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We propose a simulator for time-dependent Maxwell’s equations with linear computational cost. We employ 
B-spline basis functions as considered in the isogeometric analysis (IGA). We focus on non-stationary Maxwell’s 
equations defined on a regular patch of elements. We employ the idea of alternating-directions splitting (ADS) 
and employ a second-order accurate time-integration scheme for the time-dependent Maxwell’s equations in 
a weak form. After discretization, the resulting stiffness matrix exhibits a Kronecker product structure. Thus, it 
enables linear computational cost LU factorization. Additionally, we derive a formulation for absorbing boundary 
conditions (ABCs) suitable for direction splitting. We perform numerical simulations of the scattering problem 
(traveling pulse wave) to verify the ABC. We simulate the radiation of electromagnetic (EM) waves from the 
dipole antenna. We verify the order of the time integration scheme using a manufactured solution problem. 
We then simulate magnetotelluric measurements. Our simulator is implemented in a shared memory parallel 
machine, with the GALOIS library supporting the parallelization. We illustrate the parallel efficiency with strong 
and weak scalability tests corresponding to non-stationary Maxwell simulations.
1. Introduction

There are two main approaches for solving Maxwell’s Equations, 
i.e., working in the so-called frequency domain or in the time domain, 
having both advantages and limitations depending on the particular 
problem to solve. Working in the frequency domain is very popular 
in the field of electrical & telecommunication engineering and implies 
the use of the Fourier transform version of Maxwell’s Equations, i.e, 
the time-harmonic case. That has the advantage that each simulation 
(at a given frequency) can be carried out independently. It also allows 
us to naturally take into account variations of the material properties 
(material constants) with frequency. On the other hand, the charac-

terization of the problem at hand withing a given (possibly wide) fre-

quency band or the capture of some transient responses (using inverse 
Fourier transform) requires of quite a number of simulations at differ-

ent frequencies. Despite the fact that there are “fast frequency sweeps” 
methods for that and that simulations for the time harmonic case are 
relatively cheap (compared to the general time-dependent simulations), 
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it may be that they are not competitive. On the other hand, time-

dependent formulations naturally deliver transient responses and are 
able to easily take into account changes of material constants at differ-

ent time steps; being appropriate to model non-linear problems. They 
provide, by using the inverse Fourier transform, the frequency charac-

terization of a problem on single run. On the contrary, time-dependent 
simulations involves high computational time and may suffer from in-

stabilities.

In this paper, we propose a time-dependent simulator employing 
an implicit time integration scheme preserving the Kronecker prod-

uct structure of matrices, and thus resulting in a linear computational 
cost. One challenging aspect of such an approach is the imposition 
of boundary conditions. When dealing with open region wave prop-

agation problems, the original mathematical domain of the problem is 
infinite. Thus, in order to analyze it using computers the infinite domain 
must be truncated. A suitable boundary condition needs to be used on 
that boundary. One commonly considered type of boundary condition 
for the truncation boundary with electromagnetic simulations is the so 
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called Absorbing Boundary Conditions (ABCs), which allow the waves 
to freely propagate through the boundary without generating artificial 
reflected waves back into the domain. Numerous numerical methods 
for this type of boundary conditions have been developed over the 
years [2,3]. Since these boundary conditions are essentially non-local 
(in both space and time), practical calculations employ some approxi-

mations [2]. While some exact methods have been proposed [1,4–6], 
these methods are no suitable for direction splitting, and implementing 
them will require a computational cost higher than  (𝑁) per timestep, 
where 𝑁 is the number of degrees of freedom. In our paper we propose 
an implementation of ABC suitable for direction splitting solver, with 
computational cost  (𝑁).

We propose a linear computational cost isogeometric finite ele-

ment method solver for time-dependent Maxwell’s equations in three 
dimensions. Our solver employs the variational splitting method, intro-

duced in [7], and the second-order implicit time integration scheme 
proposed in [8,9]. We discretize with high-order B-splines from the 
isogeometric finite element method (IGA-FEM) [10]. The applica-

tion of the variational splitting method for the implicit time inte-

gration scheme delivers the Kronecker product structure of the ma-

trix and the linear computational cost of the solver. Thus, we pro-

pose a fast IGA-FEM solver for 3D non-stationary Maxwell’s equations. 
Our method is implemented in open-source IGA-ADS software [11]. 
It uses the GALOIS environment for shared-memory parallelization 
[12,13].

The application of a variational splitting method in isogeomet-

ric analysis originated in the works of Gao and Calo [14,15]. They 
proposed the decomposition of the mass matrix with tensor product 
B-spline basis functions into the Kronecker product of several one-

dimensional mass matrices. It has been later applied to explicit dy-

namics simulations [16,17], with the mass matrix on the left-hand side 
and fast parallel integration of the right-hand sides with GALOIS en-

vironment [12,13]. The variational splitting has also been employed 
within higher-order implicit time integration schemes [7,18,19], using 
the approximation of the linear combination of the mass and stiff-

ness matrices by a Kronecker product of one-dimensional matrices. The 
variational splitting can also be integrated with alternating directions 
techniques introduced in the context of finite difference simulations 
[20,21].

Our non-stationary Maxwell solver is augmented with Dirichlet, 
Neumann, or Absorbing Boundary Conditions (ABCs). In particular, we 
derive an ABC formulation that preserves our simulator’s linear compu-

tational cost. The ABC is often formulated in the frequency domain [23], 
while in this work we derive it in the non-statinary setup. We verify 
our non-stationary solver and the second order time integration scheme 
using a manufactured solution technique. For that, we consider a trav-

eling pulse wave model. We also simulate the radiation phenomenon 
from the dipole antenna, and we compare it against the known exact 
solution. Additionally, we perform simulations of magnetotelluric mea-

surements.

The structure of the paper is the following. We start from derivation 
in Section 2 of the implicit time integration scheme allowing direction 
splitting. We continue with the B-spline discretization in Section 3 and 
the Kronecker product structure of the derived matrices. Section 4 is de-

voted to the derivation of the Absorbing Boundary Conditions suitable 
for direction splitting. We summarize our formulations in Section 5. Nu-

merical results presented in Section 6 concern the traveling pulse wave, 
the radiation from the dipole antenna with a known exact solution, 
the manufactured solution problem used to verify the order of the time 
integration scheme, and the magnetotelluric simulations used for iden-

tification of the conductivity of the formation layers. In Section 7, we 
discuss the parallel scalability of the code. Finally, we summarize the 
work in Section 8.
37
2. Variational splitting for time-dependent Maxwell’s equations

We start from the time-dependent Maxwell’s equations

𝜕𝑡𝐄 = 1
𝜀
∇×𝐇,

𝜕𝑡𝐇 = − 1
𝜇
∇×𝐄

(1)

that model electrodynamics on some source-free spatial domain Ω and 
time interval [0, 𝑇 ], where 𝐄 denotes the electric field, 𝐇 stands for 
the magnetic field, 𝜀 is the permittivity, and 𝜇 is the permeability. We 
perform the following splitting for the rotational operator

∇× =
⎡⎢⎢⎣

0 −𝜕3 𝜕2
𝜕3 0 −𝜕1

−𝜕2 𝜕1 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 0 𝜕2
𝜕3 0 0
0 𝜕1 0

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝐶1

−
⎡⎢⎢⎣
0 𝜕3 0
0 0 𝜕1
𝜕2 0 0

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝐶2

. (2)

The splitting verifies:

𝐶1𝐶2 =
⎡⎢⎢⎣
𝜕22 0 0
0 𝜕23 0
0 0 𝜕21

⎤⎥⎥⎦ , 𝐶2𝐶1 =
⎡⎢⎢⎣
𝜕23 0 0
0 𝜕21 0
0 0 𝜕22

⎤⎥⎥⎦ , (3)

which allows keeping the equations for each field components indepen-

dent. Other properties are the following

𝐶1𝐶1 =
⎡⎢⎢⎣

0 𝜕2𝜕1 0
0 0 𝜕3𝜕2

𝜕1𝜕3 0 0

⎤⎥⎥⎦ , 𝐶2𝐶2 =
⎡⎢⎢⎣

0 0 𝜕3𝜕1
𝜕1𝜕2 0 0
0 𝜕2𝜕3 0

⎤⎥⎥⎦ , (4)

and these terms in the time integration scheme will be kept on the right-

hand side.

Let us discretize the time by dividing [0, 𝑇 ] into 𝑁 subintervals of 
size 𝜏 = 𝑇 ∕𝑁 . We wish to compute approximate values of the elec-

tric and magnetic fields 𝐄𝑛 ≈ 𝐄(𝑡𝑛), 𝐇𝑛 ≈ 𝐇(𝑡𝑛) at time points 𝑡𝑛 = 𝑛𝜏

for 𝑛 = 0, 1, … , 𝑁 . The time marching scheme employing the above de-

composition is constructed by splitting each time step of the simulation 
into sub-steps and introducing in-between unknowns 𝐄𝑛+ 1

2 and 𝐇𝑛+ 1
2 . 

Let 𝜏 denote the size of the full time step. We can approximate the time 
derivatives on the left-hand side of the Maxwell’s equations at 𝑡 = 𝑡

𝑛+ 1
2

by finite differences

𝜕𝑡𝐄 = 𝐄𝑛+ 1
2 −𝐄𝑛

𝜏∕2
= 1

𝜀
∇×𝐇; 𝜕𝑡𝐇 = 𝐇𝑛+ 1

2 −𝐇𝑛

𝜏∕2
= − 1

𝜇
∇×𝐄, (5)

and similarly for 𝑡 = 𝑡𝑛+1. In each sub-step, we construct the right-hand 
side by splitting the rotation operator applied to 𝐄 and 𝐇 into its 𝐶1
and 𝐶2 parts, and treating one of these implicitly, and the other explic-

itly. In more detail, in the first sub-step we compute 𝐄𝑛+ 1
2 and 𝐇𝑛+ 1

2

given the previous time step solution 𝐄𝑛 and 𝐇𝑛 by solving the system

𝐄𝑛+ 1
2 = 𝐄𝑛 + 𝜏

2𝜀

(
𝐶1𝐇

𝑛+ 1
2 −𝐶2𝐇𝑛

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∇×𝐇

,

𝐇𝑛+ 1
2 =𝐇𝑛 − 𝜏

2𝜇

(
𝐶1𝐄𝑛 −𝐶2𝐄

𝑛+ 1
2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∇×𝐄

,

(6)

and in the second sub-step we compute 𝐄𝑛+1 and 𝐇𝑛+1 by solving

𝐄𝑛+1 = 𝐄𝑛+ 1
2 + 𝜏

2𝜀

(
𝐶1𝐇

𝑛+ 1
2 −𝐶2𝐇𝑛+1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∇×𝐇

,

𝐇𝑛+1 =𝐇𝑛+ 1
2 − 𝜏

2𝜇

(
𝐶1𝐄𝑛+1 −𝐶2𝐄

𝑛+ 1
2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∇×𝐄

.

