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SUMMARY

Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole re-
sistivity measurements to approximate forward and inverse operators. Using extremely large
DNN s to approximate the operators is possible, but it demands considerable training time.
Moreover, evaluating the network after training also requires a significant amount of memory
and processing power. In addition, we may overfit the model. In this work, we propose a
scoring function that accounts for the accuracy and size of the DNNs compared to a refer-
ence DNNs that provides good approximations for the operators. Using this scoring function,
we use DNN architecture search algorithms to obtain a quasi-optimal DNN smaller than the
reference network; hence, it requires less computational effort during training and evaluation.
The quasi-optimal DNN delivers comparable accuracy to the original large DNN.

Key words: Inverse theory; Machine learning; Neural networks, fuzzy logic; Downhole
method; Wave propagation.

1 INTRODUCTION

Oil and gas companies use geosteering to increase the productivity
of their wells (Beer et al. 2010; Bittar & Aki 2015). In this applica-
tion, a logging-while-drilling (LWD) instrument helps us to navigate
the well trajectory inside the oil reservoir to maximize its produc-
tion. A LWD instrument incorporates transmitters and receivers, in
our case, electromagnetic (EM) ones (Desbrandes & Clayton 1994;
Spies 1996).

In geosteering, we encounter forward (Shahriari et al. 2018,
2020a; Alyaev ef al. 2021) and inverse problems (Shahriari et al.
2020b). Some traditional methods to solve inverse problems in-
clude gradient-based and statistics-based approaches (Malinverno
& Torres-Verdin 2000; Tarantola 2005; Watzenig 2007; [jasana et al.
2013; Pardo & Torres-Verdin 2014; Jahani et al. 2022). Artificial
intelligence (Al) algorithms, particularly deep learning (DL), have
recently become popular to solve inverse problems (Jin ef al. 2019b;
Puzyrev 2019; Shahriari ef al. 2020c, b; Moghadas 2020; Hu ef al.
2020; Rammay et al. 2022). In this work, we use a deep neural
network (DNN) to approximate the solution of an inverse prob-
lem.

The main difficulty when solving an inverse problem arises due to
the non-uniqueness of its solution, that is when there exist multiple
outputs for each input (Tarantola 2005). It turns out that the DNN
approximation may become an average of all the existing solutions,
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which can be far from any of them. To partially overcome this prob-
lem and obtain one of the possible existing solutions, in (Shahriari
etal. 2020c), we proposed a specific loss function based on the misfit
of the measurements that incorporates both the inverse and forward
solutions. To recover a set of solutions, one would need to use more
sophisticated methods like Bayesian DNNs (Snoek ef al. 2012), or
mixture density networks (Alyaev & Elsheikh 2022), which are out
of the scope of this work.

Designing DNN architectures by hand is difficult (Goodfellow
et al. 2016; Higham & Higham 2019). An excessively large DNN
may achieve the required accuracy, but we may incur in excessive
computational costs and possibly in overfitting. On the other side,
using a small DNN may limit the accuracy. Here, we use automated
machine learning (AutoML) algorithms (Hutter et al. 2019; He et al.
2021). More precisely, we make use of DNN architecture search
algorithms (O’Malley et al. 2019; Jin et al. 2019a; Elsken et al.
2019) to build quasi-optimal DNN architectures, where the optimal
DNN architecture belongs to a specific search space defined by the
user a priori. We perform this optimization process by balancing the
size and accuracy of the networks. These search techniques allow
us to find well-suited DNNs with limited knowledge about the DNN
architectures.

In this work, we have considered as a reference model the DNN
described in Shahriari ef al. (2022), and we have evaluated the ex-
plored architectures by assessing the error variation and the number
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of trainable parameters. This is tightly related to model compres-
sion (Cheng et al. 2018), a research field that explores methods for
reducing the complexity of a reference model without affecting its
accuracy. In particular, our approach can be linked to knowledge
distillation (Ba & Caruana 2014), a family of techniques consist-
ing of training a more compact model that integrates the output of
the reference model in the loss function. In our case, we rely on
AutoML for exploring the space of compact models. The result-
ing DNN architecture is a parametric representation of the desired
operator, that is forward and inverse. Although DNN architecture
search algorithms are time-intensive, having a smaller model makes
it computationally cheaper to train a DNN on new data sets (new
scenarios). Moreover, smaller DNNs require less memory to save
and fewer computational resources to evaluate. Therefore, saving
and evaluating on portable devices, for example LWD instruments,
is more versatile.

