive entities, whose interaction with
other agents or with the environment (the game engine itself
in this case) is asynchronous. For this reason Dignum et al.
[7] make a distinction between the following approaches:

• Server-side. It’s the standard AI developing method for
computer games: the agent’s decision-making process
is entirely managed by the game engine and must be
performed within a default time slot.

• Client-side. Agents are considered as separated applica-
tions of a client, which communicates with the game
engine through asynchronous messages: Gamebots [8],
Flexbot [9], Quakebot [10] and Pogamut [11], all mainly
born for research reasons, are shining examples of this
approach. A further game design effort is also needed and
it often represents a serious constraint: according to Rabin
[12] and Schwab [13], AI is usually added at the end of
the game development and, at this level, the introduction
of agent oriented programming may even bring to worse
results.

Following the latter approach, Dignum et al. [7] made a
vast survey about the steps and issues to address in order
to adopt MAS technology in computer games. Regarding the
BDI paradigm [14], an agent is described, through logical
statements and rules, by its own mental attitudes, such as
desires and beliefs about its surrounding environment. Agents
are also provided with a sort of human-like practical reasoning:
a deliberation system makes agents undertake intentions in
order to activate consistent plans (set of actions to run within
the environment). According to Dignum et al. [7], an agent
should not expose this reasoning process to the game engine,
but just those significant actions for the render scene: decision-
making phase is performed at a logical-symbolic level, while
the environment is managed at a geometrical one; message
exchange between the two levels is needed in order to achieve
an updated and consistent knowledge base, and to show results
of chosen actions within the world.



During the years, there have been certain attempts to intro-
duce BDI based NPCs in computer games. Davies and Mehdi
[8], Patel and Hexmoor [15], Weber et al. [16] modeled BDI,
or conceptually similar paradigm, bots for respectively Unreal
Tournament [17], Counter-Strike [18] and StarCraft [19]: in
each case BDI agents made bots more believable, providing
a generic more realistic feeling to the game. However, some
restrictions arise from this approach: BDI paradigm itself is
not able to fully reproduce human-like cognitive processes
[4]; moreover, as stated by Davies and Mehdi [8], adding
a different bot concept on an existing game at a later stage
is not an ideal solution. This process must, instead, occur
concurrently with the game development, in order to better
evaluate the agent behaviours.

Paper Contribution

The aim of this paper is to introduce Spyke3D, a MAS and
expert system technology-based framework, whose purpose
is to support the modeling of BDI agents for a virtual 3D
environment, in order to facilitate the use of such technologies
in the field of computer games development. Our proposal
is born by taking care of guidelines and issues exposed in
the previous section and comes up as a framework: one of
its main features is to exhibit to game developers a unique
environment for a simplified agent management, hiding the
reasoning mechanics and other technical details.

The name Spyke3D originates, with not so much imagi-
nation effort, from a sort of crasis of the used applications
names: SPADE [20], a FIPA compliant multi-agent platform;
PyKE [21], a knowledge base inference engine; and Panda3D
[22], a free and open source 3D game engine. A common
feature of all these programs is Python programming language:
this choice is due to Python core philosophy of a faster high-
level development and a more readable code; moreover there
has been, during the years, an increasing opening to this
programming language by the game developers community
[23].

II. SPYKE3D FRAMEWORK

This section presents Spyke3D and its features. In order to
better explain the capabilities of the framework, we start from
the description of tools and libraries we use, and how they
have been useful in order to achieve our goals. An accurate
description of implemented features will follow, while this
chapter will end with the introduction of a test scenario in
order to show the framework working principles.

A. Working Tools

1) SPADE: SPADE [20] is a Multi-Agent Platform written
in Python, which offers many features and facilities to simplify
the construction of a MAS. Among its qualities we can
enumerate (Fig. 1):

• SPADE is a IEEE FIPA [24] compliant platform, so it
can be used to build a modular system, where agents are
even able to interact with other agents written in different
programming languages and/or belonging to other FIPA

compliant platforms. The message exchange is defined
by FIPA-ACL protocol, while the content languages sup-
ported are both FIPA-SL and RDF: FIPA ACL messages
are embedded in one of the Message Transport Protocol
(MTP) supported by SPADE, for example XMPP.

