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S U M M A R Y 

Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole re- 
sistivity measurements to approximate forward and inverse operators. Using extremely large 
DNNs to approximate the operators is possible, but it demands considerable training time. 
Moreover, e v aluating the network after training also requires a significant amount of memory 

and processing power. In addition, we may overfit the model. In this work, we propose a 
scoring function that accounts for the accuracy and size of the DNNs compared to a refer- 
ence DNNs that provides good approximations for the operators. Using this scoring function, 
we use DNN architecture search algorithms to obtain a quasi-optimal DNN smaller than the 
reference network; hence, it requires less computational effort during training and e v aluation. 
The quasi-optimal DNN delivers comparable accuracy to the original large DNN. 

Key words: Inverse theory; Machine learning; Neural networks, fuzzy logic; Downhole 
method; Wave propagation. 
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 I N T RO D U C T I O N  

il and gas companies use geosteering to increase the productivity
f their wells (Beer et al. 2010 ; Bittar & Aki 2015 ). In this applica-
ion, a logging-while-drilling (LWD) instrument helps us to navigate
he well trajectory inside the oil reservoir to maximize its produc-
ion. A LWD instrument incorporates transmitters and receivers, in
ur case, electromagnetic (EM) ones (Desbrandes & Clayton 1994 ;
pies 1996 ). 
In geosteering, we encounter forward (Shahriari et al. 2018 ,

020a ; Al yae v et al. 2021 ) and inverse problems (Shahriari et al.
020b ). Some traditional methods to solve inverse problems in-
lude gradient-based and statistics-based approaches (Malinverno
 T orres-Verd ́ın 2000 ; T arantola 2005 ; W atzenig 2007 ; Ijasana et al.

013 ; Pardo & Torres-Verd ́ın 2014 ; Jahani et al. 2022 ). Artificial
ntelligence (AI) algorithms, particularly deep learning (DL), have
ecently become popular to solve inverse problems (Jin et al. 2019b ;
uzyrev 2019 ; Shahriari et al. 2020c , b ; Moghadas 2020 ; Hu et al.
020 ; Rammay et al. 2022 ). In this work, we use a deep neural
etwork (DNN) to approximate the solution of an inverse prob-
em. 

The main difficulty when solving an inverse problem arises due to
he non-uniqueness of its solution, that is when there exist multiple
utputs for each input (Tarantola 2005 ). It turns out that the DNN
pproximation may become an average of all the existing solutions,
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Roy
hich can be far from any of them. To partially overcome this prob-
em and obtain one of the possible existing solutions, in (Shahriari
t al. 2020c ), we proposed a specific loss function based on the misfit
f the measurements that incorporates both the inverse and forward
olutions. To recover a set of solutions, one would need to use more
ophisticated methods like Bayesian DNNs (Snoek et al. 2012 ), or
ixture density networks (Al yae v & Elsheikh 2022 ), which are out

f the scope of this work. 
Designing DNN architectures by hand is difficult (Goodfellow

t al. 2016 ; Higham & Higham 2019 ). An e xcessiv ely large DNN
ay achieve the required accuracy, but we may incur in e xcessiv e

omputational costs and possibly in overfitting. On the other side,
sing a small DNN may limit the accuracy. Here, we use automated
achine learning (AutoML) algorithms (Hutter et al. 2019 ; He et al.

021 ). More precisely, we make use of DNN architecture search
lgorithms (O’Malley et al. 2019 ; Jin et al. 2019a ; Elsken et al.
019 ) to build quasi-optimal DNN architectures, where the optimal
NN architecture belongs to a specific search space defined by the
ser a priori . We perform this optimization process by balancing the
ize and accuracy of the networks. These search techniques allow
s to find well-suited DNNs with limited knowledge about the DNN
rchitectures. 

In this work, we have considered as a reference model the DNN
escribed in Shahriari et al. ( 2022 ), and we have e v aluated the ex-
lored architectures by assessing the error variation and the number
al Astronomical Society. 2487 
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Figure 1. 1D subsurface formation, its parametrization and the range of 
variation of the parameters. The logging position indicated by the red circle. 
ρu , ρc and ρl are the resistivities of the upper, central and lower layers, 
respecti vel y. d u and d l are vertical distances from the current logging position 
to the upper and lower bed boundaries, respecti vel y. 
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of trainable parameters. This is tightly related to model compres- 
sion (Cheng et al. 2018 ), a research field that explores methods for 
reducing the complexity of a reference model without affecting its 
accuracy. In particular, our approach can be linked to knowledge 
distillation (Ba & Caruana 2014 ), a family of techniques consist- 
ing of training a more compact model that integrates the output of 
the reference model in the loss function. In our case, we rely on 
AutoML for exploring the space of compact models. The result- 
ing DNN architecture is a parametric representation of the desired 
operator, that is forward and inverse. Although DNN architecture 
search algorithms are time-intensive, having a smaller model makes 
it computationally cheaper to train a DNN on new data sets (new 

scenarios). Moreover, smaller DNNs require less memory to save 
and fewer computational resources to evaluate. Therefore, saving 
and e v aluating on portable devices, for example LWD instruments, 
is more versatile. 

In this work, we propose a search space of DNN architectures 
based on convolutional blocks. Moreover, we introduce a scoring 
function that accounts for both the loss and size of the DNN. By 
minimizing this scoring function, we find the optimal DNN within 
the selected search space. We use two standard architecture search 
algorithms: random and Bayesian searches (Elsken et al. 2019 ). We 
compare the results of the obtained DNN versus our original DNN 

designed by hand. Results show that the AutoML DNN algorithms 
deliver smaller DNN networks that preserve the accuracy of the 
larger DNN created by hand. Throughout this work, we consider 
noise-free synthetic measurements. Nonetheless, we expect smaller 
DNNs to be more resilient towards noise than large DNNs that are 
more prone to overfitting. 