In this work, we propose a search space of DNN architectures
based on convolutional blocks. Moreover, we introduce a scoring
function that accounts for both the loss and size of the DNN. By
minimizing this scoring function, we find the optimal DNN within
the selected search space. We use two standard architecture search
algorithms: random and Bayesian searches (Elsken et al. 2019). We
compare the results of the obtained DNN versus our original DNN
designed by hand. Results show that the AutoML DNN algorithms
deliver smaller DNN networks that preserve the accuracy of the
larger DNN created by hand. Throughout this work, we consider
noise-free synthetic measurements. Nonetheless, we expect smaller
DNNSs to be more resilient towards noise than large DNNs that are
more prone to overfitting.

The remaining of this work is organized as follows: Section 2 de-
fines the forward and inverse problems in the inversion of borehole
resistivity measurements. Section 3 describes a two-step training
strategy that we use in this work to obtain the DNN approximation
of the inverse operator. Section 4 discusses the considered DNN
architecture components, the definition of the scoring function, and
the DNN architecture search algorithms that we use in this work.
Section 5 verifies the proposed techniques by showing the training
results and the model’s output for some synthetic models. Section 6
is dedicated to the conclusion.

2 PROBLEM DEFINITION

Let p be the subsurface properties. In this application, since the
inversion should be performed in real-time, to reduce the com-
putational complexity of the problem it is common to consider a
1D-layered formation around the logging position (Davydycheva &
Wang 2011; Pardo & Torres-Verdin 2014; Shahriari et al. 2018).
Hence, p is a vector of variables parametrizing the 1D formation as
follows:

P = (Pes Pus P15 du, di), (1)

where p. is the resistivity of the host (central) layer of the logging
instrument, p, and p; are the resistivities of the upper and lower
layers, respectively, and d, and d; are the vertical distances to the
upper and lower bed boundaries, respectively. Fig. 1 shows the Earth
subsurface parametrization and corresponding variation intervals
selected based on their occurrence on the geological targets (Pardo
& Torres-Verdin 2014; Shahriari et al. 2020b; Shahriari & Pardo
2020).

The selection of the measurements is of paramount importance
to: (1) avoid using redundant or highly correlated measurements,

pu €[1,103] Q- m

dy € [1072,10] m
[ ] pe €[1,10%] Q- m
d; € [1072,10] m

p €[1,103] Q- m

Figure 1. 1D subsurface formation, its parametrization and the range of
variation of the parameters. The logging position indicated by the red circle.
pu> Pe and p; are the resistivities of the upper, central and lower layers,
respectively. d,, and d; are vertical distances from the current logging position
to the upper and lower bed boundaries, respectively.

which are unnecessary and (2) be able to obtain an efficient DNN
approximation of the forward and the inverse operators. Shahri-
ari et al. (2022) describes an automatic algorithm to select seven
complex-valued measurements from a pool of 45 measurements ob-
tained with two logging instruments shown in Fig. 2: a conventional
LWD and an azimuthal one. Each logging instrument incorporates
various transmitter-receiver spacings. Let m be the measurements
obtained at the receivers using the aforementioned logging instru-
ments and the algorithm described in Shahriari et al. (2022). Table 1
describes these measurements for each transmitter—receiver set. For
each measurement shown in Table 1, we obtain a real and an imag-
inary part, except for the geosignal as the imaginary part is discon-
tinuous (see Shahriari ef al. 2022, for more details). Therefore, m
contains 13 real numbers per logging position. Table 2 defines the
type of measurements that we consider in this work. Moreover, we
consider high-angle (almost horizontal) trajectories, hence, for the
case of trajectory dip angle, we have ¢t € [83°, 97°]. Then, we have
the following separate problems:

(i) Forward problem: Given p and 7, we obtain m at the receivers,
that is F(p, t) = m, where F is the solution of Maxwell’s equa-
tions with a zero Dirichlet boundary condition far away from the
transmitters (Davydycheva et al. 2004; Davydycheva & Wang 2011;
Shahriari et al. 2018; Shahriari & Pardo 2020; Shahriari et al. 2020a;
Alyaev et al. 2021). Hence, given the aforementioned definitions of
material properties, trajectory dip angle and measurements, the for-
ward function has an input dimension of 6 and an output dimension
of 13.

(i1) Inverse problem: Given the measurements acquired at the
receivers and the trajectory dip angle, the inverse operator Z delivers
the subsurface properties, that is Z(m, t) = p (Ijasana ez al. 2013;
Pardo & Torres-Verdin 2014; Shahriari ef al. 2020b, c; Jin et al.
2019b). Therefore, the input and output sizes of the inverse operator
are 14 (considering the measurement and trajectory dip angle) and
5, respectively.

