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Walter Rudin and Elias M. Stein were giants in the world of mathemat-
ics. They were loved and admired from students and researchers to teachers
and academics, both young and old. They touched many of us through their
inspiring books at the undergraduate and postgraduate level. Although they
were leading researchers in both harmonic analysis and several complex vari-
ables, we are not aware whether they interacted and discussed mathematics. In
this article, Rudin and Stein meet mathematically through a reformulation of
the beautiful theory of Fourier series with gaps that Rudin developed in the
1950s as an equivalent Fourier restriction problem from the 1970s, a problem
Stein proposed and which remains a fundamental, central problem in Euclidean
harmonic analysis today.

Walter Rudin was born in Vienna on 2 May, 1921 and emigrated to the US
in 1945, completing his PhD at Duke University in 1949. While a C. L. E.
Moore Instructor at MIT in the early 1950s, Walter was asked to teach a real
analysis course but he could not find a textbook that he liked so he decided to
write Principles of Mathematical Analysis which despite its age, has remained
the paragon of high quality. After a stint of teaching at the University of
Rochester, he took up a position at the University of Wisconsin, Madison in
1959 where he remained until his retirement as Vilas Professor in 1991. He died
at his home in Madison on 20 May, 2010.

Elias M. Stein (known to friends and colleagues as Eli) was born in Antwerp
on 13 January, 1931 and emigrated with his family to the US in 1941, settling in
New York where Eli attended high school. He went to the University of Chicago,
received his PhD in 1955, and then went to MIT as a C.L.E. Moore Instructor
before Antoni Zygmund told Eli “it’s time to return to Chicago.” In 1963, Stein
moved to Princeton University as a full professor where he remained until he
died on 23 December, 2018.

Between 2003 and 2011, Eli expanded the presentation of Walter’s Principles
and published a series of four books aimed at advanced undergraduates. This
series is quickly becoming an important part of any young analyst’s education.
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However the majority of books written by Rudin and Stein are postgraduate
textbooks and research monographs (too many to list here), mainly in the areas
of harmonic analysis and several complex variables where both men were central
figures.

In this article, these two luminaries meet in the world of mathematical anal-
ysis. We look back at some important work Rudin did in the 1950s and recast
it in terms of a far-reaching problem from the 1970s that Stein gave us.

1950s: a golden age for Fourier analysis

At a 1946 conference in Princeton,1 Zygmund gave a scathing review of the post
world war state of harmonic/Fourier analysis, describing the area as fettered
with unsolved problems with no guiding theme or programme. This all changed
in the 1950s in two profound ways. First, the 1950s represented a convergence
of the point of view that the most appropriate setting for Fourier analysis is fur-
nished by the class of locally compact abelian groups. This abstraction is not
done for the sake of mere generalisation. It not only gives conceptual clarifica-
tion to classical problems, it also leads to the introduction of new, interesting
analytical problems. A beautiful example is the theory Rudin developed in his
paper Trigonometric series with gaps [14] which we will turn to momentarily.

The second profound change from the 1950s is the advent of the real vari-
able method which emerged from the seminal paper of Calderón and Zygmund
[6], freeing us from the complex method which tied us to one dimension in the
study of Fourier series and the Fourier transform. This led Stein to propose a
series of fundamental problems addressing basic properties of Fourier series and
the Fourier transform in higher dimensions. These problems are interconnected
and the core conjectures underpinning each problem still remain unsolved to-
day despite the heroic efforts of many eminent mathematicians. One of these
problems is the Fourier restriction problem which Stein introduced in the mid
to late 1960s and which we will discuss in more detail below.

Trigonometric series with gaps

This paper [14] of Rudin introduced several kinds of sparse sets of integers with
interesting properties. In the 1920s Sidon showed that a continuous function on

T = R/Z, with a lacunary2 Fourier series f ∼
∑
cke

2πi2kθ, automatically has
an absolutely convergent Fourier series; i.e.

