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S U M M A R Y 

Estimating subsurface properties from geophysical measurements is a common inverse prob- 
lem. Several Bayesian methods currently aim to find the solution to a geophysical inverse 
problem and quantify its uncertainty. Ho wever , most geophysical applications exhibit more 
than one plausible solution. Here, we propose a multimodal variational autoencoder model that 
employs a mixture of truncated Gaussian densities to provide multiple solutions, along with 

their probability of occurrence and a quantification of their uncertainty. This autoencoder is 
assembled with an encoder and a decoder, where the first one provides a mixture of truncated 

Gaussian densities from a neural network, and the second is the numerical solution of the 
forw ard problem gi ven b y the geophysical approach. The proposed method is illustrated with 

a 1-D magnetotelluric inverse problem and recovers multiple plausible solutions with different 
uncertainty quantification maps and probabilities that are in agreement with known physical 
observations. 

Key words: Magnetotellurics; Inverse theory; Numerical modelling; Probabilistic forecast- 
ing; Statistical methods; Variational autoencoder; Multimodal Models. 
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1  I N T RO D U C T I O N  

Advances in geophysics allow us to estimate subsurface properties 
from geophysical measurements. With this, it is possible to extract 
oil, gas and water more efficiently and solve other geophysical prob- 
lems: CO 2 and hydrogen storage, geothermal energy production, 
etc. Geophysical observations usually result from (approximately) 
known physical processes that can be excited naturally or artificially. 
Different measurements systems include tomography (Arridge & 

Schotland 2009 ), magnetotellurics (MT, Pace et al. 2019 ), ground- 
penetrating radar (T ra vassos et al. 2020 ) and seismic measurements 
(Zhang & Lin 2020 ). Estimating the internal subsurface properties 
from these measurements is often performed by solving an inverse 
problem governed by known physical laws (e.g. Maxwell’s equa- 
tions, Kolesnikov & Fedin 2018 ; Berliner 2003 ). The corresponding 
inverse solutions are often non-unique (Michel et al. 2020 ), and 
measurements are usually contaminated with noise. 

Mathematicall y, gi ven the subsurface properties, denoted by x , 
w e ma y represent the recorded measurements y as the image of a 
function F( x) representing the physical laws governing the pro- 
cess. In the inverse problem, we estimate the subsurface properties 
x from the measurements y (Aster et al. 2018 ; Vogel 2002 ; Kai- 
pio & Somersalo 2006 ). Different deterministic techniques exist to 
solv e inv erse problems (Agranovich & Marchenko 2020 ; Lai & Lin 
2598 
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2022 ; Sidky et al. 2020 ); they find a solution to the inverse problem 

but often fall short of providing a realistic uncertainty quantifica- 
tion. Uncertainty quantification maps are of utmost importance in 
geophysical problems, since distant solutions can provide identi- 
cal measurements up to noise precision. In particular, it is often the 
case that rocks estimated to have a high content of hydrocarbons are 
indeed dry. These misestimations provoke huge operational costs. 

Probabilistic techniques produce solutions to inverse problems 
and also quantify the uncertainty (Fichtner et al. 2019 ; Mandolesi 
et al. 2018 ; Kaipio & Somersalo 2006 ; Rammay et al. 2022a ; Jahani 
et al. 2022 ). In particular, Bayesian inference provides solutions us- 
ing expert knowledge and sometimes decreases the computational 
time compared to classical probabilistic models (Calvetti & Som- 
ersalo 2018 ; Yan & Zhou 2019 ; Xia & Zabaras 2022 ; Capistr án 
et al. 2021 ). This of fers adv antages w hen solving inverse prob lems, 
as the large amount of data necessary to train an inverse operator 
can incur large computational costs. Ho wever , classical Bayesian 
methods solve the inverse problem for a given set of measurements 
instead of building an inverse operator, which solves the inverse 
problem for all possibilities of random variables. It often prevents 
its practical use in real-time inversion when the measurements are 
not associated with the estimated parameter. 

Neural networks (NNs, Wang et al. 2020 ; Raissi et al. 2019 ) 
have been increasingly employed in different fields (Shahriari et al. 
 by Oxford University Press on behalf of The Royal Astronomical Society. 
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020 ; Pilozzi et al. 2018 ; H äggstr öm et al. 2019 ), including geo-
hysical applications (Van der Baan & Jutten 2000 ; Rammay et al.
022b ). Given a well-defined non-injective forward operator, the
nverse operator is, in general, non-unique (or not well-defined).
ne key advantage of NNs for solving inverse problems is that they
ften construct a full inverse operator, where we refer to one of the
nverse branches as ‘a full inverse operator’, which is what the NN
pproximates during the training phase. The training set is given by
easurements generated by the application of the forward problem

sing different geophysics properties. After that, NNs can rapidly
 v aluate the inverse solution of unseen measurements in a fraction of
 second (Livingstone et al. 1997 ; Shepherd 2012 ; Chen & Manning
014 ). Some NN schemes that can be used to quantify the uncer-
ainty of the inverse solutions from noisy measurements (Olierook
t al. 2021 ; Hermans et al. 2018 ; Malinverno & Briggs 2004 ) are
enerativ e adv ersarial networks (GANs, Al yae v et al. 2021 ; Fossum
t al. 2022 ) and variational autoencoders (VAEs, Liu et al. 2022 ;
oh et al. 2021 ). While NNs for deterministic methods typically
utput a single, uniquely defined solution, with GANs and VAEs,
e take the output of an NN to parametrize a probability density

unction (PDF). GANs can be used to artificially produce new data
rom a well-trained probability density (generator) to mitigate the
ost of producing real data via a classification function (discrimina-
or) (Creswell et al. 2018 ). VAEs have an encoder–decoder scheme,
nd they can be used as probabilistic models to find a probability
ensity using variational inference (Tomczak & Welling 2018 ; Guo
t al. 2020 , 2018 ). For example, Goh et al. (2021 ) employ VAEs,
here the solution to the inverse problem is a Gaussian density (uni-
odal model). The mean of this density is a point estimate and can

e interpreted as the most plausible solution to the inverse problem;
he variance represents the quantification of the uncertainty around
he estimated solution (the mean). 