In this work, we use DNNs to approximate the forward function
F and inverse operator Z. Training a DNN requires a large data
set. Hence, given the above subsurface parametrization, trajectory,
and measurements, we produce a data set of 300000 randomly
selected samples using a fast semi-analytic solver (Loseth & Ursin
2007). We then express the values of the subsurface properties in
the logarithmic scale (Shahriari et al. 2020c), and rescale all the
variables (i.e. subsurface properties in the logarithmic scale and the
measurements) to the interval [0.5,1.5] (see Shahriari er al. 2022,
for details).
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Figure 2. LWD instruments. Tx, and Tx;j, i, j=1,2, denote the transmitters. Rxy, Rx; are the receivers.

Table 1. Evaluated measurements for each transmitter—receiver set.

Transmitter—receiver

Measured component

(Tx1, 1, Tx1, 2, Rx1, Rx2)
(Tx2, 1, Tz, 2, Rxy, Rxz)
(Tx, Rx1)

(Tx, Rx2) 7z

7z, yy, Geosignal, symmetrized directional
Symmetrized directional
Symmetrized directional

Table 2. Definition of each type of measurement. /j; is the complex-valued
magnetic field, where i and ;j indicate the orientations of transmitters and
receivers, respectively.

Name Measurement definition
77 H..
Geosignal L e

gzz i ZZ]C H H
Symmetrized directional = R — Xz

sz - Hzx sz + sz

3 TWO-STEP TRAINING STRATEGY

Due to the non-uniqueness of the inverse operator’s output, using
conventional loss functions (based on the misfit of the inversion
variables p) may produce an inaccurate solution (Tarantola 2005;
Shahriari et al. 2020c). To guarantee that the trained DNN delivers
one of the true solutions of the inverse operator, we use a two-step
training strategy, as described in Shahriari ez al. (2020c). First, we
approximate the forward function F as:

For 1= argmainZL(]:a(l‘i, pi), m;), @

i=1

where for given vectors x and y, we define L(x,y) = ||x —yll;,
{(p:, my, #;)}}" is the training data set consisting of n, samples, and
« is the set of weights and biases corresponding to the DNN. Then,
using the trained DNN approximation of F, we use the following
loss function based on the misfit of the measurements to obtain the
DNN approximation of the inverse operator:

Tg+ := arg min L(Fy+ 0 Zg(t;, m;), m;), 3
= agnin ) L(Foe o Tyt m). m) 3)

where S represents the weights and biases corresponding to the
DNN, and o indicates the composition of the functions.

4 DNN ARCHITECTURE
OPTIMIZATION

4.1 Space of DNN architectures

There exist endless possibilities to select the search space for the
DNN architectures. One can select different types of DNN lay-
ers/blocks, for example convolutional layers and dense layers, and
their corresponding variables, for example kernel size and the num-
ber of neurons, and the number of layers/blocks that build the DNN
architectures. Beyond that, one can also search for the best training
hyperparameters, such as learning rate, which can lead to a more
efficient or faster training process. Hence, the search space selec-
tion is arbitrary, and there is no concrete approach for selecting
the best search space among all the possibilities. Therefore, as it
is only guaranteed that the obtained DNN is optimal inside a pro-
posed search space, we call it quasi-optimal DNN architecture. A
different selection of the search space will likely lead to a different
quasi-optimal DNN architecture, since this choice is not unique.

In this work, we only focus on the architectural components. To
have a fair comparison between our quasi-optimal DNN and our
previous results, we form convolutional blocks analogous to the
ones shown in Shahriari ef al. (2022). A 1D convolutional layer
consists of two main components: (1) kernel size: an integer be-
ing the size of the sliding window that moves along the input data
during the convolution operation and (2) number of filters: an in-
teger corresponding to the number of output channels produced by
the convolutional layer, that is the dimension of the output tensor.
Herein, we define the convolutional block By, x, shown in Fig. 3 as
our main architectural component of our DNNs, where &j and k; are
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ConvlD
kernel size = 1 l

Conv1D
input ——»
kernel size = kg

ConvlD
—— output
kernel size = k1

Figure 3. Our convolutional block By, x, consists of three convolutional layers. ko and k; are kernel sizes of the convolutional layers that can vary. We consider

the number of filters of the convolutional layers to be constant.

(a) Prior distribution.

(c) Upper Confidence Bound (UCB) criteria for input

acquisition.

(d) Distribution after acquiring the selected input.

Figure 4. Illustration of a GP for fitting and optimizing a scoring function with a single parameter. The dashed line is the expected value of the modelled
function, while the coloured lines correspond to random sampled functions from the GP distribution. The shaded area represents the 95 per cent confidence

interval at each input value (20).

Table 3. Comparison of the time required to perform a random search versus
a Bayesian approach.

