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Abstract— Space missions with low-thrust propulsion systems
are of appreciable interest to space agencies because of their
practicality due to higher specific impulses. This research proposes
a technique to the solution of minimum-fuel non-coplanar orbit
transfer problem. A direct adaptive method via Fitness Landscape
Analysis (FLA) is coupled with a constrained evolutionary technique
to explore the solution space for designing low-thrust orbit transfer
trajectories. Taking advantage of the solution for multi-impulse
orbit transfer problem, and parameterization of thrust vector, the
orbital maneuver is transformed into a constrained continuous
optimization problem. A constrained Estimation of Distribution
Algorithms (EDA) is utilized to discover optimal transfer tra-
jectories, while maintaining feasibility of the solutions. The low-
thrust trajectory optimization problem is characterized via three
parameters, referred to as problem identifiers, and the dispersion
metric is utilized for analyzing the complexity of the solution
domain. Two adaptive operators including the kernel density and
outlier detection distance threshold within the framework of the
employed EDA are developed, which work based on the landscape
feature of the orbit transfer problem. Simulations are proposed to
validate the efficacy of the proposed methodology in comparison
to the non-adaptive approach. Results indicate that the adaptive
approach possesses more feasibility ratio and higher optimality of
the obtained solutions.

Index Terms—Orbit Transfer, Trajectory Optimization, Fitness
Landscape Analysis, Dispersion, Estimation of Distribution Algo-
rithms

I. INTRODUCTION

CONSTRAINED trajectory optimization has been a
critical component in the development of advanced guid-
ance and control systems. The distinct specific impulse
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of low-thrust propulsion systems comes with significant
savings of propellant, while enables new concepts for
space missions. However, it needs novel trajectory de-
sign methodologies as the thrusting periods increase and
therefore, the assumption of instantaneous impulses does
not hold anymore. In recent years, considerable effort
has been dedicated to the development of best techniques
and algorithms for spacecraft trajectory optimization. The
relevant papers can be traced back to the pioneering works
by Miele [1], Vinh [2], and Prussing [3]. It has been
shown, that in the finite-thrust solutions of fuel-optimal
transfers, the control structure and the optimal number of
thrusting arcs is usually unknown a priori. Following the
nonlinear nature of dynamics and constraints, the orbital
transfer problem becomes considerably difficult to deal
with.

Techniques for addressing the challenging issues in
low-thrust trajectory optimization have been investigated
for many years. All proposed techniques in the literature
can be classified as either direct or indirect procedures
[4]. Direct approaches are based on the conversion of
the optimal control problem into an optimization problem
through discretization of states and control variables [5],
[6], [7]. Indirect methods on the other hand, utilize the
necessary conditions for optimality based on the calculus
of variations [8], [9], [10]. Following the employed ap-
proach, the orbit transfer problem generally turns into a
nonlinear programming (NLP) problem. There are several
strategies to solve the resulting NLP problem, ranging
from single and multiple shooting to direct collocation.
In these approaches, the number of discrete nodes is
increased by variety of factors such as the dimensions
of states, as well as the flight time. This increment along
with the nonlinearity of system dynamics results in large-
scale NLP problems, which is challenging to deal with.
Because of these challenges, discovery of optimal space
transfers utilizing Evolutionary Algorithms (EAs) is be-
coming increasingly popular in celestial mechanics [11].
The effectiveness of heuristic procedures is evolved from
the likelihood of converging to the globally minimizing
solutions of qualitatively various problems, and extensive
numerical tests are to be performed for evaluating the
performance of any novel algorithm. Regarding the de-
velopment and utilization of EAs in spacecraft trajectory
optimization, noticeable advances can be identified in
recent efforts. For instance, in their work, Zuo et al. [12]
developed a case learning-based Differential Evolution
(DE) algorithm to tackle multiple gravity assists trajectory
design and optimization, in which several global and local
optimizers are developed based on an enhanced version
of DE. In their work, Feng et al. [13] presented an
indirect evolutionary methodology to tackle Earth-orbiting
satellite rendezvous. In this research, a hybrid algorithm
consisting of Particle Swarm Optimization (PSO) and
DE is proposed for far-distance cooperative rendezvous.
In their work, Shannon et al. [14] introduced Q-Law
methodology combined with Genetic Algorithm (GA) to
tackle Earth orbiting spacecraft trajectory optimization
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problems, in which a heuristic algorithm for gain tuning
of Q-Law method is applied to continuous thrust tra-
jectory optimization. Another self-adaptive\self-learning
DE algorithm is introduced by Choi et al. in [15] for
trajectory optimization of deep-space missions. In this
research, an adaptive mechanism and a re-initialization
method incorporated with DE is introduced for multi-
ple gravity assists trajectory design and optimization.
In their work, Jimenez-Lluva and Root [16] proposed
DE combined with a hybrid technique to tackle GTO
to GEO transfers considering orbital perturbations. In
this research, a hybrid scheme with DE is developed
for minimum-time and minimum-fuel orbital transfers.
Overall, in many cases, finding an adequate set of tuning
parameters for EAs can be as time-consuming as the
optimization process itself. Also, it can be observed that
in the vast majority of research from the literature, when
it comes to find unknown parameters, usually either a
novel EA is developed, or an arbitrary EA is chosen
and utilized for obtaining the desired solution, i.e. for
achieving the optimal transfer trajectory. However, no
research has been dedicated to explore the reason why a
particular EA outperforms other rival algorithms in the
constructed spacecraft trajectory optimization problem,
or how efficient the employed EA is in finding the
desired solution. In particular, there is a lack of correlation
between the selection of the EA or the choice of EA
parameters and the inherent complexity of the spacecraft
trajectory optimization problem. These insights are the
main motivation in the current article, and the main aim of
this research is to analyze the complexity of orbit transfer
problems, and develop an effective adaptive method for
space trajectory optimization. This concept, better known
as Fitness Landscape Analysis (FLA), which is connected
to auto-tuning and developing intelligent algorithms for
complex systems, has not been given proper attention in
astrodynamics. The main purpose of this research is to
initially fill the gap on this matter in spacecraft trajectory
optimization and open the door for further attempts on
employing these techniques in various approaches that are
dedicated to find optimal trajectories for space systems.

The article is arranged as follows. Section II describes
the orbit transfer problem in detail. The spacecraft dy-
namics is modeled via the classical orbital elements and
the minimum-fuel low-thrust orbit transfer problem is
turned into a constrained continuous optimization problem
via Fourier transformation of input variables. Section III
introduces the solution procedure, where the objectives
and constraints are defined initially. A recently devel-
oped EA based on Estimation of Distribution Algorithms
(EDAs) is introduced, along with two of its parameters
that control the exploration and exploitation capabili-
ties of the algorithm. The complexity of the problem
according to mission parameters is analyzed via FLA
techniques, and two adaptive operators are developed
for the aforementioned algorithm parameters. In Section
IV, the proposed operators are utilized as an adaptive
evolutionary approach for low-thrust trajectory optimiza-

tion. The application of the proposed strategy to several
cases followed by demonstration of its effectiveness are
presented along with the added value of the optimality
for the solutions. Discussions are provided in Section V
and Section VI concludes the study.