In geophysics, we often have more than one solution. Thus, an
nimodal Gaussian density cannot describe the set of all possible
olutions to the inverse problem. Therefore, a model that quantifies
ncertainty and returns multiple solutions with an acceptance prob-
bility is necessary. We can use multimodal models implemented
n geophysical applications (Grana et al. 2017 ; Astic & Oldenburg
019 ; de Figueiredo et al. 2019 ) and estimate a multimodal dis-
ribution with multiple modes (peaks) and a variance around each
ode. Moreover, we can combine multimodal models (e.g. trun-

ated Gaussian mixture densities) and NNs to estimate multiple
olutions associated with an inverse problem. For example, Bishop
 1994 ) combines Gaussian mixture densities with NNs and denotes
he resulting method as mixture density network (MDN). Ho wever ,
n MDN (Al yae v & Elsheikh 2022 ; Zhang & Curtis 2021 ; Earp
t al. 2020 ; Meier et al. 2007 ) estimates the inverse problem with-
ut considering the physical laws that govern the forward problem.
lternati vel y, VAEs and GANs can consider the inverse and for-
ard problems in the model scheme, and they have been applied

n combination with MDNs in Śmieja et al. ( 2020 ) and Oikari-
en et al. ( 2021 ). These methods have been implemented chiefly
or clustering and classification. Consequently, the computations
f internal functions such as encoder , decoder , prior and posterior ,
mong others, are different from those required in a geophysical
pplication. 

Inverse problems are ill-posed and often have multiple solutions.
hus, it is desirable to obtain several of them. Ho wever , a question
rising from this problem is how we obtain more than one solu-
ion and which solutions are correct if they differ. To overcome this
roblem, authors like Al yae v & Elsheikh ( 2022 ) and Meier et al.
2007 ) employ an MDN introduced by Bishop ( 1994 ) as a multiple
rediction model, which shows an improvement in the classical ar-
hitecture of MDNs, and adopt a multimodal trajectory predictions
MTP) loss function (Cui et al. 2019 ) to solve the mode collapse
resent in some application when we use MDNs. Other investiga-
ions, such as Zhang & Curtis ( 2021 ) and Earp et al. ( 2020 ), com-
ine MDNs with Bayesian statistics to improve the estimations.
o wever , Earp et al. ( 2020 ) conclude that the prior distribution

onsiderabl y af fects these estimations: an incorrect selection of the
rior distribution deteriorates the multimodality of the MDN. 

The main contribution of this work is to design a multimodal NN
sing variational inference, which provides multiple solutions for
eophysical inverse problems together with probability distributions
nd uncertainty quantification for each solution. To do this, we pro-
osed a multimodal variational autoencoder (MVAE) that consists
f two components: an encoder and a decoder. The encoder uses an
N to return the parameters of a PDF. This PDF provides a set of
ultiple solutions and also quantifies the associated uncertainties.
he decoder solves the forward problem by taking the encoder’s
olutions and producing the corresponding numerical solutions to
he geophysical formulation. 

The proposed MVAE combines an MDN with the VAE frame-
ork to achieve multimodal capability. The MDN allows for mod-
lling the probability distribution of the solutions, capturing multi-
le modes and their associated probabilities. The VAE framework
rovides a structured way to train and generate samples from the
ultimodal model. In contrast to previous works (Park et al. 2018 ;
u et al. 2021 ), we assume a known prior distribution and ap-
roximate the posterior distribution with a mixture of truncated
aussian densities via variational inference. To illustrate the re-

ulting method, we first apply it to a simple inverse problem with
wo solution branches. Then, we apply it to a 1-D magnetotelluric
MT) inverse problem (Grandis et al. 1999 ; Medin 2008 ). We em-
loy synthetic data generated by computer algorithms to produce a
uf ficientl y large data set that ensures the model is well trained and
ssumes known measurement noise and prior. The algorithms are
xecuted in Python using the T ensorFlow, T ensorFlow Probability
nd NumPy libraries. Extending the above method to 2-D and 3-D
roblems is straightforward, although this leads to a significantly in-
reased computational cost of the corresponding forward problem
Alvarez-Aramberri & Pardo 2017 ; Spichak & Popova 2000 ). 

The organization of this paper is as follows. Section 2 introduces
ome preliminary concepts and definitions. Section 3 presents the
oti v ation for using a mixture of densities by considering a sim-

le inverse problem. Section 4 proposes the MVAE that provides
ultiple solutions to an inverse problem. Section 5 presents an ap-

lication of MVAE to a 1-D MT inverse problem. We summarize
ur conclusions in Section 6 . 

 P R E L I M I NA RY  D E F I N I T I O N S  A N D  

S S U M P T I O N S  

his section introduces some preliminary concepts about NNs and
robability needed to explain the BVAEs models and the proposed
oss functions L θ . 

.1 Neural networks 

n classical supervised learning, given physical measurements y
nd properties x , an NN is a model that approximates a function
rom y to x through a composition of several mappings called layers
Hornik et al. 1989 ; Samek et al. 2021 ) Let s be the number of
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layers considered in the model, 

I θ ( y) = 

(
L 

( s) ◦ L 

( s−1) ◦ · · · ◦ L 

(1) 
)

( y) , (1) 

where L 

( i) ( y) = f i 
(
W 

( i) · y + b ( i) 
)
, W 

( i) is a matrix, b ( i ) is a vector 
and f i is the i th layer acti v ation function for i = 1,. . . , s . Each
layer L 

( i) ( y) contains m i nodes { z ( i) 
0 , ..., z 

( i) 
m i 

} defined as z ( i) 
j ( y) =

f i ( w 

( i) 
j y + b ( i) ) . Fig. 1 shows the fully connected NN scheme with 

s layers. The loss function L θ ( x , y ) is a function that minimizes the 
error between the predicted output and the ground truth x in some 
norm. 

Ho wever , the approximation generated by conventional deep 
learning methods is sometimes inadequate to solve inverse geo- 
physical problems where the solution is non-unique. In these cases, 
it is necessary to implement strategies that provide adequate solu- 
tions to the inverse problem (see Shahriari et al. 2020 ). 

2.2 Preliminary statistical concepts 

Let X be a random variable with a PDF p ( x ). We write the expected 
value of g ( X ) as (see Gut 2013 ): 

E p [ g( X ) ] = 

∫ 
g( x ) p( x ) d x . (2) 

Eq. ( 2 ) can be approximated by: 

E p [ g( X ) ] ≈ 1 

H 

H ∑ 

i= 1 
g( x i ) , (3) 

where x i are samples distributed according to p ( x ) for i = 1,. . . , H .
We will consider truncated Gaussian PDFs characterized by their 
mean μ and variance σ 2 and domain ( a, b) ⊂ R with a < b . We 
denote these PDFs by p ( x ; ϕ, a , b ), where ϕ = ( μ, σ ). 