Problem Random search [hr] Bayesian approach [hr]
Forward 18.02 16.3
Inverse 5.97 4.80

the kernel sizes of two 1D convolutional layers (He ez al. 2016). As
the tuning process is highly time-intensive, in this work, we do not
consider the number of filters as part of our search space to reduce
its dimension. We consider F,, , to be the DNN approximation of
F given the set of hyperparameters 4. Then, for hy = {n, ko, ky, [},
we define Fhya 8

]:hf,a = B,C’o‘kl 0--+0 B/?qu o (Cy, “4)

where 7 is the number of residual blocks and C; is a 1D convolutional
layer with / being its kernel size. We define the search space of
hyperparameters as:

Sr={nefl,2,3,4}, ko, k1,1 € {3,5,7}}. 5)

To achieve a symmetric convolution, it is a common practice to
consider an odd-size kernel when computing the convolution. In
this case, for each architecture, 7= {t; =40 x i, i € {1, -, n}}
are the set of numbers of filters, where #; is the number of filters of
all the convolutional layers in ith block. The number of filters of the
final convolutional layer is equal to the number of outputs, that is
13.

Analogously, we consider the DNN approximation of the inverse
operator Z,, 4 for a given set of hyperparameters h; = {n, ko, k } to
be as follows:

Th; p :B,’;O’k1 o--~oB,?0’k1 orod, 6)

where 7 is a flattening layer that converts a 2D tensor to a 1D one,
and d is a fully connected layer with its number of nodes being the
size of the vector of subsurface properties |p| = 5. Therefore, our
search space is:

Sr=1{ne{l,2,3,4,5} ko, by € {3,5,7}}. (@)

Analogous to the forward model, we consider 7= {#; =40 x i,i €
{1, ---, n}} to be the set of numbers of filters, where #; is the number
of filters of all the convolutional layers in the i th block.
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Figure 5. DNN optimization of the forward function F using a random search. The colours indicate separate clusters of points.
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Figure 6. DNN optimization of the forward function F using a Bayesian approach. The colours indicate separate clusters of points.
4.2 DNN hyperparameter tuning following scoring function:
This work aims to find DNN approximations of F and Z such R,(h,) = Hy(hy)—Hp(hG)  Np(h%) — Np(hy) )
that their corresponding architectures use a minimum number of ST = H/(h‘;.) Np(h‘;.) ’
unknowns (weights and biases) and provide comparable (or better) ~— - —
accuracy than the excessively large reference DNN used in Shahriari relative error the Shmber of uaknowns
et al. (2022), that C(?rresponds to the hyperparameters h% and h? where
for the DNN approximations of F and Z, respectively. For a set of ,
hyperparameters 4 ; € Sr—see eq. (2)—we train its correspondin, -
yperp s € Sp—seeeq. (2) ponding —g) )y = 3" L(Fp, 0 (1, pi). my) ©)
i=1

DNN defined by eq. (4) to obtain F},, o+. Then, we compute the
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yy (LWD)

Geosignal (LWD) Symmetrized (LWD)

7z (azimuthal)

Figure 7. DNN approximation of /. Comparison between the original network and the quasi-optimal one for the real part of selected measurements.
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Table 4. Comparison of the training time between the original DNN and the quasi-optimal one.

Problem

Original DNN training time [hr]

Quasi-optimal DNN training time [hr]

Forward
Inverse

18.69
34.41

4.65
4.16
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Figure 8. DNN architecture of ]—'h*/ . The number in each layer corresponds to the number of trainable parameters.

for {(p;, m;, #;)}}" being a validation data set distinct from the
training data set with n, being its size, and N,(4) is the number
of unknowns of the DNN corresponding to the hyperparameter 4.
Then, the hyperparameter tuning consists of solving the following
minimization problem:

hy = arg minR;(h ). (10)

hreSr

According to the two-step training strategy, after obtaining
}';,*f «*» we need to minimize the following problem for the hy-
perparameter tuning of the inverse operator:

hi = arg min R;(h;), (11)
h;eSt
where
Ry = M) = W) Ny(h?) = Nyl) W)
H;(h?) Np(h?)
and
Hi(hi) =Y L(Fiyar © Ty e (t5, my), my). (13)

i=1

The above optimization problems have no explicit gradient for-
mulations. The simplest method to solve these problems is a grid
search, which evaluates the scoring function over all the possible
combinations of the hyperparameters. However, as the evaluation
of the scoring function requires a complete training of a DNN and it
can be costly, it is a common practice to rely on random search and a
Bayesian approach to speed-up the optimization. These approaches
are detailed in the next section.

4.3 AutoML algorithms

In this section, for simplicity in the notation, we denote S =
{ho, hy, -+, h,} as the search space of hyperparameters and H
as the scoring function.