II. MATHEMATICAL MODELING

A. Equation of Motion

The evolution of an orbit due to all accelerations ex-
cept point-mass gravity can be described va the perturbed
Kepler problem. The classical orbital elements conveying
the key components of the solution are semimajor axis,
eccentricity, inclination, right ascension of the ascending
node, argument of periapsis, and true anomaly, which can
be represented as [a, e, i,Ω, ω, θ]. Let ρR, ρT , and ρN , be
the radial, transverse, and normal (RTN) components of
the acceleration, expressed in the radial-transverse-normal
frame centered at the satellite. Whenever non-conservative
perturbations such as thrusting are acted on the spacecraft,
it is customary to describe the evolution of the classical
elements through Gauss’s variational equations as

ȧ =
2a2√

µa(1− e2)

[
e sin(θ)ρR + (1 + e cos(θ))ρT

]
ė =

√
a(1− e2)

µ

[
sin(θ)ρR +

e+ (2 + e cos θ) cos θ

1 + e cos(θ)
ρT

]
i̇ =

√
a(1− e2)

µ

[ cos(θ + ω)

1 + e cos(θ)
ρN

]
Ω̇ =

√
a(1− e2)

µ

[ sin(θ + ω)

(1 + e cos(θ)) sin(i)
ρN

]
ω̇ =

√
a(1− e2)

µ

[
− cos(θ)

e
ρR +

(2 + e cos(θ)) sin(θ)

e(1 + e cos(θ))
ρT

− sin(θ + ω) cot(i)

1 + e cos(θ)
ρN

]
θ̇ =

√
µ

a3
(1 + e cos(θ))2

(1− e2)3/2 +

√
a(1− e2)

µ

[cos(θ)
e

ρR

− (2 + e cos(θ)) sin(θ)

e(1 + e cos(θ))
ρT

]
(1)

where µ denotes the gravitational parameter, and the over-
dot symbol represents the time derivative. This element
set has been used in many research dedicated to direct
trajectory optimization [17]. Note that vectors in RTN
frame and Earth Centered Inertial (ECI) frame can be
converted to each other via the rotation matrix based on
unit vectors in the radial, tangential and normal directions
[18]. The variation of spacecraft mass during the orbit
transfer can be represented by

ṁ = − ||T||
Ispg0

(2)
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where Isp is the specific impulse, ||T|| is the magnitude
of the acting thrust vector T, and g0 is the acceleration
due to gravity at sea level. Following the presented
model for system dynamics, the unknown variables can
be identified. Given the orbital elements for the initial
and desired orbits denoted as [aI eI iI ΩI ωI ]
and [aD eD iD ΩD ωD ] respectively, alongside the
spacecraft’s initial mass mI , specific impulse Isp, and
maximum available thrust level Tmax, a distinct optimiza-
tion problem arises concerning the non-coplanar orbital
maneuver. The mission parameters describing a unique
problem can be represented by the vector P as

P =[aI eI iI ΩI ωI aD eD iD ΩD ωD

mI Tmax Isp]
(3)

Following the presented model, each unique space
mission can be defined with the vector of known param-
eters P in Eq. 3. The aim is to find the optimal time
intervals of the acting thrust vector T on the spacecraft
and optimal time-profile of the thrust direction angles
associated with each time interval. The acting thrust
results the acceleration vector ρ = [ρR, ρT , ρN ] in Eq.
1. Integrating the dynamics equation gives the final orbit
of the spacecraft. The objective is to find the optimal
thrust vector that transfers the spacecraft to the desired
orbit with respect to the initial and final conditions, while
minimizing the fuel consumption with respect to Eq. 2.

B. The Discrete Fourier Transform

Finding the ideal transfer trajectory for the intended
problem involves determining the undisclosed thrust pro-
files and their corresponding on-off timings during the
transfer. These unidentified functions and variables can
be expressed in X as

X =



tI1 T1 t
F
1

tI2 T2 t
F
2

...
tIi Ti t

F
i

...
tINT−1 TNT−1 t

F
NT 1

tINT−1 TNT tFNT


(4)

where NT is the number of thrust arcs, i is the counter
for the number of thrust arcs, tIi and tFi (1 ≤ i ≤ NT )
are the starting time and ending time of thrust arcs
respectively, and Ti are thrust profiles as functions of
time in each respective time interval of tIi < t < tFi .
This representation agrees with minimum-fuel transfers,
since the thrust magnitude is at maximum value within
the thrust arcs as ||Ti|| = Tmax for tIi < t < tFi , and
is equal to zero within the coast arcs as ||Ti|| = 0 for
tFi < t < tIi+1(i ̸= NT ). It can be justified that for NT
number of thrust arcs, there will be NT − 1 number of
coast arcs. The components of thrust vector within the
thrust arcs can be defined as

Ti(t) = Tmax

cosαi(t) cosβi(t)cosαi(t) sinβi(t)
sinαi(t)

 (5)

with αi and βi denoting the space vehicle’s steering angles
relative to the reference frame. From the given definition,
it is evident that the optimal time evolution of steering
angles, as well as the on-off time intervals, are presently
unknown and yet to be established. To account for the
range of steering angles as −π/2 < αi(t) < π/2 and
−π < βi(t) < π, the variations are approximated as time-
profiles through a finite number of nodes for each distinct
thrust arc, as outlined below.

[α(t), β(t)] = A (α̂1, α̂2, ..., α̂Np , β̂1, β̂2, ..., β̂Np) (6)

where A (·) represents the conversion operator, which
transforms the given approximation points α̂j , β̂j into
continuous time-series. With respect to the fact that
−π/2 < α̂j < π/2 ,−π < β̂j < π (j = 1, ..., Np),
different schemes may be employed for this operator. In
this research, Fourier transformation is utilized in A (·)
to parameterized the time-histories of steering angles.

The Fourier series approximations have been vastly
used in spacecraft trajectory optimization [19]. With
respect to temporary translation of time intervals as
[tIi , t

F
i ] → [0, tFi − tIi ] for simplifying the Fourier ap-

proximation, a grid on the interval [0, tFi −tIi ], consisting
of the Np points tj = (j−1)∆t is considered with j being
the counter for the number of interpolation points, where
∆t = (tFi − tIi )/(Np − 1). Assuming the functions α(t)
and β(t), an approximation to the Fourier series of the
following form is desired

αNp(t) =
1√

tFi − tIi

Np/2∑
κ=−Np/2+1

e2πiκt/(t
F
i −tIi )α̃(κ)

(7)

βNp(t) =
1√

tFi − tIi

Np/2∑
κ=−Np/2+1

e2πiκt/(t
F
i −tIi )β̃(κ)

(8)

where each α̃(κ) and β̃(κ) approximate the corresponding
coefficient of the true Fourier series with κ as the counter
for the polynomial terms. Ideally, this approximate series
should satisfy

αNp(tj) =α̂j

βNp(tj) =β̂j

j =1, ..., Np

(9)

That is, both approximated functions αNp(t) and βNp(t)
should be an interpolant of α(t) and β(t) respectively,
with the Np points tj as the interpolation points. The prob-
lem of finding these interpolants, referred to as the Fourier
interpolant of α and β, has a unique solution that can
easily be computed. Since the functions e−2πiκtj/(t

F
i −tIi )

are orthogonal with respect to the discrete inner product
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(u, v)Np = ∆t

Np∑
j=1

u(tj)v(tj) (10)

it is straightforward to verify that αNp(t) and βNp(t) do in
fact satisfy the conditions of Eq. 9. Note that the discrete
inner product is an approximation of the continuous inner
product. From Eq. 9, we have

α̂j =
1√

tFi − tIi

Np/2∑
η=−Np/2+1

e2πiηtj/(t
F
i −tIi )α̃(η)

β̂j =
1√

tFi − tIi

Np/2∑
η=−Np/2+1

e2πiηtj/(t
F
i −tIi )β̃(η)

(11)

