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Abstract Many exact and metaheuristic algorithms presented in the litera-
ture are tested by comparing their performance in different s ets o f instances. 
However, it is known that when these sets of instances are generated randomly, 
they neither have nor fulfill t he f eatures t he a uthors b elieve t hey d o, which 
implies that wrong conclusions were made. In this paper, we reinforce the im-
portance of analyzing randomly generated instances by sampling the problem 
coefficients uniformly at  random. We  generate instances of  the Unconstrained 
Binary Quadratic Problem and the Number Partitioning Problem. In both 
cases, we verify that the generated set of instances do not represent a uniform 
set of instances of the problem. We have conducted several experiments to 
quantify the number of different r ankings o f s olutions that the problems can 
generate. We have classified those rankings according to how often each rank-
ing is sampled, how many local optimal solutions each ranking has, and how 
similar they are.
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1 Introduction

In the field of Combinatorial Optimization, most researchers have designed
and developed exact and metaheuristic algorithms to solve Combinatorial Op-
timization Problems (COPs) efficiently. Mainly, to evaluate the performance
of the proposed algorithms, researchers compare their proposal with several
state-of-the-art algorithms in the literature to solve a particular problem. To
do so, they run all the methods over a set of instances and they use a metric
to evaluate and compare their performance.

One of the main critical steps of this process is to choose an appropriate set
of instances (of the considered problem) to make a fair comparison. In other
words, the set of instances must be representative of all the possible scenarios
that the problem can generate and the algorithms cannot use any information
about the instances in advance. There are two types of instances: real-world
instances (instances that represent real scenarios) and artificial instances. In
this work, we will focus on the latter group.

In order to obtain random instances of a problem, researchers determine the
specific values of a set of parameters to define a case of the problem. In general,
those values can be conducted in two ways: selecting values to define problem
instances that satisfy some properties (to study “easy” and “hard” scenarios,
for example), or generating random values from uniform distributions.

The main motivation of this paper is to theoretically analyze artificial
instances generated by researchers in the literature. Particularly, one of our
idyllic goals is to present a method to associate an “instance-algorithm” ac-
cording to their properties in order to minimize the cost of solving them. In
the literature, this idea is also presented as the Algorithm Selection Prob-
lem [1, 2]. Nevertheless, generating artificial instances knowing very little or
nothing about them and evaluating the performance of the algorithms using
them can induce some wrong assumptions, ideas and/or results. In this work,
we will focus on the following statement: sampling the coefficients to describe
an instance of a problem uniformly at random is not equivalent to sampling
instances of the problem uniformly at random.

The main objective of this paper is not only to show that sampling coeffi-
cients (parameters) to describe instances of a particular problem uniformly at
random generates “biased fitness functions” (in terms of frequency), but also
to extract features and characteristics of the rankings of solutions (orderings
of the solutions with respect to a fitness function) generated by this process.
The study of the features of the generated rankings will allow us to understand
why some algorithms perform better in most of the instances of the studied
problem.

To the best of our knowledge, there is one “initial” reference which is closely
related to our objectives: [3]. In the mentioned article, the authors prove that,
when the algorithm only considers the ranking of the solutions to compare
them, sampling in the space of coefficients uniformly at random is not equiv-
alent to sampling instances in the space of functions uniformly at random.
To do so, the authors consider the Linear Ordering Problem (and, briefly, the
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Quadratic Assignment Problem and the Permutation Flowshop Scheduling
Problem) and analyze the instances generated by sampling coefficients uni-
formly at random. They observe that, from all the possible rankings that can
be generated by the definition of the problem, there are some rankings which
are sampled more frequently. Furthermore, the authors define a grouping of
the rankings according to their frequency in the sample and they analyze the
inequalities that each group of rankings induces. Based on that work, in [4]
the authors count exactly how many rankings of solutions the Linear Ordering
Problem and the Traveling Salesman Problem can exactly generate and which
rankings of solutions can be obtained by both problems.