(7)

Since the systems corresponding to both sub-steps have a very similar 
structure, we will elucidate the solution method of the first sub-step 
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with the understanding that the second is solved analogously. To solve 
the first sub-step, first we insert the second equation of (6) into the 
corresponding right-hand side of the first equation

𝐄𝑛+ 1
2 = 𝐄𝑛 + 𝜏

2𝜀

⎛⎜⎜⎜⎜⎜⎜⎝
𝐶1

[
𝐇𝑛 − 𝜏

2𝜇

(
𝐶1𝐄𝑛 −𝐶2𝐄

𝑛+ 1
2
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐇𝑛+ 1
2

−𝐶2𝐇𝑛

⎞⎟⎟⎟⎟⎟⎟⎠
= 𝐄𝑛 + 𝜏

2𝜀
(
𝐶1𝐇𝑛 −𝐶2𝐇𝑛

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

∇×𝐇𝑛

− 𝜏2

4𝜀𝜇
𝐶2
1𝐄

𝑛 + 𝜏2

4𝜀𝜇
𝐶1𝐶2𝐄

𝑛+ 1
2 ,

(8)

to obtain(
1 − 𝜏2

4𝜀𝜇
𝐶1𝐶2

)
𝐄𝑛+ 1

2 = 𝐄𝑛 + 𝜏

2𝜀
∇×𝐇𝑛 − 𝜏2

4𝜀𝜇
𝐶2
1𝐄

𝑛

⏟⏞⏞⏟⏞⏞⏟
inconvenient

. (9)

The matrix on the left-hand side is block-diagonal, and the “inconve-

nient” off-diagonal terms are on the right-hand side now, so that we can 
compute each component of 𝐄𝑛+ 1

2 independently. Once we have 𝐄𝑛+ 1
2 , 

unknown 𝐇𝑛+ 1
2 can be computed directly using the second equation 

of (6). Let us focus now on the fully expanded first sub-step, introduc-

ing 𝜆 = 𝜏2

4𝜀𝜇 .

(
1 − 𝜆𝜕22

)
𝐸

𝑛+ 1
2

1 =𝐸𝑛
1 +

𝜏

2𝜀
(∇ ×𝐇𝑛)1 − 𝜆𝜕2𝜕1𝐸

𝑛
2 ,(

1 − 𝜆𝜕23
)
𝐸

𝑛+ 1
2

2 =𝐸𝑛
2 +

𝜏

2𝜀
(∇ ×𝐇𝑛)2 − 𝜆𝜕3𝜕2𝐸

𝑛
3 ,(

1 − 𝜆𝜕21
)
𝐸

𝑛+ 1
2

3 =𝐸𝑛
3 +

𝜏

2𝜀
(∇ ×𝐇𝑛)3 − 𝜆𝜕1𝜕3𝐸

𝑛
1 .

(10)

We will derive now the weak formulation for the equations (10) above. 
We multiply by a test function 𝑣, integrate over Ω(
𝐸

𝑛+ 1
2

1 , 𝑣

)
− 𝜆

(
𝜕22𝐸

𝑛+ 1
2

1 , 𝑣

)
=
(
𝐸𝑛
1 , 𝑣
)
+ 𝜏

2𝜀
(
(∇ ×𝐇𝑛)1 , 𝑣

)
− 𝜆
(
𝜕2𝜕1𝐸

𝑛
2 , 𝑣
)
. (11)

Now, we integrate by parts the terms on the left-hand side to obtain(
𝐸

𝑛+ 1
2

1 , 𝑣

)
− 𝜆

(
𝜕22𝐸

𝑛+ 1
2

1 , 𝑣

)
=
(
𝐸

𝑛+ 1
2

1 , 𝑣

)
+ 𝜆

(
𝜕2𝐸

𝑛+ 1
2

1 , 𝜕2𝑣

)
− 𝜆

⟨
𝜕2𝐸

𝑛+ 1
2

1 , 𝑣 𝑛2

⟩
, (12)(

𝐸
𝑛+ 1

2
2 , 𝑣

)
− 𝜆

(
𝜕23𝐸

𝑛+ 1
2

2 , 𝑣

)
=
(
𝐸

𝑛+ 1
2

2 , 𝑣

)
+ 𝜆

(
𝜕3𝐸

𝑛+ 1
2

2 , 𝜕3𝑣

)
− 𝜆

⟨
𝜕3𝐸

𝑛+ 1
2

2 , 𝑣 𝑛3

⟩
, (13)(

𝐸
𝑛+ 1

2
3 , 𝑣

)
− 𝜆

(
𝜕21𝐸

𝑛+ 1
2

3 , 𝑣

)
=
(
𝐸

𝑛+ 1
2

3 , 𝑣

)
+ 𝜆

(
𝜕1𝐸

𝑛+ 1
2

3 , 𝜕1𝑣

)
− 𝜆

⟨
𝜕1𝐸

𝑛+ 1
2

3 , 𝑣 𝑛1

⟩
. (14)

Here, (⋅, ⋅) denotes the scalar product of 𝐿2(Ω), ⟨⋅, ⋅⟩ stands for the scalar 
product of 𝐿2(𝜕Ω) and 𝑛 stands for the unit vector normal to the bound-

ary of Ω and pointing outside.

The remaining boundary terms will be used to impose boundary 
conditions in Section 3. The second sub-step is performed analogously, 
starting with eq. (7). The roles of 𝐶1 and 𝐶2 in eq. (7) are swapped 
compared to (6), which leads to 𝐶1𝐶2 and 𝐶2

1 in eq. (9) being replaced 
by 𝐶2𝐶1 and 𝐶2

2 , respectively. The final form of the direction splitting 
scheme depends on the boundary conditions, which will be introduced 
in Section 3, and the final form of the equations is presented at the end 
of Section 4.
38
2.1. Regularity of the solutions

Integrating all the terms involving second-order derivatives arising 
from equation (10) and an analogous equation for 𝐄𝑛, we can conclude 
that for the weak formulation to be well defined we need that:

• 𝜕2𝐸
𝑛+ 1

2
1 , 𝜕3𝐸

𝑛+ 1
2

2 , 𝜕1𝐸
𝑛+ 1

2
3 ∈𝐿2(Ω)

• 𝜕3𝐸
𝑛+1
1 , 𝜕1𝐸𝑛+1

2 , 𝜕2𝐸𝑛+1
3 ∈𝐿2(Ω)

Using operators 𝐶1 and 𝐶2 we can write it concisely as

𝐄𝑛+ 1
2 ∈𝐻(𝐶2,Ω) ∶=

{
𝐀 ∈𝐿2(Ω)3 ∶ 𝐶2𝐀 ∈𝐿2(Ω)3

}
𝐄𝑛+1 ∈𝐻(𝐶1,Ω) ∶=

{
𝐀 ∈𝐿2(Ω)3 ∶ 𝐶1𝐀 ∈𝐿2(Ω)3

}
These spaces are larger than 𝐻(curl), but 𝐻(𝐶1) ∩𝐻(𝐶2) ⊂𝐻(curl).

Note that we do not explicitly consider the regularity restrictions 
imposed by the boundary terms, since these will eventually be replaced 
by the boundary condition data, and thus will not appear in the final 
formulation.

3. Boundary conditions

3.1. First order absorbing boundary conditions (ABCs)

The first order absorbing boundary conditions (ABCs) that we will 
be using are prescribed as

− �̂� ×𝐇+ 1
𝜂
�̂� × (�̂� ×𝐄) = 𝐄inc (15)

where 𝜂 =
√
𝜇∕𝜖, symbol �̂� denotes the outward unit normal to the con-

sidered boundary.

And 𝐄inc denotes an incident field (more precisely, the tangential 
component to the boundary). Boundary condition (15) is the so called 
radiation condition satisfied exactly at infinite distance from the sources 
[2,27]. We will use it as boundary condition to truncate the original infi-

nite domain of the problems considered later in the paper. The problem 
with direct implementation of the ABC in variational splitting solver 
is that it introduces coupling between 𝐄 and 𝐇, which in turn inter-

feres with the splitting. Thus, we derive an alternative formulation by 
computing 𝜕𝑡 (ABC), namely

− �̂� × 𝜕𝑡𝐇
⏟⏟⏟

− 1
𝜇
∇×𝐄

+1
𝜂
�̂� ×
(
�̂� × 𝜕𝑡𝐄

)
= 𝜕𝑡𝐄inc, (16)

which results in Robin type boundary conditions

�̂� × (∇ ×𝐄) + 𝜇

𝜂
�̂� ×
(
�̂� × 𝜕𝑡𝐄

)
= 𝜇𝜕𝑡𝐄inc. (17)

The new boundary condition is obtained by differentiating the original 
one with respect to the time variable, so the solution with the original 
BC also satisfies the modified BC. Since the solution is unique, both 
versions of BC must therefore lead to the same solution, with the same 
regularity. Since 𝐚 × (𝐛 × 𝐜) = (𝐚 ⋅ 𝐜)𝐛 − (𝐚 ⋅ 𝐛) 𝐜 we have

�̂� × (∇ ×𝐄) = ∇(�̂� ⋅𝐄) − (�̂� ⋅∇)𝐄

−�̂� ×
(
�̂� × 𝜕𝑡𝐄

)
= 𝜕𝑡𝐄− (�̂� ⋅ 𝜕𝑡𝐄) �̂�

⏟⏞⏞⏟⏞⏞⏟
perpendicular component

of 𝜕𝑡𝐄
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

tangential component
of 𝜕𝑡𝐄

For �̂� = ± ̂𝐞𝑘 ∈ {(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)} over the cube we have

�̂� × (∇ ×𝐄) = ±
(
∇𝐸𝑘 − 𝜕𝑘𝐄

)
= �̂�𝑘

⎡⎢⎢⎣
𝜕1𝐸𝑘 − 𝜕𝑘𝐸1
𝜕2𝐸𝑘 − 𝜕𝑘𝐸2
𝜕 𝐸 − 𝜕 𝐸

⎤⎥⎥⎦ (18)
3 𝑘 𝑘 3
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for 𝑘 = 1, 2, 3, meaning 𝜕𝑘 ∈ {𝜕1, 𝜕2, 𝜕3} (which corresponds to spatial di-

rections {𝜕𝑥, 𝜕𝑦, 𝜕𝑧}. For the cube-shaped domain, we have �̂�𝑘 ∈ {−1, 1}.