∑
k |ck| < ∞. Giving us a glimpse

of how he thinks, Rudin took this isolated result and realised that there is a rich
theory of sets Λ ⊂ Z with the property that CΛ(T) ⊂ A(T). Here A(T) is the
space of absolutely convergent Fourier series and CΛ(T) is the closed subspace
of continuous functions on the circle T which are Fourier supported in Λ; that
is, the Fourier coefficients f̂(n) = 0 for all n /∈ Λ.

1Problems of mathematics, Princeton University bicentennial conferences, series 2, confer-
ence 2, Princeton, New Jersey, 1947.

2More generally, the sequence {2k} can be replaced by any sequence of positive integers
{bk} satisfying infk bk+1/bk > 1.
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Rudin called such spectral sets Sidon sets and observed they have interesting
arithmetic properties. He first developed the theory on the circle T and then
extended it to any compact, abelian group G, detailing a programme to charac-
terise Sidon sets in terms of their arithmetic properties. He intimated that the
key to unlock this arithmetic characterisation is the following improving bound:
for F = exp(L2), there is a constant C > 0 such that

‖f‖F ≤ C ‖f‖L2 for all f ∈ CΛ. (F )

The function space exp(L2) lies near L∞; in fact, L∞ ⊂ exp(L2) ⊂ Lp for
all finite p < ∞. In the 1930s, Zygmund established (F ) with F = exp(L2)
for lacunary sequences Λ and Rudin extended this to any Sidon set on any
compact abelian group G. Pisier established the reverse implication, showing
that (F ) with F = exp(L2) characterises when Λ is a Sidon set and he did this
on any compact abelian group; see [10, 11]. This led Pisier to his arithmetic
characterisation of Sidon sets, the definitive result in the theory of Sidon sets;
see [12].

There are many sparse families of spectral sets Λ which are defined by or
characterised by (F ) for some endpoint function space F near L∞. In his gaps
paper, Rudin introduced and developed the theory of Λ(p) sets which are defined
by (F ) for F = Lp when p > 2. Rudin conjectured that the squares Λ = {n2} is
a Λ(p) set for all p < 4 but this seems difficult and remains unsolved (see [3]).
A deep result of Bourgain [4] established that for every p > 2, there is a Λ(p)
set which is not a Λ(p+ ε) set for any ε > 0.

In a different paper [13] from the 1950s, Rudin introduced Paley sets Λ ⊂
Z and showed that the bound (F ) holds for F = BMO(T) if and only if
supI∈D#[Λ∩I] <∞ where D is the set of dyadic intervals {±[2k, 2k+1] : k ∈ N};
in other words, Λ is a finite union of lacunary sequences. Similar to exp(L2),
the function space BMO of bounded mean oscillation lies near L∞, again
L∞ ⊂ BMO ⊂ Lp for all finite p <∞.

The Fourier restriction problem

The Fourier transform

f̂(ξ) =

∫
Rn

f(x)e−2πiξ·x dx,

defined initially for Lebesgue integrable functions, is a fundamental object in
many different areas. In the 1960s, Stein introduced the Fourier restriction prob-
lem which seeks to understand the singularities that arise when one computes
the Fourier transform of Lp(Rn) functions. When p = 1, the Fourier transform
is well behaved. A basic fact is that the Fourier transform of f ∈ L1(Rn) is a

continuous, bounded function and so restricting f̂ to any set S ⊂ Rn defines a
function on S, continuous with respect to the induced topology. On the other
hand, the Fourier transform defines a unitary operator from L2 onto L2 and
so the singularities of f̂ for f ∈ L2(Rn) that arise are those of an arbitrary L2

function. Hence it can be identically ∞ on any set S of measure zero.
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By interpolation, one can define the Fourier transform for f ∈ Lp(Rn) when

1 ≤ p ≤ 2 and f̂ ∈ Lp
′

where p′ is the conjugate exponent to p, satisfying
1/p + 1/p′ = 1. However when 1 ≤ p < 2, the mapping f → f̂ is not onto