The authors of [3] and [4] illustrate their conclusions considering permutation-
based COPs. In this paper, the considered COPs to carry out a similar analysis
are the Unconstrained Binary Quadratic Problem (UBQP) and the Number
Partitioning Problem (NPP). The UBQP is a binary-based COP that has
been extensively studied in the literature because of its relevance and appli-
cations; many other problems can be reformulated as particular cases of the
UBQP, such as the Maximum Independent Set, the Maximum Cut Problem
and (the second problem studied in this work) the Number Partitioning Prob-
lem, among others [5–9]. The study of the UBQP is analogous to the study of
2-degree pseudo-Boolean functions and, even if the definition of the UBQP is
not complex, it is the NP-hard problem with the lowest possible degree poly-
nomial function. Many metaheuristic algorithms have been proposed in the
literature not only to solve the UBQP, but to solve its particular cases and
generalizations, such as the Maximum Independent Set [10] and the multi-
objective UBQP [11] and to develop theoretical analyses of them [12–14]. In
this paper, we study the artificial instances of the UBQP and the NPP gener-
ated by sampling coefficients uniformly at random.

This paper is organized as follows. In Section 2 the definitions of the rank-
ings of solutions, the UBQP and the NPP are presented. In Section 3 the ex-
perimental results over the UBQP are shown and an analysis of the obtained
results is discussed. In Section 4 the experiments for the NPP are detailed and
analyzed. Finally, Section 5 presents conclusions and future work.

2 Preliminary concepts

In this section, we present the main definitions of this work: the ranking of
solutions, the UBQP and the NPP. Throughout this article, let us consider
Ω = {0, 1}n where n is the size of the search space, x = x1 . . . xn ∈ Ω and
let us assume that all the studied fitness functions are injective functions, in
order to avoid several notation issues.

Definition 1 Let f : Ω −→ R be a fitness function, where Ω is a finite search
space. A ranking of solutions (defined by f) is an ordered list of all the
solutions of Ω according to their fitness function values: the first solution is
the solution with the highest fitness function value, the second solution is
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the second highest fitness function value, and so on. Let us denote by rf the
ranking defined by f .

Example 1 Let n = 2 and f(x) = x1 +2x2 − 4x1x2. Then, the fitness function
values are the following:

x 00 10 01 11
f(x) 0 1 2 −1

and the ranking generated by f is:

rf =


01
10
00
11

 .

By the definition of the ranking of solutions, fitness functions can be stud-
ied as ranking generators. Therefore, a COP can be interpreted as the set of
rankings generated by its definition. The most important feature of the rank-
ings is the relative order of the solutions according to the fitness function,
not their exact fitness function values. Most local search based algorithms and
any evolutionary algorithm that uses tournament selection or ranking selection
consider fitness functions as ranking generators.

In addition, two different fitness functions can have the same ranking of
solutions.

Example 2 Let g(x) = 3x1+4x2−10x1x2. Then, g and the previous f functions
generate the same ranking of solutions.

x 00 10 01 11
f(x) 0 1 2 −1
g(x) 0 3 4 −3

{
f(01) > f(10) > f(00) > f(11)
g(01) > g(10) > g(00) > g(11)

=⇒ rf = rg =


01
10
00
11

 .

Moreover, for any fitness function f and a real constant c, the rankings gen-
erated by f , f + c and c · f are the same: rf . This property is considered in
Sections 3 and 4.

Therefore, even if the number of fitness functions is infinite, when Ω =
{0, 1}n, the exact number of different rankings of solutions is 2n!. In Section 3,
we present the exact procedure to measure all the rankings of solutions gen-
erated by the UBQP. Unfortunately, because the domain of the coefficients of
the NPP is discrete, the same procedure cannot be used for the NPP.

Now, let us introduce the Unconstrained Binary Quadratic Problem.
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Definition 2 Unconstrained Binary Quadratic Problem (UBQP). Let
n be the size of the problem and M = [ãij ]

n
i,j=1 a matrix of real values of size

n× n. The fitness function is described in the following way:

f(x) = xMxt =

n∑
i,j=1

ãijxixj .