2.2.1 Truncated Gaussian mixture density 

Let X be a random variable with PDF p ( x ; ϕ) given by: 

p( x ; ϕ, a, b) = 

M ∑ 

m = 1 
πm 

· p m ( x ; ϕ m 

, a, b) , (4) 

where π i ≥ 0, 
∑ M 

i= 1 πi = 1 , and p i ( x ; ϕ i , a , b ) with ϕ i = ( μi , σ i )
is a truncated Gaussian density with mean μi , variance σ i for m = 

1,. . . , M . The PDF p ( x ; ϕ, a , b ) is called truncated Gaussian mixture
density with M densities and parameters ϕ = ( π 1 , μ1 , σ 1 ,. . . , πM 

, 
μM 

, σ M 

). We take 

p m ( x ; μm 

, σm 

, a, b) = 

1 

Z m 

exp 

(
− ( x − μm 

) 2 

2 σ 2 
m 

)
, (5) 

when x ∈ ( a , b ) and p m = 0 otherwise, where Z m is an appropriate 
normalizing constant to ensure that p m integrates to 1. 

2.2.2 Bayes’ theorem in inverse problems 

Bayes’ theorem acts as a bridge between the probabilistic forward 
and inverse problem (Kaipio & Somersalo 2006 ; Gut 2013 ). Given 
X , Y and ε random variables, we assume observations of geophys- 
ical measurements from a mathematical forward problem F with 
an additive noise such that Y = F( X ) + ε, that is, the probability 
occurrence of physical measurements Y given subsurface properties 
X is described by a conditional PDF p ( y | x ) known as likelihood , and 
contains information about the uncertainty present in observations 
associated with the forward problem. Similarly, the uncertainty as- 
sociated with the inverse problem I( Y ) is gi ven b y a PDF p ( x | y )
known as posterior corresponding to the inverse problem. By Bayes’ 
theorem, we obtain: 

p( x | y ) = 

p( y | x ) p( x ) 

p( y ) 
, (6) 

where p ( x ) is a prior knowledge (Kaipio & Somersalo 2006 ; Goh 
et al. 2021 ). In the context of our work, this corresponds to the 
probability distribution describing the g round tr uth in the absence 
of fur ther infor mation. The choice of the prior is a modelling as- 
sumption that, according to eq. ( 6 ), has a clear effect on the pos- 
terior. The prior may be informed by expert knowledge and data, 
and when limited information is available, one may turn to simple 
distributions such as Gaussian or lognormal distributions, where we 
assume known qualitative properties of the ground truth. The PDF 

p ( y ) corresponds to all possible measurements, given by: 

p( y) = 

∫ 
p( y | x ) p( x ) d x . (7) 

2.3 Conditional PDF parameter estimation by NNs 

Given X and Y random variables, we approximate the PDF p ( x | y ) by 
the PDF p ( x ; ϕ θ ( y )), where the objective is to estimate the parameters 
ϕ θ ( y ) by an NN. The function ϕ θ ( y ) depends upon the trainable 
parameters θ = ( θ (1) , θ (2) ,. . . , θ ( s ) ), where θ ( i) = ( W 

( i) , b ( i) ) for i
= 1,. . . , s (Wang 1994 ; Neuneier et al. 1994 ; Mao et al. 2000 ).
Fig. 2 shows the scheme to estimate a PDF by an NN, where the 
loss function L θ ( x , y ) is typically defined from the PDF p ( x ; ϕ θ ( y ))
and expressed as: 

L θ ( x , y ) = − log p( x ; ϕ θ ( y )) . (8) 

The NNs in this section are commonly used for predictions or 
classification like linear or logistic re gression. Howev er , in in verse 
problems, there may be occasions when a more elaborate model is 
needed. For example, a model in which we have information about 
the origin of the data. In this wa y, w e present the autoencoder NNs 
in the next section. 

3  VA R I AT I O NA L  AU T O E N C O D E R  F RO M  

G AU S S I A N  N O I S E  

Autoencoders have been used for applications such as dimension- 
ality reduction or image reconstruction (Goh et al. 2021 ; Liu et al. 
2022 ; Guo et al. 2020 ; H äggstr öm et al. 2019 ; Kingma & Welling 
2013 ). Given D = ( x , y ), we have an encoder part (input model, 
which is our inverse problem) with an input y , and we obtain an 
estimation for x . In the decoder (output model, which is our forward 
problem), given an input x estimated by the encoder, we obtain an 
estimation for y . 

Currently, it is possible to use probabilistic and deterministic ver- 
sions, see Appendix A), as well as a probabilistic one. Herein, we 
focus on the solution of inverse problems with uncertainty quan- 
tification, and therefore, we describe the construction of an au- 
toencoder scheme that allows us to quantify the uncertainty of the 
inverse problem (Kingma & Welling 2013 ). 

We use an NN to estimate the probabilistic inverse problem so- 
lution determined by a posterior distribution of the random vari- 
able X given the random variable Y . First, we construct the likeli- 
hood p ( y | x ) from the distribution of additive noise ε. We consider 
Y = F( X ) + ε, where ε follows a Gaussian density p ( ε; ϕ ε ) with 
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Figure 1. Fully connected NN scheme. 

Figure 2. Density NN scheme. 
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ean vector 0 k and diagonal covariance matrix � k , where ϕ ε = ( 0 k ,
 k ). The likelihood p ( y | x ; ϕ ε ) is expressed by (Goh et al. 2021 ): 

p( y | x ; ϕ ε ) = (2 π ) −
k 
2 | � k | − 1 

2 exp 

(
−1 

2 
( y − F( x) ) t � 

−1 
k ( y − F( x) ) 

)
(9) 

Our interest in using NNs with probabilities is to quantify uncer-
ainty by using a posterior PDF p ( x | y ). Using Monte Carlo methods
o obtain samples from p ( x | y ) can be computationally e xpensiv e
n Bayesian inverse problems. Fur ther more, whilst Bayes’ theorem
ives us an explicit expression for the posterior p ( x | y ), the modes of
he distribution are not easily identifiable, and thus, we cannot make
oint estimations for solutions to the inverse problem. To solve this,
e approximate the posterior distribution p ( x | y ) (usually unknown
nd non-parametric PDF) with a more tractable parametric previ-
usly selected PDF q ( x ; ϕ θ ( y )), where the parameters ϕ θ ( y ) of the
istribution are given by an NN with weights θ . The parameters
 θ ( y ) of the posterior are then simple to interpret in the context
f the inverse problem. To estimate θ , we use the evidence lower
ound (ELBO) loss function (Blundell et al. 2015 ) given by: 

KL = argmin 
θ

∫ 
p( y) · L 

KL 

θ ( y) d y, (10) 

≈ 1 

H · N 

· argmin 
θ

N ∑ 

n = 1 

H ∑ 

i= 1 

[
log q( x i n ; ϕ θ ( y n )) −

(
log p( x i n ) + log p( y n | x i n ) 

)]
. 