The remaining of this work is organized as follows: Section 2 de- 
fines the forward and inverse problems in the inversion of borehole 
resistivity measurements. Section 3 describes a two-step training 
strategy that we use in this work to obtain the DNN approximation 
of the inverse operator. Section 4 discusses the considered DNN 

architecture components, the definition of the scoring function, and 
the DNN architecture search algorithms that we use in this work. 
Section 5 verifies the proposed techniques by showing the training 
results and the model’s output for some synthetic models. Section 6 
is dedicated to the conclusion. 

2  P RO B L E M  D E F I N I T I O N  

Let p be the subsurface properties. In this application, since the 
inversion should be performed in real-time, to reduce the com- 
putational complexity of the problem it is common to consider a 
1D-layered formation around the logging position (Davydyche v a & 

Wang 2011 ; Pardo & Torres-Verd ́ın 2014 ; Shahriari et al. 2018 ). 
Hence, p is a vector of variables parametrizing the 1D formation as 
follows: 

p = ( ρc , ρu , ρl , d u , d l ) , (1) 

where ρc is the resistivity of the host (central) layer of the logging 
instrument, ρu and ρ l are the resistivities of the upper and lower 
layers, respecti vel y, and d u and d l are the vertical distances to the 
upper and lower bed boundaries, respecti vel y. Fig. 1 shows the Earth 
subsurface parametrization and corresponding variation intervals 
selected based on their occurrence on the geological targets (Pardo 
& Torres-Verd ́ın 2014 ; Shahriari et al. 2020b ; Shahriari & Pardo 
2020 ). 

The selection of the measurements is of paramount importance 
to: (1) avoid using redundant or highly correlated measurements, 
which are unnecessary and (2) be able to obtain an efficient DNN 

approximation of the forward and the inverse operators. Shahri- 
ari et al. ( 2022 ) describes an automatic algorithm to select seven 
complex-valued measurements from a pool of 45 measurements ob- 
tained with two logging instruments shown in Fig. 2 : a conventional 
LWD and an azimuthal one. Each logging instrument incorporates 
v arious transmitter-recei ver spacings. Let m be the measurements 
obtained at the receivers using the aforementioned logging instru- 
ments and the algorithm described in Shahriari et al. ( 2022 ). Table 1 
describes these measurements for each transmitter–receiver set. For 
each measurement shown in Table 1 , we obtain a real and an imag- 
inar y par t, except for the geosignal as the imaginar y par t is discon- 
tinuous (see Shahriari et al. 2022 , for more details). Therefore, m 

contains 13 real numbers per logging position. Table 2 defines the 
type of measurements that we consider in this w ork. Moreover , we 
consider high-angle (almost horizontal) trajectories, hence, for the 
case of trajectory dip angle, we have t ∈ [83 ◦, 97 ◦]. Then, w e ha ve 
the following separate problems: 

(i) Forw ard problem: Gi ven p and t , we obtain m at the receivers, 
that is F( p , t) = m , where F is the solution of Maxwell’s equa- 
tions with a zero Dirichlet boundary condition far away from the 
transmitters (Davydyche v a et al. 2004 ; Davydyche v a & Wang 2011 ; 
Shahriari et al. 2018 ; Shahriari & Pardo 2020 ; Shahriari et al. 2020a ; 
Al yae v et al. 2021 ). Hence, given the aforementioned definitions of 
material proper ties, trajector y dip angle and measurements, the for- 
ward function has an input dimension of 6 and an output dimension 
of 13. 

(ii) Inv erse problem: Giv en the measurements acquired at the 
receivers and the trajectory dip angle, the inverse operator I delivers 
the subsurface properties, that is I( m , t) = p (Ijasana et al. 2013 ; 
Pardo & Torres-Verd ́ın 2014 ; Shahriari et al. 2020b , c ; Jin et al. 
2019b ). Therefore, the input and output sizes of the inverse operator 
are 14 (considering the measurement and trajectory dip angle) and 
5, respecti vel y. 

In this work, we use DNNs to approximate the forward function 
F and inverse operator I. Training a DNN requires a large data 
set. Hence, given the above subsurface parametrization, trajectory, 
and measurements, we produce a data set of 300 000 randomly 
selected samples using a fast semi-analytic solver (Loseth & Ursin 
2007 ). We then express the values of the subsurface properties in 
the logarithmic scale (Shahriari et al. 2020c ), and rescale all the 
variables (i.e. subsurface properties in the logarithmic scale and the 
measurements) to the interval [0.5,1.5] (see Shahriari et al. 2022 , 
for details). 
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Figure 2. LWD instruments. Tx , and Tx i,j , i , j = 1,2, denote the transmitters. Rx 1 , Rx 2 are the receivers. 

Table 1. Evaluated measurements for each transmitter–receiver set. 

Transmitter–receiver Measured component 

( Tx 1, 1 , Tx 1, 2 , Rx 1 , Rx 2 ) zz, yy, Geosignal, symmetrized directional 
( Tx 2, 1 , Tx 2, 2 , Rx 1 , Rx 2 ) Symmetrized directional 
( Tx , Rx 1 ) Symmetrized directional 
( Tx , Rx 2 ) zz 

Table 2. Definition of each type of measurement. H ij is the complex-valued 
magnetic field, where i and j indicate the orientations of transmitters and 
recei vers, respecti vel y. 