The objective of the UBQP is to find

x∗ = argmax
x∈Ω

f(x).

The analysis of the UBQP is equivalent to the analysis of 2-degree pseudo-
Boolean functions. It is common to assume, without loss of generality, that
the matrix M is upper triangular or symmetric. When the matrix M is upper
triangular, we can rewrite the fitness function in the following way:

f(x) =

n∑
i=1

aixi +

n−1∑
i=1

n∑
j=i+1

aijxixj

where ai = ãii and aij = ãij + ãji.
Finally, let us introduce the definition of the Number Partitioning Problem.

Definition 3 Number Partitioning Problem (NPP). Let Z = {z1, . . . , zn}
be a set of non-negative integer numbers. The objective of the problem is to
find a subset P of Z such that the difference between the sum of the values of
P and Z\P is minimized: ∣∣∣∣∣∣

∑
zi∈P

zi −
∑

zi∈Z\P

zi

∣∣∣∣∣∣ .
That is to say, for any binary solution x1 . . . xn, if we denote xi = 1 if zi ∈ P
and xi = 0 if zi ∈ Z\P , we want to minimize the following difference:

f(x1 . . . xn) =

∣∣∣∣∣∑
xi=1

zi −
∑
xi=0

zi

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

zi − 2

n∑
i=1

zixi

∣∣∣∣∣ .
If there exists a solution x′ such that f(x′) = 0, then x′ is the optimal solution
and Z has a perfect partition. If there exists a solution x′ such that f(x′) = 1,
then x′ is the optimal solution.

In order to avoid several trivial situations, let us assume that zi ̸= 0, for
any i value. NPP can be modeled as an instance of an UBQP. To do so, the
f2 fitness function is calculated, instead of f . This variation does not affect
the relative comparisons among the solutions: for any two solutions x and y,
f(x) > f(y) ⇐⇒ f2(x) > f2(y) due to the non-negativity of the numbers.
Hence, they produce the same order of the solutions according to their fitness
function value or, to simplify, they produce the same ranking of solutions.
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For that reason, any algorithm based on the ranking of solutions will behave
similarly for the f and f2 fitness functions. In order to simplify the notation,
let us denote c =

∑n
i=1 zi. So,

f2(x1 . . . xn) =

(
c− 2

n∑
i=1

zixi

)2

= c2 − 4c

(
n∑

i=1

zixi

)
+ 4

(
n∑

i=1

zixi

)2

= c2 + 4

n∑
i=1

zi(zi − c)xi + 8

n−1∑
i=1

n∑
j=i+1

zizjxixj .

Consequently, we can model this problem as an UBQP. Dropping the ad-
ditive constant c2 and defining

aii = 4zi(zi − c) and aij = 8zizj (i < j)

an equivalent UBQP is obtained.

3 Experimental analysis of the rankings of the UBQP

In this section, we have conducted some experiments on the rankings of solu-
tions generated by the UBQP (similar to the experiments carried out in the
work [3]). The objectives of our experiments are to study those rankings in
terms of their frequency when the coefficients of the UBQP matrix are sampled
uniformly at random and to extract characteristics of them.

The experiments conducted in this section are done for the case n = 3. The
main drawback of our experiments is that for n ≥ 4 it is not computationally
tractable. Note that when n = 4, the cardinality of the space of possible
rankings of solutions is 24!.

First of all, we have exhaustively checked how many rankings of solutions
can be generated by instances of the UBQP. By definition of the rankings of
solutions and the definition of the UBQP, each ranking generates a system of
inequalities, some of which are inconsistent.

Example 3 The following ranking rf cannot be generated by any instance of
the UBQP.

rf = [111 100 010 001 110 101 011 000]T

Let us prove by reduction ad absurdum. On the one hand, the solution 111
being the optimal solution means that

a1 + a2 + a3 + a12 + a13 + a23 > 0.