(11) 

he goal is to measure the discrepancy between the posterior distri-
ution p ( x | y ) ∝ p ( x ) p ( y | x ) and the proposed distribution q ( x | ϕ θ ( y )).
inimizing this discrepancy helps us shape and scale the proposed

istribution with known parameters ϕ θ ( y ) towards the posterior dis-
ribution. To do this, we use a Monte Carlo approximation, and the
omplete deri v ation is in Appendix B. As pre viousl y commented
n Section 2.2 , the choice of prior affects the posterior, which is
eflected in eq. ( 11 ) via the dependence on p ( x ). 

Fig. 3 sho ws ho w to obtain q ( x ; ϕ θ ( y )) and construct the loss
unction. 

 M U LT I M O DA L  VA R I AT I O NA L  

U T O E N C O D E R  

n this work, we consider q ( x ; ϕ θ ( y )) in eq. ( 11 ) (see Appendix B)
s an MDN, where parameters ϕ θ ( y ) are given by the M means
m 

θ ( y) —point estimates to the solution of the inverse problem—the
 standard deviations σ m 

θ ( y) —uncertainty quantification of each
olution—and the M probabilities πm 

θ ( y) of occurrence associated
ith each solution for m = 1,. . . , M . Fig. 4 shows a general form
f the MVAE scheme. Unlike the works cited in the previous para-
raph, in which they estimate the parameters of the MDN by using
aximum likelihood, we propose using the Kullback–Leibler diver-

ence to approximate the posterior distribution of an MDN. 
Eq. ( 11 ) describes the loss function used for MVAE, where q (a

aussian mixture density) is a more tractable density than the pos-
erior distribution, represented by the sum of the likelihood and the
rior. The samples obtained from the latent space q are e v aluated
n the posterior distribution. Therefore, the modes with the highest
eak will have higher values in the e v aluation of the posterior dis-
ribution, and q will approximate that same shape, giving a higher
eight πm to those modes. 
Note that the ne gativ e log-likelihood (NLL) loss function quan-

ifies the ne gativ e log-probability of the observed data given a PDF,
aximizing it where the data have a higher probability of occur-

ence. On the other hand, the ELBO loss function is often used in
ariational inference and seeks to approximate the posterior dis-
ribution. It measures the discrepancy between the posterior distri-
ution with a more tractable PDF. Maximizing the ELBO corre-
ponds to minimizing the divergence between the two distributions.

art/ggad362_f1.eps
art/ggad362_f2.eps
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Figure 3. VAE scheme. 

Figure 4. MVAE scheme of M truncated Gaussian densities q m ( x ; ϕ m 

θ ( y ) , a, b) that define q( x ; ϕ θ ( y ) , a, b) = 

∑ M 

m = 1 π
m 

θ ( y ) q m ( x ; ϕ m 

θ ( y ) , a, b) , where ∑ M 

j= 1 π
m 

θ ( y) = 1 . 

Figure 5. 1-D MT exploration. 
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The NLL loss function is often employed in supervised learning 
(Schapire 2003 ; Farnia & Tse 2016 ), while the ELBO loss function 
is more popular in generative models, such as VAEs (Tomczak & 

Welling 2018 ; Hoffman & Johnson 2016 ), where the goal is to learn 
latent representations and generate new samples. 

5  A P P L I C AT I O N  T O  T H E  

M A G N E T O T E L LU R I C  I N V E R S E  

P RO B L E M  

The MT method is a passive electromagnetic exploration technique 
governed by Maxwell’s equations. The source is naturally gener- 
ated within the ionosphere, and it is modelled in the form of a plane 
wave solution that arrives at the Earth. Based on the impedance 
measured at different locations along the surface, we can recover 
a resistivity image of the Earth’s subsurface by solving the corre- 
sponding inverse problem. In this paper, we employ the proposed 
MVAE scheme to solve a 1-D MT inverse prob lem. F ig. 5 shows an 
e xample of 1-D MT e xploration for a fixed set of subsurface layers 

art/ggad362_f3.eps
art/ggad362_f4.eps
art/ggad362_f5.eps
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Figure 6. Example of an MT forward problem input and output. 

Table 1. Architecture for MVAE, where the input is the apparent resistivity and phase [ ρa , φ], and output 
is a mixture PDF of the resistivity ρ. Constants N , M and L are the number of frequencies, mixtures and 
layers, respecti vel y. 

MVAE 

Layer (type) Output shape Acti v ation function 

Input non-trainable layer ( ρa , φ) (None,2 · N ) linear 
Hidden dense layer (None,300) tanh 
Hidden dense layer (None,300) softplus 
Output dense layer (None, M · (2 · L + 1)) linear 
Reshape non-trainable layer (None,M,2 · L + 1) linear, softplus, softmax 
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ith associated thicknesses and resistivities. We position one elec-
rode on the surface operating at N different frequencies and obtain
s response N impedances from which we calculate their apparent
esistivities and phases. 

To find the solution to the MT inverse problem, we briefly explain
he forward problem’s formulation, define the MT inverse problem,
nd apply the MVAE model. 

.1 1-D MT forward problem 

he analytical solution for the forward problem is: 

( ρ, ω) = 

E( ρ, ω) 

H ( ρ, ω) 
, (12) 

a = 

1 

μ0 ω 

| Z| 2 , (13) 

= arctan 

(
Re ( Z) 

Im ( Z) 

)
. (14) 

is the impedance obtained from the electric and magnetic fields
 and H , respecti vel y, generated b y the interaction between the
ubsurface resistivity ρ and the applied plane wave source with
requency ω. From the obtained impedance, we generate the output
f the forward problem given by the apparent resistivity ρa and
he phase difference φ. If we further assume that ρ as a piecewise-
onstant function in a domain (0, h 1 ) ∪ ( h 1 , h 2 ) ∪···∪ ( h L − 1 , ∞ ) with
 i < h i + 1 for i = 1,. . . , L − 1, the MT forward problem has a simple
nalytical solution, see Mandolesi et al. (2018 ), Medin ( 2008 ) and
arker ( 1983 ). For a set of N fixed frequencies ω = ( ω 

(1) , ω 

(2) ,. . . ,
 

( N ) ) and L layers, the input and output of our MT forward problem
re given by: 
I

(i) Input: 

L − 1 subsurface thickness layers h = ( h 1 , h 2 ,. . . , h L − 1 ), 
L resistivities ρ = ( ρ(1) , ρ(2) ,. . . , ρ( L ) ). 