Back to (17), using (18) since for each 𝑘 we have only two non-

zero components on a cube, and the third one is zero, as well as the 
perpendicular component is zero in this case

−�̂� ×
(
�̂� × 𝜕𝑡𝐄

)
= 𝜕𝑡𝐄− (�̂� ⋅ 𝜕𝑡𝐄) �̂�.

⏟⏞⏞⏞⏟⏞⏞⏞⏟
perpendicular component

of 𝜕𝑡𝐄=0 here

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
tangential component

of 𝜕𝑡𝐄

(19)

On the regular cube, this amounts to

• on Γ1, �̂�= ± ̂𝐞1:

�̂�1 (∇ ×𝐄)3 = −𝜇
𝜕𝑈2
𝜕𝑡

− 𝜇

𝜂
𝜕𝑡𝐸2

�̂�1 (∇ ×𝐄)2 = 𝜇
𝜕𝑈3
𝜕𝑡

+ 𝜇

𝜂
𝜕𝑡𝐸3

, (20)

• on Γ2, �̂�= ± ̂𝐞2:

�̂�2 (∇ ×𝐄)3 = −𝜇
𝜕𝑈1
𝜕𝑡

− 𝜇

𝜂
𝜕𝑡𝐸1

�̂�2 (∇ ×𝐄)1 = 𝜇
𝜕𝑈3
𝜕𝑡

+ 𝜇

𝜂
𝜕𝑡𝐸3

, (21)

• on Γ3, �̂�= ± ̂𝐞3:

�̂�3 (∇ ×𝐄)2 = −𝜇
𝜕𝑈1
𝜕𝑡

− 𝜇

𝜂
𝜕𝑡𝐸1

�̂�3 (∇ ×𝐄)1 = 𝜇
𝜕𝑈2
𝜕𝑡

+ 𝜇

𝜂
𝜕𝑡𝐸2

. (22)

The integration by parts in the weak form results in the following 
boundary terms (and for the simplicity of the presentation, we skip all 
other terms here):

• On the left-hand side, the strong form term transforms into the 
following weak form term:

−𝜆𝜕22𝐸
𝑛+ 1

2
1 → −𝜆

⟨
𝜕2𝐸

𝑛+ 1
2

1 , 𝑣 �̂�2

⟩
,

−𝜆𝜕23𝐸
𝑛+ 1

2
2 → −𝜆

⟨
𝜕3𝐸

𝑛+ 1
2

2 , 𝑣 �̂�3

⟩
,

−𝜆𝜕21𝐸
𝑛+ 1

2
3 → −𝜆

⟨
𝜕1𝐸

𝑛+ 1
2

3 , 𝑣 �̂�1

⟩
.

(23)

• On the right-hand side, the strong form term transforms into the 
following weak form term:

−𝜆𝜕2𝜕1𝐸𝑛
2 → −𝜆

⟨
𝜕1𝐸

𝑛
2 , 𝑣 �̂�2

⟩
,

−𝜆𝜕3𝜕2𝐸𝑛
3 → −𝜆

⟨
𝜕2𝐸

𝑛
3 , 𝑣 �̂�3

⟩
,

−𝜆𝜕1𝜕3𝐸𝑛
1 → −𝜆

⟨
𝜕3𝐸

𝑛
1 , 𝑣 �̂�1

⟩
.

(24)

In the left-hand side terms, we change 𝐄𝑛+ 1
2 into 𝐄𝑛, and we move 

the corresponding terms into the right-hand side. After this modifica-

tion, each boundary term is non-zero on exactly one of Γ1, Γ2, Γ3:

𝜆
⟨
𝜕2𝐸

𝑛
1 , 𝑣 𝑛2

⟩
− 𝜆
⟨
𝜕1𝐸

𝑛
2 , 𝑣 𝑛2

⟩
= −𝜆

⟨
−𝜕2𝐸𝑛

1 + 𝜕1𝐸
𝑛
2

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
(∇×𝐄𝑛)3

, 𝑣 𝑛2

⟩
,

𝜆
⟨
𝜕3𝐸

𝑛
2 , 𝑣 𝑛3

⟩
− 𝜆
⟨
𝜕2𝐸

𝑛
3 , 𝑣 𝑛3

⟩
= −𝜆

⟨
−𝜕3𝐸𝑛

2 + 𝜕2𝐸
𝑛
3

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
(∇×𝐄𝑛)

, 𝑣 𝑛3

⟩
,

1

39
𝜆
⟨
𝜕1𝐸

𝑛
3 , 𝑣 𝑛1

⟩
− 𝜆
⟨
𝜕3𝐸

𝑛
1 , 𝑣 𝑛1

⟩
= −𝜆

⟨
−𝜕1𝐸𝑛

3 + 𝜕3𝐸
𝑛
1

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
(∇×𝐄𝑛)2

, 𝑣 𝑛1

⟩
. (25)

Using the boundary conditions, we can rewrite the components 
of ∇ ×𝐄 as⟨
−𝜕2𝐸𝑛

1 + 𝜕1𝐸
𝑛
2

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
(∇×𝐄𝑛)3

, 𝑣 𝑛2

⟩
=
⟨
𝜇
𝜕𝑈1
𝜕𝑡

+ 𝜇

𝜂
𝜕𝑡𝐸1, 𝑣

⟩
Γ2

,

⟨
−𝜕3𝐸𝑛

2 + 𝜕2𝐸
𝑛
3

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
(∇×𝐄𝑛)1

, 𝑣 𝑛3

⟩
=
⟨
𝜇
𝜕𝑈2
𝜕𝑡

+ 𝜇

𝜂
𝜕𝑡𝐸2, 𝑣

⟩
Γ3

,

⟨
−𝜕1𝐸𝑛

3 + 𝜕3𝐸
𝑛
1

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
(∇×𝐄𝑛)2

, 𝑣 𝑛1

⟩
=
⟨
𝜇
𝜕𝑈3
𝜕𝑡

+ 𝜇

𝜂
𝜕𝑡𝐸3, 𝑣

⟩
Γ1

,

(26)

and approximate the time derivative as

𝜕𝑡𝐄𝑛 ≈ 𝐄𝑛 −𝐄𝑛−1

𝜏
, 𝜕𝑡𝐄

𝑛+ 1
2 ≈ 𝐄𝑛+ 1

2 −𝐄𝑛

𝜏∕2
. (27)

Remark 1. For the following formulation of the boundary conditions

𝐄 × �̂� = 0 𝐇 ⋅ �̂� = 0 (28)

on the cube boundary 𝜕Ω = Γ1 ∪ Γ2 ∪ Γ3, where �̂� = ± ̂𝐞𝑘 on Γ𝑘, we have

• 𝐸2 =𝐸3 = 0 on Γ1,
• 𝐸1 =𝐸3 = 0 on Γ2,
• 𝐸1 =𝐸2 = 0 on Γ3.

In this case, the boundary conditions indeed vanish. However, these 
boundary conditions reflect waves and are unsuitable for simulating a 
purely wave propagation problem.

4. Full formulation of the time-dependent Maxwell’s equations 
with absorbing boundary conditions suitable for variational 
splitting

The full variational splitting scheme is the following

𝑏𝛼𝛽 (𝑢, 𝑣) = 𝜆
(
𝜕𝛼𝑢, 𝜕𝛽𝑣

)
𝑎𝛼(𝑢, 𝑣) = (𝑢, 𝑣) + 𝑏𝛼𝛼(𝑢, 𝑣),

𝑐𝛼(𝐅, 𝑣) =
𝜏

2𝜀
(
(∇ × 𝐅)𝛼 , 𝑣

)
𝛾𝛼(𝑢, 𝑣) = 𝜆𝜇 ⟨𝑢, 𝑣⟩Γ𝛼 , (29)

When going from time step 𝑛 to time step 𝑛 + 1
2 , we have the values of 

the electric field 𝐸𝑛
1 , 𝐸𝑛

2 , 𝐸𝑛
3 . We also have the magnetic field 𝐇𝑛 com-

puted at previous time step. In the next sub-step, we compute updates 

𝐸
𝑛+ 1

2
1 , 𝐸𝑛+ 1

2
2 , and 𝐸𝑛+ 1

2
3 ,

𝑎2(𝐸
𝑛+ 1

2
1 , 𝑣) =

(
𝐸𝑛
1 , 𝑣
)
+ 𝑏12(𝐸𝑛

2 , 𝑣) + 𝑐1(𝐇𝑛, 𝑣) − 𝛾2

(
𝜕𝑈1
𝜕𝑡

+ 1
𝜂
𝜕𝑡𝐸

𝑛
1 , 𝑣

)
,

𝑎3(𝐸
𝑛+ 1

2
2 , 𝑣) =

(
𝐸𝑛
2 , 𝑣
)
+ 𝑏23(𝐸𝑛

3 , 𝑣) + 𝑐2(𝐇𝑛, 𝑣) − 𝛾3

(
𝜕𝑈2
𝜕𝑡

+ 1
𝜂
𝜕𝑡𝐸

𝑛
2 , 𝑣

)
,

𝑎1(𝐸
𝑛+ 1

2
3 , 𝑣) =

(
𝐸𝑛
3 , 𝑣
)
+ 𝑏31(𝐸𝑛

1 , 𝑣) + 𝑐3(𝐇𝑛, 𝑣) − 𝛾1

(
𝜕𝑈3
𝜕𝑡

+ 1
𝜂
𝜕𝑡𝐸

𝑛
3 , 𝑣

)
.