On the other hand,
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Table 1 Number of different rankings of the UBQP (n = 3) ordered by their frequencies
in the sample and the percentage they represent.

Size of the sample 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Number of different rankings 89 220 418 672 1006 1469 2221 3609 6621 24192

f(100) > f(110) =⇒ a2 + a12 < 0
f(010) > f(011) =⇒ a3 + a23 < 0
f(001) > f(101) =⇒ a1 + a13 < 0

 =⇒

=⇒ a1 + a2 + a3 + a12 + a13 + a23 < 0,

which contradicts the first inequality QED.
So, before starting with the experimental analysis, we have considered all

the possible rankings of solutions (23! = 40320 rankings) one by one and
we have analyzed which systems of inequalities are inconsistent and which
are solvable. After checking all the rankings of solutions, we have observed
that 40% of the rankings cannot be generated by the UBQP (exactly, 16128
rankings). Therefore, the space of rankings of solutions generated by the UBQP
is formed by 24192 rankings.

The next step is to generate a representative sample of instances of the
UBQP by sampling the coefficients of the UBQP matrix uniformly at ran-
dom. For n = 3, the UBQP requires 6 coefficients to describe an instance:
a1, a2, a3, a12, a13, a23. The considered space to generate the coefficients of the
UBQP matrix to generate the representative sample is the hypercube of di-
mension 6 centered at the origin1: [−0.5, 0.5]6 (to avoid the unbounded space
R6). In order to have a representative sample of the rankings generated by the
UBQP, initially we have generated 5 million rankings and then the sample size
has been increasing by 1 million until all the possible 24192 rankings have been
generated at least once. After generating a sample of 27 million rankings, all
the rankings have been generated at least once. In Figure 1, we have ordered
the 24192 rankings according to the number of times that each ranking has
been generated.

In Table 1, a summary of the number of different rankings of solutions that
have been sampled according to their frequencies in the sample are shown.
In this table, we take into account the sample, order the rankings by their
frequency, and observe the deciles: that is to say, how many of them represent
(10d)% of the sample, for d = 1, . . . , 10. For example, the 89 most frequent
rankings of the generated sample represent approximately 2.7 million of the
generated rankings (10%); the 220 most frequent rankings of the generated
sample represent approximately 5.4 million of the generated rankings (20%);
and so on. It is clear that a few rankings represent most of the sample, which
clearly means that there are rankings which are more intriguing to analyze.

To see the main features of the most frequent rankings, we have focused
on three characteristics: number of local optimal solutions with respect to

1 Throughout this work, the function considered to generate random numbers is Random-
Real, defined in the software system Wolfram Mathematica.
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Fig. 1 Frequency of the 24192 rankings of the UBQP (n = 3) generated in a 27M size sam-
ple, in descending order of frequency (Y axis in logarithmic scale). Considering the Hamming
distance 1, the red points represent the rankings with one local optimal solution (the global
optimum). The blue points represent the rankings with two local optimal solutions. Finally,
the orange points represent the rankings with three local optimal solutions. The colored
vertical lines indicate the most frequent ranking with two and three optimal solutions.

the Hamming distance, the similarities of the rankings and the probability of
occurrence.

First, we have calculated the number of local optimal solutions of each
ranking according to the Hamming distance. For the Hamming distance, two
solutions are neighbors if the distance between them is 1. In Figure 1, the
colors represent the number of local optimal solutions of each ranking.