• SPADE implements four MTPs: XMPP (default), P2P,
HTTP and SIMBA. SPADE is the first agent platform
to base its roots on XMPP [25]: an open, extensible,
asynchronous, distributed and secure XML based com-
munication protocol.

• SPADE provides a Python module called Agent Library
to ease the agent creation and interaction within the
platform. SPADE developers are also considering the
opportunity to issue APIs for different programming
languages, C# and Java in particular. SPADE Agent
Library also provides a support for BDI paradigm, but
it is still in an embryonic stage for the goals of this
work: it briefly consists in a wrapper of a first-order
logic python library developed by Peter Norvig to solve
exercises from his well-known book AI:MA [26]. For
this reason, we decided to implement a new management
system for logical structures and reasoning processes of
SPADE agents, grounded on the adoption of an expert
system library: PyKE.

Figure 1: SPADE platform overview.

2) PyKE: PyKE [21] is an open source library which makes
use of a Prolog inspired logic programming language, in
order to provide a knowledge-based inference engine to the
Python community. PyKE’s engine is based on two concepts,
denominated facts and rules: the former stand for the symbolic
knowledge that the expert system has about the world; the
latter are needed to run data (facts) inferences and to bind
goals with plans. More in detail:

• Forward Chaining Rules are processed automatically
if the corresponding rule set is activated. A forward
chaining rule “fires” when its premises are true, and the
achieved effect is the assertion of new statements, which
will increase the list of known facts about the world.
Following this concept, we extended PyKE’s architecture
introducing what we called Retract Chaining Rules: con-
trary to what happens with forward chaining rules, they



allow to retract specific known facts if some premises
are verified. In this way, we could apply belief revision
techniques, satisfying AGM postulates [27], to maintain
a consistent knowledge for the learning agent.

• Backward Chaining Rules are activated asynchronously
when a question is asked to the inference engine, in a
Prolog analogous way. PyKE will search for a rule whose
conclusion field contains the requested goal, and whose
body is composed of verified subgoals or known facts
of the world: if so, the asked question is verified. PyKE
allows to assign plans to backward chaining rules, so that
we can define a set of actions which the agent has to carry
out in order to reach a desired goal.

PyKE allows developers to define facts and rules in terms
of logical programming statements and clauses, then, for
performance purposes, it compiles them in order to generate
new Python modules to call inside applications.

3) Panda3D: Panda3D [22] is an open source game engine
made by Disney in collaboration with Carnegie Mellon’s
Entertainment Technology Center. It is written in C++ with
a set of Python bindings for a faster game development and it
comes with a full set of libraries to manage audio, collisions,
input and physics, in addition, of course, to real time rendering.
We use Panda3D merely for NPC’s “body” modeling, because
NPC’s reasoning side is completely unrelated with the game
engine.

B. Framework Features

This section introduces Spyke3D’s architecture, in terms
of agent and knowledge management, describing how it can
support and simplify the development of BDI based NPCs in
a 3D environment.

1) NPC’s Structure: Following Dignum et al. [7] directives
we decided to partially decouple NPCs from the game engine.
In detail, any Spyke3D NPC is an entity composed of two
interacting agents representing the NPC’s “brain” and “body”
(Fig. 2): the former is responsible for reasoning, while the
latter is a game engine wrapper. They are provided with a
dedicated communication channel in order to reproduce a sort
of peripheral nervous system: sensory data are exchanged from
body to brain, while intentions (actions to undertake) follow
the opposite way. Advantages from this approach are:

• AI distribution: this solution allows to distribute AI
computations to unload machines which own rendering
tasks.