As can be observed, the independent variable η is used
here to demonstrate the derivation of Fourier coefficients.
Multiplying both sides by ∆te−2πiκtj/(t

F
i −tIi ) and sum-

ming from j = 1 to j = Np yields the following for
α(t)

∆t

Np∑
j=1

e−2πiκtj/(t
F
i −tIi )α̂j =

∆t
1√

tFi − tIi

Np∑
j=1

N/2∑
η=−N/2+1

[
e−2πiκtj/(t

F
i −tIi )e−2πiηtj/(t

F
i −tIi )α̃(η)

]
=

1√
tFi − tIi

Np/2∑
η=−Np/2+1

α̃(η)
[
∆t

Np∑
j=1

e−2πiκxj/(t
F
i −tIi )

e2πiηxj/(t
F
i −tIi )

]
(12)

and also a similar expression for β(t). Since(
e2πiκx/(t

F
i −tIi ), e2πiηx/(t

F
i −tIi )

)
N

={
tFi − tIi κ = η

0 κ ̸= η

(13)

all terms in the outer sum on the right hand side of
Eq. 12 vanish except for η = κ, and we obtain the
following formulas as the coefficients α̃(κ) and β̃(κ) by
approximating the integrals that defined the coefficients
of the Fourier series:

α̃(κ) =
1√

tFi − tIi

Np∑
j=1

e−2πiκtj/(t
F
i −tIi )α̂j∆t

β̃(κ) =
1√

tFi − tIi

Np∑
j=1

e−2πiκtj/(t
F
i −tIi )β̂j∆t

κ =−Np/2 + 1, ..., Np/2

(14)

It should be noted that the algebraic operations per-
formed on Eq. 11 are equivalent to taking the discrete
inner product of both sides of Eq. 11 with e2πiκt/(t

F
i −tIi ).

The process of obtaining the approximate Fourier coeffi-
cients as in Eq. 14 gives the discrete Fourier transform
(DFT) of α(t) and β(t). By adhering to the proposed
parameterization approach, the vector encompassing the
decision variables can be reformulated through the trans-
formation of Eq. 4. Considering an arbitrary value of
Np to parameterize the steering angles, the total count
of decision variables amounts to 2NT (1 + Np). It is
feasible to approximate the necessary number of thrust
arcs, denoted as NT , for a minimum-fuel transfer in
a given space mission, while also providing an initial
estimate for the time intervals of the thrust arcs (tIi , t

F
i ).

An option to consider is leveraging transfer trajectories
achieved through impulsive maneuvers. The literature
offers numerous techniques for obtaining solutions related
to multi-impulse orbit transfers. In this research, a hybrid
approach, proposed in [20] by the author is used to obtain
an impulsive solution. This approach attempts to discover
an initial multi-impulse transfer trajectory, which satisfies
the limit on the propulsion system, while minimizing
the total impulse and the transfer time simultaneously. It
mainly relies on a method based on the discretized Lam-
bert approach, providing near optimal solutions, including
the number and the sequence of impulses. The approach
benefits from auto-tuning operators and several methods
for enhancing the diversity of the solutions during its
process. Reader is urged to refer to [20] for more details.
A solution of this nature comprises a vector of impulse
timings denoted as t̃ = [t̂1 ... t̂NT ]. By utilizing this vector,
the on-off timings can be redefined as tIi = t̂i − τI

i and
tFi = t̂i+τ

F
i , where τI

i and τF
i represent the time offsets

relative to the impulsive timing t̂i in the ith thrust arc. By
introducing these modified variables, the decision vector
can be reformulated as illustrated below.

X =
[
(τI
i τF

i ) , (α̂i,1 β̂i,1 , ... , α̂i,Np β̂i,Np)
]

i ∈ {1, ..., NT }
(15)

where, α̂i,j and β̂i,j represent the jth discrete points of
the ith thrust arc for α(t) and β(t), respectively. It is
crucial to note that the timing offsets of thrust arcs are
constrained by the orbital period of coasting orbits, de-
noted as T in the solution of multi-impulse orbit transfer.
It is noteworthy that generally, the solution of impulsive
transfer that is obtained regardless of the thrust limit, may
not be suitable to be used as an initial guess for low-thrust
transfers. However, the multi-impulse approach, which
has been utilized in this research, is based on limited
impulse, and yields a multi-impulse solution with respect
to the given restriction on the propulsion system. If the
guess is suitable in the presented approach, a feasible
solution will be found by the algorithm, which satisfies
the terminal conditions. But if the guess is not suitable
(not enough thrust arcs are considered), the algorithm will
not be able to find any feasible solutions for the problem,
leading to conclude that more thrust arcs are necessary
(i.e., the value of NT must be increased).
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Additionally, determining the appropriate number of
nodes is not a straightforward task. However, it is feasible
to select a reasonable value for Np by considering the
thrust profiles obtained through various methods doc-
umented in the literature. In this study, the choice of
Np = 5 has been identified as an appropriate selection
for the number of interpolation points in each thrust arc.
By incorporating the boundaries of timing offsets with
the limits of steering angles, the decision variables can be
expressed as upper and lower bounds, as indicated below.

Xmin =
[
(0, 0) , (−π/2,−π , ... ,−π/2,−π)

]
Xmax =

[
(Ti, Ti) , (π/2, π , ... , π/2, π)

] (16)

with Xmin and Xmax as the lower and upper bounds
respectively.

III. METHOD OF SOLUTION

Regarding minimum-fuel orbital maneuvers, the ob-
jective is to achieve the least fuel consumption of the
spacecraft by the end of transfer. Therefore, the objective
function is presented as

F = mI −m(tf ) (17)

with m(tf ) as the mass of the spacecraft by the end of
orbital maneuver. Successful orbital maneuver is subject
to reach the desired orbit with an acceptable error margin.
Hence, orbital error vector is defined as

E(t) =
[
(
a(t)− aD

σa
)2, (

e(t)− eD

σe
)2, (

i(t)− iD
σi

)2,

(
Ω(t)− ΩD

σΩ
)2, (

ω(t)− ωD

σω
)2
]
− 1

(18)

In this representation, σ(·) denotes the maximum al-
lowable difference between the final value and the desired
value for each orbital element. Having the error vector as
a function of time and the final time tf , the constraint
function can be defined as

G =


E(tf ), if E(tf ) ≤ 0

KE
E(tf )
E0

+
1

E0tf

∫ tf

0

E(t)dt, otherwise

(19)
where E0 represents the error at the initial time. It is
important to note that both E0 and tf are known param-
eters for a unique solution. According to this definition,
the constraint function effectively distinguishes between
transfer trajectories that are feasible and those that are
infeasible, assigning corresponding penalties accordingly.
It is evident from Eq. 18 that E(tf ) ≤ 0 indicates that
the orbital element at the end of the transfer falls within
the acceptable error range. Consequently, the transfer is
deemed feasible, and the constraint function yields a
negative value, which is proportional to the deviation from
the desired orbital elements. However, if E(tf ) > 0, it

signifies that the final conditions are not met, and the
violation of the constraint is determined as the sum of
the scaled error at the end of the transfer and the scaled
integral of the error. Obviously, two terms of second
condition in Eq. 19 have the following boundaries

0 <
E(tf )
E0

≤ 1 (20)

0 <
1

E0tf

∫ tf

0

E(t)dt ≤ 1 (21)

Following the fact that Eq. 19 is delimited by the
boundaries specified in Eq. 20 and Eq. 21, it is evident
that transfers characterized by a smaller integral of errors
are deemed preferable when they achieve an equivalent
final error. The reason is that the amount of constraint
violation is a key factor for adaptive operators in dis-
covering feasible region of the search domain. Infeasible
trajectories with high constraint violation in terms of the
error integral are more prone to deviate the heuristic
search process. On the other hand, infeasible trajectories
with less integral of errors for orbital elements, generally
aids the adaptive operators to grasp the feasible region
with more perception. Such consideration necessitates that
the orbital parameters remain near their ultimate value
throughout the entire trajectory. The final error has the
coefficient KE , which increases its weight relative to the
other term. As the main focus of this research does not
involve tuning this coefficient, it has been set to KE = 10
in order to adjust the priority of the final error. It is
important to note that both E(tf ) and G are 1×5 vectors.
The objective of the developed algorithm is to identify
a vector of decision variables, as defined in Eq. 15,
that minimizes the objective function expressed by Eq.
17, while concurrently satisfying the presented nonlinear
constraints G ≤ 0 defined by Eq. 19.