We observe that the most frequent rankings have only one optimal solution,
with significant difference with the rest of rankings. In the ordered list of
rankings with respect to their occurrence in the sample, the most frequent
ranking with two local optimal solutions is placed in the 607th position (its
frequency in the sample is 9839). Furthermore, the most frequent ranking with
three local optimal solutions is placed in the 6617th position (its frequency in
the sample is 540). This is very intriguing knowing that, from all the possible
rankings generated by the UBQP, most of the rankings have two optimal
solutions. In Table 2, the number of possible rankings and sampled rankings are
shown. It is clear that the distribution of the number of rankings with one, two
or three local optimal solutions and the distribution of the sampled rankings
with one, two or three local optimal solutions are completely different. For the
UBQP, 6912 rankings have one local optimal solution (28.6% of the rankings),
15840 rankings have two optimal solutions (65.5% of the rankings) and the
rest of rankings have three optimal solutions (5.9% of the rankings). But in
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Table 2 Number of the rankings generated by the UBQP for n = 3. Each row groups the
rankings according to the number of local optimal solutions. In the second and third columns,
the number and percentage of different rankings generated by the UBQP are shown. In the
fourth and fifth columns, the number of sampled rankings are shown (from the 27M size
sample). In the last column, the 95% confidence interval (CI) of the number of sampled
rankings is shown.

Rankings Sampled rankings
(24192) (27M)

L. Opt. Sol. # % # % 95% CI
1 6912 28.57 21535236 79.760 (79.745, 79.775)
2 15840 65.48 5318316 19.697 (19.682, 19.712)
3 1440 5.95 146448 0.542 (0.540, 0.545)

the generated sample for the UBQP, the majority of the rankings generated
by sampling coefficients uniformly at random have one local optimal solution
(79.76%), 19.69% of the rankings have two local optimal solutions and very
few have three local optimal solutions (0.542%).

Next, based on the generated sample of rankings, we have calculated the
exact frequency/probability of generating a specific ranking of solutions by
sampling the coefficients of the UBQP matrix uniformly at random. This mea-
sures exactly the “regions” in which each ranking is generated by the UBQP.
To do so, we have calculated the hypervolume of each ranking in the defined
hypercube [−0.5, 0.5]6; that is to say, we calculate the regions of the hypercube
in which all the points of a specific region generate a ranking rf . So, we divide
the hypercube in 24192 regions. Based on the previous results (Table 2), we
expected in advance that the measures of each region of the hypercube would
not be the same.

To calculate the hypervolume of each region, we have considered the sys-
tem of inequalities that each ranking defines and calculate the implicit region
defined by the system of inequalities and the hypercube [−0.5, 0.5]6. Conse-
quently, the hypervolume is obtained integrating 1 in the calculated region,
and because the hypervolume of the hypercube is 1, the obtained result is also
the probability of generating a specific ranking of solutions by sampling the
coefficients of the UBQP matrix uniformly at random. However, even if this
process is exact, it is worth mentioning that there have been some computa-
tional issues in the calculation of the exact hypervolumes of some rankings.
We believe that the issues are due to the dimension of the space (6) and some
particularly small regions. Therefore, sampling would provide an estimation
of the hypervolume of each region generated by the UBQP.

A main observation of these hypervolumes is that there exists a symmetry
of the rankings. Two rankings of solutions are symmetric and have the same
hypervolume value if the difference between both rankings is a permutation
of the bits (in other words, for all the solutions, permute the bits according
to a rule) and/or a reversion of the ranking of solutions (in other words, the
optimal solution in the first ranking is the worst solution in the second ranking,
the second best solution in the first ranking is the second worst solution in the
second ranking, and so on).
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Table 3 First 4 non-symmetric rankings with the largest hypervolume values generated by
the UBQP for n = 3.

Ranking Hypervolume
f(111) > f(101) > f(110) > f(100) > f(001) > f(011) > f(000) > f(010) 0.0013237847 ∼ 32a
f(111) > f(011) > f(110) > f(101) > f(010) > f(001) > f(100) > f(000) 0.0012966579 ∼ 31a
f(011) > f(010) > f(000) > f(001) > f(100) > f(110) > f(111) > f(101) 0.0012152778 ∼ 29a
f(111) > f(011) > f(101) > f(110) > f(010) > f(001) > f(100) > f(000) 0.0011013455 ∼ 27a

Example 4 The rankings

rf = [111 101 110 100 001 011 000 010]T

and

rf = [100 000 110 010 001 101 011 111]T

are symmetric rankings because r′f is rf after a reversion and the permutation
of the bits (2 3 1) (explicitly, x1x2x3 → x2x3x1):

111
101
110
100
001
011
000
010


Reversion
=⇒



010
000
011
001
100
110
101
111


Permutation

=⇒
(2 3 1)



100
000
110
010
001
101
011
111


.