Lp
′

(we have already seen this when p = 1; the function f̂ is not a general L∞

function, it is also continuous).
Stein observed that there is a range 1 ≤ p < p0 for some p0(n) > 1 so that

for any f ∈ Lp(Rn), one can make sense of f̂ as an L2 density on the unit
sphere Sn−1 = {|x| = 1}. More precisely, he showed the Fourier restriction

operator Rf = f̂ |Sn−1 , defined initially on test functions, extends to a bounded
operator from Lp(Rn) to L2(Sn−1) when 1 ≤ p < p0 and so the singularities of

f̂ on Sn−1 can be no worse than an L2 function on the sphere. The fact that
the unit sphere Sn−1 has curvature is crucial for Stein’s observation; if S is a
compact piece of a hyperplane, then for any p > 1, there is an f ∈ Lp(Rn) such

that f̂ |S ≡ ∞. See [15] for this example and a general discussion of the Fourier
restriction phenomenon.

The Fourier restriction problem is to determine the complete Lp → Lq map-
ping properties of R and the conjecture is that

(1) ‖Rf‖Lq(Sn−1) ≤ C ‖f‖Lp(Rn)

holds if and only if 1 ≤ p < 2n/(n + 1) and (n + 1)q ≤ (n − 1)p′. Here the
space Lq(Sn−1) is defined with respect to surface measure dσ. In two dimensions
n = 2, the conjecture was solved by Fefferman and Stein [8] in 1970 and inde-
pendently by Zygmund [18] in 1974 but it remains open in dimensions n ≥ 3.
One can formulate conjectures for the Fourier restriction problem associated to
other varieties of varying dimension with nonvanishing curvature.

Remarkably the Fourier restriction problem has profound applications in dis-
parate areas of mathematics, from PDEs in the form of fundamental Strichartz
estimates to the recent solution of decoupling conjectures which led to Bourgain,
Demeter and Guth’s [5] complete resolution of the Vinogradov Mean Value The-
orem, a central problem in analytic number theory from the 1930s.

Duality

The golden age of the 1950s brought to the fore the central role that the principle
of duality plays in Fourier analysis. By duality, we can give an equivalent
formulation of the improving bound (F ): if E is a Banach space of functions
near L1 such that E∗ = F (the Banach space dual of E is F with norms ‖ · ‖E
and ‖ · ‖F , respectively), then(∑

n∈Λ

|f̂(n)|2
)1/2

≤ C ‖f‖E (E)

with the same constant C appearing in (F ). The bound in (E) holds for all func-

tions f ∈ E and we are restricting the Fourier coefficients {f̂(n)} to the given
sequence Λ (for general compact abelian groups G, the spectral set Λ lies in the
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discrete Fourier dual group Ĝ). Here we see a connection between trigonometric
series with gaps and certain discrete variants of the Fourier restriction problem.

Our discussion of Rudin’s 1950s theory can be rephrased as follows: Pisier’s
deep result says that Λ is a Sidon set if and only if (E) holds with E = L

√
logL

and this holds on any compact abelian group. A spectral set is a Λ(p) set for
p > 2 if and only if (E) holds with E = Lp

′
. Furthermore a set Λ ⊂ Z is a finite

union of lacunary sequences if and only if (E) holds for E = H1(T), the Hardy
space on the circle whose Banach space dual is BMO(T).

Also by duality, we can reformulate the Fourier restriction problem in terms
of the extension operator

Eg(ξ) :=

∫
Sn−1

g(ω)e−2πiξ·ωdσ(ω);

the Fourier restriction conjecture (1) is equivalent to

‖Eg‖Lp′ (Rn) ≤ C ‖g‖Lq′ (Sn−1)

holding if and only if 1 ≤ p < 2n/(n+ 1) and (n+ 1)q ≤ (n− 1)p′, Here p′ and
q′ are the conjugate exponents of p and q, respectively. At the endpoint, the
exponents p = q = 2n/(n+1) agree but the bound (1) is known to fail (in fact it
suffices to take g ≡ 1 and check that E1 ∈ Lp′ precisely when p′ > 2n/(n− 1)).

In [16] Tomas proved a local Fourier restriction estimate in two dimensions
(the one dimensional sphere S1 = T is the circle) at the endpoint p′ = q′ = 4;

‖Eg‖L4(BR) ≤ C[logR]1/4 ‖g‖L4(T)

where BR = {|x| ≤ R}. Nowadays it is known that this local estimate implies
the Fefferman-Stein/Zygmund result that (1) holds when n = 2.