(ii) Output: 
(iii) N apparent resistivities ρa = 

[
ρ(1) 

a , ρ(2) 
a , . . . , ρ( N ) 

a 

]
. 

(iv) N phases φ = [ φ(1) , φ(2) ,. . . , φ( N ) ]. 

We denote the MT forward problem F 

MT as: 

 

MT ( x MT 

) = y MT 

, (15) 

here x MT = [ ρ, h ] is the set of subsurface properties, and the MT
orward solution y MT = [ ρa , φ] is the set of physical measurements
n the surface. 

Fig. 6 shows a graphic representation of an MT forward problem
nput and output. The input x MT is displayed in Fig. 6 (a). The out-
ut displayed in Fig. 6 (b) represents the logarithm of the apparent
esistivity and the phase as a function of the period. 

.1.1 1-D inverse problem 

stimating the thickness of the layers is sometimes part of the in-
 erse problem. Howev er, in here we assume the bed boundaries have
een pre viousl y determined using seismic measurements (Xu et al.
012 , this is also a common situation in practice). Thus, in this work,
he associated inverse problem to eq. ( 15 ) estimates the resistivity

for a set of N apparent resistivities ρa = 

[
ρ(1) 

a , ρ(2) 
a , . . . , ρ( N ) 

a 

]
, N

hases φ = [ φ1 , φ2 ,. . . , φN ] and N frequencies ω = ( ω 

(1) , ω 

(2) ,. . . ,
 

( N ) ) in L − 1 subsurface fixed thickness layers h = ( h 1 , h 2 ,. . . ,
 L − 1 ). We denote the inverse problem as: 

 

MT ( y MT 

) = ρ. (16) 
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Figure 7. (a) and (b) show the estimations obtained for one sample of the validation set by MVAE with five densities. The mean M2 has the highest probability 
of occurrence. 

Figure 8. Estimations obtained for one sample of the validation set by MVAE with five densities. 
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In order to provide a solution to eq. ( 16 ), we use the MVAE scheme 
over an artificial set of physical measurements with known additive 
noise. 

5.1.2 Data generation 

The database is composed of training and validation sets created 
under the same assumptions. In particular, we assume that the num- 
ber and thickness of subsurface layers are known, and the employed 
frequencies are also fixed. We generate a database with 50 000 syn- 
thetic samples, using 80 per cent for training and 20 per cent for 
validation. The synthetic samples are constructed in four steps: 

(i) Initialize data. We fix the number of layers L and the number 
of frequencies N . Then, we select frequencies ω 

( j ) obtained from 

ω 

( j ) = 10 ( − 2 + ( j − 1) � ) for j = 1,. . . , N and � = 5/( N − 1). 
(ii) Generate subsurface properties x MT . Subsurface thickness 

h 

i 
j are generated from h 

i 
1 = 2 , 000 · exp ( v i 1 ) / 

∑ L 
j= 1 exp ( v i j ) and 

h 

i 
j+ 1 = 2 , 000 · exp ( v i j ) / 

∑ L 
j= 1 exp ( v i j ) + h 

i 
j in metres, where each 

v i j is obtained from a randomly uniform distribution in the domain 

(0,4) for j = 1,. . . , L and i = 1,. . . , 50 000; resistivities ρ( j) 
i are

generated from ρ
( j) 
i = 10 u 

j 
i , where u 

j 
i are obtained randomly from 
a uniform distribution in the domain (0,4) for j = 1,. . . , L and i =
1,. . . , 50 000. 

(iii) Generate apparent resistivities and phases y MT . From the 
above x MT , we solve eqs ( 13 ) and ( 14 ) to obtain y MT . 

(iv) Incorporate additive noise. In Xiang et al. ( 2018 ), Ghaedrah- 
mati et al. ( 2022 ) and Siripunvaraporn et al. ( 2005 ), they consider 
the admissible noise between 5 and 10 per cent for each measure- 
ment in the inverse MT problem. Therefore, for each y MT , we con- 
sider a Gaussian additive noise with a vector of mean zero and the 
diagonal � 

D 
k of the diagonal covariance matrix � k is computed using 

� 

D 
k = (0 . 03 y MT 

) 2 , where the square is applied elementwise. 

5.2 Estimations with MVAE 

We use the MVAE scheme in Fig. 4 with five truncated Gaussian 
densities in the domain (0,4), such that the estimations x MT are in 
the domain of F . Table 1 shows the NN architecture implemented in 
the application of the MT inverse problem. We consider a uniform 

prior distribution in the domain (0,4) and the likelihood as in eq. ( 9 ) 
with an unknown covariance matrix. How ever, w e consider that 
the admissible noise is associated with the prediction. Then, the 
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Figure 9. (a) and (b) show the estimations obtained with 40 000 samples in the training set. And (c) and (d) show the estimations obtained with 80 000 samples 
in the training set. Bought results are for one sample of the validation set by MVAE with five densities. 
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ikelihood is given by: 

p( y MT 

| x MT 

; 0 k , � 

D 
k ) = (2 π ) −

k 
2 | � k | − 1 

2 

exp 

(
−1 

2 

(
y MT 

− F 

MT ( x MT 

) 
)t 

� 

−1 
k 

(
y MT 

− F 

MT ( x MT 

) 
))

,

(17)

here � 

D 
k is the diagonal of the diagonal covariance matrix � k , and

 

D 
k = ( βF 

MT ( x MT 

)) 2 with β = 0.03 (considering noise between
 and 6 percent). Then, the estimation of θKL is given by: 

KL 

≈ 1 

H · N 

argmin 
θ

N ∑ 

n = 1 

H ∑ 

i= 1 

[ 
log q( x i MT n 

; ϕ θ ( y MT n 
) , 0 , 4) 

−
(

log 
1 

4 
+ log p( y MT n 

| x i MT n 
; 0 k , � 

D 
k ) 

)]
. (18) 

e generate the database with 50 frequencies using 3, 5 and 10
ubsurface layers. Codes for solving forward and inverse problems
ere implemented in TensorFlow, and the mixture of Gaussian den-

ities was implemented in TensorFlow Probability with automatic
ifferentiation. We employed the optimizer Adam with a learning
ate of 10 −5 . The following results were obtained using only MVAE
nstead of VAE because the proposed model can obtain unimodal

istributions if a unique solution exists, as shown in Fig. 7 (b). v
.2.1 MT model problem with three geological layers 

ig. 7 (a) (red curve) shows our model example selected from the
alidation data set, composed of three rather resistive layers (all
f them over 10 
·m). The remaining curves in Fig. 7 (a) show all
ossible solutions encountered by our inversion algorithm, along
ith the probability of each solution. A full probability distribu-

ion of the solution of each layer is displayed in Fig. 7 (b). We
btain an unimodal Gaussian distribution in each layer and ob-
erve that the last layer exhibits a lower variance than the first one.
his occurs because the last layer is infinitely thick, which can
e more easily determined based on low-frequency measurements.
he middle layer shows the lowest variance because electromagnetic
ethods have a larger sensitivity to conductive layers than resistive

nes. 
Out of the five considered Gaussian distributions, Fig. 8 shows

he two with the highest probability of occurrence. The mean
2 is the most probable solution, which we show together with

