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Abstract—Epilepsy is a chronic neurological disorder that affects
a significant portion of the human population and imposes
serious risks in the daily life. Despite advances in machine
learning and IoT, small, non-stigmatizing wearable devices for
continuous monitoring and detection in outpatient environments
are not yet widely available. Part of the reason is the complexity
of epilepsy itself, including highly imbalanced data, multimodal
nature, and very subject-specific signatures. However, another
problem is the heterogeneity of methodological approaches in
research, leading to slower progress, difficulty in comparing
results, and low reproducibility. Therefore, this article identifies
a wide range of methodological decisions that must be made
and reported when training and evaluating the performance
of epilepsy detection systems. We characterize the influence
of individual choices using a typical ensemble random-forest
model and the publicly available CHB-MIT database, providing
a broader picture of each decision and giving good-practice
recommendations, based on our experience, where possible.

Index Terms—Methodological choices, machine learning, seizure
detection, epilepsy, data selection, cross-validation approaches,
performance metrics, reproducibility, comparability

1. Introduction
In recent years, advances in signal processing, machine

learning algorithms, the Internet of Things (IoT), and wear-
able devices have enabled various continuous monitoring
applications in many domains, particularly health monitoring.
One such example is epilepsy detection, with the ultimate
goal of having small, non-stigmatizing, wearable devices
for long-term epilepsy monitoring in patients’ homes and
everyday life, rather than limited to in-hospital monitoring.
Epilepsy is a chronic neurological disorder characterized
by the unexpected occurrence of seizures, imposing serious
health risks and many restrictions on daily life. It affects a
significant portion of the world’s population (0.6 to 0.8%) [1],
of which one third of patients still suffer from seizures despite
pharmacological treatments [2]. Thus, there is a clear need
for solutions that allow continuous unobstructed monitoring
and reliable detection (and ideally prediction) of seizures [3],
[4]. Furthermore, these solutions will be instrumental in the
design of new treatments, assisting patients in their daily
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lives, and preventing possible accidents. This need is also
evident in the growing number of publications on seizure
detection methods [5], [6] and wearable devices [7], [8].

However, although many studies report impressive lev-
els of accuracy via machine learning (ML) methods, the
widespread adoption of commercial technology has not yet
occurred. The reasons for this are many and include the
specificities of epilepsy itself. For example, to properly
characterize epileptic seizures, recordings must be continuous,
often lasting days and leading to extremely unbalanced
datasets. This imbalance must be taken into account when
preparing the data set, splitting it into training and testing,
training epilepsy detection models, and reporting final perfor-
mance values. Another challenge is the fact that epilepsy is
a holistic phenomenon affecting many signal modalities, and
thus, to get a full picture, multimodal data are needed from
several different sensors. How to efficiently process all this
data and fuse information and predictions remains an open
research topic [9]. Finally, seizures show highly personalized
patterns, which require new methods of personalizing general
models (that were developed from many subjects) using the
characteristics of individual patients [10], [11].

The last reason for slower progress is that the way studies
are designed, algorithms assessed, and results reported is
very heterogeneous. Several recent reviews provide results
from a broad range of ML approaches for epilepsy detection
[12]–[14]. However, almost none provide global conclusions
or further research recommendations, as it can be difficult to
understand the level of evidence these studies provide [15].
Furthermore, it is not possible to fairly compare the perfor-
mance of various systems when only two quantitative values
are reported (e.g., sensitivity and specificity) and when the
prior probabilities vary significantly (the a priori probability
of a seizure is very low, which means that the assessment
of background events dominates the error calculations) [16].

Thus, in this paper, we want to bring attention to
a number of methodological choices which are usually
underreported but ultimately can have a strong influence
on system performance. These choices are necessarily made
during data preparation, training, and also evaluation and
reporting of the results.

The contributions of this work are summarized as follows:
• We identify a wide range of methodological decisions

that must be made and reported when training and eval-
uating the performance of epilepsy detection systems.

• We characterize and assess the influence of individual
choices using a typical ensemble random-forest model
and the publicly available CHB-MIT database.