• AI independent from programming language and game
engine: the interaction between brain and body agent
is FIPA based, so that AI can be developed ignoring
game engine specifications and, consequently, body agent
implementation details; it is sufficient that brain and body
agent share the same communication interface. Another
interesting benefit from a such approach is an AI code
complete reuse for further works.

2) Agent DNA: Human behaviours are influenced by both
environmental and genetic factors. In this manner, if an agent
should learn from experience, it can also inherit some traits
during its creation. More in detail, brain agents have a set

Figure 2: NPCs are detached in brain and body agents.

of attributes which may influence the deliberation phase in
terms of goal and plan scheduling. In this way, even NPCs
which share the same knowledge base could behave differently
because of their “genes”.

3) Intentions: NPC’s DNA makes behaviours more or less
deterministic, conditioning the agent deliberation phase. It is
necessary to consider that human behaviours may even be
irrational, insomuch as we are often inclined to pursue certain
goals regardless of their optimality. In Spyke3D, goals are
Python classes that represent world states which an agent
wants to be true, plus a set of metadata as their type (e.g.
maintain goal), deadline and desirability value.

• Goal Deliberation: during this phase, the agent selects
an objective to pursue (if it has one). The agent list of
wishing goals is scheduled depending on their metadata
and agent DNA: more rational agents will tend to choose
a more worthwhile goal, chaotic agents may pick up a
goal randomly, while irrational agents could select to
pursue a low desirable goal.

• Plan Deliberation: once the goal is chosen, the agent
must define how to pursue it. It queries its knowledge
base in order to pull out, through backward chaining
rules, all the plans which are congruent with the agent
beliefs and lead to the desired world states. Then, the
plan choice is based on attributes like its cost and its
satisfaction level (variable weights grounded on the agent
experience).

Human beings usually are not able to consciounsly perform
more tasks simultaneously, so agents should follow this con-
duct too. Agent DNA has an attribute for the maximum
number of parallel foreground tasks, after that the agent
deliberation phase is suspended.

4) Plans and Behaviours: In agent oriented programming,
agent tasks are performed by particular computational mod-
els called behaviours. In BDI paradigm, plans are action
sequences to undertake in order to pursue a chosen goal.
With Spyke3D we bound PyKE’s backward chaining rules,
which can be linked to Python written plans, with SPADE
behaviours, in order to transfer plan actions to the agent
platform: to achieve this task, rules must contain in their



Figure 3: Backward chaining rule linked to a plan
with an agent behaviour.

namespace the agent variable so that plans can be executed
within a specific agent behaviour (Fig. 3), belonging to what
we called BDIBehaviour class type.

5) Stereotypes: Individuals moulded in the same environ-
ment are inclined to share part of their knowledge: for example
soldiers have some common skills, even if an archer has
a different role compared to a swordsman. Spyke3D allows
an easier creation of fact and rule set through knowledge
partitioning. These knowledge modules represent a sort of
“domain” knowledge that a NPC could have, and they can
be added during the agent creation without requiring code
duplication.

6) Game Engine Interaction: Body agents represent both
sensors and actuators of our system: as we stated, they have the
role to interface with the game engine. For this reason, body
agents can not be defined by developers a priori, but on a case
by case basis. However, Spyke3D provides a communication
interface, which makes use of Python dictionaries and a
specific “b2b” (body to brain or vice versa) ontology, to
simplify the interaction between NPC’s brain and body agents.

C. Test Scenario

In this section we’ll see Spyke3D at work. The ideal test-
bed for our framework is clearly represented by a real game
development, so that we could evaluate both AI design and
implementation phases, and game enhancements in terms of its
credibility, unpredictability and realism degree. Unfortunately,
building a killer game application is beyond our possibilities,
so we limit this test to the realization of a basic scenario whose
main goal is to show Spyke3D’s working principles, focusing
on the interaction with the game engine and communication
between brain and body agents.

1) Description: We modeled two kinds of NPCs: explor-
ers and gatherers, each one with his skills, knowledge and
goals. We put them in a 3D environment, unknown to them,
containing different kind of resources. Both explorers and
gatherers have the final goal to carry more valuable resources
to their home base, but their interaction is needed to perform a
such task, because only gatherers can bring resources, whereas
explorers can identify them and are endowed with a keener
eye.