A. Evolutionary Algorithms

Population-based techniques, particularly EAs, are
among the most reliable methods in facing real-world
optimization problems. Their ability in finding high qual-
ity solutions and their practicality in dealing with local
optimal regions of the search space makes them popular
in facing modern optimization problems. In a general
perspective, EAs work based on increasing the quality of
a population of solutions in an iterative manner instead of
trying to find a single high-quality solution. Fig. 1 shows
the overall workflow in an EA.

As it is demonstrated in Fig. 1, the optimization
process in EAs starts by forming an initial population.
This can be achieved either via a random seed or having
a predefined population. Then, the quality of the solutions
within the population is evaluated. For unconstrained
optimization problems, the objective values determine the
quality of solutions. In constrained optimization problems,
the objective values along with the constraint violations
are considered as a metric for evaluation. Then, the stop-
ping conditions are checked for continuing or terminating
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infeasible transfer trajectory with respect to the desired orbital value. Regarding the last note on the integral 
of the error, it should be clarified that the amount of constraint violation is a key factor for adaptive 
operators in discovering feasible region of the search domain. Infeasible trajectories with high constraint 
violation in terms of the error integral are more prone to deviate the heuristic search process. It agrees with 
the fact that infeasible trajectories with less integral of errors for orbital elements, generally aids the kernel 
density to grasp the feasible region with more perception. As stated previously, the adaptive operators which 
will be discussed later on after this section, are tailored to this approach, and the presented form of 
constraint function makes the learning and mapping mechanisms detect feasible regions with more efficiency. 
Additional explanations for clarifying the structure of the constraint function are added to the paper.

Comment: 

Pag. 11, Algorithm 1: In my opinion, the way the algorithm is presented (only “very basic” 
information and key-words”) does not help the reader understanding the algorithm, especially in 
case they are not familiar with EAs. 

Response: 

Thanks. 

Population-based techniques, particularly EAs, are among the most reliable methods in facing real-world 
optimization problems. Their ability in finding high quality solutions and their practicality in dealing with 
local optimal regions of the search space makes them popular in facing modern optimization problems. In a 
general perspective, EAs work based on increasing the quality of a population of solutions in an iterative 
manner instead of trying to find a single high-quality solution. Fig. 1 shows the overall workflow in an EA. 

As it is demonstrated in Fig. 1, the optimization process in EAs starts by forming an initial population. This 
can be achieved either via a random seed or having a predefined population. Then, the quality of the 
solutions within the population is evaluated. For unconstraint optimization problems, the objective values 
determine the quality of solutions. In constraint optimization problems, the objective values along with the 
constraint violations are considered as a metric for evaluation. Then, the stopping conditions are checked for 
continuing or terminating the process. The stopping conditions vary depending on the problem, and they 
may include reaching a maximum number of iterations, or availability of a solution that satisfies the 
expected quality and feasibility. If the conditions are met, which is very unlikely at the first iteration, the 
optimization process ends. Otherwise, the improvement is applied to the population in order to increase the 
quality of the solutions. The improvement phase includes metaheuristic operations, and varies in different 
EAs. For example, in GA, these operations are done via crossover and mutation operators. In PSO, velocity 
vectors are updated and applied to the solutions for improving the quality, and in EDAs, probabilistic models 
are learned and new solutions are sampled. After the improvement, the quality of the new population is 
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Fig. 1: Overall workflow of EAs

the process. The stopping conditions vary depending on
the problem, and they may include reaching a maximum
number of iterations, or availability of a solution that sat-
isfies the expected quality and feasibility. If the conditions
are met, which is very unlikely at the first iteration, the
optimization process ends. Otherwise, the improvement
is applied to the population in order to increase the
quality of the solutions. The improvement phase includes
metaheuristic operations, and varies in different EAs. For
example, in GA, these operations are done via crossover
and mutation operators. In PSO, velocity vectors are
updated and applied to the solutions for improving the
quality, and in EDAs, probabilistic models are learned and
new solutions are sampled. After the improvement, the
quality of the new population is evaluated again, followed
by checking the stopping conditions. This loop continues

until one of the stopping conditions are met. By the end
of the optimization process, the top solution with the
highest quality in terms of objective value and constraints
violation is considered as the output of the algorithm.

B. Estimation of Distribution Algorithm

Among the variety of EAs, one type of optimization
algorithm that has been shown to be effective in dealing
with complex real-world optimization problems is EDAs
[22]. EDAs are a family of EAs, first introduced by Muh-
lenbein and Paass [23], that work based on probabilistic
models. Unlike GAs, where the crossover and mutation
operators are used for the movements of the populations in
the search space, there are neither crossover nor mutation
operators in EDAs. Instead, the new population of individ-

Algorithm 1: Overall workflow of EDA++ [21]
Input: Objective function F , Constraints function G, Boundaries Xmin,Xmax

Settings: Algorithm parameters: Kernel Density ξ, Distance Threshold λ
/* Invoke SEEDING mechanism */

1 X0 ← Randomize initial population
/* Perform EVALUATION */

2 F0 ← F(X0) ; G0 ← G(X0)
3 while no conditions are satisfied for process termination do

/* Invoke SELECTION mechanism */
4 Xsel ← Select top solutions via Truncation Method from Xi

/* Invoke LEARNING mechanism */
5 Q ← Build a mixture of probabilistic model from Xsel with respect to λ
6 [Φ, ϕ]← Retrieve clusters from the mixture model

/* Invoke SAMPLING mechanism */
7 [XΦ,X ϕ]← Sample new solutions from [Φ, ϕ]
8 Xi+1 ← Form new population from [XΦ,X ϕ] with respect to ξ

/* Invoke REPAIRING and MAPPING mechanisms */
9 Xi+1 ← map infeasible solutions of Xi+1 with respect to Xmin and Xmax

/* Perform EVALUATION */
10 Fi+1 ← F(Xi+1); Gi+1 ← G(Xi+1);

/* Invoke REPLACEMENT mechanism */
11 Xi+1 ← Form new population from [Xi,Xi+1]

Output: Best solution
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uals is sampled from a probability distribution, which is
estimated from a database containing selected individuals
from the previous generation.