TABLE 1. OVERVIEW OF ALL METHODOLOGICAL CHOICES TESTED

Data used Subsets of data with different imbalance
ratios (e.g. Factor1 and Factor10)
All data, with different splits into training
folds (SeizureToSeizure, 1h/4h windows)

Training Cross-validation type: Leave-one-out
(L1O) or Time-series-CV (TSCV)
Window step: 0.5 to 4s, with 4s windows
Personalized models or generalized models

Perf. Episode and duration-level performance
metric Micro or macro CV folds averaging

• We provide a broader picture of each decision and give
good-practice recommendations where possible.

The remainder of the paper is organized as follows:
Section 2 details the relevant methodological choices and
their potential influence. Section 3 provides a description
of the experimental setup used. Section 4 presents the
experimental results, while Section 5 comments on more
broad and general observations of the presented results. It
also presents certain methodological recommendations for the
development of future epileptic seizure detection algorithms,
as well as more general time series analysis applications.
Section 6 concludes this work.

2. Methodological choices
There are many methodological choices to make when

evaluating machine learning algorithms and systems in terms
of their performance and suitability for real-life applications.
These choices, can significantly impact the performance and
repeatability of such results in practice. In this section, we
give an overview of the most important choices, discussing
data preparation, training, and testing methodology, and
performance measures, as listed in Table 1. We will later
show how they influence the detection of epileptic seizures.

2.1. Data preparation
An important part of evaluating machine learning al-

gorithms is the data used to train and test the algorithm.
A well-known practice is that training, validation, and test
subsets must be chosen without overlap and be statistically
independent to avoid the effect known as ’data leakage’.
But the question that is less discussed is how representative
is the used data. With the increasing amount of big data
collected using the Internet of Things (IoT) and wearable
devices, big datasets are no longer rare. Such large datasets
are incredibly valuable and essential for having more ML/AI-
powered devices in everyday life, but they also impose certain
challenges. Training on such a large amount of data, espe-
cially for computationally demanding or memory-intensive
algorithms or without lots of computational resources, can
be complex, slow, and even potentially not feasible. For this
reason, a common approach is to create smaller subsets of
available datasets.

Epilepsy is characterized by recurrent but unpredictable
electrical discharges in the brain, with episodes lasting from

a few seconds to a few minutes. However, the percentage of
seizure data is extremely small, commonly less than 0.5%.
This huge imbalance in epilepsy recordings leads to the com-
mon choice of creating a data subset that contains all seizure
signals but only a reduced amount of non-seizure signals.
This step of generating smaller or even balanced datasets
makes training simpler, performance reporting clearer, and
speeds up the research process. Most papers tackling the
epilepsy detection problem do not use whole long-term
epilepsy recordings, but rather data subsets, whose impact
is also rarely discussed.

In this paper, we address this question by testing several
epilepsy subsets created from a main dataset. We evaluate
the influence of using all or only some data samples, as
well as the impact of the seizure to non-seizure imbalance
ratio. We also test the influence of data splitting during the
training and cross-validation folds and show that this choice
can be very critical and make a big difference in whether
the proposed algorithm will work in practice when all data
are used, without the possibility of performing any selection.

2.2. Generalized vs. personalized models
In many applications where underlying data patterns are

highly specific, such as in many biomedical use cases, there
are two approaches to training; personalized and generalized
training. Epilepsy is a good example of this, where underlying
electroencephalography (EEG) patterns are highly variable
between EEG channels, recording sessions, and subjects.
Personalized training means that data from the same subject
are used to train the model. This leads to as many ML
models as subjects we have. Generalized training, on the other
hand, would lead to a single ML model for all subjects. To
avoid data leakage (and enable comparison with personalized
models), every subject has its own generalized model trained
on all subject’s data but that test subject, which is also known
as the leave-one-subject-out approach.

Personalized modes can capture subject-specific patterns
better, but are also trained on fewer data in total, which
can sometimes be limiting, as some subjects have very few
seizures recorded. On the other hand, generalized models are
more complex to train as they are trained on more data, and
can also be less subject-specific but may be more interesting
for building large-scale wearable outpatient systems.