Name Measurement definition 

zz H zz 

yy H yy 

Geosignal 
H zz − H zx 

H zz + H zx 

Symmetrized directional 
H zz + H zx 

H zz − H zx 
· H zz − H xz 

H zz + H xz 
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 T W O - S T E P  T R A I N I N G  S T R AT E G Y  

ue to the non-uniqueness of the inverse operator’s output, using
onventional loss functions (based on the misfit of the inversion
ariables p ) may produce an inaccurate solution (Tarantola 2005 ;
hahriari et al. 2020c ). To guarantee that the trained DNN delivers
ne of the true solutions of the in verse operator , we use a two-step
raining strategy, as described in Shahriari et al. ( 2020c ). First, we
pproximate the forward function F as: 

 α∗ : = arg min 
α

n t ∑ 

i= 1 
L ( F α( t i , p i ) , m i ) , (2) 

here for given vectors x and y , we define L ( x , y ) = ‖ x − y ‖ l 1 ,
 ( p i , m i , t i ) } n t 1 is the training data set consisting of n t samples, and
is the set of weights and biases corresponding to the DNN. Then,

sing the trained DNN approximation of F , we use the following
oss function based on the misfit of the measurements to obtain the
NN approximation of the inverse operator: 

I β∗ : = arg min 
β

n t ∑ 

i= 1 
L ( F α∗ ◦ I β ( t i , m i ) , m i ) , (3) 
here β represents the weights and biases corresponding to the
NN, and o indicates the composition of the functions. 

 D N N  A RC H I T E C T U R E  

P T I M I Z AT I O N  

.1 Space of DNN ar chitectur es 

here exist endless possibilities to select the search space for the
NN architectures. One can select different types of DNN lay-

rs/blocks, for example convolutional layers and dense layers, and
heir corresponding variables, for example kernel size and the num-
er of neurons, and the number of lay ers/b locks that build the DNN
rchitectures. Beyond that, one can also search for the best training
yperparameters, such as learning rate, which can lead to a more
fficient or faster training process. Hence, the search space selec-
ion is arbitrary, and there is no concrete approach for selecting
he best search space among all the possibilities. Therefore, as it
s only guaranteed that the obtained DNN is optimal inside a pro-
osed search space, we call it quasi-optimal DNN architecture. A
ifferent selection of the search space will likely lead to a different
uasi-optimal DNN architecture, since this choice is not unique. 

In this work, we only focus on the architectural components. To
ave a fair comparison between our quasi-optimal DNN and our
revious results, we form conv olutional b locks analogous to the
nes shown in Shahriari et al. ( 2022 ). A 1D convolutional layer
onsists of two main components: (1) kernel size: an integer be-
ng the size of the sliding window that moves along the input data
uring the convolution operation and (2) number of filters: an in-
eger corresponding to the number of output channels produced by
he convolutional layer, that is the dimension of the output tensor.
erein, we define the convolutional block B k 0 ,k 1 shown in Fig. 3 as
ur main architectural component of our DNNs, where k 0 and k 1 are

art/ggad249_f2.eps
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Figure 3. Our convolutional block B k 0 ,k 1 consists of three convolutional layers. k 0 and k 1 are kernel sizes of the convolutional layers that can vary. We consider 
the number of filters of the convolutional layers to be constant. 

Figure 4. Illustration of a GP for fitting and optimizing a scoring function with a single parameter. The dashed line is the expected value of the modelled 
function, while the coloured lines correspond to random sampled functions from the GP distribution. The shaded area represents the 95 per cent confidence 
interval at each input value (2 σ ). 

Table 3. Comparison of the time required to perform a random search versus 
a Bayesian approach. 

Problem Random search [hr] Bayesian approach [hr] 

Forward 18.02 16.3 
Inverse 5.97 4.80 
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the kernel sizes of two 1D convolutional layers (He et al. 2016 ). As 
the tuning process is highl y time-intensi ve, in this work, we do not 
consider the number of filters as part of our search space to reduce 
its dimension. We consider F h f ,α to be the DNN approximation of 
F given the set of hyperparameters h f . Then, for h f = { n , k 0 , k 1 , l } ,
we define F h f ,α as: 

F h f ,α = B 

n 
k 0 ,k 1 

◦ · · · ◦ B 

0 
k 0 ,k 1 

◦ C l , (4) 

where n is the number of residual blocks and C l is a 1D convolutional 
layer with l being its kernel size. We define the search space of 
hyperparameters as: 

S F = { n ∈ { 1 , 2 , 3 , 4 } , k 0 , k 1 , l ∈ { 3 , 5 , 7 }} . (5) 
To achieve a symmetric convolution, it is a common practice to 
consider an odd-size kernel when computing the convolution. In 
this case, for each architecture, T = { t i = 40 × i , i ∈ { 1, ···, n }}
are the set of numbers of filters, where t i is the number of filters of 
all the conv olutional lay ers in i th block. The number of filters of the 
final convolutional layer is equal to the number of outputs, that is 
13. 

Analo gousl y, we consider the DNN approximation of the inverse 
operator I h i ,β for a given set of hyperparameters h i = { n , k 0 , k 1 } to
be as follows: 

I h i ,β = B 

n 
k 0 ,k 1 

◦ · · · ◦ B 

0 
k 0 ,k 1 

◦ r ◦ d, (6) 

where r is a flattening layer that converts a 2D tensor to a 1D one, 
and d is a fully connected layer with its number of nodes being the 
size of the vector of subsurface properties | p | = 5. Therefore, our 
search space is: 

S I = { n ∈ { 1 , 2 , 3 , 4 , 5 } , k 0 , k 1 ∈ { 3 , 5 , 7 }} . (7) 

Analogous to the forward model, we consider T = { t i = 40 × i , i ∈ 

{ 1, ···, n }} to be the set of numbers of filters, where t i is the number 
of filters of all the convolutional layers in the i th block. 

art/ggad249_f3.eps
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Figure 5. DNN optimization of the forward function F using a random search. The colours indicate separate clusters of points. 