(30)

Now, we also compute 𝐇𝑛+ 1
2 = 𝐇𝑛 − 𝜏

2𝜇

(
𝐶1𝐄𝑛 −𝐶2𝐄

𝑛+ 1
2
)

(using equa-

tion (6)). When going from time step 𝑛 + 1
2 to time step 𝑛 +1, we already 

have the values of the electric field 𝐸𝑛+ 1
2

1 , 𝐸𝑛+ 1
2

2 , 𝐸𝑛+ 1
2

3 . In the next sub-

step we compute 𝐸𝑛+1, 𝐸𝑛+1, 𝐸𝑛+1,
1 2 3
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Fig. 1. One dimensional B-spline basis functions.
𝑎3(𝐸𝑛+1
1 , 𝑣) =

(
𝐸

𝑛+ 1
2

1 , 𝑣

)
+ 𝑏13(𝐸

𝑛+ 1
2

3 , 𝑣) + 𝑐1(𝐇
𝑛+ 1

2 , 𝑣)

− 𝛾3

(
𝜕𝑈1
𝜕𝑡

+ 1
𝜂
𝜕𝑡𝐸

𝑛+ 1
2

1 , 𝑣

)
,

𝑎1(𝐸𝑛+1
2 , 𝑣) =

(
𝐸

𝑛+ 1
2

2 , 𝑣

)
+ 𝑏21(𝐸

𝑛+ 1
2

1 , 𝑣) + 𝑐2(𝐇
𝑛+ 1

2 , 𝑣)

− 𝛾1

(
𝜕𝑈2
𝜕𝑡

+ 1
𝜂
𝜕𝑡𝐸

𝑛+ 1
2

2 , 𝑣

)
,

𝑎2(𝐸𝑛+1
3 , 𝑣) =

(
𝐸

𝑛+ 1
2

3 , 𝑣

)
+ 𝑏32(𝐸

𝑛+ 1
2

2 , 𝑣) + 𝑐3(𝐇
𝑛+ 1

2 , 𝑣)

− 𝛾2

(
𝜕𝑈3
𝜕𝑡

+ 1
𝜂
𝜕𝑡𝐸

𝑛+ 1
2

3 , 𝑣

)
. (31)

Finally, we compute 𝐇𝑛+1 =𝐇𝑛+ 1
2 − 𝜏

2𝜇

(
𝐶1𝐄𝑛+1 −𝐶2𝐄

𝑛+ 1
2
)

using equa-

tion (7).

5. Discretization with B-spline basis functions

Over the regular domain Ω = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × [𝑎3, 𝑏3] we introduce 
the space ℎ of tensor products of one-dimensional B-splines

ℎ = span
{
𝐵𝑖𝑗𝑘 ∶ 𝑖 = 1,… ,𝑁1, 𝑗 = 1,… ,𝑁2, 𝑘 = 1,… ,𝑁3

}
(32)

where

𝐵𝑖𝑗𝑘(𝐱) =𝐵1
𝑖 (𝑥1)𝐵

2
𝑗 (𝑥2)𝐵

3
𝑘
(𝑥3) (33)

and 𝐵𝛼
𝑖

denotes the one-dimensional B-spline basis functions, see Fig. 1. 
In the discrete form of (12) , we omit boundary terms and we separate 
directions. We denote B-splines along 𝑥, 𝑦, and 𝑧 using black, red, and 
blue colors.(
𝐵𝑖𝑗𝑘,𝐵𝑝𝑞𝑟

)
+ 𝜆
(
𝜕2𝐵𝑖𝑗𝑘, 𝜕2𝐵𝑝𝑞𝑟

)
= (34)

∫
Ω

𝐵𝑖𝑗𝑘𝐵𝑝𝑞𝑟 𝑑𝑥+ 𝜆∫
Ω

𝜕2𝐵𝑖𝑗𝑘𝜕2𝐵𝑝𝑞𝑟 𝑑𝑥= (35)

∫
Ω

𝐵1
𝑖 𝐵

2
𝑗 𝐵

3
𝑘
𝐵1
𝑝𝐵

2
𝑞𝐵

3
𝑟 𝑑𝑥+ 𝜆∫

Ω

𝜕2(𝐵1
𝑖 𝐵

2
𝑗 𝐵

3
𝑘
)𝜕2(𝐵1

𝑝𝐵
2
𝑞𝐵

3
𝑟 )𝑑𝑥 = (36)

∫
Ω

(𝐵1
𝑖 𝐵

1
𝑝 ) (𝐵

2
𝑗 𝐵

2
𝑞 ) (𝐵

3
𝑘
𝐵3
𝑟 )𝑑𝑥+ 𝜆∫

Ω

(𝐵1
𝑖 𝐵

1
𝑝 ) ((𝐵

2
𝑗 )

′(𝐵2
𝑞 )

′) (𝐵3
𝑘
𝐵3
𝑟 )𝑑𝑥 = (37)

⎛⎜⎜⎜⎝∫Ω1

𝐵1
𝑖 𝐵

1
𝑝 𝑑𝑥1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝∫Ω2

𝐵2
𝑗 𝐵

2
𝑞 𝑑𝑥2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝∫Ω3

𝐵3
𝑘
𝐵3
𝑟 𝑑𝑥3

⎞⎟⎟⎟⎠+ (38)

𝜆

⎛⎜⎜⎜∫Ω1

𝐵1
𝑖 𝐵

1
𝑝 𝑑𝑥1

⎞⎟⎟⎟
⎛⎜⎜⎜∫Ω2

(𝐵2
𝑗 )

′(𝐵2
𝑞 )

′ 𝑑𝑥2

⎞⎟⎟⎟
⎛⎜⎜⎜∫Ω3

𝐵3
𝑘
𝐵3
𝑟 𝑑𝑥3

⎞⎟⎟⎟ = (39)
⎝ ⎠ ⎝ ⎠⎝ ⎠
40
⎛⎜⎜⎜⎝∫Ω1

𝐵1
𝑖 𝐵

1
𝑝 𝑑𝑥1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝∫Ω2

𝐵2
𝑗 𝐵

2
𝑞 + 𝜆(𝐵2

𝑗 )
′(𝐵2

𝑞 )
′ 𝑑𝑥2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝∫Ω3

𝐵3
𝑘
𝐵3
𝑟 𝑑𝑥3

⎞⎟⎟⎟⎠. (40)

where Ω1 = [𝑎1, 𝑏1], Ω2 = [𝑎2, 𝑏2] and Ω3 = [𝑎3, 𝑏3]. We can perform the 
similar decomposition for the other equations (13), (14). Assuming the 
boundary terms vanish, we are left with

𝐋(1) =𝐌1 ⊗
(
𝐌2 + 𝜆𝐒2

)
⊗𝐌3

𝐋(2) =𝐌1 ⊗𝐌2 ⊗
(
𝐌3 + 𝜆𝐒3

)
𝐋(3) =

(
𝐌1 + 𝜆𝐒1

)
⊗𝐌2 ⊗𝐌3

(41)

Here 𝐌𝛼 , 𝐒𝛼 denotes the one-dimensional mass and stiffness matrices. 
This Kronecker product structure matrices can be efficiently solved us-

ing in a linear (𝑁) computational cost.

6. Numerical examples

In the following, we consider a model to analyze an antenna problem 
and also a scattering problem. Both problems are open region problems, 
i.e., the electromagnetic field is non-zero in an unbounded region. Nev-

ertheless, in order for the discretization of the mathematical model to 
lead to a finite number of unknowns, the original unbounded domain is 
truncated resulting in a bounded domain Ω. An appropriate boundary 
condition is used on that external truncation boundary as it is specified 
below. Thus, considering constant (with time) material data parame-

ters 𝜀, 𝜇, we have:

𝛁 ×𝐄(𝐫, 𝑡) = −𝐌imp(𝐫, 𝑡) − 𝜇
𝜕𝐇(𝐫, 𝑡)

𝜕𝑡
𝐫 ∈Ω (42)

𝛁 ×𝐇(𝐫, 𝑡) = 𝐉imp(𝐫, 𝑡) + 𝜀
𝜕𝐄(𝐫, 𝑡)

𝜕𝑡
𝐫 ∈Ω (43)

in which we have that all currents in the model are impressed currents 
(𝐉 = 𝐉imp, 𝐌 =𝐌imp).

Denoting 𝜕Ω𝑆 the above mentioned external truncation boundary 
of Ω we will consider1 the boundary condition (15) presented in Sec-

tion 3.1 that are repeated here for convenience

(−�̂� ×𝐇(𝐫, 𝑡)) + 1
𝜂
(�̂� × �̂� ×𝐄(𝐫, 𝑡)) = 𝐄inc(𝐫, 𝑡) 𝐫 ∈ 𝜕Ω𝑆 , (44)

where 𝜂 is the intrinsic impedance of the medium at 𝜕Ω𝑆 (typically 
vacuum and hence 𝜂 = 𝜂0 =

√
𝜇0∕𝜀0 = 120𝜋) and 𝑈 (𝐫, 𝑡) is either null or 

a known function. Symbol �̂� denotes the outward unit normal to 𝜕Ω𝑆 .