In Zygmund’s paper [18], a connection was almost made between bounds
(E) or (F ) for trigonometric series with gaps and Euclidean Fourier restriction
bounds. Zygmund proved two theorems in [18]. His second result established
(1) for n = 2 but his first result, answering a question by Fefferman, showed

(2)
( ∑
|n|=R

|f̂(n)|2
)1/2

≤ 51/4 ‖f‖L4/3(T2),

the sum being taken over all lattice points in SR = {n = (m,n) ∈ Z2 : m2+n2 =
R2}. He remarks that the bounds (1) and (2) are analogous and his proof of (1)
for n = 2 is modelled on the proof he gave for (2). Furthermore he comments
that his proof of (2) is quite general and works for any spectral set S which has
the property that #{(r, s) ∈ S2 : r ± s = t} is bounded for all t.

The bound (2) simply says SR is a Λ(4) set. It is the bound (E) for the
compact group G = T2, the Banach space E = L4/3(T2) and the spectral set
SR. In Rudin’s gaps paper the connection between Λ(4) sets and the number of
representations as the sum of two elements from the spectral set is made explicit
(see Theorem 4.5 in [14]). In what follows, we will show that (2) is equivalent
to a Fourier restriction bound for the two dimensional torus T2.
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W. Rudin meets E. M. Stein

Here Rudin’s theory of trigonometric series with gaps meets Stein’s theory of
Fourier restriction. We will work on the compact group Tn instead of the circle.
Continuous functions f ∈ C(Tn) can be identified with (multiply) periodic
functions on Rn; they have a Fourier series∑

n∈Zn

f̂(n)e2πin·θ where f̂(n) =

∫
Tn

f(θ)e−2πiθ·n dθ.

The result is a general statement about spectral sets Λ that lie in the n-
dimensional lattice Zn and Banach function spaces E = E(Tn) with norm ‖ ·‖E
which are continuously embedded in L1(Tn).

We will also need to assume E continuously includes Lp(Tn) for some 1 <
p ≤ 4/3; thus we will assume there are two continuous embeddings

Lp(Tn) ↪→ E ↪→ L1(Tn) for some p ≤ 4/3.

This implies that there is a constant C such that the following norm inequalities
(for some p ≤ 4/3) hold:

(3) C−1 ‖f‖L1(Tn) ≤ ‖f‖E ≤ C ‖f‖Lp(Tn).

Therefore if F = E∗ is the Banach space dual of E, then L∞(Tn) ↪→ F ↪→
Lp
′
(Tn); or equivalently,

(4) C−1 ‖f‖Lp′ (Tn) ≤ ‖f‖F ≤ C ‖f‖L∞(Tn).

We will consider the extension operator for Tn: let z = (z1, . . . , zn) ∈ Cn '
R2n and define

Eg(z) :=

∫
Tn

g(θ) e−2πi〈z,θ〉 dθ.

Finally we set BR = {z ∈ Cn : |zj | ≤ R, ∀j}, a polydisc of radius R sitting in
R2n.

Theorem 1. Let Λ and E be as above. Then the following two statements are
equivalent:

(W. Rudin) There is a constant AΛ such that

‖f‖F (Tn) ≤ AΛ ‖f‖L2(Tn), ∀f ∈ CΛ(Tn).

(E. M. Stein) There is a constant BΛ such that

‖Eg‖L4(BR) ≤ BΛ (logR)n/4 ‖g‖E(Tn),

for all R ≥ 2 and for all g ∈ CΛ(Tn).
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The (W. Rudin) statement is simply the bound (F ) (or equivalently (E)) in
the setting of the compact group Tn. The theorem does not recover the local
Fourier restriction endpoint bound of Tomas since E cannot be taken to be L4

as we are assuming that E continuously includes Lp for some 1 < p ≤ 4/3 (see
(3)). The (E. M. Stein) statement is an extension of the Tomas local endpoint
Fourier restriction bound to functions in some function space E(Tn) with Fourier
support in Λ ⊂ Zn.

