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a b s t r a c t 

Background and Objective: Event-based analog-to-digital converters allow for sparse bio-signal acquisition, 

enabling local sub-Nyquist sampling frequency. However, aggressive event selection can cause the loss of 

important bio-markers, not recoverable with standard interpolation techniques. In this work, we leverage 

the self-similarity of the electrocardiogram (ECG) signal to recover missing features in event-based sam- 

pled ECG signals, dynamically selecting patient-representative templates together with a novel dynamic 

time warping algorithm to infer the morphology of event-based sampled heartbeats. 

Methods: We acquire a set of uniformly sampled heartbeats and use a graph-based clustering algorithm to 

define representative templates for the patient. Then, for each event-based sampled heartbeat, we select 

the morphologically nearest template, and we then reconstruct the heartbeat with piece-wise linear de- 

formations of the selected template, according to a novel dynamic time warping algorithm that matches 

events to template segments. 

Results: Synthetic tests on a standard normal sinus rhythm dataset, composed of approximately 1.8 million 

normal heartbeats, show a big leap in performance with respect to standard resampling techniques. In 

particular (when compared to classic linear resampling), we show an improvement in P-wave detection 

of up to 10 times, an improvement in T-wave detection of up to three times, and a 30% improvement in 

the dynamic time warping morphological distance. 

Conclusion: In this work, we have developed an event-based processing pipeline that leverages signal self- 

similarity to reconstruct event-based sampled ECG signals. Synthetic tests show clear advantages over 

classical resampling techniques. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Nowadays, heightened life expectancy and unhealthy lifestyles 

ake chronic diseases, and in particular chronic heart diseases, the 

eading cause of death worldwide [1] . Such conditions are long- 

asting and not extensively observable inside hospitals, both for 

he short time of observation and the restricted set of activities 

 patient can do while hospitalized. Moreover, the need for a long 

bservation period requires non-invasive solutions that impact the 
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atient life as little as possible. This requirements make wearable 

olutions key for chronic disease monitoring. 

One of the primary concerns of wearables is energy efficiency, 

s their main requirement is to function for the longest possible 

ime while being unobtrusive to the patient. The energy budget 

f any battery operated device can be divided into four main cat- 

gories: computation, storage, communication, and data acquisi- 

ion. While computation, communications, and storage have been 

reatly studied and optimized in recent years [2–5] , data acqui- 

ition remains a field scarcely explored. Nonetheless, the energy 

udget in modern wearable systems is highly affected by the sig- 

al acquisition component [6] . 

In their seminal work on sampling, Nyquist and Shannon de- 

ned an upper bound to the sampling rate, called Nyquist fre- 

uency [7] , which is two times the maximum spectral compo- 

ent of the signal under analysis. Signals acquired following the 
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Fig. 1. ECG signal reconstruction processing pipeline: each heartbeat is first sampled with a level crossing ADC, then compared to a set of templates. The most similar 

template is then warped to better represent the recorded events. In this example, the EB-sampler uses a small number of levels. While not drawing any samples from the 

P and T waves, we are still able to determine the most appropriate template amongst the templates set to lead the reconstruction, thanks to the morphological distance 

between the exemplar heartbeats and the drawn events. 
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yquist-Shannon theorem are called uniformly sampled. However, 

t is possible to define many sampling schemes that do not rely 

n a uniform spacing between samples. One of the main non- 

niform sub-Nyquist sampling approach is event-based (EB) sam- 

ling: a data-acquisition strategy that aims to record signal points 

nly when certain events happen in the signal. 

In recent years, two main event-based sampling techniques 

ave emerged: 1) level-crossing analysis [8] , and 2) polygonal ap- 

roximation [9] , which have shown to be able to greatly reduce 

he average sampling frequency of a signal up to 90% [9] . However, 

s the reduction rate increases, the signal fidelity greatly degrades, 

ince all these acquisition approaches are lossy by their very na- 

ure. 

We depart from the aforementioned sampling methods, consid- 

ring the acquired events as fiducial points of the recorded signal. 

e then use these points, together with a set of representative sig- 

al templates, to drive a novel approach to signal reconstruction. 

Our approach is applicable to signals that are representable by a 

et of templates, such as the electrocardiogram (ECG) [10] . Indeed, 

ince the ECG is the recording of the electrical polarization of the 

uscular tissue of the heart [11] , only a finite amount of ECG mor-

hologies can physically exist [12] . These morphologies are charac- 

erized by the presence, absence, and shape of three main com- 

lexes, representing three polarization and depolarization phases 

f the cardiac muscle: P-wave, QRS complex, and T-wave. Hence, 

e can consider an ECG recording as the non-exact repetition of 

 set of patient-specific heartbeats (i.e.: templates), where every 

epetition has a degree of deformation with respect to a selected 

emplate. 