4.3.1 Random search

In this iterative approach, at the i-th iteration, we randomly se-
lect h; € S as our set of hyperparameters. By training the corre-
sponding DNN to the selected set of hyperparameters, we com-
pute H(h;). Generally speaking, in the case of a massive search
space, it is possible to interrupt the search algorithm as soon as
we achieve our goal, for instance, a specific accuracy. In our case,
we repeat this process until the search space is exhausted (Elsken
et al. 2019; Li & Talwalkar 2020). We consider a search space
exhausted when in five consecutive iterations, the randomly se-
lected set of hyperparameters are amongst the ones we have already
tried.

Using a random search approach to tune the hyperparameters
could become excessively costly as we need to compute the score,
that is to train a new DNN at each iteration. Moreover, we do not
use the information we obtain during the previous iterations to se-
lect the next hyperparameter. As a result of such a blind selection
process, this approach imposes a high computational cost, espe-
cially when considering a massive search space. Furthermore, as
the selection is entirely random, and we may not try all the search
space, there is no guarantee that we obtain the quasi-optimal set
of hyperparameters. However, if stopping criteria while tuning is
imposed, for example the tuning stops when we achieve a specific
value of the scoring function, it is possible that a random search
obtains the hyperparameters sooner than a grid search, hence, the
possibility of reduced computational cost. In the worst-case sce-
nario, random and grid searches impose the same computational
cost.

4.3.2 Bayesian approach

Random search constitutes an improvement over grid search in
terms of performance. However, it requires a large number of sam-
ples to properly characterize the search space. Given the high cost
of calculating the scoring function for each sample, we consider
a surrogate model—also known as performance predictor (White
et al. 2021)—to: (1) estimate the scoring function without having
to train the associated DNN and (2) to select the most promising
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Figure 9. DNN optimization of the inverse function Z using a random search. The colours indicate separate clusters of points.
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Figure 10. DNN optimization of the inverse function 7 using a Bayesian approach. The colours indicate separate clusters of points.

set of hyperparameters to test. For this, we use a probabilistic per-
formance predictor based on Gaussian Processes (GPs; Snoek et al.
2012; Kandasamy et al. 2018; Elsken et al. 2019).

4.3.3 Gaussian processes as performance predictors

GPs are a generalization of multivariate Gaussian distributions to
infinite dimensions, and therefore they can model a probability dis-
tribution over continuous functions. Thus, they allow us to estimate
the value of a function and its uncertainty at any point in the do-
main. In our case, the function to model is the scoring function
H:S— R

A GP assumes that any finite set of »n points has an associated
n-variate Gaussian distribution, which is completely determined
by its mean vector p and covariance matrix X. Since a GP is a
model on a potentially infinite set of points, it is characterized by
a mean function m(h) = E(H(h)) and a covariance function (a.k.a
kernel) k(h, h') = E[(H(h) — m(h))(H(h') — m(h'))], where E(X)
is the expected value of X. These functions can be used to derive u
and X for any set of points {/, . .., &, }. All the relevant properties
of the GP including continuity, differentiability, and periodicity are
determined by the covariance function.

Fig. 4 illustrates the concept for a hypothetical GP with a single
input variable /4 € [0, 6]. We use a zero mean function m(h) = 0
and a Matérn covariance function (Rasmussen 2004) with v = 5/2,
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Figure 11. DNN approximation of Z. Comparison between the original network and the quasi-optimal one for a selected set of material properties.

which is widely used in hyperparameter optimization (O’Malley
et al. 2019). This kernel is defined as follows:

S0k — b2
k(h, ') = (1 +V5SIh = h i, + f’z

s exp(—v/5[lh — h'|l1,), (14)

Fig. 4(a) shows the prior distribution of the (%) function and
four random sampled functions following that prior. All samples
are relatively smooth (this is determined by the selected kernel), but
there is great variability among them. This gives us an idea of the

flexibility of the GP in modelling # (%), but it also shows that, as
expected, these priors will not provide useful predictions.

However, as soon as we start measuring some actual values
of the scoring function, the model quickly converges to a well-
constrained curve. For example, in Fig. 4(b) we incorporate the
constraints (measurements) (1) = —2 and H(3) = —1. Then, the
posterior allows us to estimate the value of the scoring function
more accurately, especially for the inputs that are closer to the
observations.

The calculation of the posterior is based on the assumption that
the observations and the desired estimations follow a joint Gaussian
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Table 5. R?-score comparison of the forward model between the original DNN (h”/-) and quasi-optimal one (h*}) using

the measurement system shown in Table 1.