EDAs have been used in variety of research to deal
with different problems in aerospace community [24].
Although EDAs have shown to be competitive and reliable
EAs, they were not given much attention in spacecraft
trajectory optimization similar to GA, PSO, and DE [4].
The most recent version of EDAs is EDA++, which
has been recently developed for constrained continuous
optimization problems [21]. EDA++ incorporates multiple
heuristic mechanisms to effectively handle the satisfaction
of nonlinear constraints, surpassing rival EAs in terms of
both efficiency and execution time. However, it should
be noted that EDA++ treats the optimization problem as
a black box, lacking any adaptive capabilities. Since it
benefits from a dynamic framework of probabilistic mod-
els, it has a good potential for adaptations towards chal-
lenging optimization problems in continuous domain with
nonlinear constraints. The pseudocode for this algorithm
is presented in Algorithm 1. This EDA is equipped with
mechanisms that prioritize feasibility conservation, with
the objective of swiftly uncovering high-quality feasible
solutions within the context of constrained continuous
optimization problems. In this subsection, the overall
workflow of the original algorithm is briefly described.
However, the intricate mechanisms and the optimization
process involved in this research exceed the scope of this
article. Therefore, it is highly recommended that readers
refer to [21] for in-depth discussions on the development,
performance evaluation, and specific details pertaining to
the workflow of the original algorithm before delving
deeper into the subject matter.

The algorithm comprises multiple mechanisms that
rely on probabilistic models, which are employed
throughout the optimization process. Two parameters in-
cluding kernel density (ξ) and distance threshold (λ),
which will be explained in the next subsection, control
the performance of the algorithm. Initially the algorithm
starts with the seeding mechanism, aimed at exploring the
search space for initial feasible solutions (Line 1 of Alg.
1). The initial population is evaluated and the objective
values and constraint violations are extracted (Line 2
of Alg. 1). Then, the main loop begins if the expected
solution is not achieved. Having the initial population,
most promising individuals are chosen via the selection
mechanism. Truncation method is utilized to extract the
top quality solutions (Line 4 of Alg. 1). Then, the learning
mechanism construct a mixture of probabilistic models
based on the population of selected individuals (Line 5 of
Alg. 1) with respect to the distance threshold λ. The mix-
ture model has two types of components, including parent
clusters Φ and smart clusters ϕ, and each component
possesses a special information about the search domain
(Line 6 of Alg. 1). After constructing the probabilistic
model, new solutions are generated via the sampling
mechanism (Line 7 of Alg. 1). The population size for
each type of cluster varies, depending on the kernel

density ξ (Line 8 of Alg. 1). The newly obtained solutions
are refined via the repairing mechanism and the mapping
mechanism to satisfy the boundaries and constraints (Line
9 of Alg. 1). Finally, the quality of the new population
is evaluated (Line 10 of Alg. 1) and the replacement
mechanism combines the newly obtained population with
the existing population and extracts the best obtained
solution (Line 11 of Alg. 1). Every mentioned mechanism
possesses various parameters that govern the algorithm’s
behavior. Modifying these parameters entails a trade-off
between the algorithm’s exploration and exploitation ca-
pabilities, effectively navigating the search domain. In this
research, two of these parameters (ξ and λ) are aimed to
be adapted by the features of the low-thrust orbit transfer
problem. The justifications of choosing this algorithm lies
upon the fact that it outperforms the majority of modern
constrained continuous optimization algorithms. Also, due
to its utilization of the framework of EDAs, an algorithm
from this class encompasses numerous parameters and
components that are linked to probabilistic models. These
elements serve to regulate its exploration and exploitation
abilities, thereby granting it a considerable degree of
adaptability and flexibility. To solve the formed prob-
lem, two novel operators for EDA++ are developed to
make it adaptive based on the complexity of the orbit
transfer problem. These operators are associated with two
algorithm parameters, which control the exploration and
exploitation capabilities of the algorithm.

C. Algorithm Parameters

Kernel density ξ is one of the key parameters, associ-
ated with the sampling mechanism (Line 8 of Alg. 1) that
acts as a balancing threshold for dedicating populations
to parent clusters and smart clusters. It specifies whether
the newly generated solutions belong to the parent clusters
or the smart clusters. In each iteration with i being the
counter for iterations, new solutions are sampled based
on the parent clusters Φ and smart clusters ϕ as

Xi =
{
{XΦ

i,j ,X ϕi,k}|j ∈ {1, ..., ξNpop},

k ∈ {1, ..., (1− ξ)Npop}
} (22)

where XΦ and X ϕ are the generated solutions associated
with parent clusters and smart clusters respectively, while
j and k are the indices of the solutions in each component.
As can be appreciated, ξ has a boundary of 0 < ξ < 1. By
default, choosing ξ = 0.5 makes the algorithm dedicate
populations with equal sizes between the parent clusters
and smart clusters. Increasing the value of this parameter
results in higher population size for parent clusters and
lower population size for smart clusters, and vice versa.
Therefore, high values yield less number of samples in
smart clusters, hence increases the exploitation of the
search process.

Another parameter is outlier detection distance thresh-
old λ, which is associated with the learning mechanism
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(Line 5 of Alg. 1) and specifies the distance limit from
the centroid of parent clusters for detecting smart clusters.
This parameter controls the sensitivity of the learning
mechanism in building the mixture model. Each potential
solution YΦ

i of the parent cluster Φ in ith iteration, is
considered as the centroid of a new smart cluster if the
following condition is satisfied:

|YΦ
i − µΦ

i |
σΦ
i

> λ (23)

where µΦ
i is the centroid of the parent cluster, and σΦ

i

is the variance of solutions of the parent cluster. The
parameter λ is a coefficient of variance and has a typical
limits of 1 < λ < 2. High values of this parameter
reduces the sensitivity of detecting outliers, following by
the increment of exploitation.

D. Problem Identifiers

The algorithm parameter selection for the proposed
orbit transfer problem is challenging due to its high
complexity. In order to adapt the two aforementioned
parameters, λ and ξ, they are chosen based on the
characteristics of the space mission, considering the given
mission parameters P in Eq. 3. Each unique problem
consists of thirteen parameters in P . However, it is
more convenient to analyze the search domain structure
using fewer parameters. Instead of considering the explicit
absolute values of the initial and desired orbital elements,
their differences are taken into account. Additionally, the
thrust to weight ratio is considered rather than individual
thrust and mass values. Following this approach, three pa-
rameters called problem identifiers are defined as follows.

D1 =
(aD − aI

6Re

)2
+
(
eD − eI

)2
(24)

D2 =
( iD − iI

π

)2
+
(ΩD − ΩI

2π

)2
+
(ωD − ωI

2π

)2
(25)

D3 =
Tmax

mI
(26)

where Re is the mean radius of Earth, and the orbital
angles in D2 are in radians. According to the presented
identifiers, the three parameters D1, D2, and D3 represent
different aspects of the space mission. D1 signifies the
intended change in the shape of the space orbit, D2

represents the desired orientation of the space orbit, and
D3 denotes the available acceleration that can be utilized
to successfully complete the space mission. Based on
the presented mathematical model of the problem, space
missions with high D1 and D2 and low D3 in general,
yield optimization problems characterized by high di-
mensions. However, the variation of dimensions due to
changes in problem identifiers are non-linear. Note that Isp
is dismissed as a problem identifier in this research due to
the fact that it has relatively less impact on the shape of
the search domain in comparison to other parameters, and
it has shown to be a weak problem identifier. This claim

will be justified in the following subsection. Besides the
problem identifiers, an augmented cost function is defined
for landscape feature analysis as

J (F ,G) =


F
mI

, if max(G) ≤ 0∑
G, otherwise

(27)

where F and G represent two functions associated with
the objective and constraints violation as in Eq. 17 and Eq.
18 respectively. Clearly, the augmented cost function has
the range of 0 < J ≤ 1 for feasible trajectories and 1 < J
for infeasible trajectories. It is important to clarify that the
augmented cost function described here is solely utilized
for landscape feature analysis and not for optimization
purposes. The optimization algorithm employed in this
context possesses its own internal mechanisms to handle
objectives and constraints [21].