2.3. Respecting temporal data dependencies
Another aspect of data that is commonly forgotten is

that all data are recorded in time and that sometimes this
imposes some unavoidable statistical dependencies. Some
underlying patterns that our ML algorithms can use can only
exist in a certain order, and for this reason it might not be
fair to use data that are in the future to train and then test
using data that was before it. On the one hand, it can miss
some patterns useful for detection, and on the other hand,
it can lead to potentially unfeasible results for in-practice
applications.

Two parts of the ML workflow must be considered in
this case. Often, data samples are shuffled before training,



Figure 1. Illustration of duration and episode-based performance
metrics.

whereas for temporal data, this might not be advisable.
Furthermore, if some statistical knowledge on the distribution
and length of certain classes is available, this knowledge
can be used to post-process predicted labels and lower mis-
classification chances. For example, in the case of epileptic
seizures, it would not be realistic. that an individual suffers
an epileptic seizure of 1-second duration every minute.

Second, the temporal aspect of the data is relevant when
choosing the cross-validation (CV) approach. A common
CV approach for personalized training is leave-one-seizure-
out, which means that data from one seizure is left out for
testing, and seizures that come before but also after will
be used for training. On the other hand, in the time series
cross-validation (TSCV) approach [17], [18], only previously
acquired data can be used for training. This means that if
files are ordered in time, for the first CV fold only one file
will be used for training and the one after it for testing. For
the following CV folds, one more file is always added to
the training set (the file previously used for testing), and
testing is done on the next available file. This CV approach
is rarely used in the literature, but it is also the the most
appropriate approach for online data training (and inference)
on wearable devices.

2.4. Data segmentation
Typically, features are extracted from fixed-size windows

of data using the ’moving window’ approach with shifts of
a chosen step size. Here, two parameters have to be decided:
window size (WS) and window step size (WSS) for which
we move the feature extraction window. Choosing a larger
window size might be necessary when extracting frequency
information, but it also limits the possibility of detecting very
short patterns. Similarly, a smaller step size can decrease
detection latency but increases the computational costs of
the algorithm due to more frequent feature extraction. These
parameters can be optimized according to several aspects:
features used and their properties and complexity, latency
requirements, or available computational resources. If none
of these is limiting, the parameters are generally optimized
in terms of performance. It is interesting to note how much
performance can change depending on these choices. More
importantly, parameter choice and the reasoning behind it
should be mentioned and documented in papers.

2.5. Evaluation metrics
For temporal and sequential data, standard performance

evaluation metrics, such as sensitivity and specificity, may
not always be the most appropriate and can even be mislead-
ing [19]. Evaluation metrics must ultimately reflect the needs

Figure 2. Epilepsy model predictions example. Predictions without
any post-processing and with two types of post-processing as well
as true labels are shown. The distributions of false positives are of
particular interest.

of users and also be sufficiently sensitive to guide algorithm
development [16]. As Shah et al. stated in [20], there is a lack
of standardization in the evaluation of sequential decoding
systems in the bioengineering community.

The same authors compare five popular scoring met-
rics for sequential data in [16]. Among them, the most
interesting are ’Epoch-based sampling’ (EPOCH), ’Any-
overlap’ (OVLP), and ’Time-aligned event scoring’ (TAES).
EPOCH treats the reference and hypothesis as temporal
signals, samples them at a fixed epoch duration, and counts
errors (TP, TN, FP, and FN) accordingly. For an epoch
duration of one sample, this metric processes data sample-
by-sample and results in typical performance measures (such
as accuracy, sensitivity, specificity, F1 score etc). The OVLP
measure [21], interprets signals as a series of same-label
episodes and then assesses the overlap in time between
reference and hypothesis. It counts as a ’hit’ in case there is
any overlap between the reference and hypothesis. In Fig. 1,
we illustrate several use cases, how errors are counted, and
what is the final performance measure. The authors in [16]
also propose the TAES metric, which combines the EPOCH
and OVLP information into one metric. The approach is
very similar to OVLP, but rather than simply considering
if there is any overlap between reference and hypothesis
episodes, the percentage of overlap is measured, and weighs
the errors (TP, TN, FP, FN) accordingly. Here, we want to
demonstrate the difference in performance in the use case
of epilepsy detection, depending on the chosen performance
measure, and also how these performance metrics can be
used to interpret the quality of algorithm predictions. The
code of those metrics is available online1.