Figure 6. DNN optimization of the forward function F using a Bayesian approach. The colours indicate separate clusters of points. 
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.2 DNN hyperparameter tuning 

his work aims to find DNN approximations of F and I such
hat their corresponding architectures use a minimum number of
nknowns (weights and biases) and provide comparable (or better)
ccuracy than the excessi vel y large reference DNN used in Shahriari
t al. ( 2022 ), that corresponds to the hyperparameters h 

o 
f and h 

o 
i 

or the DNN approximations of F and I, respecti vel y. For a set of
yperparameters h f ∈ S F —see eq. ( 2 )—we train its corresponding
NN defined by eq. ( 4 ) to obtain F h f ,α∗ . Then, we compute the
ollowing scoring function: 

R f ( h f ) = 

H f ( h f ) − H f ( h 

o 
f ) 

H f ( h 

o 
f ) ︸ ︷︷ ︸ 

relative error 

− N p ( h 

o 
f ) − N p ( h f ) 

N p ( h 

o 
f ) ︸ ︷︷ ︸ 

relative decrease in 
the number of unknowns 

, (8) 

here 

 f ( h f ) = 

n v ∑ 

i= 1 
L ( F h f ,α∗ ( t i , p i ) , m i ) (9) 

art/ggad249_f5.eps
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Figure 7. DNN approximation of F . Comparison between the original network and the quasi-optimal one for the real part of selected measurements. 

Table 4. Comparison of the training time between the original DNN and the quasi-optimal one. 

Problem Original DNN training time [hr] Quasi-optimal DNN training time [hr] 

Forward 18.69 4.65 
Inverse 34.41 4.16 
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Figure 8. DNN architecture of F h ∗f . The number in each layer corresponds to the number of trainable parameters. 
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for { ( p i , m i , t i ) } n v 1 being a validation data set distinct from the
raining data set with n v being its size, and N p ( h ) is the number
f unknowns of the DNN corresponding to the hyperparameter h .
hen, the hyperparameter tuning consists of solving the following
inimization problem: 

 

∗
f = arg 

h f ∈ S F 
min R f ( h f ) . (10) 

According to the two-step training strategy, after obtaining
 h ∗f ,α∗ , we need to minimize the following problem for the hy-
erparameter tuning of the inverse operator: 

 

∗
i = arg 

h i ∈ S I 
min R i ( h i ) , (11) 

where 

R i ( h i ) = 

H i ( h i ) − H i ( h 

o 
i ) 

H i ( h 

o 
i ) 

− N p ( h 

o 
i ) − N p ( h i ) 

N p ( h 

o 
i ) 

, (12) 

nd 

 i ( h i ) = 

n v ∑ 

i= 1 
L ( F h ∗f ,α∗ ◦ I h i ,β∗ ( t i , m i ) , m i ) . (13) 

The above optimization problems have no explicit gradient for-
ulations. The simplest method to solve these problems is a grid

earch, which e v aluates the scoring function over all the possible
ombinations of the hyperparameters. Ho wever , as the e v aluation
f the scoring function requires a complete training of a DNN and it
an be costly, it is a common practice to rely on random search and a
ayesian approach to speed-up the optimization. These approaches
re detailed in the next section. 

.3 AutoML algorithms 

n this section, for simplicity in the notation, we denote S =
 h 0 , h 1 , · · · , h n } as the search space of hyperparameters and H
s the scoring function. 
.3.1 Random search 

n this iterative approach, at the i -th iteration, we randomly se-
ect h i ∈ S as our set of hyperparameters. By training the corre-
ponding DNN to the selected set of hyperparameters, we com-
ute H( h i ) . Generally speaking, in the case of a massive search
pace, it is possible to interrupt the search algorithm as soon as
e achieve our goal, for instance, a specific accuracy. In our case,
e repeat this process until the search space is exhausted (Elsken
t al. 2019 ; Li & Talwalkar 2020 ). We consider a search space
xhausted when in five consecutive iterations, the randomly se-
ected set of hyperparameters are amongst the ones we have already
ried. 

Using a random search approach to tune the hyperparameters
ould become e xcessiv ely costly as we need to compute the score,
hat is to train a new DNN at each iteration. Moreover, we do not
se the information we obtain during the previous iterations to se-
ect the next hyperparameter. As a result of such a blind selection
rocess, this approach imposes a high computational cost, espe-
ially when considering a massive search space. Fur ther more, as
he selection is entirely random, and we may not try all the search
pace, there is no guarantee that we obtain the quasi-optimal set
f hyperparameters. Ho wever , if stopping criteria while tuning is
mposed, for example the tuning stops when we achieve a specific
alue of the scoring function, it is possible that a random search
btains the hyperparameters sooner than a grid search, hence, the
ossibility of reduced computational cost. In the worst-case sce-
ario, random and grid searches impose the same computational
ost. 

.3.2 Bayesian approach 

andom search constitutes an improvement over grid search in
er ms of perfor mance. Ho wever , it requires a large number of sam-
les to properly characterize the search space. Given the high cost
f calculating the scoring function for each sample, we consider
 surrogate model—also known as performance predictor (White
t al. 2021 )—to: (1) estimate the scoring function without having
o train the associated DNN and (2) to select the most promising

art/ggad249_f8.eps
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Figure 9. DNN optimization of the inverse function I using a random search. The colours indicate separate clusters of points. 

Figure 10. DNN optimization of the inverse function I using a Bayesian approach. The colours indicate separate clusters of points. 
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set of hyperparameters to test. For this, we use a probabilistic per- 
formance predictor based on Gaussian Processes (GPs; Snoek et al. 
2012 ; Kandasamy et al. 2018 ; Elsken et al. 2019 ). 