E. Landscape Features

To design effective adaptive operators, it is crucial
to identify the complexity inherent in the problem. The
goal is to discover the effects of problem identifiers D1,
D2, and D3 on the augmented cost function J , and
try to match them with algorithm parameters λ and ξ
accordingly. The most common approach for achieving
this goal is using FLA techniques in extracting the char-
acteristics of the problem [25]. FLA methods propose
various metrics for quantifying the problem character-
istics. A comprehensive survey by Ochoa and Malan
[26] introduces variety of these methods. Perhaps the
only attempt in utilizing FLA metrics to analyze the
difficulty of spacecraft trajectory optimization problems is
the work by Choi and Park [27], which has been recently
presented. The authors conducted thorough research to
investigate the complexity of several renowned problems
sourced from the Global Trajectory Optimization Prob-
lems (GTOPs) database [28] using various metrics derived
from FLA. However, no research has been concentrated
on the development of EAs based on the information
that are acquired via the FLA techniques in spacecraft
trajectory optimization.

The dispersion metric, introduced by Lunacek and
Whitley [29], is considered as one of the most practical
metrics for FLA. It provides valuable insights into the
structural characteristics of the search domain. Specifi-
cally, the dispersion metric quantifies the average distance
between pairs of individuals identified as high-quality
solutions. Originally designed for continuous optimization
problems, this metric has subsequently been employed to
examine the search landscape of numerous problem do-
mains [30], [31]. The measure of dispersion quantifies the
degree to which high-quality solutions are concentrated
within a specific problem domain as

ψ =
1

ζnψ(ζnψ − 1)

ζnψ−1∑
i=1

ζnψ∑
j=i+1

||Xi −Xj || (28)
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where ψ represents the dispersion value, ζ represents the
top percentage of chosen samples based on the augmented
cost function J , and nψ represents the total number of
selected populations. By scaling the distances, the disper-
sion value is confined as 0 < ψ < 1. This metric allows
us to identify the evolvability of the solution domain
and deception of the search space in the proposed orbit
transfer problem, while considering the computational
complexity as O(ζnψ2). When the samples approach the
search space with the most promising solutions (i.e., when
ζ decreases), an increase in dispersion indicates a weak
global structure. This weak structure makes the problem
more challenging to solve, requiring additional explo-
ration. Conversely, if lowering the threshold of promising
solutions leads to low dispersion, it indicates that more
exploitation is necessary to reach the global optimal
solution.

Using the suggested metric and problem identifiers,
an analysis of the problem landscape is conducted on a
dataset of space missions. To create a grid-like dataset of
space missions, we initially consider 1000 distinct space
missions. These missions are uniformly generated, taking
into account the following mission parameters.

6600 km <aI , aD < 42164 km

0 <eI , eD < 0.8 (s. t. rp > Re + 200 km)

0 <iI , iD < π

0 <ΩI ,ΩD < 2π (29)
0 <ωI , ωD < 2π

10−3 N <Tmax < 10 N

300 kg <mI < 2000 kg

1500 s <Isp < 5000 s

Then, additional mission sets are also generated and
added to the data set with respect to the following rule.
For each generated mission set, one identifier is consid-
ered and the mission parameters of that identifier are kept
fixed, while other mission parameters affecting the other
two identifiers are randomized to generate 30 additional
mission sets. Same process is applied for the other two
identifiers as well, and all newly generated mission sets
are appended to the initial mission sets. By taking into
account a range of thresholds, the dispersion is calculated
for each problem by generating 100 solutions that are uni-
formly distributed within the defined boundaries of Xmin

and Xmax for each respective problem. To evaluate the ro-
bustness of the feature, 50 different samples are taken for
each problem and the dispersion is extracted with different
thresholds. The bound-normalized dispersion values for
three problem identifiers are depicted in Fig. 2, Fig. 3,
and Fig. 4. For each value of problem identifiers, the mean
and standard deviation of the resulting dispersion values
are given based on various thresholds.

According to the normalized dispersion for orbital
shape, a relatively large decrease in dispersion can be
observed when the problem identifier D1 increases. This
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Fig. 2: Variation of dispersion with orbital shape
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Fig. 3: Variation of dispersion with orbital orientation
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Fig. 4: Variation of dispersion with accessible acceleration

variation indicates that orbital transfers characterized by
significant variations in semi-major axis and eccentric-
ity result in high-quality solutions that are increasingly
proximate to one another. This observation aligns with
the understanding that as the desired change in orbital
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Isp 

Fig. 5: Variation of dispersion with specific impulse

parameters increases, a larger number of revolutions,
thrust arcs, and on-off thrust profiles must be identified for
successful orbit transfers. Same insight can be inferred for
the orientation of the space orbit based on D2 identifier.
The changes of dispersion for D3 has a different variation
in comparison to D1 and D2. As can be observed from
Fig. 4, the dispersion has an increasing variation. These
changes can be identified as the value of the identifier
for accessible acceleration goes up, and also when the
threshold is increased from ζ = 0.050 to ζ = 0.150.
The dispersion variation for D3 endorses that the solution
domain is more chaotic when thrust to mass ratio is low
for a given orbit transfer problem.

Recalling that the specific impulse was dismissed as a
problem identifier, the dispersion value for this variable is
plotted in Fig. 5. As can be observed, unlike the proposed
identifiers, no explicit pattern can be observed for Isp
based on changes within the dispersion threshold and
the increment of this variable, certifying that dispersion
cannot grab much information about the structure of the
search domain through the specific impulse.

Analysis of standard deviations of dispersion shows
a slight decreasing variability of dispersion between se-
lected samples for all problem identifiers. It indicates high
discriminative ability of dispersion when orbital changes
are not high. Also, it can be observed that the variation
of dispersion approaches to zero as problem identifiers
increase, indicating an insignificant change in the land-
scape structure captured by dispersion for large changes
in orbital shape and orientation. Note that it can be
mathematically proved that for an ideal problem identifier,
dispersion converges to 1/

√
6 as problem dimension tends

to infinity [32]. The analysis of the proposed metric con-
firms its relative reliability in describing the complexity of
the presented low-thrust trajectory optimization problem.

F. Adaptive Operators

By utilizing Eq. 28, the proposed landscape metric can
be computed based on a space mission parameter vector

P . The evolution of the dispersion value is monitored as
ζ decreases, while ensuring it remains within the range
of 0.05 < ζ < 0.15. The dispersion difference, denoted
as ∆ψ, is then employed as an indicator to classify the
complexity of the orbit transfer. A negative value of ∆ψ
indicates that the best fitness values are concentrated
within a small sub-region of the search space. This implies
that a greater emphasis on exploitation of the search
domain is necessary to uncover promising solutions. A
∆ψ value close to 0 signifies that the best fitness values
are evenly distributed throughout the entire search space.
On the other hand, higher ∆ψ values suggest the presence
of localized promising solutions in distinct remote fun-
nels. Consequently, algorithms with enhanced exploration
capabilities are generally preferred in such cases.

Following the proposed FLA metric, two heuristic
models are proposed in this research to connect the prob-
lem complexity (∆ψ) to the aforementioned algorithm
parameters (ξ and λ). These heuristic functions are mainly
defined based on the natural expected performance of the
optimization algorithm within the tuning process of its
exploration and exploitation capabilities. It is noteworthy
that, the nature of heuristic models is that they are not
guaranteed to be the best existing models to properly alter
the search process in the best possible way. However, in
most cases they work and produce high satisfactory solu-
tions. Current research is the first attempt in developing a
rule of thumb approach for adaptive operators of EDA++.