Another performance measure with a strong practical
impact, and thus often used for epilepsy detection, is the
false alarm rate (FAR), or the number of false positives per
hour/day. Clinicians and patients see this measure as more
meaningful than many more commonly used metrics, and are
very demanding in terms of performance, requiring it to be as
low as possible for potential wearable applications (e.g., less
than 1 FP/day) [20]. This also necessitates exceptionally
high constraints on the required precision (usually much
higher than 99%).

Finally, to quantify global performance, the accumulated
performance of all cross-validation folds has to be calculated.
But here are also choices to be made. One can measure the
average performance of all CV folds (micro-averaging) or

1. https://github.com/esl-epfl/epilepsy performance metrics



Figure 3. Epilepsy detection performance measured through seven
measures; on episode and duration level. For each, sensitivity (TPR),
precision (PPV), and F1 score are measured. The results show
average performance for all 24 subjects for the ’Fact1’ data subset.

can, for example, append predictions of all test files next
to each other and only then measure performance on all
appended data (macro-averaging). In Fig. 2, an example
of predictions (also with moving average post-processing)
is given for all files of one subject. What is important to
notice is the distribution of false positives over time and
over the different files/CV folds. Most often, false positives
occur around seizures. However, there can potentially be a
fold(s) with an unexpectedly large number of false positives.
If the final performance is measured as an average of the
performances of each fold, a fold with many false positives,
as in Fig. 2, will have a lower influence on the total perfor-
mance than if all predictions are appended and performance
is measured only afterward. This potential overestimation of
performance when averaging cross-validations should also
be taken into account.

3. Experimental setup

3.1. Dataset

In this work, we use the CHB-MIT epilepsy dataset,
an open source widely used dataset for the detection of
epilepsy [22], as it is a good representative of continuous,
relatively long-term monitoring (over several days). CHB-
MIT is an EEG database, with a total of 982.9 hours of
data recorded at 256Hz. It consists of 183 seizures forming
a total of 3.2 hours or 0.32% of labeled ictal data, from
24 subjects with medically resistant seizures ranging in age
from 1.5 to 22 years. On average, it has 7.6 ± 5.8 seizures
per subject, with an average seizure length of 58.6 ± 65.0 s.
It was recorded using the bipolar montage (10-20 system)
and thus contains between 23 and 26 channels, of which we
use the 18 channels that are common to all patients.

We reorganized the original CHB-MIT data into five data
(sub)sets. The first two approaches, ’Fact1’, and ’Fact10’,
contain a subset of the original CHB-MIT dataset in two
different ratios of seizure and non-seizure data. ’Fact1’ is a
balanced data subset that has the same amount of seizure and
non-seizure data, where all available seizure data are used,
along with a randomly selected equal amount of non-seizure
data. The ’Fact10’ subset is constructed similarly, with the
difference that the amount of randomly selected non-seizure
data is 10x more than seizure data. Data are divided into
files equal to the number of seizures, with one seizure per
file. Each file is arranged such that seizure data occur in the
middle of the file, with non-seizure data split into both sides.

Therefore, the total file length depends on the length of the
seizure and the factor value. This organization enables easier
training in the case of the leave-one-seizure-out approach,
as each file is equally balanced.

The last three approaches, Seizure To Seizure (’StoS’),
and 1 or 4-hour windows (’Win1h’/’Win4h’, ’WinXh’ to-
gether), contain all data samples from the CHB-MIT database
but are rearranged into files containing different amounts of
data. The ’StoS’ approach consists of files that start with the
non-seizure data after the previous seizure and end when the
next seizure ends. In this way, every file contains exactly one
seizure, but the entire length of the file is not fixed. The last
two approaches, ’Win1h’ and ’Win4h’, as the names imply,
divide the dataset into files of 1-hour or 4-hour duration.
In this way, some of the files may contain zero to possibly
multiple seizures. In all three cases, we trained using time-
series cross-validation. We specified that the first file must
contain a certain amount of data (five hours) and at least
one seizure, and as such it is slightly different from the
subsequent files.