Since boundary conditions (44) introduce coupling between 𝐄
and 𝐇, they are difficult to use directly with our splitting scheme. We 
can, however, reformulate them in terms of either only 𝐄 or only 𝐇:(
�̂� × 1

𝜇
∇×𝐄(𝐫, 𝑡)

)
+ 1

𝜂

(
�̂� × �̂� × 𝜕𝐄(𝐫, 𝑡)

𝜕𝑡

)
= 𝜕𝐔(𝐫, 𝑡)

𝜕𝑡
𝐫 ∈ 𝜕Ω𝑆 (45)

1 Later we elaborate with other possible boundary conditions in given cases.
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(
�̂� × 1

𝜀
∇×𝐇(𝐫, 𝑡)

)
+ 𝜂

(
�̂� × �̂� × 𝜕𝐇(𝐫, 𝑡)

𝜕𝑡

)
= 𝜕𝐔(𝐫, 𝑡)

𝜕𝑡
𝐫 ∈ 𝜕Ω𝑆 (46)

The initial conditions for the field are homogeneous:

𝐄(𝐫,0) = 0, 𝐇(𝐫,0) = 0 (47)

Thus, the excitation of the problem comes from the excitation cur-

rents

𝐉imp(𝐫, 𝑡) = 𝐉0
imp

(𝐫, 𝑡) ≠ 0 (48)

𝐌imp(𝐫, 𝑡) =𝐌0
imp

(𝐫, 𝑡) ≠ 0 (49)

and/or from the non-zero value of 𝐔(𝐫, 𝑡)

𝐔(𝐫, 𝑡) =𝐔0(𝐫, 𝑡) ≠ 0 (50)

We assume that all the excitations are strictly inside the domain, 
so 𝐉imp and 𝐌imp are zero at the boundary. With this assumption, the 
derivation of the absorbing boundary conditions remains valid, since 
at/near the boundary the equations retain the original form (without 
the excitations).

6.1. Scattering of a plane wave in �̂�

In this example, we analyze the problem of the scattering of an inci-

dent plane wave (𝐄inc, 𝐇inc) in a vacuum region (i.e., 𝜀 = 𝜀0, 𝜇 = 𝜇0). As 
there is not any scatter, the solution to this problem is:

𝐄 = 𝐄inc, 𝐇 =𝐇inc (51)

Thus, this example serves as an initial test of the Absorbing Bound-

ary Condition implemented in the code. We use incident plane waves 
propagating in a direction perpendicular to one of the faces of the unit 
square domain, and the electric and magnetic field components are par-

allel to its sides. For instance, we choose the plane wave to incide from 
below, i.e., a plane wave propagating on +�̂� direction and inciding on 
horizontal face 𝑧 = 0 of the domain from “below”. Thus,

𝐄inc(𝑧, 𝑡) =𝐸0 cos
(
𝜔0

(
𝑡− 𝑧

𝑐0

))
𝑔

(
𝑡− 𝑧

𝑐0

)
�̂� (52)

𝐇inc(𝑧, 𝑡) =
𝐸0
𝜂0

cos
(
𝜔0

(
𝑡− 𝑧

𝑐0

))
𝑔

(
𝑡− 𝑧

𝑐0

)
�̂� (53)

where 𝑘0∕𝜔0 = 𝑐0, 𝑘0 is a wave number (can be chosen freely to fix 
frequency), and any value for 𝐸0 can be chosen, e.g., 𝐸0 = 1. The func-

tion 𝑔(𝑡) can be chosen in different ways, e.g., Gaussian pulse as defined 
later. It can easily be shown that the incident field given by expressions 
(52)-(53) is a solution of Maxwell’s Equations (42)–(43). It can also be 
shown that they satisfy the boundary conditions (44), (45) and (46). 
Now, we will show how to define 𝐖(𝑧, 𝑡) = 𝜕𝐔

𝜕𝑡
(𝑧, 𝑡) of the boundary con-

dition (45) so this manufactured solution is satisfied. Let us consider 
first (45), specifically in vaccum medium, i.e., 𝜇 = 𝜇0, 𝜂 = 𝜂0.(
�̂� × 1

𝜇0
∇ ×𝐄inc(𝑧, 𝑡)

)
+ 1

𝜂0

(
�̂� × �̂� × 𝜕𝐄inc(𝑧, 𝑡)

𝜕𝑡

)
= 𝜕𝐔(𝑧, 𝑡)

𝜕𝑡
=𝐖(𝑧, 𝑡)

(54)

As ∇ ×𝐄inc(𝑧, 𝑡) = �̂� × 𝜕𝐄inc(𝑧, 𝑡)∕𝜕𝑧, we have

1
𝜇0

∇ ×𝐄inc(𝐫, 𝑡) = 1
𝜇0

�̂� × 𝜕𝐄inc(𝑧, 𝑡)
𝜕𝑧

= �̂�
𝐸0
𝜇0

[
𝜔0
𝑐0

sin
(
𝜔0

(
𝑡− 𝑧

𝑐0

))
𝑔

(
𝑡− 𝑧

𝑐0

)
− 1
𝑐0

cos
(
𝜔0

(
𝑡− 𝑧

𝑐0

))
𝑔′
(
𝑡− 𝑧

𝑐0

)]
(55)

On the other hand,

𝜕𝐄inc(𝑧, 𝑡) = �̂�𝐸0

[
−𝜔0 sin

(
𝜔0

(
𝑡− 𝑧

))
𝑔

(
𝑡− 𝑧

)

𝜕𝑡 𝑐0 𝑐0

41
+cos
(
𝜔0

(
𝑡− 𝑧

𝑐0

))
𝑔′
(
𝑡− 𝑧

𝑐0

)]
(56)

For simplicty, we define

𝐴(𝑧, 𝑡) =𝜔0 sin
(
𝜔0

(
𝑡− 𝑧

𝑐0

))
𝑔

(
𝑡− 𝑧

𝑐0

)
− cos

(
𝜔0

(
𝑡− 𝑧

𝑐0

))
𝑔′
(
𝑡− 𝑧

𝑐0

)
(57)

so we can write

1
𝜇0

∇ ×𝐄inc(𝑧, 𝑡) = �̂�
𝐸0
𝜇0𝑐0

𝐴(𝑧, 𝑡) = �̂�
𝐸0
𝜂0

𝐴(𝑧, 𝑡) (58)

𝜕𝐄inc(𝑧, 𝑡)
𝜕𝑡

= −�̂�𝐸0𝐴(𝑧, 𝑡) (59)

Let us now check how the boundary condition (54) using (58), (59)

looks at the faces of the unit cube domain:

• Face 𝑧 = 0: �̂� = −�̂� and 𝐖(0, 𝑡) = 2
𝐸0�̂�
𝜂0

𝐴(0, 𝑡)

• Face 𝑧 = 1: �̂� = �̂� and 𝐖(1, 𝑡) = 0

• Faces 𝑦 = 0, 1: �̂�= ∓�̂� and 𝐖(𝑧, 𝑡) =
𝐸0�̂�
𝜂0

𝐴(𝑧, 𝑡)

• Faces 𝑥 = 0, 1: �̂�= ∓�̂� and 𝐖(𝑧, 𝑡) = ∓
𝐸0�̂�
𝜂0

𝐴(𝑧, 𝑡)

See Appendix A for a detailed computation.

Remarks.

1. For faces perpendicular to �̂� (i.e., to the direction of propagation 
of the wave) we observe that both terms of the left hand side of 
the boundary condition (54) are non null. In other words, (54) is 
acting (as expected) as a impedance boundary condition.

2. Note that for 𝑧 = 0, 1 both terms of the left hand side of the bound-

ary condition (54) have the same magnitude (they either sum up 
or cancel out).

3. Specifically, for face 𝑧 = 0 the wave is going inwards (from outside 
to inside of the domain) and 𝐖(0, 𝑡) ≠ 0. On the other hand, for 
face 𝑧 = 1 the wave is going outwards (from inside to outside of the 
domain) and, hence, 𝐖(0, 𝑡) = 0.

4. In contrary, for the other faces (those not perpendicular to �̂�), (54)

is not acting as a impedance boundary condition but rather as 
Dirichlet or Neumann boundary conditions. Note that one of the 
two terms of the left hand side of the boundary condition (54) is 
null. This corresponds to the case of no power flowing either in-

wards or outwards of the domain through these faces.

5. For faces 𝑦 = 0, 1 we have the prescription of Dirichlet type bound-

ary conditions in a weak sense.

6. For faces 𝑥 = 0, 1 we have the prescription of Neumann type bound-

ary conditions in a weak sense.

The same steps that have been taken to show the satisfaction of (45)

by the incident field can be made, in an analogous fashion, for (46). If 
we do it, we expect

1. For faces 𝑧 = 0, 1 we obtain dual (changing 𝜂 by 1∕𝜂, and �̂� by �̂�) 
results to those of (A.1) and (A.2), respectively.

2. For the other faces we also recover Dirichlet type and Neumann 
type boundary conditions but interchanging faces 𝑥 = constant and 
𝑦 = constant. That is, we obtain a Dirichlet type boundary condition 
for faces 𝑥 = 0, 1 and a Neumann type boundary condition for faces 
𝑦 = 0, 1.

For discretization we use a mesh size of 4 × 4 × 100 elements, 
quadratic B-splines, and the time step 𝜏 = 2.5 × 10−11. We perform 
4000 steps of the simulation to observe the traverse of the gener-
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Fig. 2. Values of the 𝑥 component of the electric field 𝐄 [V/m] at time steps 500, 1500, 3200, 3500. They correspond to the time moments 𝑡 =
12.5[𝑛𝑠], 37.5[𝑛𝑠], 80[𝑛𝑠], 87.5[𝑛𝑠].
ated pulse. The total time of the simulation is 100[ns]. Here, 𝑔(𝑡) =
exp
(
−1

2

(
(𝑡− 𝑡0)∕𝜏

)2)
for 𝑡 > 0, and 0 otherwise, with 𝑡0 = 4𝜏 and 𝜏 =

2𝜋∕𝜔. The numerical results are presented in Fig. 2. The small re-

flection that we observe results from the finite difference numerical 
approximation to the time derivative in the boundary conditions em-

ployed (45)-(46).