5 per cent of the probability regions calculated over the valida-
ion data set. Fig. 8 (b) results from applying the forward prob-
em to the estimation obtained in Fig. 8 (a), thus comparing the
evel of proximity of the estimation with the trained observation.
hese figures show that the estimated phase and apparent resis-

ivities are close to the exact values of the observation in the

alidation set. 
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5.2.2 MT model problem with five geological layers 

Fig. 9 (a) (red curve) shows our model example selected from the 
validation data set, composed of five layers. The remaining curves 
in Fig. 9 (a) show all possible solutions encountered by our inver- 
sion algorithm, along with the probability of each solution. A full 
probability distribution of the solution of each layer is displayed 
in Fig. 9 (b). We obtain unimodal density in the first and last lay- 
ers. This is expected because the first layer is near the surface—
and it can be uniquely determined from high-frequency measure- 
ments, which have a rather low depth of investigation—while the 
last layer is the thickest one (extending to −∞ ), thus it can also 
be (almost) uniquely determined from low-frequency data. How- 
e ver, most mid-layer resisti vities are much more challenging to 
determine, and different combinations can provide almost identical 
results (with negligible differences within the noise level). As a 
result, we obtain a heavy-tailed distribution in the third and fourth 
layers. 

Out of the five considered densities, Fig. 10 shows the two with 
the highest probability of occurrence. Figs 10 (b) and (d) result 
from applying the forward problem to the estimation obtained in 
Figs 10 (a) and (c), thus comparing the level of proximity of the 
estimation with the trained observation. We infer that high variance 
in one of the middle layers does not significantly affect the phase 
and apparent resistivity estimations. 

Fig. 9 shows a training set of 40 000 and 80 000 samples, with a 
low-uncertainty estimation for the first and last layers. The fourth 
layer, in both cases, has high uncertainty. Although for 80 000 sam- 
ples the results tend to be unimodal, it is observed that the distribu- 
tion obtained in the fourth layer has a wider variance. In both cases, 
the point estimations solve the 1-D MT inverse problem, and 40 000 
samples are sufficient to obtain an accurate estimation, as shown in 
Fig. 10 (b). 

5.2.3 MT model problem with 10 geological layers 

Fig. 11 (a) (red curve) shows a 10-layer model example selected 
from the validation data set. The remaining curves in Fig. 11 (a) 
show all possible solutions encountered by our inversion algorithm, 
along with the probability of each solution. A full probability dis- 
tribution of the solution of each layer is displayed in Fig. 11 (b). As 
before, the first and last layer resistivities can be uniquely deter- 
mined from high- and low-frequency measurements, respecti vel y. 
The remaining layers show higher uncertainty as we go deeper into 
the subsurface, as physically expected. We infer that our MVAE 

would require more densities to encounter a larger number of solu- 
tions to this inverse problem. 

Out of the five considered densities, Fig. 12 shows the highest 
probability of occurrence. Figs 12 (a) and (d) result from applying 
the forward problem to the estimation obtained in Figs 12 (a) and 
(c), respecti vel y; thus comparing the level of proximity of the es- 
timation with the trained observation. We infer that high variance 
in the mid-layers does not significantly affect phase and apparent 
resistivity estimations. Although the exact solution is not included 
in the probability region (see Figs 12 a and c), solutions from that 
interval satisfy the physical measurements up the noise precision 
(see Figs 12 a and d). We can thus conclude that the failure of our 
method to identify the exact solution is not a failure of the method 
itself. Rather, the ill-conditioned nature of the inverse problem has 
produced measurements too noisy, relative to the complexity of the 

g round tr uth, to be able to obtain an accurate solution. 
5.3 Results of MT model problem with five geological 
layers using classical MHMC 

We replicate the example of five geological layers with the same sub- 
surface configuration by using a basic Monte-Carlo approach calcu- 
lated from the posterior distribution. Note that the posterior distribu- 
tion p is proportional to a Gaussian additive noise because we use a 
uniform distribution as prior, thus p( x r MT 

| y r MT 

) ∝ p( y r MT 

| x r MT 

) 
in eq. ( 17 ), where r is the r th sample of the validation set. We use
the Metropolis–Hastings Monte Carlo (MHMC) scheme described 
in Algorithm 1 to generate 500 000 samples { k i } of p( x r MT 

| y r MT 

) .
Subsequently, we use a systematic sampling, where we select the 
samples { k 10 s } for s = 1,. . . , 50 000, reducing the number of sam-
ples to 50 000. To replicate the application of MT model problem 

with five geological la yers, w e use as initial values of Algorithm 1 
η = 1000 and σ 0 = 0.5. 

Algorithm 1 Random walk Metropolis-Hastings with adaptive vari- 
ance 
Data: 

1: Domain 
 of x r MT 

2: Posterior p( x r MT | y r MT ) 
3: Number of samples n 

4: Initial state k1 
5: Size for the adaptive variance η
6: Initial value of the variance σ 2 

0 

Result: n samples { k i } n i= 1 from p( x r MT | y r MT ) 
i ← 1; k 1 ← k1; σ ← σ0 ; z 0 ← 0; count ← 0; 

while i ≤ n do 
Generate k ′ from T N ( k i , σ 2 ; 
); � Tr uncated Nor mal in 


with mean k i and variance σ 2 

α ← min 
(
0 , log p( k i | y r MT ) − log p( k ′ | y r MT ) 

)
; 

Generate u from U(0 , 1); 
if log u < α then 

k i+ 1 ← k ′ ; 
c ount ← c ount + 1; 

else 
k i+ 1 ← k i ; 

end 

if mod ( i, η) = 0 then 

z 1 ← count ; 

σ ← max 
(
| z 1 −z 0 

η
| , 0 . 01 

)
; � σ ∈ [0 . 01 , 1] 

z 0 ← z 1 ; 
end 

i ← i + 1; 
end 

Figs 13 , 14 and 15 show a representation of different modes 
using classical Monte Carlo. These figures provide a quantifi- 
cation of the uncertainty and point estimation of the solution 
to the inverse problem. We have a set of apparent resistivi- 
ties and phases from 50 000 combinations of subsurface prop- 
erties (divided in 80 per cent for training and 20 per cent for 
validation). 