4.3.3 Gaussian processes as performance predictors 

GPs are a generalization of multi v ariate Gaussian distributions to 
infinite dimensions, and therefore they can model a probability dis- 
tribution over continuous functions. Thus, they allow us to estimate 
the value of a function and its uncertainty at any point in the do- 
main. In our case, the function to model is the scoring function 

H : S → R . 
A GP assumes that any finite set of n points has an associated 
n -variate Gaussian distribution, which is completely determined 
by its mean vector μ and covariance matrix �. Since a GP is a 
model on a potentially infinite set of points, it is characterized by 
a mean function m ( h ) = E ( H( h )) and a covariance function (a.k.a 
kernel) k( h, h 

′ ) = E [( H( h ) − m ( h ))( H( h 

′ ) − m ( h 

′ ))] , where E ( X )
is the expected value of X . These functions can be used to derive μ
and � for any set of points { h 0 , . . . , h n } . All the rele v ant properties
of the GP including continuity , differentiability , and periodicity are 
determined by the covariance function. 

Fig. 4 illustrates the concept for a hypothetical GP with a single 
input variable h ∈ [0, 6]. We use a zero mean function m ( h ) = 0
and a Mat érn covariance function (Rasmussen 2004 ) with ν = 5/2, 
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Figure 11. DNN approximation of I. Comparison between the original network and the quasi-optimal one for a selected set of material properties. 
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hich is widely used in hyperparameter optimization (O’Malley
t al. 2019 ). This kernel is defined as follows: 

( h, h 

′ ) = 

( 

1 + 

√ 

5 ‖ h − h 

′ ‖ l 2 + 

5 ‖ h − h 

′ ‖ 2 l 2 

3 

) 

∗ exp ( −
√ 

5 ‖ h − h 

′ ‖ l 2 ) , (14) 

Fig. 4 (a) shows the prior distribution of the H( h ) function and
our random sampled functions following that prior. All samples
re relati vel y smooth (this is determined by the selected kernel), but
here is great variability among them. This gives us an idea of the
exibility of the GP in modelling H( h ) , but it also shows that, as
xpected, these priors will not provide useful predictions. 

Ho wever , as soon as we start measuring some actual values
f the scoring function, the model quickly converges to a well-
onstrained curve. For example, in Fig. 4 (b) we incorporate the
onstraints (measurements) H(1) = −2 and H(3) = −1 . Then, the
osterior allows us to estimate the value of the scoring function
ore accuratel y, especiall y for the inputs that are closer to the

bservations. 
The calculation of the posterior is based on the assumption that

he observations and the desired estimations follow a joint Gaussian

art/ggad249_f11.eps


2496 M. Shahriari et al . 

Table 5. R 

2 -score comparison of the forward model between the original DNN ( h o f ) and quasi-optimal one ( h ∗f ) using 
the measurement system shown in Table 1 . 

( TX − RX ) Measurement F h o f 
( R 

2 score) F h ∗f ( R 

2 score) 

(Real/Imaginary) (Real/Imaginary) 

zz 0 .99/0.99 0 .99/0.99 
( Tx 1, 1 , Tx 1, 2 , Rx 1 , Rx 2 ) yy 0 .99/0.99 0 .99/0.99 

Geosignal 0 .99/- 0 .99/- 
Symmetrized directional 0 .99/0.99 0 .99/0.99 

( Tx 2, 1 , Tx 2, 2 , Rx 1 , Rx 2 ) Symmetrized directional 0 .99/0.99 0 .99/0.99 
( Tx , Rx 1 ) zz 0 .99/0.99 0 .99/0.99 
( Tx , Rx 2 ) Symmetrized directional 0 .99/0.99 0 .99/0.99 
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distribution. Let us assume w e ha v e observ ed z 1 = H( H 1 ) obser- 
vations, with | H 1 | = n 1 , and we want to estimate the posterior z 2 
for a set H 2 of inputs, with | H 2 | = n 2 . Since z 1 and z 2 are jointly
Gaussian, we can write: [

z 1 
z 2 

]
∼ N 

([
μ1 

μ2 

]
, 

[
� 11 � 12 

� 21 � 22 

])
(15) 

with: 

μ1 = m ( H 1 ) ( n 1 × 1) 

μ2 = m ( H 2 ) ( n 2 × 1) 

� 11 = k( H 1 , H 1 ) ( n 1 × n 1 ) 

� 22 = k( H 2 , H 2 ) ( n 2 × n 2 ) 

� 12 = k( H 1 , H 2 ) = � 

� 
21 ( n 1 × n 2 ) 

Then, we can calculate the conditional distribution: 

p( z 2 | z 1 ) = N ( μ2 | 1 , � 2 | 1 ) 

μ2 | 1 = μ2 + � 21 � 

−1 
11 ( z 1 − μ1 ) 

� 2 | 1 = � 22 − � 21 � 

−1 
11 � 12 (16) 

In this way, for each h ∗ ∈ H 2 we can calculate its posterior 
expected value μh ∗ and standard deviation σh ∗ according to eq. ( 16 ), 
as illustrated in Fig. 4 (b) for H 2 = [0, 6]. It is important to highlight 
that according to eq. ( 16 ), p( z 1 | z 1 ) ∼ N ( μ1 , 0) , and therefore it is
guaranteed that all the functions taken from the above distribution 
pass through the observation points. 

4.3.4 Optimizing the hyperparameter search 

In addition to a probabilistic estimation of the scoring function, 
the use of GPs as a surrogate model allows us to determine the 
next set of hyperparameters to test during the optimization. First, 
we e v aluate the scoring function for a small number of random 

hyperparameter sets, and we construct the initial estimate of the 
surrogate model. Then, at each iteration, the Bayesian approach 
consists of the following steps: (1) to select the hyperparameter set 
to estimate the scoring function; (2) to e v aluate the scoring function 
for the selected hyperparameter set; and (3) to update the surrogate 
model using the observation obtained in the previous step (Tipping 
2004 ; Fox & Roberts 2012 ; Theodoridis 2015 ). For step (1), since 
an explicit formulation of the model is inaccessible, we need to rely 
on the so-called acquisition functions , which estimate an expected 
loss from e v aluating H at a point h ∗. Here, we consider the Upper 
Confidence Bound (UCB) (Srini v as et al. 2012 ) as our acquisition 
function, defined as follows: 