6.2. Radiation problem. Wire antenna problem modeled with its current

The use of Equivalence Principles in electromagnetic field theory 
[26, chapter 7] allow to model wire antennas by substituting the wires 
with their electric current density along themselves. For simple wire an-

tennas such as the electric dipoles, the equivalent current density can 
very well approximated by a constant (with space) density current 𝐉imp. 
Thus, the problem domain consists of a volume (e.g., a cube) enclosing 
the current that “acts” as an antenna. The excitation terms of the formu-

lation for this case are 𝐉imp ≠ 0 and 𝐌imp = 0, 𝐔 = 0. Thus, to model the 
antenna, we reset the incident wave 𝐔 = 0, and we add an additional 
term on the right-hand side representing the electric dipole

𝜕𝑡𝐄 = 1
𝜀0

∇ ×𝐇 − 𝐉imp

𝜕𝑡𝐇 = − 1
𝜇0

∇ ×𝐄.
(60)

The impressed current 𝐉imp is non-zero on a very thin, short part of Ω.

We simulate the antenna on a cube shape domain Ω = [−1, 1] ×
[−1, 1] × [−1, 1] with the impressed current defined as

𝐉imp(𝐱, 𝑡) =
{

𝐽0(𝑥3, 𝑡) �̂�3 𝑥1 = 𝑥2 = 0, 𝑥3 ∈
[
−𝑙∕2, 𝑙∕2

]
0 elsewhere

(61)

where 𝐽0(𝑥, 𝑡) = 𝑔(𝑡) sin𝜔0𝑡 and

𝑔(𝑡) = 1 − exp (−𝑡∕𝜎) (62)

with 𝑙 = 1∕50, 𝜔0 = 2𝜋𝑓0, 𝑓0 = 2𝑐0, and 𝜎 = 2∕𝑓0. We employ a mesh 
with 100 × 100 × 100 elements with quadratic B-splines. During the sim-

ulation, we use a time step 𝜏 = 2.5 × 10−11, which corresponds to a total 
of 400 steps (total simulation time is 10[ns]). We present the simu-

lation results in Fig. 3. We compare against the analytical solution as 
discussed in [chapter 12 [22] expression (12.10) and (12.12)], and we 
observe an agreement between the analytical results and numerical so-
42
lution. Fig. 4 compares the radial component 𝐸𝑟 of the electric field 𝐄
of the numerical vs. the analytical solution.

6.3. Verification of the order of the time-integration scheme

The goal of the first numerical example is to verify the order of the 
time-integration scheme. For Ω = (0, 1)3, for 𝜖 = 1 and 𝜇 = 1 we define

𝑢1
𝜅,𝜆

(𝑥, 𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin(𝜅𝜋𝑥2) sin(𝜆𝜋𝑥3) cos(
√
𝜅2 + 𝜆2𝜋𝑡)

0
0
0

− 𝜆√
𝜅2+𝜆2

sin(𝜅𝜋𝑥2) cos(𝜆𝜋𝑥3) sin(
√
𝜅2 + 𝜆2𝜋𝑡)

𝜅√
𝜅2+𝜆2

cos(𝜅𝜋𝑥2) sin(𝜆𝜋𝑥3) sin(
√
𝜅2 + 𝜆2𝜋𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(63)

𝑢2
𝜅,𝜆

(𝑥, 𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
sin(𝜅𝜋𝑥1) sin(𝜆𝜋𝑥3) cos(

√
𝜅2 + 𝜆2𝜋𝑡)

0
− 𝜆√

𝜅2+𝜆2
sin(𝜅𝜋𝑥1) cos(𝜆𝜋𝑥3) sin(

√
𝜅2 + 𝜆2𝜋𝑡)

0
𝜅√

𝜅2+𝜆2
cos(𝜅𝜋𝑥1) sin(𝜆𝜋𝑥3) sin(

√
𝜅2 + 𝜆2𝜋𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(64)

𝑢3
𝜅,𝜆

(𝑥, 𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

sin(𝜅𝜋𝑥1) sin(𝜆𝜋𝑥2) cos(
√
𝜅2 + 𝜆2𝜋𝑡)

− 𝜆√
𝜅2+𝜆2

sin(𝜅𝜋𝑥1) cos(𝜆𝜋𝑥2) sin(
√
𝜅2 + 𝜆2𝜋𝑡)

𝜅√
𝜅2+𝜆2

cos(𝜅𝜋𝑥1) sin(𝜆𝜋𝑥2) sin(
√
𝜅2 + 𝜆2𝜋𝑡)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(65)

for 𝜅, 𝜆 ∈ℤ, 𝜅, 𝜆 ≠ 0.

The first manufactured solution function is

𝐮𝐴(𝑥, 𝑡) = 𝛼
(
𝑢11,1(𝑥, 𝑡) + 2𝑢21,1(𝑥, 𝑡) + 3𝑢31,1(𝑥, 𝑡)

)
(66)

Notice that 𝐮𝐴 has six components, where the first three components 
correspond to 𝐄 and the last three components to 𝐇. The parameter 𝛼
is selected in such a way that ‖𝐮𝐴(𝑥, 0)‖𝐿2(Ω) = 1. Since
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Fig. 3. Comparison of the numerical solution to the dipole antenna problem (left panel) and the exact solution (analytical solution) (central panel). The plots present 
the radial component of the electric field 𝐄 [V∕m]. Electric and magnetic fields streamlines (right panel). Snapshot from time step 230.
Fig. 4. Illustration on how radial components of electric field 𝐄 [V/m] agree 
(numerical result and analytical solution). Cross-section at 𝑥 = 0.0, 𝑦 = 0.0 and 
𝑧 = [−1, 1].

𝑢11,1(𝑥,0) = 𝑢21,1(𝑥,0) = 𝑢31,1(𝑥,0) =⎡⎢⎢⎢⎢⎢⎢⎣

sin(𝜋𝑥2) sin(𝜋𝑥3)
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0
sin(𝜋𝑥1) sin(𝜋𝑥3)

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0
0

sin(𝜋𝑥1) sin(𝜋𝑥2)
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
(67)

we have

‖𝐮𝐴(𝑥,0)‖2𝐿2(Ω) = (𝐮𝐴(𝑥,0),𝐮𝐴(𝑥,0))

= ∫
(0,1)3

(𝛼2 sin2(𝜋𝑥2) sin2(𝜋𝑥3) + 4𝛼2 sin2(𝜋𝑥1) sin2(𝜋𝑥3)

+ 9𝛼2 sin2(𝜋𝑥1) sin2(𝜋𝑥2))𝑑𝑥1𝑑𝑥2𝑑𝑥3 =
1
4
𝛼2 + 𝛼2 + 9

4
𝛼2

(68)

since ∫(0,1) sin2(𝜋𝑥𝑖)𝑑𝑥𝑖 = 1
2 . We want 144 𝛼2 = 1, so 𝛼 =

√
4
14 = 2√

14
.

Fig. 5 shows a numerical verification of the second order implicit 
second-order time integration scheme. This experiment is performed 
on a mesh of 16 × 16 × 16 elements, and we can see that the spatial 
discretization error dominates around 10−2. In order to further ver-

ify the second order of the time integration scheme, we execute the 
experiments on the computational mesh of 32 × 32 × 32 elements, as il-
lustrated in Fig. 6. Based on these numerical experiments, we conclude 
that changing the time step size from 1∕10 into 1∕640 does not alter the 
stability of the method.
43
6.4. Magnetotelluric measurements simulations

We consider a model magnetotelluric MT problem with the source 
representing the radiation of the ionosphere.

𝜕𝑡𝐄 = 1
𝜀0

(
∇×𝐇− 𝝈𝐄− 𝐉imp

)
𝜕𝑡𝐇 = − 1

𝜇0
∇ ×𝐄,

(69)

where 𝜀0, 𝜇0 are the electric permittivity and magnetic permeability of 
vacuum, 𝐉imp is the source representing the radiation of the ionosphere, 
and the conduction term 𝝈𝐄 describes the induced currents inside the 
medium (atmosphere or rock). For this application, we assume isotropic 
materials, where conductivity 𝝈 = 𝜎 is a scalar given by

𝜎 =

{
𝜎1 in the ground

𝜎air in the atmosphere
(70)

where regions of the domain are presented in Fig. 7, and 𝜎air = 10−10, 
and 𝜎1 ∈ {1, 0.1, 0.001}, depending on the simulation run. The source is 
modeled as a pulse 𝐉imp(𝑡) = 𝐉0𝛿(𝑡) with 𝐉0 = (1, 1, 0) in the upper layer 
of the atmosphere, and 𝐉0 = 0 elsewhere. We employ the Absorbing 
Boundary Conditions of the form

�̂� × 1
𝜇
∇×𝐄+ 1

𝜂
�̂� ×
(
�̂� × 𝜕𝑡𝐄

)
= 0 (71)

which allows us to construct an efficient splitting time stepping scheme. 
Our computational domain is [0, 600𝑘𝑚] × [0, 600𝑘𝑚] × [0, 200𝑘𝑚]. The 
ground is located at [0, 600𝑘𝑚] × [0, 600𝑘𝑚] × [0, 60𝑘𝑚]. We employ a 
mesh of dimension 360 × 360 × 120 (total of 15,552,000 elements). The 
memory required to run our simulation can be estimated in the follow-

ing way:

360 × 360 × 120[mesh] × 6[fields] × 8[double precision] × 2[previous step]

= 2 GB RAM,

a total of 200 GB disc space [every 10th step recorded] for 100 time 
steps. The snapshots from the transient MT simulations are presented in 
Fig. 8.

We run the transient Maxwell simulation and we recover the con-

ductivity using the following procedure. For this problem, we record 
the solution at the receiver antenna, compute the Fast Fourier Trans-

form (FFT) of the 𝐄𝑥 (electric) and 𝐇𝑦 (magnetic) field components, 
compute 

(
FFT(𝐄𝑥)∕FFT(𝐇𝑦)

)2
, and recover the conductivity 𝜎 = 0.1 in 

the frequency domain (see Fig. 9).
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Fig. 5. Convergence in time step size using 𝐿2 and 𝐻1(curl) norm for the electric (left) and magnetic (right) field. The problem with manufactured solution over the 
computational mesh with 163 elements.