Using a Monte Carlo for each combination may be computa- 
tionall y expensi ve. Using MVAE presents an advantage in com- 
putational cost vs the classical Monte Carlo since the MVAE 

provides a parametric distribution for each element in the data 
set and M different point estimations—as shown in Figs 9 and 
10 —with a lower computational cost. In Fig. 15 , we observe 
a very similar behaviour to the results obtained in Figs 10 (a) 
and (b), which corresponds to the most plausible result in the 
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Figure 10. Estimations obtained for one sample of the validation set by MVAE with five densities. 

Figure 11. (a) and (b) show the estimations obtained for one sample of the validation set by MVAE with five densities. The mean M2 has the highest probability 
of occurrence. 
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T problem with five geophysical layers solved by MVAE. This
esult confirms that the estimates provided by MVAE are re-
iable. In addition, with MVAE, we can predict the results of
lements that are not part of the training set, such as in this
ase, where the provided example is in the validation set. This
s not possible with a classical Monte Carlo approach, as each
olution must be obtained independently. Fur ther more, whilst
HMC is able to accurately approximate the posterior distri-
ution, it is generally difficult to interpret the obtained results,
s they amount to a large sample from the posterior distri-
ution. The MVAE represents the posterior via a parametrized
DF, and thus the parameters of the distribution provide a low-
imensional and easily explainable interpretation of the obtained
esults. 
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Figure 12. Estimations obtained for one sample of the validation set by MVAE with five densities. 

Figure 13. x MT densities estimations. 
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6  C O N C LU S I O N S  

Implementing a VAE implies approximating the posterior distribu- 
tion by a more tractable one. Usually, selecting an unimodal distribu- 
tion is the standard option. Ho wever , different configurations of the 
subsurface can generate the same geophysical observations. With 
this, we propose the variational autoencoder MVAE, a multimodal 
autoencoder model that provides multiple solutions to a geophysi- 
cal inverse problem associated with a known forward problem. This 
model has three advantages: (1) it provides multiple point estimates 
for each observation; (2) each point estimate has a probability of 
occurrence, which allows inferring the most plausible inverse solu- 
tion, and the variance represents the confidence level of the obtained 
estimations and (3) we obtain a distribution associated with each 
solution parameter. Applying MVAE in geophysical problems that 
exhibit multiple inverse solutions is useful since MVAE allows us to 
obtain different modes in the solution with indicated probabilities. 

MVAE has been applied to the MT1-D inverse problem. In the 
considered numerical examples, we obtain a unique solution to 
the inverse problem with unimodal distributions in the first and last 
layers. This is physically expected since the first layer is near the sur- 
face, and high-frequency measurements are sufficient to determine 
it uniquely. The last layer is infinitely thick, and low-frequency mea- 
surements can uniquely determine its resistivity. In addition, when 
the number of subsurface layers increases, the estimated solutions 
in the middle layers show a high dispersion, obtaining multimodal 
estimations in some cases. In others, we obtain estimations of high 
dispersion without a distinctive mode, for example, in the case of 
10 subsurface layers. We validate the obtained estimates of subsur- 
face properties x MT by applying the forward problem and comparing 
these solutions with the synthetic physical measurements y MT . 

Understanding and predicting uncertainty have tremendous value 
in subsurface exploration. The proposed method contributes to this 
understanding since we can infer whether unimodal, multimodal, or 
other distributions are obtained from the solution distributions. As 
in other multimodal models, a limitation of MVAE is that it does 
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Figure 14. Estimations obtained for one sample of the validation set by Monte Carlo approach. 

Figure 15. Autoencoder NN scheme. 
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ot provide the exact number of solutions to the inverse problem. It
rovides, at most, as many solutions as the number of mixtures we
hoose. 

Whilst we have shown that our proposed method works effec-
i vel y on samples chosen from our selected prior (a log-uniform
istribution), we are essentially using synthetic data, and thus, the
odel is trained according to a distribution ground truth that may

ot reflect reality adequately, leading to large errors when applied
o non-synthetic problems. In order to be applicable to real-world
ystems, one would need to employ a prior that more accurately re-
ects the g round tr uth, which would need to be informed by expert
nowledge and real-world data. However, if the data are unavail-
ble, there are generic distributions to solve inverse problems, such
s Gaussian random Markov fields Bardsley & Kaipio ( 2013 ) or
aussian mixtures Grana et al. ( 2017 ). In future work, we will

onsider the thickness of each layer as an unknown of the inverse
roblem. In addition, the forward problem can be scaled to two
r three dimensions, where the autoencoder supports the structure.
o wever , obtaining the forward problem solution needed for train-

ng is computationally more e xpensiv e. We also consider applying
he proposed autoencoder in applications with multiphysics data to
haracterize in which cases the solution could be unique, inferring
his from the estimation of a posterior distribution as an unimodal
r multimodal model. 
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Figure A1. Comparison between deterministic autoencoder estimates and VAE, where the obtained estimation can be different depending on the initial values 
of the NN weights. 
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he prediction I θ ( y) must lie in the domain of F . To enforce this, we select 
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 L O S S  F U N C T I O N  

 measure (asymmetric) of distance between PDFs. KL attains its global 
nd thus it is possible to use it as a loss function and minimize the distance 
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ore tractable distribution of X , and parameters ϕ θ ( y ) that characterize the 
n for an autoencoder scheme as: 
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ts θKL are defined by (we make the following calculations based on the 
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A P P E N D I X  A :  D E T E R M I N I S T I C  AU T O E N

In the deterministic case, we approximate the inverse problem I( y)
a basic encoder–decoder scheme that we will refer to as autoeconde
forward problem represents the decoder. 

We consider the encoder as an NN with trainable parameters θ . T
an adequate acti v ation function. The decoder is a numerical solutio
loss function for autoencoder schemes is given by: 

L θ ( y) = ‖ y − F ◦ I θ ( y) ‖ 2 2 . 