The main challenge which has been considered in
designing the adaptive operators is the type of knowledge
used by the operators and the type of feedback they per-
ceive regarding the complexity of the spacecraft trajectory
optimization. Positive knowledge means that the operator
rewards correct search direction and negative knowledge
means that the operator penalizes bad guidance of the
search process. By rewarding or penalizing exploration
and exploitation within the search process, the algorithm
generates some belief about the good or bad areas in
the search. A positive search strategy biases the search
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Fig. 6: Adaptive kernel density for assigning clusters’
population

10 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023



towards a good area of the search space, and a negative
search strategy avoids an infeasible search space to ex-
plore promising areas in the search space. Having these
insights in mind, the adaptive operator for kernel density
is defined as

ξ =
Kξ

1 + (∆ψ + 1)2
(30)

where Kξ is the kernel density coefficient, which is
updated within the optimization process as

Kξ = 0.5 + 0.4ϵ2 (31)

where ϵ represents the proportion of the computational
budget utilized during the optimization process, indicating
the progress made. Fig. 6 demonstrates how the proposed
kernel density changes as the dispersion evolves over
time. It can be noted that the kernel density adjusts ac-
cording to the evolution of dispersion in the orbit transfer
problem, which fluctuates based on the chaotic nature
of the search space. When the trajectory optimization
problem for the desired orbit transfer has a high dispersion
evolution, the kernel density assigns lower values. Conse-
quently, the number of populations within the intelligent
clusters increases, enhancing the algorithm’s exploration
capability. Conversely, for low dispersion evolution, the
kernel density is increased, resulting in a probabilistic
model with denser parent clusters and greater exploitation
during the search process. As can be observed, the kernel
density is scaled from 0.1 to 0.9, which means there is
always ten percent reserved population for each type of
clusters (Φ and ϕ). The reason for such consideration
is to prevent the operator to assign zero population to
either type of clusters. The other observation that can
be highlighted is that the kernel density does not have
a symmetric variation for ∆ψ ≥ 0 and ∆ψ ≤ 0. Eq. 30
shows that the dedication of population to parent clusters
is more prone to dispersion evolution. The main reason
for such a consideration lies upon the natural behaviour
of the employed optimization framework, in which sharp
variation of kernel density for smart clusters is more
preferred for finding high quality solutions. Statistically,
the proposed variations have shown to be more effective
in finding optimal transfer trajectories while maintaining
feasibility.

Besides the kernel density, the adaptive operator for
adjusting outlier detection distance threshold is defined as

λ = Kλ cos(π
∆ψ + 1

2
) +Kλ + 1 (32)

with Kλ being the coefficient for outlier detection distance
threshold, defined as

Kλ = 0.25(1 + ϵ2) (33)

which indicates its nonlinear dependency on the opti-
mization progress. The variation of the presented adap-
tive operator is illustrated in Fig. 7. This representation
shows gradual decrease in the outlier detection distance
threshold as the search space requires more exploration,
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Fig. 7: Adaptive outlier detection distance threshold

i.e. high values of ∆ψ. There is a slight decrease in the
sensitivity of the algorithm for detecting smart clusters
as the optimization goes on (increase in ϵ yields less
sensitivity for low dispersion evolution values). Also, the
strictly monotone decreasing function for outlier detection
distance threshold covers the bounds of this algorithm
parameter based on the amount of dispersion evolution
of orbit transfer problem, as high ∆ψ values correspond
to lower detection threshold for smart clusters, which
comes with more exploration. The nonlinear variation has
shown to be inline with more feasibility maintenance of
the search process.

IV. MISSION SCENARIO

The proposed approach has been applied in a non-
coplanar orbit transfer problem considering various thrust
levels. The capability of the proposed adaptive operators
are evaluated by comparing the quality of the obtained so-
lutions via the proposed EDA with the obtained solutions
via non-adaptive EDA. Using the proposed algorithm, the
kernel density ξ and outlier detection distance threshold
λ as presented in Eq. 30 and Eq. 32 are considered within
the algorithm, while the rest of the algorithm parameters
has been adjusted similar to [21]. The integration time
step is set to 20s and the arbitrary orbital elements of the
initial and final orbits are assumed as in Table I.

TABLE I: Orbital elements of initial and final orbits
Initial orbit Final orbit

a 38000 km 11700 km
e 0.05 0.2
i 70◦ 40◦

Ω 175◦ 255◦

ω 195◦ 330◦

In this orbit transfer, the initial mass of the spacecraft
is assumed to be mI = 840kg, while the specific impulse
is considered as Isp = 2300s. The thresholds for targeting
desired orbital elements in Eq. 18 are considered as σa =

AUTHOR ET AL.: SHORT ARTICLE TITLE 11



Z
 (k

m
)

Z
 (k

m
)

Z
 (k

m
)

Z
 (k

m
)

Z
 (k

m
)

Fig. 8: Minimum-fuel orbit transfer for Tmax = 1.0N
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Fig. 9: Minimum-fuel orbit transfer for Tmax = 1.7N

10 km, σe = 10−3, σi = 10−2◦ , σΩ = 10−1◦ , σω =
10−1◦ . The problem is tackled with five different thrust
levels of Tmax = 1.0N , Tmax = 1.7N , Tmax = 2.4N ,
Tmax = 3.1N , and Tmax = 3.8N . The obtained results
are summarized in Table II, while the transfer trajectories
for different thrust levels are illustrated in Fig. 8 to Fig.
12.
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Fig. 10: Minimum-fuel orbit transfer for Tmax = 2.4N
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Fig. 11: Minimum-fuel orbit transfer for Tmax = 3.1N

According to the obtained results, the proposed ap-
proach managed to find feasible solutions in all cases.
For Tmax = 1N , the orbit transfer is accomplished in 246
revolutions within 2172.7043 hours. As the thrust limit
increases, the achieved transfer trajectory corresponds to
less transfer time and orbital revolutions, ending with
transfer time down to 684.2225 days with 80 revolutions
for Tmax = 3.8N . The differences between the values of

TABLE II: Characteristics of transfer trajectories for each maximum thrust limit
Tmax [N ] Rev. tf [h] Ea[km] Ee Ei[deg] EΩ[deg] Eω [deg]

1.0 246 2172.7043 8.8369 1.9189e-4 9.7558e-3 7.6068e-3 1.5612e-2
1.7 156 1368.9828 5.0644 6.4373e-5 2.3831e-3 8.6188e-2 4.0312e-3
2.4 118 1040.2255 5.4856 4.9598e-5 6.2228e-3 2.7771e-3 2.3147e-3
3.1 94 811.6097 7.9372 3.5017e-5 4.8484e-3 1.0696e-3 3.0198e-3
3.8 80 684.2225 4.6495 1.8960e-6 1.8065e-3 9.2294e-3 3.3466e-4
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Fig. 12: Minimum-fuel orbit transfer for Tmax = 3.8N

the desired orbital elements and those associated with the
obtained solutions are also provided in Table II, indicating
the feasibility of the transfer trajectory with respect to the
desired thresholds for each orbital element defined in Eq.
18. In this regard, the Tmax = 1N case has shown to be
the most complicated case for satisfaction of constraints,
specially towards reaching the desired inclination and
argument of perigee.