Applying the theorem to E = L4/3(T2) and Λ = SR, the lattice points on a
circle of radius R, we see that Zygmund’s result (2) is in fact equivalent to an
endpoint Euclidean Fourier restriction bound for T2.

Again if Λ ⊂ Zn is a Sidon set (that is, if CΛ(Tn) ⊂ A(Tn), the space of
absolutely convergent Fourier series), then we can take E = L

√
logL(Tn) so

that E∗ = F = exp(L2)(Tn). Interestingly, the product of Sidon sets is not a
Sidon set (for example, {2k} × {2`} ⊂ Z2 is not a Sidon set). It was shown in
[1] that if Λ = Λ1 × · · · × Λn ⊆ Zn is an n-fold product of (countably infinite)
spectral sets Λj ∈ Z, then each Λj ⊂ Z is a Sidon set if and only if (E) holds
for E = L(logL)n/2(Tn). We have E∗ = F = exp(L2/n)(Tn). See also [11].

Rudin’s theorem for Paley sets in Z was extended by Oberlin [9] to the n-
dimensional torus Tn. Specifically, the bound (E) holds for E = H1(Tn) if
and only if supR #[Λ ∩ R] < ∞ where the supremum is taken over all dyadic
rectangles R ⊂ Zn. In this case, E∗ = F = BMO(Tn).

The proof

First we introduce some notation. We write points z ∈ Cn ' R2n in polar form
zj = rje

iθj for each component of z. We think of r = (r1, . . . , rn) as the n radii
for z and θ = (θ1, . . . , θn) as parametrising points on Tn so that points in R2n

can be expressed as

reiθ = (r1e
iθ1 , . . . , rne

iθn) ∈ R2n

and functions on R2n can be formally represented as

F (reiθ) =
∑
k∈Zn

fk(r)eik·θ.

We define the following mixed norms for functions F : R2n → C,

∥∥F∥∥p
Lp

+L
2
Tn

:=

∫
Rn

+

(∫
Tn

|F (reiθ)|2 dθ
)p/2

r1 · · · rndr.

With this notation the polydisc in the theorem can be expressed as BR = {reiθ :
∀j, 0 ≤ rj ≤ R}.

The proof factors through a variant of a result of L. Vega [17]. Namely,

(5)
∥∥Eg∥∥

L4
+L

2
Tn (BR)

≤ C (logR)n/4
∥∥g∥∥

L2(Tn)
.
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The theorem of L. Vega is a global mixed norm LpradL
2
ang estimate for the Fourier

extension operator on the sphere Sd−1. See also [7]. The proof of (5) follows
from classical bounds for Bessel functions which give the (logR)n/4 bound, see
e.g. [2].

If the (W. Rudin) statement holds (that is, (F ) and hence (E) holds for Λ
on Tn), then our spectral set is a Λ(4) set. To see this, we use (4) with p′ ≥ 4,
together with (F ) for Λ, to conclude

‖f‖L4(Tn) ≤ ‖f‖Lp′ (Tn) ≤ C ‖f‖F ≤ AΛ ‖f‖L2(Tn)

for every f ∈ CΛ(Tn). Hence, for every r ∈ Rn+,∫
Tn

|Eg(reiθ)|4 dθ ≤ A4
Λ

(∫
Tn

|Eg(reiθ)|2 dθ
)4/2

whenever g ∈ CΛ(Tn).3 Integrating over BR := {r : ∀j, 0 ≤ rj ≤ R} shows that∥∥Eg∥∥
L4(BR)

≤ AΛ

∥∥Eg∥∥
L4

+L
2
Tn (BR)

for g ∈ CΛ(Tn).
Therefore by (5),∥∥Eg∥∥

L4(BR)
≤ BΛ (logR)n/4‖g‖L2(Tn)

and

‖g‖L2(Tn) =
(∑
n∈Λ

|ĝ(n)|2
)1/2

≤ C‖g‖E(Tn)

for g ∈ CΛ(Tn) by (E). This shows that the (E. M. Stein) statement holds.
The reverse implication is more involved and so, for clarity, we only give the

proof when n = 1. The extension to general n ≥ 1 is straightforward. Suppose
that the (E. M. Stein) statement holds for n = 1 and fix a sequence {ak}k∈Λ.
Our goal is to show

(6)
∥∥ ∑
k∈ΛN

ake
ik(·)∥∥

F
≤ AΛ

( ∑
k∈ΛN

|ak|2
)1/2

with a constant AΛ which is independent of N . Here ΛN = {k ∈ Λ : |k| ≤ N}.
This will establish (F ), the (W. Rudin) statement.