(TX — RX) Measurement ]-"hz; (R? score) -7:11’; (R? score)
(Reél/lmaginary) (Reél/lmaginary)
7z 0.99/0.99 0.99/0.99
(Tx1,1, Tx1, 2, Rx1, Rx2) yy 0.99/0.99 0.99/0.99
Geosignal 0.99/- 0.99/-
Symmetrized directional 0.99/0.99 0.99/0.99
(Tx2, 1, Tx2, 2, Rx1, Rx2) Symmetrized directional 0.99/0.99 0.99/0.99
(Tx, Rxy) 7z 0.99/0.99 0.99/0.99
(Tx, Rx2) Symmetrized directional 0.99/0.99 0.99/0.99

distribution. Let us assume we have observed z; = H(H,) obser-
vations, with |H;| = n;, and we want to estimate the posterior z,
for a set H, of inputs, with |H,| = n,. Since z; and z, are jointly
Gaussian, we can write:

z " T
HE(HRESN)

with:

w =m(Hy) (ny x1)

Mo =m(Hy) (n2 x 1)

211 = k(H], Hl) (nl X I’ll)

222 = k(Hz, Hz) (}’lz X I’lz)
S, =k(H), ) =3, (1 xn)

Then, we can calculate the conditional distribution:

Pz | 7)) = N(uan, Zop)
pap = pa + T By (21 — )
T =Zn - 0 2 (16)

In this way, for each #* € H, we can calculate its posterior
expected value u,+ and standard deviation o+ according to eq. (16),
as illustrated in Fig. 4(b) for A, = [0, 6]. It is important to highlight
that according to eq. (16), p(z; | z;) ~ N(u, 0), and therefore it is
guaranteed that all the functions taken from the above distribution
pass through the observation points.

4.3.4 Optimizing the hyperparameter search

In addition to a probabilistic estimation of the scoring function,
the use of GPs as a surrogate model allows us to determine the
next set of hyperparameters to test during the optimization. First,
we evaluate the scoring function for a small number of random
hyperparameter sets, and we construct the initial estimate of the
surrogate model. Then, at each iteration, the Bayesian approach
consists of the following steps: (1) to select the hyperparameter set
to estimate the scoring function; (2) to evaluate the scoring function
for the selected hyperparameter set; and (3) to update the surrogate
model using the observation obtained in the previous step (Tipping
2004; Fox & Roberts 2012; Theodoridis 2015). For step (1), since
an explicit formulation of the model is inaccessible, we need to rely
on the so-called acquisition functions, which estimate an expected
loss from evaluating  at a point #*. Here, we consider the Upper
Confidence Bound (UCB) (Srinivas et al. 2012) as our acquisition
function, defined as follows:

UCBy(h*) = pp — o, 17)

where « is a calibration variable to balance exploration and exploita-
tion. The concept of exploration is here related to the uncertainty
derived from the standard deviation oy+. Therefore, the higher the
weight assigned to this factor (larger «), the more exploratory the
behaviour of the UCB, selecting points further away from those al-
ready known. A lower o, on the other side, will give more weight to
the points observed so far, which corresponds to exploitation. We
empirically select « to be 2.6 (Snoek et al. 2012; O’Malley et al.
2019; Turner et al. 2021). Fig. 4(c) shows the minimum UCB value
for the model fitted in Fig. 4(b), and Fig. 4(d) shows the updated
model after incorporating the new scoring function result. Since
GPs assume a continuous domain, we need to restrict the UCB
and posterior evaluation to those sets of hyperparameters that are
actually acceptable for our DNN architecture. With this approach,
we aim to optimize the hyperparameters by learning from previous
experiments, and hence we expect to require fewer iterations and
lower computational time compared to random search.

5 NUMERICAL RESULTS

5.1 Hyperparameter tuning

To increase the speed of the hyperparameter tuning algorithms, we
execute them using only 30 000 samples. Then, we train the quasi-
optimal DNNs selected by the random search and the Bayesian
algorithm using 300 000 samples to find the final DNN approxima-
tions of F and Z.

We consider the DNN architecture with hyperparameters /49 =
(n=5,ky=23,k =3,1 =1} that leads to 525373 parameters as
our reference approximation of 7. Analogously, 2{ = {n = 6, ky =
3, ky = 3} is the set of hyperparameters corresponding to the DNN
architecture of the reference DNN approximating Z. The afore-
mentioned DNN architecture consists of 890 925 parameters (see
(Shahriari et al. 2022) for more details). To increase the computa-
tional efficiency, we also enforce two stopping criteria:

(1) An early stopping condition with the validation loss variation
threshold and the patience being 1073 and 30, respectively. This
means that if the change in the loss is below the threshold during
30 consecutive epochs, the training stops.

(i) If H(h) < 1.1 x H(h?), where & is the hyperparameter set
under trial, we also stop the training.

Table 3 shows the computational time of the hyperparameter
tuning using both random search and the Bayesian approach. Results
show that the Bayesian approach is less expensive than the random
search. Note these time differences will increase as we augment the
number of unknowns (i.e. measurements in the forward problem,
and inverted parameters in the inverse problem).
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Table 6. R>-score comparison of the inverse model between the original
DNN (4?) and quasi-optimal one () using the measurement system shown
in Table 1.