2) Implementation: 3D models and animations were cre-
ated with Blender [28] and exported to a Panda3D readable
format (.egg) using Yabee [29]. Through body agents, we mod-
eled NPCs’ animations and senses, such as sight and hearing,
in order to allow their interaction within the environment. As

we stated, body agents interface directly with the game engine,
in fact senses are implemented using Panda3D collision system
(Fig. 4): a cone of collision segments for sight and a collision
sphere for hearing, both affected by material depending occlu-
sions through the adoption of different collision bitmasks.

Figure 4: Body agent sight using Panda3D collision system.

Once a new sensory event is fired (e.g. a new resource
object is found) body agents will send such information to
their relative brain by way of FIPA-ACL messages, causing
its knowledge base update. In a similar way, NPC’s brain
deliberation system produces intentions - such as wandering,
gathering, moving to, communicate with, etc. - to forward
to their body agent, which perform their wrapping with the
environment, translating actions to game engine interpretable
instructions. In order to ease body/brain agent communication,
Spyke3D encapsulate _handle_message() method call in a
SPADE cyclic behaviour, so that it is just necessary to override
it and define a dictionary of possible message types (Fig. 5).

Figure 5: Section of a brain agent message handling.



3) Results: From the scenario building it emerges how
Spyke3D can be useful to model, without much effort, BDI
based NPCs for a gaming-oriented application. Developers, in
fact, do not need to care for how decision-making process
occurs or how NPCs’ body/brain communication is managed,
but they must implement behaviours extending specific classes,
build a knowledge base using PyKE’s logical programming
language and handle agent messages. Naturally, a superior
effort is needed for body agent implementation, which must
reproduce brain deliberated intentions within the environment.

One of the framework strong point is its capability to
abstract brain reasoning process from game engine constraints,
therefore developers could reuse NPCs’ brain agent implemen-
tation for further applications, even with different contexts, as
if it was a software library.

III. CONCLUSION

This paper confirms results from several research works
affirming that agent oriented programming could be a very
interesting approach for computer games AI development. BDI
paradigm, in particular, directly representing logical mental
attitudes and their dynamics, allows to reproduce human-
like cognitive processes which can seriously enhance NPCs’
behaviours in terms of realism, credibility and naturalness. If
these aspects are important in playful contexts, they are essen-
tial when learning and training are the application purposes,
as it happens for serious computer games.

Spyke3D, despite its earlier state, intends to offer a tool
for a faster entrance of such technologies in the computer
games sphere. In this paper we described its features and how
they can be combined with the game development process.
However, several tests are still needed to better highlight
the framework capabilities: a complete game AI development
would be, in fact, the ideal test-bed to evaluate Spyke3D
features.

Future Works

Spyke3D is still a work in progress: many features can be
implemented to extend framework capabilities.

• Fuzzy Logic. We are adding to PyKE a fuzzy control
system to increase knowledge coarseness in order to
better manage uncertainty states.

• GUI. A GUI presence could further help developers to
create BDI base NPCs using Spyke3D.

• Deliberation. Goal and plan scheduling system is still
naive: the implementation of a more advanced algorithm
able to manage goal starvation could be opportune.

• Body Agents. Body agents should be implemented for
more game engines, so that we could evaluate AI devel-
opment reuse in different contexts.

REFERENCES

[1] Johnson, Daniel, and Janet Wiles. "Computer games with intelligence."
Fuzzy Systems, 2001. The 10th IEEE International Conference on. Vol.
3. IEEE, 2001.

[2] van Lent, Michael, and John Laird. "Developing an artificial intelligence
engine." Ann Arbor 1001 (1998): 48109-2110.

[3] Laird, John, and Michael van Lent. "Human-level AI’s killer application:
Interactive computer games." AI magazine 22.2 (2001): 15.