Noting that the solution of multi-impulse transfer for
this problem that has been utilized for the proposed
approach corresponds to total velocity change of ∆v =
4.5118km/s and the final mass of m(tf ) = 674.6303kg.
The resulting thrust profile for each case is available. Fig.
13 shows the components of thrust vector for Tmax = 1N
while the time-histories of direction angles α(t) and β(t)
are depicted in Fig. 14. It can be observed how five
nodes interpolation parameterization of the steering angles
in each thrust arcs yields the optimal transfer trajectory.
Although it is possible to increase the number of discrete
nodes in the model, the attainment of a feasible solution
serves as empirical evidence validating the appropriate-
ness of the selected number of dedicated discrete nodes
for parameterizing the steering angles. Moreover, Fig.
13 and Fig. 14 include two subplots, representing the
variations in two time brackets. As can be appreciated,
the bang-bang control profiles can be identified for the
optimal input function. They also indicate that as the
spacecraft reaches the final orbit, higher number of on-
off switches are associated with the optimal transfer
trajectory. This can be inferred from the fact that for the
same duration of 50 hours, there are 4 on-off switches
within the time bracket of 500 < t < 550. However,
when 2000 < t < 2050, near 12 on-off switches can be
identified in the optimal thrust profile. This observation
is inline with the fact that the orbital period of the final
orbit is much less than the initial orbit, thus the transfer

trajectory ends up in more frequency of thrust switches
for transition between coast arcs and thrust arcs.

Following the presented orbit transfer problem, the
performance of the proposed approach is compared with
the non-adaptive version of EDA. For every case of Tmax,
each algorithm is implemented and executed in 30 runs
with same computational budget. Table III summarizes the
achieved results. Two parameters for the measurement of
algorithm performance are calculated. The first parameter
to consider is the feasibility ratio (FR) of each algorithm,
which represents the proportion of successful runs in
which a feasible transfer trajectory was obtained out
of the total number of runs attempted (satisfying the
constraints G ≤ 0 in Eq. 19) disregarding the amount of
fuel consumption (the objective function value F in Eq.
17). The other parameter is the relative best percentage
(RBP), which is calculated as

RBP = min(100× F⃗ − F
∗

F∗ ) (34)

where F⃗ represents the vector of objective values cor-
responding to the feasible solutions obtained by the
algorithm, and F∗ represents the best solution obtained
among both algorithms. A RBP (Relative Best Percent-
age) value of zero indicates that the algorithm successfully
found the best possible solution compared to the other
algorithm. Any non-zero value indicates the relative dif-
ference between the best obtained solution and the global
best solution. According to the comparison presented in
Table III, the proposed adaptive approach consistently
found feasible solutions in all runs for Tmax = 3.1N
and Tmax = 3.8N . The non-adaptive EDA has shown
competitiveness, although with slightly lower feasibility
ratios. Additionally, considering the RBP values, it can be
confirmed that the best obtained solution for Tmax = 1N ,
Tmax = 1.7N , and Tmax = 3.8N belongs to the proposed
adaptive approach. For the cases of Tmax = 2.4N and
Tmax = 3.1N , the best obtained solution through the
adaptive approach is extremely close to the one obtained
via the non-adaptive EDA, with RBP values on the order
of 10−8 and 10−9, respectively. Overall, it is evident that
the advantage of using the adaptive approach is more
pronounced for lower levels of thrust.

TABLE III: Comparison of the algorithms’ performance
in 30 runs

Adaptive approach Non-adaptive approach
Tmax [N ] FR RBP FR RBP
1 73.33% 0.000e+ 00 36.67% 3.197e+ 01
1.7 86.67% 0.000e+ 00 53.33% 6.649e+ 00
2.4 93.33% 3.704e− 08 66.67% 0.000e+ 00

3.1 100% 4.432e− 09 83.33% 0.000e+ 00
3.8 100% 0.000e+ 00 96.67% 1.447e+ 01
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Fig. 13: Components of thrust vector during the orbit transfer for Tmax = 1.0N with detailed representations for time
intervals 500 < t < 550 and 2000 < t < 2050

Fig. 14: Variation of thrust direction angles for Tmax = 1.0N with detailed representations for time intervals 500 <
t < 550 and 2000 < t < 2050

V. DISCUSSION

The developed approach in this research is an early
attempt to bring the modern concept of adaptiveness
from evolutionary computations into the subject of space-
craft trajectory optimization. Following the majority of
research from the literature regarding the development of
EAs in discovering optimal transfer trajectories, it can
be observed that studying the difficulty of the problem
and connecting the complexity of the search domain to
the adjustment of the optimizer has not be given much
attention. However, in the proposed approach of current
research, the algorithm parameters are adapted not only
based on the progress of the optimization, but also based
on the complexity of the search domain of the problem
that is aimed to be solved. As proposed, the adaptive
operators for kernel density ξ and the outlier detection
distance threshold λ depend on both the optimization
progress ϵ and the dispersion variation ∆ψ.

Several notes can be highlighted regarding the pro-
posed adaptive approach. One key aspect is the proposed
problem identifiers in Eq. 24, Eq. 25, and Eq. 26. As

presented, the landscape feature analysis in this research is
based on orbital shape (D1), orbital orientation (D2), and
accessible acceleration (D3). However, it does not give
useful insight regarding the changes of search space due
to the variation of every individual orbital elements. For
instance, the approach does not differentiate transferring
from a0 = 10000km to af = 11000km and from
a0 = 11000km to af = 12000km since both have the
same value of D1 considering identical values for the
rest of the mission parameters. Therefore, it will be more
promising for future research to perform deeper analysis
and consider all elements of P instead of D1, D2, and D3

to analyze the search domain of the orbit transfer problem.
The choice of the dispersion metric is another aspect,

which can be evaluated further. Since this research is
the first study in which the FLA techniques are utilized
in spacecraft trajectory optimization, it is still unknown
whether the dispersion was the best choice for developing
adaptive operators within the proposed direct approach.
The door has been left open for utilizing other FLA
metrics such as fitness distance correlation (FDC), length
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scale (LS), and fitness cloud (FL) in discovering optimal
transfer trajectories [27]. However, it is noteworthy that
employing every metric has its own limitations and re-
strictions. For example, FDC requires the global optimal
solution to be available. Therefore, it is not applicable in
the majority of spacecraft trajectory optimization prob-
lems since the optimal transfer is usually unknown.

As proposed, the calculation of dispersion comes
with the computational complexity of O(ζnψ2), which
is a critical drawback of the proposed approach in this
research. Several methods can be employed to overcome
this computational complexity. One solution is to estimate
the dispersion value instead of directly calculating it.
This concept brings new machine learning techniques and
frameworks into the proposed approach. Many supervised
learning methods with variety of classifiers can be uti-
lized. The k-nearest neighbors algorithm (k-NN) [33] can
be considered as an effective technique for estimating the
dispersion value. Although it may produce some errors
in estimation of dispersion, deep analysis can show the
reliability of utilizing k-NN in reducing the computational
burden.

VI. CONCLUSION

This research was dedicated to the development of
an adaptive strategy, which combines EDAs and FLA
methods to achieve optimal low-thrust space transfer
trajectories. The obtained results from the implementation
of the presented method indicated that the proposed
adaptive operators can guide the exploration and ex-
ploitation capabilities of the algorithm in an efficient
manner. Convergence to feasible solutions substantiates
the practicality of the utilized hybrid method in providing
an initial guess based on multi-impulse orbit transfer for
low-thrust trajectory optimization. Also, the selection of
the dispersion as a metric for measuring the complexity of
the low-thrust trajectory optimization problem has shown
to be a reasonable choice, since the resulting adaptive
approach outperformed the non-adaptive version of the
algorithm. Future research will be dedicated to consider-
ing other FLA metrics in developing adaptive algorithms
in spacecraft low-thrust trajectory optimization.
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