A P P E N D I X  B :  E V I D E N C E  L OW E R  B O U N D

The Kullback–Leibler divergence (KL) can be seen as a statistical
minimum of zero when the PDFs p ( x | y ) and q ( x ; ϕ θ ( y )) are equal, a
between PDFs. KL is defined in Kullback & Leibler (1951 ) by: 

KL [ q( x ; ϕ θ ( y )) || p( x | y ) ] = 

∫ 
q( x ; ϕ θ ( y )) log 

q( x ; ϕ θ ( y )) 

p( x | y ) d x , 

where p ( x | y ) is the posterior distribution of X and q ( x ; ϕ θ ( y )) is a m
PDF are obtained from an NN. From KL, we define the loss functio

L 

KL 

θ ( y) = KL [ q( x ; ϕ θ ( y)) || p( x | y) ] , 

where X is a latent random variable. Therefore, the estimated weigh
loss function used in Blundell et al. 2015 ): 

θKL = argmin 
θ

∫ 
p( y) · L 

KL 

θ ( y) d y

= argmin 
θ

∫ 
p( y) · KL [ q( x ; ϕ θ ( y)) || p( x | y) ] d y

= argmin 
θ

∫ ∫ 
p( y ) q( x ; ϕ θ ( y )) log 

q( x ; ϕ θ ( y )) 

p( x | y ) d x d y 

= argmin 
θ

∫ ∫ 
p( y ) 

[ 

q( x ; ϕ θ ( y )) log 

( 

q( x ; ϕ θ ( y )) 
p ( x) p ( y| x ; ϕ ε ) 

p( y) 

) ] 

d x d y 

= argmin 
θ

∫ ∫ 
p( y ) q( x ; ϕ θ ( y )) 

[
log 

q( x ; ϕ θ ( y )) 

p( x ) 
− ( log p( y | x ; ϕ ε

= ︸︷︷︸ argmin 
θ

∫ 
p( y ) 

[
E q 

[
log 

q( x ; ϕ θ ( y )) 

p( x ) 

]
− E q [ log p( y | x ) ] − lo

≈︸︷︷︸ 1 

H · N 

· argmin 
θ

N ∑ 

n = 1 

H ∑ 

i= 1 

[
log q( x i n ; ϕ θ ( y n )) −

(
log p( x i n ) + log

where { x i n } H i= 1 are samples obtained from q ( x n ; ϕ θ ( y n )), and y n are t
ELBO, and it is the objective loss function that we will employ in o

art/ggad362_fa1.eps
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Figure A2. Application of MVAE in an inverse problem with a known solution. 

A  O F  A N  I N V E R S E  P RO B L E M  W I T H  T W O  

S

W  between VAE and MVAE models. We consider a simple inverse problem 

w s, we select the forward problem F( x) = x 2 . Thus, the associated inverse 
s

D

W les are constructed in two steps: 

ly from a uniform distribution in the domain ( −10,10); for the validation 
s 10 + ( j − 1) · � with � = 20/99, and j = 1,. . . , 100. 

e Gaussian noise ε n ∼ N 

(
0 , (0 . 05 F( x n )) 2 

)
for n = 1,. . . , 100. 

R

S  ) in eq. ( 9 ) as N 

(
F ( x) , (0 . 005 F ( x)) 2 

)
, and the prior p ( x ) as U( −10 , 10) . 

B , σ θ ( y )), the loss in eq. ( 28 ) (see Appendix A) can be simplified as: 

θ  p( y n | x i n ) 
)]

(29) 

 

2 + 

1 

2 

(
y n − F( x i n ) 

0 . 05 F( x i n ) 

)2 
] 

. (30) 

hts θ . Fig. A1 (a) shows the e v aluation of the validation set with the inverse 
p der scheme. In this case, we do not quantify the uncertainty because, in 
a 1 (b) shows the inverse problem solution gi ven b y the mean of the PDF 

o uncertainty quantification, which we represent with a 95 per cent of the 
p

an autoencoder scheme and quantify the uncertainty. Ho wever , we obtain 
o  the initial values given to the NN weights. In order to obtain multiple 
b se an autoencoder with mixture densities . 

R

W re with two densities in the domain ( − 10, 10). We obtain θKLT in eq. ( 28 ) 
(

θ
 n − F( x i n ) 

 . 05 F( x i n ) 

)2 

+ log (0 . 05 F( x)) 

] 

. (31) 

 the inverse problem with uncertainty quantification. Fig. A2 (a) shows the 
i  densities. We obtain two different point estimations given by the means 
M nt. We may interpret the weights πm 

θ ( y) in Fig. A2 (b) as a representation 
o  
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P P E N D I X  C :  I L LU S T R AT I V E  E X A M P L E
O LU T I O N  B R A N C H E S  

e present a simple benchmark example to illustrate the difference
ith a known inverse solution that exhibits two branches. To do thi

olution is I( y) = ±√ 

y . 

ata generation 

e generate 100 samples for training and 100 for validation. Samp

(i) For the training set, we generate 100 samples { x t r n } 100 
n = 1 random

et, we select 100 equally spaced samples { x val 
n } 100 

n = 1 , where x val 
j = −

(ii) We generate { y t r n } 100 
n = 1 by y t r n = F( x t r n ) + ε n , where the additiv

esults using VAE 

ince the data are Gaussian noised, we consider the likelihood p ( y | x
y taking q ( x ; ϕ θ ( y )) to be a Gaussian density with ϕ θ ( y ) = ( μθ ( y )

KL 

≈ argmin 
θ

1 

H · N 

N ∑ 

n = 1 

H ∑ 

i= 1 

[
log q( x i n ; ϕ θ ( y n )) −

(
log p( x i n ) + log

= argmin 
θ

1 

H · N 

N ∑ 

n = 1 

H ∑ 

i= 1 

[ 

log 
0 . 05 F( x) √ 

σθ ( y n ) 
− 1 

2 σθ ( y n ) 
( x i n − μθ ( y n ))

We consider a fully connected NN and estimate the trainable weig
roblem estimation I θ ( y) obtained from the deterministic autoenco
 deterministic solution, we obtain only a point estimation. Fig. A
btained by a VAE with loss function in eq. ( 30 ) and shows the 
robability region (P.R.) ( μθ ( y ) ± 1.96 · σ θ ( y )). 

Using VAEs, we obtain a reasonable estimation of our data with 
nly one of the possible branches: the selected branch depends on
ranches in our estimation and quantify their uncertainty, we propo

esults using MVAE 

e consider the PDF q ( x ; ϕ θ ( y ), a , b ) as a truncated Gaussian mixtu
see Appendix A) as: 

KL 

≈ argmin 
θ

1 

H · N 

N ∑ 

n = 1 

H ∑ 

i= 1 

[ 

− log q( x ; ϕ θ ( y ) , −10 , 10) + 

1 

2 

(
y

0

Fig. A2 shows an NN scheme that provides multiple solutions to
nverse problem solution using MVAE with two truncated Gaussian

1 = μ1 
θ ( y) , and M2 = μ2 

θ ( y) , with a probability region of 95 per ce
f our confidence in each particular solution of y for m = 1,. . . , M .
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