So, when n = 3, each ranking has 2 × n! = 12 rankings (including it-
self) which are symmetric and have the same hypervolume value. Therefore,
the regions of the hypercube can be grouped in sets of 12 regions and there
might be 24192/12 = 2016 different hypervolume values. In Table 3, the first
4 non-symmetric rankings with the largest and different hypervolume values
are shown.

Even if the obtained largest hypervolume values are very small, let us
take into account that if all the rankings had the same probability to be
sampled (or equivalently, the assumption in question in [3] was true), the values
would be a = 1/24192 = 0.0000413770. Consequently, there is a significant
difference of the values. The 4 groups of rankings of Table 3 (the 48 symmetric
rankings) represent almost 6% of the hypercube (in the case that the regions
were uniform, the 4 groups of rankings would represent almost 0.2% of the
hypercube).

4 Experimental analysis of the rankings of the NPP

In this section, we have conducted several experiments on the rankings gen-
erated by the NPP. First, we observe how many rankings are generated by
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the problem sampling integer numbers uniformly at random. Then, we study
those rankings and analyze their features.

Because the NPP can be reformulated as a particular case of the UBQP,
it is already known that the problem cannot generate all the rankings of solu-
tions by sampling coefficients of the NPP uniformly at random (for any integer
value n). Additionally, before starting with the experiments, it is necessary to
elaborate “injective NPP instances” and local optimal solutions. By defini-
tion of the NPP, two opposite solutions have the same fitness function value:
f(x1 . . . xn) = f((1 − x1) . . . (1 − xn)), for any solution x1 . . . xn. Hence, two
assumptions have been considered: (i) we only consider the solutions such that
x1 = 1 for the rankings generated by the NPP, and (ii) we study instances
of the NPP which are injective (that is to say, for any Z ′ ⊂ Z, Z ′ does not
have a perfect partition). On the other hand, when we consider local optimal
solutions (regarding the Hamming distance), we must consider the opposite
solutions (the ones such that x1 = 0) to make realistic conclusions. For exam-
ple, the solutions 1100 and 1011 are neighbors because the Hamming distance
between 1100 and 0100 (which is the opposite solution of 1011) is 1.

The experiments conducted to study the NPP are done for the cases n ∈
{3, 4, 5}. For the cases n ∈ {3, 4}, similar to the initial step of Section 3,
first we have exhaustively counted how many rankings of solutions can be
generated by instances of the NPP. To do so, we have analyzed whether or not
a ranking of solutions generates a consistent system of inequalities (regarding
the definition of the NPP, in which the number of coefficients is n). When
n = 3, there are 4 solutions such that x1 = 1 (which implies that the number
of possible rankings is 4! = 24) and the number of rankings generated by the
NPP is 6. When n = 4, the number of rankings generated by the NPP is 168
(out of the 8! = 40320 possible rankings). For the case n = 5, a different avenue
has been followed because we have not been able to calculate in advance the
exact number of different rankings that can be generated by the NPP.

4.1 Cases n ∈ {3, 4}

For n ∈ {3, 4}, to generate an instance, we sample n integer values from the set
{1, . . . , 2k} uniformly at random2, where k ≥ n. We have tested the results for
several k values and sample sizes, obtaining similar results. Because of that, we
will only show the results for a sample whose size is 1M and k = n+ 2. From
all the sampled instances, we have only considered the injective rankings.