From {ak}, we will construct a function

(7) H(reiθ) :=
∑
k∈ΛN

hk,N (r)eikθ

with certain properties, including that each hk,N is supported in {r ≤ N2} and
so H is supported in the disc BN2 . To construct hk,N , we first note that

Ĥ(eiθ) =
∑
k∈ΛN

[∫
R+

hk,N (r)Jk(2πr)r dr
]
eikθ

3Note that g ∈ CΛ(Tn) implies that Eg(r ·) ∈ CΛ(Tn).
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where Jk is the classical Bessel function of order k. We use the asymptotic
formula

Jk(2πr) =

√
2

πr
cos(2πr − kπ/2− π/4) +O(r−3/2)

where, importantly, the implicit constant in O(r−3/2) is uniform in k for r ≥ 5k.
See [2].

We now construct a function hk,N (r) which depends on N and k. For every
m ∈ N satisfying

5N ≤ m ≤ N2, if k ≡ j mod 4, j = 0, 1, 2, 3,

we set hk,N (r) =
√

2 r−3/2 for

m+ (2j + 1)/8 ≤ r ≤ m+ (2j + 1)/8 + 10−10

and we set hk,N (r) = 0 otherwise. Hence for 5k ≤ N ,

(8)

∫ N2

0

hk,N (r)Jk(2πr)rdr =

N2∑
m=5N

2√
π

∫ m+(2j+1)/8+10−10

m+(2j+1)/8

cos(2πr − jπ/2− π/4))

r
dr

+ O(N−1) = c logN + O(N−1)

for some c = ck,N > 0 with c ∼ 1.
Let us denote the integral in (8) by Ak,N . Hence |Ak,N | ∼ logN . With

{ak}k∈ΛN
in (6), we define {gk}k∈ΛN

by the relation

gk Ak,N = c logN ak so that |gk| . |ak|.

We finally arrive at our hk,N (r) := gkhk,N (r) which defines H in (7). Note that
hk,N is supported in {r ≤ N2} since the same is true for hk,N .

The dual formulation of the (E. M. Stein) statement with R = N2 implies
(since 4/3 ≤ 2)

(9)
∥∥Ĥ|T‖F ≤ BΛ(logN)1/4‖H‖

L
4/3
+ L2

T

where

‖H‖
L

4/3
+ L2

T
=
(∫ ∞

0

( ∑
k∈ΛN

|hk,N (r)|2
) 1

2
4
3

r dr
)3/4

.

Since each hk,N is supported in [N,N2] and |hk,N (r)| . r−3/2|ak|, we see that

‖H‖
L

4/3
+ L2

T
≤ C

(∫ N2

N

[ 1

r3/2

]4/3
rdr
)3/4 ( ∑

k∈ΛN

|ak|2
)1/2
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and so

‖H‖
L

4/3
+ L2

T
≤ C (logN)3/4

( ∑
k∈ΛN

|ak|2
)1/2

.

Also
Ĥ(eiθ) = [c logN ]

∑
k∈ΛN

ake
ikθ,

implying

‖Ĥ|T‖F = [c logN ]
∥∥ ∑
k∈ΛN

ake
ik(·)∥∥

F
.

Therefore (9) implies

[c logN ]
∥∥ ∑
k∈ΛN

ake
ik(·)∥∥

F
≤

AΛ logN
( ∑
k∈ΛN

|ak|2
)1/2

,

showing that (6) holds, establishing the (W. Rudin) statement.

Conclusion

Here we tried to draw some parallels between two great men; similar life stories,
similar research interests and similar influence through their books and mono-
graphs. And although they may not have interacted mathematically as working
researchers, their mathematics is nonetheless intimately connected. This is the
beauty of mathematics.
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