Fig. 6. Convergence in time step size using 𝐿2 and 𝐻1(curl) norm for the electric (left) and magnetic (right) field. The problem with manufactured solution over the 
computational mesh with 643 elements.
Fig. 7. Prototype of the transient Maxwell code correctly identifies the conduc-

tivity of the formation 𝜎 = 0.1.

7. Parallel scalability

In this section we study the parallel scalability of the solver summa-

rized in Algorithm 1. The presented Algorithm 1 illustrates the compu-

tations performed from time step 𝑛 into 𝑛 + 1
2 (computing 𝐄𝑛+ 1

2 , 𝐇𝑛+ 1
2

based on 𝐄𝑛 and 𝐇𝑛) The algorithm performing the computations from 
time step 𝑛 + 1

2 into 𝑛 + 1 (computing 𝐄𝑛 and 𝐇𝑛 based on 𝐄𝑛+ 1
2 , 𝐇𝑛+ 1

2 ) 
are similar (compare equations 30 and 31).
44
The experiments have been performed on a Linux workstation 
equiped with AMD Ryzen 9 3900X processor with 12 physical cores, 
and a total 24 virtual cores, running at stock configuration of CPU. The 
workstation was equipped with 64 GB of RAM, in two dual-channel 
DDR4 sticks (Corsair Vengeance LPX, 2x32 GB, 3200 MHz, CL16).

The workstation was running openSUSE Leap 15.4, with stock gcc 
compiler set, version 7.5.0. IGA-ADS was compiled with FMT 8.1.1, 
GALOIS 6.0.0, MUMPS 5.3.3, LAPACK 3.9.0, ScaLAPACK 2.1.0, boost 
1.74.0, METIS 5.1.0, mpich 3.3.2, and Lyra 1.6. All computations were 
performed by executing the code in shared memory only.

For each of the governing equations (30)-(31) we perform the paral-

lel generation of the right-hand side vector. We report in Figs. 10–12 the 
execution times of the parallel shared-memory algorithm, over a patch 
of 8 × 8 × 8, 16 × 16 × 16, 32 × 32 × 32, 64 × 64 × 64, 128 × 128 × 128, and 
256 ×256 ×256 elements. We employ 1, 2, 4, 8, 12, 16, and 24 cores. We 
perform our measurements for linear, quadratic and cubic B-splines.

We also report in Figs. 13–15 the speedup of the parallel shared-

memory algorithm, over patches of 83, 163, 323, 643, 1283, and 2563
elements. We employ 1,2,4,8,12 16, or 24 cores. We perform our mea-

surements for linear, quadratic and cubic B-splines.

Finally, in Fig. 16 we report the weak scalability of the parallel 
shared-memory algorithm, over the patch of 8 × 8 × 8 elements per 
core. We perform our measurements for linear, quadratic, and cubic 
B-splines.

8. Conclusions

We derived a linear computational cost simulator for transient 
Maxwell’s equations. It employs the alternating directions solver and 
implicit time integration scheme following a rotation operator splitting 
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Fig. 8. Snapshots from the simulation – magnitude ‖𝐄‖ of the electric field [V∕m].

for each element 𝐾 =
[
𝜉𝑙𝑥 , 𝜉𝑙𝑥+1

]
×
[
𝜉𝑙𝑦 , 𝜉𝑙𝑦+1

]
×
[
𝜉𝑙𝑧 , 𝜉𝑙𝑧+1

]
in parallel do

𝑈𝑙𝑜𝑐 ← 0 ;

for each quadrature point 𝝃 =
(
𝑋𝑘𝑥

,𝑋𝑘𝑦
,𝑋𝑘𝑧

)
do

𝐱←Ψ𝐾 (𝝃) ;

𝑊 ←𝑤𝑘𝑥
𝑤𝑘𝑦

𝑤𝑘𝑧
;

𝐸𝑛
1 , 𝐸𝑛

2 , 𝐸𝑛
3 ← 0 ;

𝐸
𝑛+ 1

2
1 , 𝐸𝑛+ 1

2
2 , 𝐸𝑛+ 1

2
3 ← 0 ;

𝐇𝑛, 𝐇𝑛+ 1
2 ← 0 ;

for 𝐼 ∈ (𝐾) do

𝐸𝑛
1 ←𝐸𝑛

1 +𝐸𝑛
1;𝐼𝐼 (𝝃) ;

𝐸𝑛
2 ←𝐸𝑛

2 +𝐸𝑛
2;𝐼𝐼 (𝝃) ;

𝐸𝑛
3 ←𝐸𝑛

3 +𝐸𝑛
3;𝐼𝐼 (𝝃) ;

𝐇𝑛 ←𝐇𝑛 +𝐇𝑛
𝐼
𝐼 (𝝃) ;

end

for 𝐼 ∈ (𝐾) do

𝑣 ←𝐼 (𝝃) ;

𝐸
𝑛+ 1

2 ;𝑙𝑜𝑐
1;𝐼 ←𝐸

𝑛+ 1
2 ;𝑙𝑜𝑐

1;𝐼 +

𝑊 |𝐾| ((𝐸𝑛
1 , 𝑣
)
+ 𝑏12(𝐸𝑛

2 , 𝑣) + 𝑐1(𝐇𝑛, 𝑣) − 𝛾2

(
𝑈1 +

1
𝜂
𝜕𝑡𝐸

𝑛
1 , 𝑣
))

𝐸
𝑛+ 1

2
;𝑙𝑜𝑐

2;𝐼 ←𝐸
𝑛+ 1

2
;𝑙𝑜𝑐

2;𝐼 +

𝑊 |𝐾|((𝐸𝑛+ 1
2

2 , 𝑣

)
+ 𝑏23(𝐸𝑛

3 , 𝑣) + 𝑐2(𝐇𝑛, 𝑣) − 𝛾3

(
𝑈2 +

1
𝜂
𝜕𝑡𝐸

𝑛
2 , 𝑣
))

𝐸
𝑛+ 1

2 ;𝑙𝑜𝑐
3;𝐼 ←𝐸

𝑛+ 1
2 ;𝑙𝑜𝑐

3;𝐼 +

𝑊 |𝐾|((𝐸𝑛+ 1
2

3 , 𝑣

)
+ 𝑏31(𝐸𝑛

1 , 𝑣) + 𝑐3(𝐇𝑛, 𝑣) − 𝛾1

(
𝑈3 +

1
𝜂
𝜕𝑡𝐸

𝑛
3 , 𝑣
))

end

end

synchronized

for 𝐼 ∈ (𝐾) do

𝐸
𝑛+ 1

2
1;𝐼 ←𝐸

𝑛+ 1
2

1;𝐼 +𝐸
𝑛+ 1

2 ;𝑙𝑜𝑐
1;𝐼 ;

𝐸
𝑛+ 1

2
2;𝐼 ←𝐸

𝑛+ 1
2

2;𝐼 +𝐸
𝑛+ 1

2 ;𝑙𝑜𝑐
2;𝐼 ;

𝐸
𝑛+ 1

2
3;𝐼 ←𝐸

𝑛+ 1
2

3;𝐼 +𝐸
𝑛+ 1

2 ;𝑙𝑜𝑐
3;𝐼 ;

end

end

end

Algorithm 1: Parallel shared-memory solver algorithm. The parallel 
parts are denoted using blue color.

technique. We also showed that we could incorporate the Absorbing 
Boundary Condition (ABC) into the linear computational cost solver. 
We verified the solver’s correctness experimentally using the analyti-

cal solution for the dipole antenna. We confirmed the second order of 
the implicit time integration scheme using the manufactured solution 
technique. We checked the properties of the ABC formulation using 
the simulation of the traveling pulse wave. Additionally, we showed 
that the method could be employed for the simulations of the magne-

totelluric measurement process. We implemented our transient Maxwell 
simulator in the IGA-ADS open-source code. The GALOIS library man-

aged the parallelization of the code. We performed the experimental 
verification of the weak and strong scalability of the parallel code on 
a shared-memory Linux cluster node. We showed good performance up 
to 26 cores. Our simulator can perform transient Maxwell simulations 
with 15 million finite elements and 100-time steps on a multi-core lap-

top within several hours.

Data availability

Data will be made available on request.
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Fig. 9. The conductivity of the formation as restored by the transient Maxwell code, for 𝜎 = 1,0.1,0.001.

Fig. 10. Execution time over the computational mesh of size 8×8×8 elements (left panel) and 16×16×16 elements (right panel), for a number of cores=1,2,4,8,16,24 
for linear, quadratic and cubic B-splines.
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cores=1,2,4,8,16,24 for linear, quadratic and cubic B-splines.
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cores=1,2,4,8,16,24 for linear, quadratic and cubic B-splines.

Fig. 13. Speedup over the computational mesh of size 8×8×8 elements (left panel) and 16×16×16 elements (right panel), for a number of cores=1,2,4,8,16,24 for 
linear, quadratic and cubic B-splines.

Fig. 14. Speedup over the computational mesh of size 32×32×32 elements (left panel) and 64×64×64 elements (right panel), for a number of cores=1,2,4,8,16,24 
for linear, quadratic and cubic B-splines.

Fig. 15. Speedup over the computational mesh of size 128×128×128 elements (left panel) and 256×256×256 elements (right panel), for a number of 
cores=1,2,4,8,16,24 for linear, quadratic and cubic B-splines.
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versus up to 64 subdomains, a total of 32×32×32. Measurements for linear, 
quadratic and cubic B-splines.

of Science and Innovation projects with references TED2021-132783B-

I00, PID2019-108111RB-I00 (FEDER/AEI) and PDC2021-121093-I00 
(MCIN / AEI / 10.13039/501100011033/Next Generation EU), the 
“BCAM Severo Ochoa” accreditation of excellence CEX2021-001142-

S / MICIN / AEI / 10.13039/501100011033; and the Basque Gov-

ernment through the BERC 2022-2025 program, the three Elkartek 
projects 3KIA (KK-2020/00049), EXPERTIA (KK-2021/00048), and 
SIGZE (KK-2021/00095), and the Consolidated Research Group MATH-

MODE (IT1456-22) given by the Department of Education.