UC B H 

( h 

∗) = μh ∗ − ασh ∗ , (17) 
where α is a calibration variable to balance exploration and exploita- 
tion. The concept of exploration is here related to the uncertainty 
derived from the standard deviation σh ∗ . Therefore, the higher the 
weight assigned to this factor (larger α), the more exploratory the 
behaviour of the UCB , selecting points further away from those al- 
ready kno wn. A lo wer α, on the other side, will give more weight to 
the points observed so far, which corresponds to exploitation. We 
empirically select α to be 2.6 (Snoek et al. 2012 ; O’Malley et al. 
2019 ; Turner et al. 2021 ). Fig. 4 (c) shows the minimum UCB value 
for the model fitted in Fig. 4 (b), and Fig. 4 (d) shows the updated 
model after incorporating the new scoring function result. Since 
GPs assume a continuous domain, we need to restrict the UCB 

and posterior e v aluation to those sets of hyperparameters that are 
actually acceptable for our DNN architecture. With this approach, 
we aim to optimize the hyperparameters by learning from previous 
experiments, and hence we expect to require fewer iterations and 
lower computational time compared to random search. 

5  N U M E R I C A L  R E S U LT S  

5.1 Hyperparameter tuning 

To increase the speed of the hyperparameter tuning algorithms, we 
execute them using only 30 000 samples. Then, we train the quasi- 
optimal DNNs selected by the random search and the Bayesian 
algorithm using 300 000 samples to find the final DNN approxima- 
tions of F and I. 

We consider the DNN architecture with hyperparameters h 

o 
f = 

{ n = 5 , k 0 = 3 , k 1 = 3 , l = 1 } that leads to 525 373 parameters as
our reference approximation of F . Analo gousl y, h 

o 
i = { n = 6 , k 0 = 

3 , k 1 = 3 } is the set of hyperparameters corresponding to the DNN 

architecture of the reference DNN approximating I. The afore- 
mentioned DNN architecture consists of 890 925 parameters (see 
(Shahriari et al. 2022 ) for more details). To increase the computa- 
tional efficiency, we also enforce two stopping criteria: 

(i) An early stopping condition with the validation loss variation 
threshold and the patience being 10 −3 and 30, respecti vel y. This 
means that if the change in the loss is below the threshold during 
30 consecutive epochs, the training stops. 

(ii) If H( h ) ≤ 1 . 1 × H( h 

o ) , where h is the hyperparameter set 
under trial, we also stop the training. 

Table 3 shows the computational time of the hyperparameter 
tuning using both random search and the Bayesian approach. Results 
show that the Bayesian approach is less e xpensiv e than the random 

search. Note these time differences will increase as we augment the 
number of unknowns (i.e. measurements in the forward problem, 
and inverted parameters in the inverse problem). 
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Table 6. R 

2 -score comparison of the inverse model between the original 
DNN ( h o i ) and quasi-optimal one ( h ∗i ) using the measurement system shown 
in Table 1 . 

Material properties I h o i 
( R 

2 score) I h ∗i ( R 

2 score) 

ρu 0.90 0.87 
ρc 0.97 0.97 
ρl 0.90 0.85 
d u 0.62 0.62 
d l 0.61 0.63 
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Table 7. Second set of e v aluated measurements for each transmitter–
receiver set. 

Transmitter–receiver Measured component 

( Tx 1, 1 , Tx 1, 2 , Rx 1 , Rx 2 ) Geosignal, symmetrized directional 
( Tx 2, 1 , Tx 2, 2 , Rx 1 , Rx 2 ) zz, yy, symmetrized directional 
( Tx , Rx 1 ) Symmetrized directional 
( Tx , Rx 2 ) zz 
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Fig. 5 shows the results of hyperparameter tuning using ran-
om search to approximate F . It represents the score value for
ach selection of hyperparameters from the search space S F and
ts corresponding number of trainable parameters. We also dis-
lay the effect of individual factors involved in the scoring func-
ion, that is the relative increase in the number of unknowns and
he relative error. Analogously, Fig. 6 shows the results of tun-
ng using the Bayesian approach to approximate F . In the case of
andom search, the algorithm repeatedly considers DNN architec-
ures with less than 100 000 parameters even when their score is
ot significantly improving. Ho wever , in the Bayesian approach,
he algorithm rapidly learns that this cluster of DNN architectures
eads to unacceptable scores. Considering the results of both algo-
ithms, we witness that the quasi-optimal set of hyperparameters is
 

∗
f = { n = 3 , k 0 = 3 , k 1 = 3 , l = 7 } , which corresponds to 131 013
arameters. Using this DNN, we achieve a comparable score to
he reference one with approximately 25 per cent of the trainable
arameters used by the reference DNN. Fig. 7 shows cross-plots
omparing the accuracy of the DNN approximation of F using
he quasi-optimal DNN and the reference one for a selected set of

easurements. The accuracy of the two DNNs is similar, that is
he R 

2 scores of the prediction versus ground truth are comparable.
oreover, according to the training time shown in Table 4 , train-

ng the reference DNN takes almost four times more computational
ime compared to the quasi-optimal one. Fig. 8 shows the DNN
rchitecture of F h ∗f . 