Material properties Ty0 (R? score) T+ (R? score)

Ou 0.90 0.87
e 0.97 0.97
o1 0.90 0.85
dy 0.62 0.62
d 0.61 0.63

Fig. 5 shows the results of hyperparameter tuning using ran-
dom search to approximate F. It represents the score value for
each selection of hyperparameters from the search space Sr and
its corresponding number of trainable parameters. We also dis-
play the effect of individual factors involved in the scoring func-
tion, that is the relative increase in the number of unknowns and
the relative error. Analogously, Fig. 6 shows the results of tun-
ing using the Bayesian approach to approximate F. In the case of
random search, the algorithm repeatedly considers DNN architec-
tures with less than 100000 parameters even when their score is
not significantly improving. However, in the Bayesian approach,
the algorithm rapidly learns that this cluster of DNN architectures
leads to unacceptable scores. Considering the results of both algo-
rithms, we witness that the quasi-optimal set of hyperparameters is

’} ={n =3, k) =3, ky = 3,1 =7}, which correspondsto 131 013
parameters. Using this DNN, we achieve a comparable score to
the reference one with approximately 25 per cent of the trainable
parameters used by the reference DNN. Fig. 7 shows cross-plots
comparing the accuracy of the DNN approximation of F using
the quasi-optimal DNN and the reference one for a selected set of
measurements. The accuracy of the two DNNs is similar, that is
the R? scores of the prediction versus ground truth are comparable.
Moreover, according to the training time shown in Table 4, train-
ing the reference DNN takes almost four times more computational
time compared to the quasi-optimal one. Fig. 8 shows the DNN
architecture of fh’}'

Figs 9 and 10 show the process of hyperparameter tuning
to obtain a quasi-optimal DNN architecture to approximate Z.
Analogous to the tuning for the forward function, the Bayesian
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Table 7. Second set of evaluated measurements for each transmitter—
receiver set.

Transmitter—receiver Measured component

(Tx1,1, Tx1,2, Rx1, Rx2) Geosignal, symmetrized directional
(Tx2, 1, Tx2,2, Rx1, Rx2) 7z, yy, symmetrized directional
(Tx, Rx1) Symmetrized directional

(Tx, Rxz) 7z

approach selects a less redundant set of hyperparameters com-
pared to the random search. By comparing the scores of all the
DNN architectures, the quasi-optimal set of hyperparameters is
hi ={n =23,k =3,k =3} with 121 965 parameters. The quasi-
optimal DNN architecture contains more than seven times fewer
parameters than the reference one. Fig. 11 compares the accuracy of
the quasi-optimal DNN architecture and the reference one for some
inversion variables. Table 4 shows that we spend almost eight times
more computational time to train the reference DNN compared to
the quasi-optimal one. Tables 5 and 6 summarize the comparison
between the quasi-optimal and original DNNs for the forward and
the inverse operators, respectively. We obtain a similar accuracy
between the original and quasi-optimal DNNs. Fig. 12 shows the
DNN architecture of I;,;«.

To investigate the effectiveness of our obtained DNNs when using
anew set of measurements, we consider the measurements presented
in Table 7. Table 8 shows the results of the trained DNN for Fj,
and }';,7 o Zyr. Our obtained DNNs deliver high-quality results for
this set of measurements. Moreover, Table 9 shows the results for
Ty . The DNN shows a slightly better accuracy when applied to the
set of measurements of Table 1 because we chose them based on
an optimization algorithm to maximize the R*-score of the DNN
output—see (Shahriari ez al. 2022) for more details. In other words,
the slight reduction in the performance is related to the selection
of the measurements, not the DNN architecture, since ]-';,? o Ly is
showing high accuracy. '

5.2 Synthetic example

Fig. 13 compares the inversion results using Ih;« and Ih? to the ac-
tual formation for a synthetic model. Both inversion models can
adequately predict the material properties up to a sufficient depth of

B3 Bi
ConvlD ConvlD
600 3280
Input: (m, t) ConvlD ConvlD an ConvlD ConvlD Vany
|(m, )] = 14 = 1720 4840 U 9680 19280 WV
ConvlD
9720
Output: p Dense - an ConvlD ConvlD
atten
Ip| =5 605 XV 43320 28920 ~
d T Bgs

Figure 12. DNN architecture of Ih;«. The number in each layer corresponds to the number of trainable parameters.
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Table 8. R?-score comparison between .7-';,7 and ]—';,} o Ih‘_* using the measurement system shown in Table 7.