3.2. Machine learning training
We extract 19 features from each of the 18 channels,

similar to [23], calculating them on 4-second windows with
a moving step of 0.5 seconds (unless otherwise specified).
We use two time-domain features, mean amplitude and line
length, and 17 frequency domain features. Both relative and
absolute values of power spectral density in the five common
brain wave frequency bands are used: delta: [0.5-4] Hz, theta:
[4-8] Hz, alpha: [8-12] Hz, beta: [12-30] Hz, gamma: [30-45]
Hz, and low-frequency components: [0-0.5] Hz and [0.1-0.5]
Hz. Before extracting the features, the data is filtered with
a 4th-order, zero-phase Butterworth bandpass filter between
[1, 20] Hz.

As a testing algorithm, we choose a highly popular
but also a feasible algorithm for wearable and outpatient
monitoring devices: a random forest classification algorithm
based on an ensemble of 100 decision trees. It is fast and
lightweight, both in model size and memory footprint [24],
and has been used extensively for EEG-based seizure clas-
sification [12], [25], [26]. We postprocess predicted labels
with a moving average window of 5 seconds, and majority
voting to smooth predictions and remove unrealistically small
seizures. If seizures are closer than 30 seconds, we merge
them into one.

4. Experimental results
4.1. Evaluation metrics

In this work, we use two metrics to measure performance.
One is the EPOCH approach described in Sec. 2.5, with
an epoch duration of one sample. TP, TN, FP, and FN
are detected sample by sample, which are further used to
calculate the sensitivity (TPR), precision (PPV), and F1 score.
We call this duration-based performance, which characterizes
how well seizures are detected with respect to their full
length. The other performance metric is OVLP, which detects
overlaps between predicted (hypothetic) and reference seizure



Figure 4. Comparison of average performance (for all subjects) of
personalized and generalized models.

or non-seizure episodes. We call this an episode-based metric,
as it cares only about whether each seizure episode has
been detected, not caring exactly about the predicted seizure
duration. These two metrics are very easily interpretable.
For example, if the sensitivity at the episode level is 80%
and there were 10 seizures, it means that 8 episodes were
detected, but 2 were missed. The TAES metric proposed
in [16] is an interesting approach to combine both metrics
but is harder to interpret, and thus it is not used here.

Fig. 3 shows the average performance of personalized
models for the 24 subjects from the balanced CHB-MIT
dataset. For both episode- and duration-based performance,
sensitivity (TPR), precision (PPV), and F1 scores are shown,
as well as one accumulative measure, the mean of F1 score
for episode and duration-level (’F1 DE’). The sensitivity of
the episode is, on average 100%, which means that except for
a few cases, all episodes of seizures were detected. Looking
at duration-level sensitivity, it is clear that even if seizure
episodes were perfectly detected, their whole duration was
not always predicted. Looking at the precision, it is clear
that there are also false positive predictions, and more of
them when measuring on episode level than duration level,
meaning that there were many short false positives. Observing
the performance through these six values enables a more
complete characterization of the prediction performance of a
certain algorithm. It also enables a more nuanced comparison
between different methodological steps or parameter values
used, as will be shown next.

4.2. Generalized vs. personalized models
Here we test the performance difference when training

both personalized and generalized models for each subject.
We used a balanced data subset (’Fact1’). In Fig. 4, the
average for all subjects is shown, making clear the lower
performance of generalized models. Inspecting the perfor-
mance of the generalized model per subject reveals a clear
distinction between patients on which generalized models
perform very well and those for whom it performed poorly,
either due to many false positives or almost no detected
seizures. How to create generalized models and whether
there should be subtypes of generalized models for different
patient groups remains a question for future generations. For
the remainder of this work, we will focus on personalized
models.