Figs 9 and 10 show the process of hyperparameter tuning
o obtain a quasi-optimal DNN architecture to approximate I.
nalogous to the tuning for the forward function, the Bayesian
igure 12. DNN architecture of I h ∗i . The number in each layer corresponds to the 
pproach selects a less redundant set of hyperparameters com-
ared to the random search. By comparing the scores of all the
NN architectures, the quasi-optimal set of hyperparameters is
 

∗
i = { n = 3 , k 0 = 3 , k 1 = 3 } with 121 965 parameters. The quasi-
ptimal DNN architecture contains more than seven times fewer
arameters than the reference one. Fig. 11 compares the accuracy of
he quasi-optimal DNN architecture and the reference one for some
nversion variab les. Tab le 4 shows that we spend almost eight times
ore computational time to train the reference DNN compared to

he quasi-optimal one. Tables 5 and 6 summarize the comparison
etween the quasi-optimal and original DNNs for the forward and
he inverse operators, respecti vel y. We obtain a similar accuracy
etween the original and quasi-optimal DNNs. Fig. 12 shows the
NN architecture of I h ∗i . 
To investigate the ef fecti veness of our obtained DNNs when using

 new set of measurements, we consider the measurements presented
n Table 7 . Table 8 shows the results of the trained DNN for F h ∗f 
nd F h ∗f ◦ I h ∗i . Our obtained DNNs deliver high-quality results for
his set of measurements. Moreover, Table 9 shows the results for
 h ∗i . The DNN shows a slightly better accuracy when applied to the
et of measurements of Table 1 because we chose them based on
n optimization algorithm to maximize the R 

2 -score of the DNN
utput—see (Shahriari et al. 2022 ) for more details. In other words,
he slight reduction in the performance is related to the selection
f the measurements, not the DNN architecture, since F h ∗f ◦ I h ∗i is
howing high accuracy. 

.2 Synthetic example 

ig. 13 compares the inversion results using I h ∗i and I h o i 
to the ac-

ual formation for a synthetic model. Both inversion models can
dequately predict the material properties up to a sufficient depth of
number of trainable parameters. 

st on 12 January 2024
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Table 8. R 

2 -score comparison between F h ∗f and F h ∗f ◦ I h ∗i using the measurement system shown in Table 7 . 

( TX − RX ) Measurement F h ∗f ( R 

2 score) F h ∗f ◦ I h ∗i ( R 

2 score) 

(Real/Imaginary) (Real/Imaginary) 

( Tx 1, 1 , Tx 1, 2 , Rx 1 , Rx 2 ) Geosignal 0.98/- 0.96/- 
Symmetrized directional 0.99/0.99 0.98/0.98 

zz 0.99/0.99 0.99/0.99 
( Tx 2, 1 , Tx 2, 2 , Rx 1 , Rx 2 ) yy 0.99/0.99 0.98/0.99 

Symmetrized directional 0.98/0.98 0.98/0.96 
( Tx , Rx 1 ) zz 0.98/0.98 0.96/0.98 
( Tx , Rx 2 ) Symmetrized directional 0.99/0.98 0.99/0.98 

Table 9. R 

2 -score of I h o i 
using the measurement system shown in Table 7 . 

Material properties I h o i 
( R 

2 score) 

ρu 0.84 
ρc 0.94 
ρl 0.83 
d u 0.54 
d l 0.55 

Figure 13. Model problem 1. Comparison amongst the synthetic (original) 
formation, and the formations predicted by the original (reference) DNN, 
and the quasi-optimal DNN. 

Figure 14. Model problem 2. Comparison amongst the synthetic (original) 
formation, and the formations predicted by the original (reference) DNN, 
and the quasi-optimal DNN. 
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investigation. The quasi-optimal DNN predicts the material prop- 
erties around the trajectory. Moreover, it detects the bed boundary 
corresponding to oil-to-water contact from a few meters away from 

the trajectory. Fig. 14 shows similar results for a second synthetic 
formation. 

6  C O N C LU S I O N S  

In this work, we used AutoML—specifically, DNN architecture 
search algorithms– to obtain quasi-optimal DNN architectures for 
the inversion of borehole resistivity measurements. A quasi-optimal 
DNN provides accurate results with a minimum number of un- 
knowns (trainable parameters). We introduced a scoring function 
that accounts both for the accuracy of the trained DNN and its size 
compared to a reference large DNN. We introduced convolutional 
blocks as the main components of the DNN architecture. 

We used two standard search algorithms to find our quasi-optimal 
hyperparameters: random search and a Bayesian approach based 
on Gaussian Processes. Both automatic search algorithms deliver 
quasi-optimal DNN architectures with reduced hand-design. Ran- 
dom search performs an arbitrary selection of the hyperparame- 
ters. In contrast, the Bayesian approach purposefully selects the 
hyperparameters using the information obtained from the previous 
iterations. Thus, it performs a less redundant selection of hyperpa- 
rameters, and it typically requires fewer iterations to achieve the 
quasi-optimal DNN architecture, thereby, requiring less computa- 
tional time than random search. 

In this work, both algorithms converged to the same architec- 
ture because the search space is relati vel y small, and we imposed 
no stopping criteria while searching for the quasi-optimal DNN 

(tuning). Although the quasi-optimal DNN architecture contains 
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ignificantl y fe wer trainable parameters, it still deli vers a perfor-
ance comparable to the original DNN. Moreover, it substantially

educes the computational time required to train the DNN. 
In future work, we shall consider a more general DNN architec-

ure component, including for example, fully connected layers in
he exploration and different number of filters in the CNN layers.
ur ther more, we shall investigate the effect of using noisy data for

raining and e v aluating the DNN. Moreover, we shall consider more
omplicated scenarios, for example a more general 2-D and 3-D
ubsurface parametrization, possibly combined with transfer learn-
ng. Although we considered a 1D-layered formation, our strategy
an be extended to more complex geological targets. In those cases,
 e ma y require a larger data set and DNN to approximate the for-
ard and inverse operators adequately. In addition, we shall study

he possibility of an automated approach based on active learning
o ef ficientl y sample the space of subsurface properties using the
inimum number of samples, that is the minimum data set’s size. 