We embodied this approach in the processing pipeline shown 

n Fig. 1 , where we reconstruct an ECG signal sampled using level 

rossing [8] . To achieve this, we leverage the ECG self similar- 

ty [13] and a novel customization of the dynamic time warping al- 

orithm (DTW) [14] , that we called Information-Injected Differen- 

ial Dynamic Time Warping (II-DDTW). First, the presented system 

niformly acquires a set of heartbeats (templates) representative of 

he signal. Then, for every EB sampled heartbeat, it uses II-DDTW 

o both find the best fitting template and optimally deform it so as 

o pass through all the recorded events. Moreover, whenever the 

emplates set is not anymore representative of the underlying sig- 

al, the processing pipeline acquires a new templates set. 

The processing pipeline proposed here marries two fundamen- 

al requirements in modern wearable medical technology: a low 

ata rate to reduce battery usage, and the need for a morpholog- 

cally correct signal. The methodology here proposed allows us to 

elegate signal reconstruction to computationally powerful devices, 

(

2 
hile greatly reducing the amount of energy an edge device needs 

o acquire, store, and send data. 

We test the developed processing pipeline against the refer- 

nce MIT-BIH normal sinus rhythm database [15] . This database 

onstrains the variability in the input by considering only normal 

hythm situations, allowing us to compare our method with stan- 

ard resampling techniques, while focusing on the key aspects of 

ignal reconstruction. While more refined strategies can be taken 

o extend the scope of this work to abnormal cases, they can 

e seen as incremental improvements to make our methodology 

ore effective in capturing significant templates in those cases. 

urthermore, the normal sinus rhythm signal morphology is sim- 

lar, but for a matter of wave deformation, to many abnormal si- 

us rhythm [16] , directly linking our methodology to correct mor- 

hological reconstructions in many abnormal situations such as 

radycardia or tachycardia [16, Chapter 13] . The reconstructed sig- 

als obtained with our approach are evaluated using three merit 

gures: 1) an element-wise aggregated distance (percentage root 

ean square difference), which measures overall signal correct- 

ess, 2) a morphological distance (DTW distance), measuring the 

imilarities between the compared heartbeats, and 3) P/T wave de- 

ineation accuracy, an application specific measures that shows if 

CG relevant structures are present and rightly positioned. These 

hree measures, spanning from signal agnostic to signal specific, 

ive a comprehensive view of the reconstruction accuracy. The re- 

ults are then compared to the results obtained by reconstructing 

he signal with three different methods: sample&hold, linear re- 

ampling, and spline resampling. 

Hence, the main outcomes of our work are: 

• The relevance of self-similarity in EB-sampled signals. 
• The possibility, for EB-sampled signals, to be represented by a 

templates set. 
• The morphological mapping between templates and EB-signals, 

through a novel strategy called II-DDTW. 

. Background work 

In this section, we first explore the core concepts we leverage 

n our work. Then, we review the works most similar to ours, high- 

ighting the key differences and the concepts we ourselves took as 

nspiration. 

.1. Foundation notions 

Our methodology relies on three core concepts: 1) self- 

imilarity, 2) event-based sampling, and 3) dynamic time warping 

DTW). 
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5 These slopes are called events in [24] . 
Self-similarity: We define a signal to be self-similar when it 

an be approximately described by a function of a subsection of 

he signal itself. The term ”self-similar” appears in other disciplines 

nd works as a characteristic of a fractal-type mathematical object 

17] . The self similarity aspect of the ECG signal is used in [13] .

n their work, [13] design a compression system for ECG signals 

ased on multi-scale analysis, where each heartbeat is encoded as 

he scaling and rotations of prototype heartbeats. 

Event-based sampling: Event-based sampling is the action of 

rawing the value of a measured signal only when it has a pre- 

etermined behaviour (an event), using an event-based analog to 

igital converter (EB-ADC). 

To represent a signal using only its samples requires a set of 

onditions on the sampling function. Most famously, the Nyquist- 

hannon theorem [7] imposes a uniform-grid sampling frequency 

f two times the maximum spectral content of the signal under 

nalysis. Other approaches [18,19] broaden this condition while 

till achieving a loss-less reconstruction of the sampled function. 

owever, these approaches do not use any contextual information 

o determine whether a signal section conveys important features 

r not. Instead, the approach here analyzed defines an event as a 

ogical condition that can be verified based on the signal behavior, 

nd such events are then used to trigger the sampling process. 

The two most prominent examples of EB-sampling are level- 

rossing analysis and polygonal approximation. In level-crossing 

nalysis [8] an event is generated every time the measured physi- 

al quantity cross a set of levels. Such operation can either be ana- 

og [20] , where a sampler detects the crossing of analog-defined 

evels or digital [8] , where the signal is digitally acquired by a stan-

ard analog-to-digital converter (ADC) with the addition of a cus- 

om logic that defines a set of digital levels and forwards the sam- 

les to the main processing unit only when such levels are crossed. 

nstead, in polygonal approximation [9] the signal is digitally ac- 

uired by a standard ADC but with the addition of a custom logic 

hat forwards the samples to the main processing unit only when 

he error between the uniformly sampled signal and its linear ap- 

roximation grows bigger than a threshold ε. 