4.3. Data preparation
In Fig. 5, the performance of epilepsy detection is shown

for five different data subsets used to train and test. We

Figure 5. Epilepsy detection results depending on the data subset
used.

analyze the impact of data preparation considering three
metrics: false alarm rate (FAR), sensitivity (TPR), and
precision (PPV). First, the false alarm rate, defined here as
the number of FPs per day, as shown in Fig. 5, is significantly
higher for data subsets (Fact1(0)) than for the whole dataset
training (StoS or Win1h/4h). This can be traced to two
reasons. The first one is that Fact1(0) is trained on much
less non-seizure data, potentially not enough to model the
non-seizure patterns properly, resulting in more non-seizure
samples being falsely classified. The second is that because
testing is done only on a subset of data, FPs must be linearly
scaled to estimate the false alarm rate per day, potentially
leading to very high numbers. For these reasons, data subsets
should not be used to estimate the false alarm rate of an
epilepsy detection algorithm.

Next, we consider sensitivity and precision. For Fact1(0),
seizure episode detection is easier, as visible from episode-
level TPR that is 100%. Detecting all seizure episodes
perfectly is much harder when the entire dataset (StoS or
WinXh) is used, which is visible by episode TPR values
ranging between 80 and 95%. Precision gives a more
complete performance picture, dropping sharply for StoS
before recovering for WinXh. This is because StoS retraining
and testing only occurs after every new seizure, whereas
in the meanwhile could have been hours of non-seizure
data. The WinXh strategies retrain much more often, thus
making it easier to learn non-seizure patterns and lower false
predictions. To conclude, using all data significantly reduces
false positives, but also results in lower, but more realistic,
sensitivity and precision values.

4.4. Respecting temporal data dependencies

To show the influence of cross-validation choices on
performance results, we trained and tested three data sub-
sets with different data imbalance ratios (’Fact1’, ’Fact10’,
’StoS’), both using leave-one-seizure-out (L1O), and time-
series cross-validation (TSCV) approaches. The results are
shown in Fig. 6. The superior performance of the L1O
approach is evident in almost all aspects (TPR, PPV, and
numFP). This is reasonable as more data were used to train
with L1O than with TSCV approach. The difference in
performance ranged from 3 to 7% for the F1 score in episode
detection. This is not a recommendation to use L1O; but,
on the contrary, demonstrates that training on future data
can lead to overestimated performance and, thus, should be
avoided when possible.



Figure 6. Performance results when using leave-one-out vs. time-
series cross-validation. Results are shown for three data subsets
(F1, F10 and StoS).

4.5. Data segmentation
In Fig. 7, the performance of epilepsy detection is shown

when the window step ranged from 0.5 to 4 s, with a window
size of 4 s. The most clear and expected pattern is that
by increasing the step size, the number of false positives
is reduced significantly, but what is interesting is that the
proportion of FP increases, thus reducing the precision for
episodes. More precisely, PPV increases first (while TPR is
still high) and then drops for episodes (because less seizures
were also detected), leading to the conclusion that too big
steps are risky. Increasing window step size also reduces
TPR, more noticeably for duration level, which may be due
to the fact that with large steps, shorter seizures can be
potentially missed. These results demonstrate the complexity
of the window step size parameter, that it is beneficial to
experiment before choosing one value, and that it has to
be necessarily reported to make the results comparable and
reproducible.

5. Discussion
5.1. Data aspects

As seen from results in Sec. 4.3, using all the data
significantly reduces false positives and also results in lower
and more realistic sensitivity values. Thus, if computational
and memory resources are sufficient, models should be
trained using all available data. If this is not possible, then the
subset of data should contain significantly more non-seizure
data. However, data subsets will result in an unrealistic
false alarm rate. When using the whole dataset, the most
appropriate seems to be to use fixed-size time frames in which
models are retrained/updated regularly. The size of this time
frame should also be tested and reported. General advice
would be to use data subsets for initial experimentation and
building an understanding of the algorithm and its parameters,
but that all the available data should be used for reporting
the final performance. It is also useful to take into account
and characterize the class imbalance.

When talking about the temporal aspect of data, several
things should be taken into account. We advise not to shuffle
data samples before training and testing but rather to use
temporal information and knowledge on class distribution to
postprocess predicted labels, which can increase performance,
but must also be clearly reported.