[4] Dignum, Frank. “Agents for games and simulations.” Autonomous
Agents and Multi-Agent Systems March 2012, Volume 24, Issue 2, pp
217-220.

[5] Dignum, F., Bradshaw, J., Silverman, B., & van Doesburg, W. (Eds.).
(2010). “Agents for games and simulations: Trends in techniques,
concepts and design.” LNAI 5920. Heidelberg: Springer.

[6] Dignum, F. (2011). “Agents for Games and Simulations II: Trends in
techniques, concepts and design.” LNAI 6525. Heidelberg: Springer

[7] Dignum, Frank, et al. "Games and agents: Designing intelligent game-
play." International Journal of Computer Games Technology 2009
(2009).

[8] Davies, N. P., and Qasim Mehdi. "BDI for intelligent agents in computer
games." (2006). The proceedings of CGAMES’2006, ISBN 0-9549016-
1-4.

[9] Khoo, Aaron, et al. "Efficient, realistic NPC control systems using
behavior-based techniques." AAAI Spring Symposium on Artificial
Intelligence and Computer Games. 2002.

[10] Laird, John E., and John C. Duchi. "Creating human-like synthetic
characters with multiple skill levels: A case study using the soar
quakebot." Ann Arbor 1001 (2000): 48109-2110.

[11] Gemrot, Jakub, et al. "Pogamut 3 can assist developers in building
AI (Not only) for their videogame agents." Agents for Games and
Simulations. Springer Berlin Heidelberg, 2009. 1-15.

[12] Rabin, Steve. AI game programming wisdom. Cengage Learning, 2002.
[13] Schwab, Brian. AI game engine programming. Hingham: Charles River

Media, 2004.
[14] Wooldridge, Michael, and Nicholas R. Jennings. "Intelligent agents:

Theory and practice." Knowledge engineering review 10.2 (1995): 115-
152.

[15] Patel, Purvag, and Henry Hexmoor. "Designing BOTs with BDI agents."
Collaborative Technologies and Systems, 2009. CTS’09. International
Symposium on. IEEE, 2009.

[16] Weber, Ben G., Michael Mateas, and Arnav Jhala. "Building human-
level ai for real-time strategy games." Proceedings of the AAAI Fall
Symposium on Advances in Cognitive Systems. 2011.

[17] Epic Games Inc. Unreal Tournament. http://www.unreal.com/
[18] Valve Corporation. Counter-Strike: Source. http://www.counter-

strike.net/
[19] Blizzard Entertainment. StarCraft. http://www.starcraft.com/
[20] SPADE: Smart Python multi-Agent Development Environment.

https://github.com/javipalanca/spade/
[21] PyKE: Python Knowledge Engine. http://pyke.sourceforge.net/
[22] Panda3D. Carnegie Mellon’s Entertainment Technology Center.

http://www.panda3d.org/
[23] McGugan, Will. Beginning Game Development with Python and

Pygame. Will McGugan, 2007.
[24] FIPA. The Fondation for Intelligent Physical Agents.

http://www.fipa.org/
[25] XMPP. Extensible Messaging and Presence Protocol. http://xmpp.org/
[26] Russell, Stuart Jonathan, et al. Artificial intelligence: a modern approach.

Vol. 2. Englewood Cliffs: Prentice hall, 2010.
[27] Katsuno, Hirofumi, and Alberto O. Mendelzon. "On the difference

between updating a knowledge base and revising it." (1991).
[28] Blender. Free and open 3D creation software. http://www.blender.org/
[29] Yabee. Yet Another Blender EGG Exporter.

https://code.google.com/p/yabee/

Luca Palazzo is a postgraduate research fellow in
the Information Engineering Department of Univer-
sità Politecnica delle Marche (IT). He received a
master degree in Informatics Engineering in Febru-
ary 2012 with a thesis entitled “Formalisms to repre-
sent software agents mental attitudes and to support
their speech act dynamycs”.
His research interests include multi-agent systems,
machine learning, logic programming and expert
systems.