When n = 3, we have obtained the 6 rankings of solutions, and they follow
a symmetry: from one ranking, the rest of rankings are obtained by permuting
the bits. The main difference among the different samples generated for n = 3
is that when the value of k increases, the number of non-injective instances
is reduced. Notwithstanding the value of k, the 6 rankings are generated uni-

2 Throughout this work, the function considered to generate random integers is Random-
Integer, defined in the software system Wolfram Mathematica.
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Fig. 2 Frequency of the 168 rankings of the NPP (n = 4) generated in a 1M size sample,
in descending order of frequency. Considering the Hamming distance 1, the red points rep-
resent the rankings with one local optimal solution (the global optimum). The blue points
represent the rankings with two local optimal solutions. Finally, the orange points represent
the rankings with three local optimal solutions. The colored vertical lines indicate the most
frequent ranking with one and two optimal solutions.

Table 4 Number of the rankings generated by the NPP for n = 4. Each row groups the
rankings according to the number of local optimal solutions. In the second and third columns,
the number and percentage of different rankings generated by the NPP are shown. In the
fourth and fifth columns, the number of sampled injective rankings are shown (from the 1M
size sample). In the last column, the 95% confidence interval (CI) of the number of sampled
rankings is shown.

Rankings Sampled rankings
(168) (1000000)

L. Opt. Sol. # % # % 95% CI
1 96 57.14 408296 49.54 (49.43,49.65)
2 48 28.57 203309 24.67 (24.58,24.76)
3 24 14.29 212613 25.8 (25.90,25.70)

formly. Consequently, in this particular case, sampling integers uniformly at
random is equivalent to sampling NPP instances uniformly at random.

Nevertheless, when n = 4, we have obtained the 168 rankings of solutions.
If we consider the symmetry of the rankings obtained by the permutation of
the bits (from one ranking, we obtain 4! = 24 symmetric rankings), there
are 7 non-symmetric rankings. In Figure 2, we have ordered the 168 rankings
according to the number of times that each ranking has been generated in the
sample, and the colors represent the number of local optimal solutions of each
ranking. In Table 4, the number of possible rankings and sampled rankings
are shown.
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It is obvious that, even if the NPP can be reformulated as a particular case
of the UBQP, the obtained results for the NPP (Table 4) differs significantly
from the results of the UBQP (Table 2). For the NPP, 96 (out of 168) rankings
have one local optimal solution, 48 have two local optimal solutions and 24 have
three local optimal solutions. Nevertheless, in the generated sample, nearly
half of the sample is composed of rankings with one local optimal solution
(49.54%), a quarter of rankings with two local optimal solutions (24.67&) and
the remaining quarter of rankings with three local optimal solutions (25.8%).

To conclude the experiments of the case n = 4, we study the rankings gener-
ated by the NPP. A meaningful characteristic of our sample is that we identify
3 group of rankings according to the number of times that each ranking has
been sampled. There are 24 rankings that each ranking has been sampled more
than 8600 times; there are 72 rankings that each ranking has been sampled
between 5500 and 6000 times; and the last 72 rankings have been sampled less
than 2900 each. This is similar to the grouping that appears in the work [3],
where the authors group the instances generated by the LOP in four classes
labeled as “S rankings”, “M rankings”, “L rankings” and “XL rankings”.

4.2 Case n = 5

First, to generate each ranking, we sample 5 integer values from the set
{1, . . . , 20000} uniformly at random. Due to the symmetry of the rankings
obtained by the permutation of bits, the total number of rankings generated
by the NPP and the number of rankings generated by the NPP with l local
optimal solutions must be divisible by 5! = 120. Therefore, we have stopped
increasing the sample when the number of different rankings and the number
of different rankings with l local optimal solutions (generated by the NPP)
were divisible by 120. This scenario has been obtained with a sample of 5 mil-
lion rankings, whose number of different rankings is 32760 (273 non-symmetric
rankings). From all the sampled instances, we have only considered the injec-
tive rankings.