Finally, it is critical to decide whether to use only the data
from the same subject to create personalized and, as shown,
more precise models or to use all available data from other

Figure 7. Performance with respect to different window step sizes.
Steps of 0.5, 1, 2 and 4s were used, with window size of 4s.

subjects to create generalized models. Generalized models
can have lower individual performance, but can be used for
new subjects. This topic represents a research topic on its own.
For example, future research should investigate whether it is
possible to create models that can use generalized models as
a starting point from which they can be personalized. Would
these models lead to better overall performance in comparison
to personalized models? Would less personal data be needed
to personalize models if generalized modes are used as a
starting point? Similarly, the unavoidable question is, can
we somehow profit from both generalized and personalized
models? Can we combine them in some beneficial way?

5.2. Training aspects
When talking about the choice of cross-validation as

shown in Sect. 4.4, the leave-one-out approach leads to higher
performance than if data are trained in temporal order using
time series cross-validation. However, the L1O approach is
not realistic for training data in real-time, while TSCV is
intended for such scenarios. Training models online as data
are being acquired is one of the necessary next steps for ML
models on IoT devices, and thus TSCV will have to become
the standard method.

Data partitioning has two parameters that can also play a
significant role in performance, namely the window size used
to extract features and the window step size. Their optimal
choice can depend on each use case, the features extracted
and their properties and complexity, latency requirements,
and available computational resources. Here, we show how
window step size can influence performance, with different
patterns for false alarms, sensitivity, and precision, and
how it has different impacts on duration- or episode-level
classification. The results show the complexity of the window
step size parameter, indicating that it is beneficial to test it
before choosing one value and that it must be reported to
make results comparable with the literature. One research
avenue that we have not considered here, but which can be
potentially very beneficial, is optimizing the window size
parameter for each feature individually.

5.3. Performance estimation aspects
Here we proposed to use two performance metrics, one

at the duration-level and one at the episode-level. Each of
them has certain advantages, and thus their values should be
interpreted carefully. Nevertheless, together they provide a
full picture of the detection characteristics of the algorithm
analyzed. For example, EPOCH, a duration-based metric,
cares about the duration of the events and thus weighs



long events more importantly. This means that if a signal
contains one very long seizure event and some shorter
ones, the accuracy with which the long event is detected
will dominate the overall scoring. In epilepsy detection, as
in many applications, the duration of the event can vary
dramatically; therefore, this must be taken into account. For
this reason, OVLP, an episode-level performance metric,
is much easier to interpret. However, such episode-level
metric is more permissive and tends to produce much higher
sensitivities. It can also be implemented so that if an event
is detected in close proximity to the reference annotation, it
is considered correctly detected, which can further increase
the performance values.

Nowadays, in the literature, duration-level-based perfor-
mance is still the most popular, but there are trends of moving
toward more event/episode-based performance measures [16].
Unfortunately, there is still no standardization. Until then, the
performance metrics that is used, as well as post-processing
utilized to smooth the labels, must be clearly described.
Similarly, the method to achieve the overall performance
measure from the individual CV folds must be documented.
We recommend that overall performance is calculated by
temporally appending all fold predictions in time, rather than
as the average of all fold performances. For example, if one
CV fold (or a small portion of them, as in Fig. 2) has an
extremely high number of false positives, but all other ones
have good performance, it will affect the overall estimation
of, e.g. precision much less (due to averaging over all folds),
leading to potentially overestimated performance.

6. Conclusion
This work, has characterized the influence of a wide

range of important methodological choices for epilepsy
detection systems. When choosing a subset of the dataset for
training, performance can be highly overestimated compared
to training in the entire long-term data set. Thus, for real-life
performance estimation, using all long-term data is necessary.
Similarly, using the leave-one-seizure-out cross-validation
approach can improve detection performance, but it is not
realistic for online data training, as it uses future data. Thus,
we recommend using a time-series cross-validation approach
instead, with macro-averaging rather than micro-averaging.
Training on a generalized level can be challenging due to its
subject-specific nature, leaving personalized models outper-
forming generalized ones. Furthermore, performance metrics
must reflect users’ needs and be sufficiently sensitive to guide
algorithm development. Consequently, we encourage the
usage of both episode-based and duration-based performance
metrics, which can together give a more nuanced picture of
algorithm performance. Finally, whatever choices are made,
to further increase the comparability and reproducibility of
results, it is essential that all choices and parameters are well
reported.
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