(TX — RX) Measurement ]‘—h’} (R? score) ]:hj, oIy (R? score)
(Real/Imaginary) (Real/Imaginary)
(Tx1,1, Tx1, 2, Rx1, Rxy) Geosignal 0.98/- 0.96/-
Symmetrized directional 0.99/0.99 0.98/0.98
7z 0.99/0.99 0.99/0.99
(Tx2, 1, Tx2, 2, Rx1, Rx2) yy 0.99/0.99 0.98/0.99
Symmetrized directional 0.98/0.98 0.98/0.96
(Tx, Rxy) 7z 0.98/0.98 0.96/0.98
(Tx, Rxy) Symmetrized directional 0.99/0.98 0.99/0.98

Table 9. R?-score of 7,0 using the measurement system shown in Table 7.

Material properties Ih? (R? score)

Pu 0.84
Pe 0.94
ol 0.83
d, 0.54
d 0.55

Resistvity (ohm-m)
1.0e #0002 5 10 2 50 1.0¢+02

Synthetic formation
TVD (m)

0 100 200 300 400 500
HD (m)
(ohm-m)

Resistivity
Les002 5 10 20 5010e-02
[ i

o
i

Using 7y,
TVD (m)

0 100 200 300 400 500
HD (m)
Resistivity (ohm-m)

L0e$00 2 5 10 20 5010e+02
L e

*
i

Using 7y,
TVD (m)

15 0 100 200 300 400 500

HD (1)

Figure 13. Model problem 1. Comparison amongst the synthetic (original)
formation, and the formations predicted by the original (reference) DNN,
and the quasi-optimal DNN.

investigation. The quasi-optimal DNN predicts the material prop-
erties around the trajectory. Moreover, it detects the bed boundary
corresponding to oil-to-water contact from a few meters away from
the trajectory. Fig. 14 shows similar results for a second synthetic
formation.

6 CONCLUSIONS

In this work, we used AutoML—specifically, DNN architecture
search algorithms— to obtain quasi-optimal DNN architectures for
the inversion of borehole resistivity measurements. A quasi-optimal

Resistivity (ohm-m)
10e+00°2 510 20 50 L5e+02

Synthetic formation
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0 100 200 300 400 500
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1.0e+00 2 5§ 100820 50 15e+02
i

o
i

Using 7y,
TVD (m)

0 100 200 300 400 500
HD (m)

Resistivity (ohm-m)
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[

-
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Using 7p,
TVD (m)

15 0 100 200 300 400 500

HD (m)

Figure 14. Model problem 2. Comparison amongst the synthetic (original)
formation, and the formations predicted by the original (reference) DNN,
and the quasi-optimal DNN.

DNN provides accurate results with a minimum number of un-
knowns (trainable parameters). We introduced a scoring function
that accounts both for the accuracy of the trained DNN and its size
compared to a reference large DNN. We introduced convolutional
blocks as the main components of the DNN architecture.

We used two standard search algorithms to find our quasi-optimal
hyperparameters: random search and a Bayesian approach based
on Gaussian Processes. Both automatic search algorithms deliver
quasi-optimal DNN architectures with reduced hand-design. Ran-
dom search performs an arbitrary selection of the hyperparame-
ters. In contrast, the Bayesian approach purposefully selects the
hyperparameters using the information obtained from the previous
iterations. Thus, it performs a less redundant selection of hyperpa-
rameters, and it typically requires fewer iterations to achieve the
quasi-optimal DNN architecture, thereby, requiring less computa-
tional time than random search.

In this work, both algorithms converged to the same architec-
ture because the search space is relatively small, and we imposed
no stopping criteria while searching for the quasi-optimal DNN
(tuning). Although the quasi-optimal DNN architecture contains

¥z0z Asenuer z| uo 1senb Aq y0¥9022/.8v2/E/vET/a10n4e/[B/Woo dno-olwepeoe//:sdiy woly pspeojumoq


art/ggad249_f13.eps
art/ggad249_f14.eps

significantly fewer trainable parameters, it still delivers a perfor-
mance comparable to the original DNN. Moreover, it substantially
reduces the computational time required to train the DNN.

In future work, we shall consider a more general DNN architec-
ture component, including for example, fully connected layers in
the exploration and different number of filters in the CNN layers.
Furthermore, we shall investigate the effect of using noisy data for
training and evaluating the DNN. Moreover, we shall consider more
complicated scenarios, for example a more general 2-D and 3-D
subsurface parametrization, possibly combined with transfer learn-
ing. Although we considered a 1D-layered formation, our strategy
can be extended to more complex geological targets. In those cases,
we may require a larger data set and DNN to approximate the for-
ward and inverse operators adequately. In addition, we shall study
the possibility of an automated approach based on active learning
to efficiently sample the space of subsurface properties using the
minimum number of samples, that is the minimum data set’s size.
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