In Figure 3, we have ordered the 32760 rankings according to the number
of times that each ranking has been generated and where the colors repre-
sent the number of local optimal solutions of each ranking. We can observe
a similarity between the shapes of Figure 1 and Figure 3, but the local op-
timal distribution is completely different. The most frequent rankings have
three local optimal solutions. Moreover, in the ordered list of rankings with
respect to their occurrence in the sample, the most frequent ranking with one
local optimal solution is placed in the 590th position (its frequency in the
sample is 824); the most frequent ranking with two local optimal solutions is
placed in the 587th position (its frequency in the sample is 827); and, lastly,
the most frequent ranking with four local optimal solutions is placed in the
1207th position (its frequency in the sample is 577). In addition, in Table 5, a
summary of the number of rankings generated in the sample are shown. From
all the different rankings generated by the NPP, 4800, 8160, 16800 and 3000
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Table 5 Number of the rankings generated by the NPP for n = 5. Each row groups the
rankings according to the number of local optimal solutions. In the second and third columns,
the number and percentage of different rankings generated by the NPP are shown. In the
fourth and fifth columns, the number of sampled injective rankings are shown (from the 5M
size sample). In the last column, the 95% confidence interval (CI) of the number of sampled
rankings is shown.

Rankings Sampled rankings
(32760) (5000000)

L. Opt. Sol. # % # % 95% CI
1 4800 14.65 665803 13.34 (13.31,13.37)
2 8160 24.91 914194 18.32 (18.29,18.35)
3 16800 51.28 2965922 59.43 (59.39,59.48)
4 3000 9.16 444431 8.91 (8.88,8.93)

Fig. 3 Frequency of the 32760 rankings of the NPP (n = 5) generated in a 5M size sample,
in descending order of frequency (Y axis in logarithmic scale). Considering the Hamming
distance 1, the red points represent the rankings with one local optimal solution (the global
optimum). The blue points represent the rankings with two local optimal solutions. The
orange points represent the rankings with three local optimal solutions. Finally, the light
magenta points represent the rankings with four local optimal solutions. The colored vertical
lines indicate the most frequent ranking with one, two and four optimal solutions.

rankings have one, two, three and four local optimal solutions, respectively.
On the other hand, the number of rankings generated in the sample with one,
two, three and four local optimal solutions are 13.34%, 18.32%, 59.43% and
8.91%, respectively. If we compare the obtained results with the case n = 4
(Table 4), the most intriguing result is that the proportion of the number of
different rankings and the rankings generated in the 5M sample (columns 3
and 5 of Table 5) seem more similar, although the differences are statistically
significative (with respect to Pearson’s chi-squared test).
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5 Conclusions

In this paper, we present experimental analyses of the rankings generated
by the UBQP for n = 3 and the NPP for n ∈ {3, 4, 5}. It is confirmed that
sampling coefficients uniformly at random to generate instances of the problem
does not always generate instances of the problem uniformly at random, at
least in terms of the rankings generated. For example, whereas in the case of
the NPP for n = 3 we have generated instances of the problem uniformly, in the
cases of the UBQP for n = 3 and the NPP for n ∈ {4, 5}, the generated samples
are biased. Furthermore, we present an analysis of the generated samples of
rankings of solutions, studying several properties of them, such as the number
of local optimal solutions and the probability of the occurrence.

There are several possible future works. Firstly, it would be interesting to
know if there exists a different avenue to observe whether a specific problem
can or cannot generate a ranking of solutions, without solving the system of
inequalities described by the problem instance. Secondly, knowing that the
NPP can be described as a particular case of the UBQP, it remains to explain
the differences between the results of both problems (according to the sampling
regions and/or number of local optimal solutions). In addition, it would be
ideal to extract more features about the rankings of solutions or to find a
different grouping of the instances (not only the symmetries presented in this
work) in order to solve them efficiently. Finally, the cases n > 3 for the UBQP
and n > 5 for the NPP need to be explored. On the other hand, it would be
interesting to present similar analyses for other COPs.
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