The work of Luis E. Garcia-Castillo has been partially supported 
by Ministerio de Ciencia e Innovación, Gobierno de España (project 
PID2019-109984RB-C41) as well by the Regional Government of 
Madrid throughout the project MIMACUHSPACE-CM-UC3M. Julen 
Alvarez-Aramberri has received funding from: the European Union-

Next GenerationEU, the Euskampus Foundation through the ORLEG-IA 
project in the Misiones Euskampus 2.0 program, and the European 
Union’s Horizon 2020 research and innovation program under the 
Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS).

Appendix A. Boundary conditions on a unit cube domain

Let us now check how the boundary condition (54) using (58), (59)

looks at the faces of the unit square domain:

• Face 𝑧 = 0. We have �̂� = −�̂�.

(
−�̂� × 1

𝜇0
∇ ×𝐄inc(0, 𝑡)

)
+ 1

𝜂0

(
−�̂� ×−�̂� × 𝜕𝐄inc(0, 𝑡)

𝜕𝑡

)
=𝐖(0, 𝑡)

⎛⎜⎜⎜⎝(−�̂� × �̂�)
⏟⏞⏟⏞⏟

�̂�

𝐸0
𝜂0

𝐴(0, 𝑡)
⎞⎟⎟⎟⎠+

1
𝜂0

⎛⎜⎜⎜⎝(−�̂� ×−�̂� ×−�̂�)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

�̂�

𝐸0𝐴(0, 𝑡)
⎞⎟⎟⎟⎠ =𝐖(0, 𝑡)

𝐖(0, 𝑡) = 2
𝐸0�̂�
𝜂0

𝐴(0, 𝑡)

(A.1)

• Face 𝑧 = 1. We have �̂� = �̂�.(
�̂� × 1

𝜇0
∇ ×𝐄inc(1, 𝑡)

)
+ 1

𝜂0

(
�̂� × �̂� × 𝜕𝐄inc(1, 𝑡)

𝜕𝑡

)
=𝐖(1, 𝑡)

⎛⎜⎜⎜⎝(�̂� × �̂�)
⏟⏟⏟

−�̂�

𝐸0
𝜂0

𝐴(1, 𝑡)
⎞⎟⎟⎟⎠+

1
𝜂0

⎛⎜⎜⎜⎝(�̂� × �̂� ×−�̂�)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

�̂�

𝐸0𝐴(1, 𝑡)
⎞⎟⎟⎟⎠ =𝐖(1, 𝑡)

𝐖(1, 𝑡) = 0

(A.2)
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• Face 𝑦 = 0. We have �̂� = −�̂�.(
−�̂� × 1

𝜇0
∇ ×𝐄inc(𝑧, 𝑡)

)
+ 1

𝜂0

(
−�̂� ×−�̂� × 𝜕𝐄inc(𝑧, 𝑡)

𝜕𝑡

)
=𝐖(𝑧, 𝑡)

�������⎛⎜⎜⎜⎝(−�̂� × �̂�)
⏟⏞⏟⏞⏟

0

𝐸0
𝜂0

𝐴(𝑧, 𝑡)
⎞⎟⎟⎟⎠+

1
𝜂0

⎛⎜⎜⎜⎝(−�̂� ×−�̂� ×−�̂�)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

�̂�

𝐸0𝐴(𝑧, 𝑡)
⎞⎟⎟⎟⎠ =𝐖(𝑧, 𝑡)

𝐖(𝑧, 𝑡) =
𝐸0�̂�
𝜂0

𝐴(𝑧, 𝑡)

(A.3)

• Face 𝑦 = 1. We have �̂� = �̂�.(
�̂� × 1

𝜇0
∇ ×𝐄inc(𝑧, 𝑡)

)
+ 1

𝜂0

(
�̂� × �̂� × 𝜕𝐄inc(𝑧, 𝑡)

𝜕𝑡

)
=𝐖(𝑧, 𝑡)

�������⎛⎜⎜⎜⎝(�̂� × �̂�)
⏟⏟⏟

0

𝐸0
𝜂0

𝐴(𝑧, 𝑡)
⎞⎟⎟⎟⎠+

1
𝜂0

⎛⎜⎜⎜⎝(�̂� × �̂� ×−�̂�)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

�̂�

𝐸0𝐴(𝑧, 𝑡)
⎞⎟⎟⎟⎠ =𝐖(𝑧, 𝑡)

𝐖(𝑧, 𝑡) =
𝐸0�̂�
𝜂0

𝐴(𝑧, 𝑡)

(A.4)

• Face 𝑥 = 0. We have �̂� = −�̂�.(
−�̂� × 1

𝜇0
∇ ×𝐄inc(𝑧, 𝑡)

)
+ 1

𝜂0

(
−�̂� ×−�̂� × 𝜕𝐄inc(𝑧, 𝑡)

𝜕𝑡

)
=𝐖(𝑧, 𝑡)

⎛⎜⎜⎜⎝(−�̂� × �̂�)
⏟⏞⏟⏞⏟

−�̂�

𝐸0
𝜂0

𝐴(𝑧, 𝑡)
⎞⎟⎟⎟⎠+

1
𝜂0

����������⎛⎜⎜⎜⎝(−�̂� ×−�̂� ×−�̂�)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

0

𝐸0𝐴(𝑧, 𝑡)
⎞⎟⎟⎟⎠ =𝐖(𝑧, 𝑡)

𝐖(𝑧, 𝑡) = −
𝐸0�̂�
𝜂0

𝐴(𝑧, 𝑡)

(A.5)

• Face 𝑥 = 1. We have �̂� = �̂�.(
�̂� × 1

𝜇0
∇ ×𝐄inc(𝑧, 𝑡)

)
+ 1

𝜂0

(
�̂� × �̂� × 𝜕𝐄inc(𝑧, 𝑡)

𝜕𝑡

)
=𝐖(𝑧, 𝑡)

⎛⎜⎜⎜⎝(�̂� × �̂�)
⏟⏟⏟

�̂�

𝐸0
𝜂0

𝐴(𝑧, 𝑡)
⎞⎟⎟⎟⎠+

1
𝜂0

��������⎛⎜⎜⎜⎝(�̂� × �̂� ×−�̂�)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

0

𝐸0𝐴(𝑧, 𝑡)
⎞⎟⎟⎟⎠ =𝐖(𝑧, 𝑡)

𝐖(𝑧, 𝑡) =
𝐸0�̂�
𝜂0

𝐴(𝑧, 𝑡)

(A.6)

Appendix B. Material constants and SI units

There was a redefinition of SI units in 2019 [24]. Specifically, the 
definition of the ampere underwent a major revision and, as a conse-

quence, it affected to the definitions of vacuum permeability 𝜀0, vacuum 
permittivity 𝜇0, and impedance of free space 𝜂0. In the following, we 
define these constants accordingly to what was their definition before 
and after 2019, respectively. It will be shown that the numerical val-

ues when expressed in SI units of the vacuum permeability 𝜀0, vacuum 
permittivity 𝜇0, and impedance of free space 𝜂0, which were exact be-

fore the redefinition (section Appendix B.1), are subject to experimental 
error after the redefinition (section Appendix B.2).
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From the numerical point of view, we follow definitions of section 
Appendix B.1 as (B.3) will be satisfied with arbitrary precision (the one 
that will be used when executing the code depending on hardware & 
software platform). The reason is that equality (B.3) is a mathematical 
consequence of Maxwell’s Equations, i.e., is implicit to the mathemat-

ical model we will be solving numerically. Note that the definitions 
of the constants in section Appendix B.2 contain uncertainty and (B.3)

would be satisfied only up to a given uncertainty level in that case. 
Analogous comments hold for (B.5).

B.1. Before 2019 SI redefinition

For vacuum medium we define the following material constants.

𝑐0 = 299792458ms−1 (see note 1 below) (B.1)

𝜇0 = 4𝜋0.0000001 (B.2)

Thus, as

𝑐20 =
1

𝜇0𝜀0
(m2 s−2) (B.3)

the constant 𝜀0 has a fixed value that can be obtained (computed) as

𝜀0 =
1

𝑐20𝜇0
(Fm−1) (B.4)

analogously with the free space impedance 𝜂0

𝜂0 =
√

𝜇0
𝜀0

= 𝑐0𝜇0 (Ω) (B.5)

Other constant that is also fixed is the product √𝜇0𝜀0 and then, 
we can obtain (compute) the value of the wavenumber 𝑘 for a given 
frequency 𝑘 as

𝑘0 = 𝜔
√
𝜇0𝜀0 =

𝜔

𝑐0
(m−1) (B.6)

NOTE 1: Since 1983, the metre has been defined in the Interna-

tional System of Units (SI) as the distance light travels in vacuum in 
1∕299792458 of a second. This definition fixes the speed of light in vac-

uum at exactly the value shown above.

B.2. After 2019 SI redefinition

The definition of the ampere underwent a major revision. Details 
about the 2019 SI redefinition can be seen in [24]

A consequence of the revised definition is that the ampere no longer 
depends on the definitions of the kilogram and the metre; it does, 
however, still depend on the definition of the second. In addition, the 
numerical values when expressed in SI units of the vacuum permeabil-

ity 𝜀0, vacuum permittivity 𝜇0, and impedance of free space 𝜂0, which 
were exact before the redefinition (previous section Appendix B.1), are 
subject to experimental error after the redefinition.

The constants, together with its uncertainty, can be consulted at 
[25]. Here we simply collect the values of some constants for conve-

nience.

𝜇0 = 1.25663706212 × 10−6 NA−2 (B.7)

𝜀0 = 8.8541878128 × 10−12 Fm−1 (B.8)

𝜂0 = 376.730313668Ω (B.9)
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