C K N OW L E D G M E N T S  

ostafa Shahriari and Somayeh Kargaran have been supported by
he Federal Ministry for Climate Action, Environment, Energy, Mo-
ility, Innovation and Technology (BMK), the Federal Ministry for
igital and Economic Affairs (BMDW), the State of Upper Austria

n the frame of the COMET - Competence Centers for Excellent
echnolo gies Pro gramme managed b y Austrian Research Promo-
ion Agency FFG and the ‘Austrian COMET-Program’ (Project In-
ribology, no. 872176). 
David Pardo has received funding from: the Spanish Ministry

f Science and Innovation projects with references TED2021-
32783B-I00, PID2019-108111RB-I00 (FEDER/AEI) and
DC2021-121093-I00 (MCIN/AEI/10.13039/501100011033/Next 
eneration EU), ‘BCAM Severo Ochoa’ CEX2021-001142-
/MICIN/AEI/10.13039/501100011033; the Spanish Ministry
f Economic and Digital Transformation with Misiones Project
A4TES (MIA.2021.M04.008/NextGenerationEU PRTR); and the
asque Government through the BERC 2022-2025 program, the
lkartek project SIGZE (KK-2021/00095) and the Consolidated
esearch Group MATHMODE (IT1456-22). 
Tomas Teijeiro is supported by the grant RYC2021-032853-I

unded by MCIN/AEI/10.13039/501100011033 and by the Euro-
ean Union NextGenerationEU/PRTR. 

ATA  AVA I L A B I L I T Y  

ata and codes used in this work can be shared with any interested
arty on request. 

E F E R E N C E S  

l yae v , S. & Elsheikh, A.H., 2022. Direct multi-modal inversion of geophys-
ical logs using deep learning, Earth Space Sci., 9 (9), e2021EA002186,
doi:10.1029/2021EA002186. 

l yae v , S. , Shahriari, M., Pardo, D., Omella, A.J., Larsen, D.S., Jahani, N.
& Suter, E., 2021. Modeling extra-deep EM logs using a deep neural
network, Geophysics, 86 (3), E269–E281. 

a , J. & Caruana, R., 2014. Do deep nets really need to be deep?, in Advances
in Neural Information Processing Systems, Vol. 27, Curran Associates,
Inc. 

eer , R. et al. , 2010. Geosteering and/or reservoir characterization the
prowess of new-generation LWD tools, in Proceedings of the SPWLA
Annual Logging Symposium, Perth, Australia, 19–23 June 2010, Paper
Number: SPWLA-2010-93320. 

ittar , M. & Aki, A., 2015. Advancement and economic benefit of geosteer-
ing and well-placement technology, Leading Edg e , 34 (5), 524–528. 

heng , Y. , Wang, D., Zhou, P. & Zhang, T., 2018. Model compression
and acceleration for deep neural networks: the principles, progress, and
challenges, IEEE Signal Proc. Mag., 35, 126–136. 

avydyche v a , S. & Wang, T., 2011. A fast modelling method to
solve Maxwell’s equations in 1D layered biaxial anisotropic medium,
Geophysics, 76 (5), F293–F302. 

avydyche v a , S. , Homan, D. & Minerbo, G., 2004. Triaxial induction tool
with electrode sleeve: FD modeling in 3D geometries, J. appl. Geophys.,
67, 98–108. 

esbrandes , R. & Clayton, R., 1994. Chapter 9 measurement while drilling,
Dev. Petrol. Sci., 38, 251–279. 

lsken , T. , Metzen, J.H. & Hutter, F., 2019. Neural architecture search: a
surv e y, J. Mach. Learn. Res., 20, 1–21. 

ox , C. & Roberts, S., 2012. A tutorial on variational Bayesian inference,
Artif. Intell. Rev., 38 (2), 85–95. 

oodfellow , I. , Bengio, Y., Courville, A. & Bengio, Y., 2016. Deep Learning,
Vol. 1, MIT Press Cambridge. 

e , K. , Zhang, X., Ren, S. & Sun, J., 2016. Deep residual learning for
image recognition, in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 27–30 June 2016, Las Vegas, NV, USA, pp.
770–778, IEEE. 

e , X. , Zhao, K. & Chu, X., 2021. AutoML: a surv e y of the state-of-the-art,
Knowledge-Based Syst., 212, doi:10.1016/j.knosys.2020.106622. 

igham , C.F. & Higham, D .J ., 2019. Deep learning: an introduction for
applied mathematicians, SIAM Rev., 61 (4), doi:10.1137/18M1165748. 

u , Y. , Guo, R., Jin, Y., Wu, X., Li, M., Abubakar, A. & Chen, J., 2020.
A super vised descent lear ning technique for solving directional electro-
magnetic logging-while-drilling inverse problems, IEEE Trans. Geosci.
Remote Sens., 58 (11), 8013–8025. 

utter , F. , Kotthoff, L. & Vanschoren, J., 2019. Automated Machine Learn-
ing: Methods, Systems, Challenges, Springer Nature. 

jasana , O. , Torres-Verd ́ın, C. & Preeg, W.E., 2013. Inversion-based petro-
physical interpretation of logging-while-drilling nuclear and resistivity
measurements, Geophysics, 78 (6), D473–D489. 

ahani , N. , Garrido, J.A., Al yae v, S., Fossum, K., Suter, E. & Torres-Verd ́ın,
C., 2022. Ensemble-based well-log interpretation and uncertainty quan-
tification for well geosteering, Geophysics, 87 (3), IM57–IM66. 

in , H. , Song, Q. & Hu, X., 2019a. Auto-Keras: an efficient neural archi-
tecture search system, in Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, pp.
1946–1956, ACM. 

in , Y. , Wu, X., Chen, J. & Huang, Y., 2019b. Using a physics-driven deep
neural network to solv e inv erse problems for LWD azimuthal resistivity
measurements, in Proceedings of the SPWLA Annual Logging Sympo-
sium, Day 5 Wed, 19 June 2019. 

andasam y , K. , Neiswanger , W., Schneider , J., P óczos, B. & Xing, E.P.,
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