Moreover, EB sampling is related to technologies such as Com- 

ressed Sensing (CS) [21] , which achieve data compression through 

wo signal-agnostic measurement matrices, making the acquired 

ignal sparse. However, contrary to EB-sampling, in CS the length 

f the sparse representation is signal independent. 

Dynamic time warping: DTW [14] is an algorithm that takes 

s input two vectors, not necessarily with the same dimensional- 

ty, and outputs a distance between the two, together with a vec- 

or matching sequence. Such sequence, also called edit path, asso- 

iates every point in the first vector with one or more points of the 

econd vector. This algorithm is of particular interest to this work 

ince it has proven to be effective in the alignment of ECG record- 

ngs [10] and because of the interpretability of the output distance 

s a morphological difference between the two input vectors. For- 

ally, given two vectors v 1 and v 2 with dimensions N and M, the 

TW algorithm computes the matrix D ∈ R 

N×M following Eq. (1) : 

 [ i, j] = | v 1 [ i ] − v 2 [ j] | + 

min (D [ i, j − 1] , D [ i − 1 , j − 1] , D [ i − 1 , j]) (1) 

here i is an integer that ranges from 2 to N, j is an integer that

anges from 2 to M, D [ i, j] is the element of the D matrix at row i

nd column j, v 1 [ i ] and v 2 [ j] are the i th and the jth components

f the two vectors v 1 and v 2 . 
The boundary conditions on the D matrix computation vary 

epending on the priors the user might define. However, they 

re typically defined as D [1 , 1] = 0 , D [1 , j] = D [ i, 1] = ∞ [14] . The

arping path is computed starting from P [1] = (N, M) and select- 
3 
ng the next point in the path according to Eq. (2) : 

 [ l − 1] = (i, j) 

P [ l] = arg min 

i, j,i −1 , j−1 

{ (D [ i, j − 1] , D [ i − 1 , j − 1] , D [ i − 1 , j]) } (2) 

The process is iteratively repeated until D [1 , 1] is reached. The 

ist P [1] , . . . , P [ l] is then a sequence of tuples that associates each

oint in v 1 to one or more points in v 2 and vice versa, keeping the

rder relation between samples and warping the two signals by 

longating sections of the two vectors. Finally, D [ N, M] is called the 

TW distance and can be interpreted as a measurement of mor- 

hological distance, as it increases with the path length and with 

he distances in each matched point. DTW computes the morpho- 

ogical distance between two vectors, and the warping path that 

inimizes this distance. In this work, we use these properties to 

ompute the pertinence of a template to an EB-sampled beat, and 

hen to match each event. 

The general formulation of the DTW algorithm shows some 

ractical issues when dealing with signals without prominent 

atching features or with missing signal samples (as it is the case 

or event-based signals). The most relevant problem is the sin- 

ularity problem [14,22] where multiple points of one vector get 

wrongly) associated with one single point of the other. More- 

ver, the singularity problem exacerbates, in extreme cases, into 

he information mapping problem, where two non-matching fea- 

ures (where a feature is a distinct set of points not caused by 

oise) between v 1 and v 2 get mapped together. 

Several techniques have been developed to assess this problem 

ike distance matrix step pattern re-definition [23] and differential 

ynamic time warping [22] . In particular, this last technique con- 

ists in changing the distance function presented in Eq. (1) to the 

ne in Eq. (3) to include the difference in derivative instead of in 

alue, thus capturing better a morphology change instead of the 

pecific value. 

 [ i, j] = 

∣∣∣∣v 1 [ i ] − v 1 [ i − 1] 

t 1 [ i ] − t 1 [ i − 1] 
− v 2 [ j] − v 2 [ j − 1] 

t 2 [ j] − t 2 [ j − 1] 

∣∣∣∣ + 

min (D [ i, j − 1] , D [ i − 1 , j − 1] , D [ i − 1 , j])) (3) 

here the same notation of Eq. (1) is used, t 1 and t 2 are the two

ime vectors that describe the sampling instants of the elements 

n v 1 and v 2 (and therefore have the same dimensions of their re- 

pective value vectors). Moreover, we use the first approximation 

f the derivative as it already fully describes the average rate of 

ariation between two consecutive samples. 

Finally, a modern approach we took as an example and point 

f departure for our work is the technique developed in [24] , 

amed Event-Based Dynamic Time Warping (EBDTW). This ap- 

roach starts by pre-processing the vector, identifying ascend- 

ng and descending slopes sections 5 in the two vectors. Then, it 

atches the events between the two vectors before the DTW al- 

orithm. The distance in Eq. (1) is then complemented by the in- 

ertion of the constraint that distances are computed only between 

oints that are in the matching slopes. 

This last technique is of interest to our application as it intro- 

uces the idea of injecting prior information in the computation of 

he DTW algorithm to improve its performance. However, such a 

trategy is not a viable solution for our problem, as entire slopes 

an be removed by the event-based sampling in EB-ECG signals. 

oreover, while the technique in [24] is used for matching the 

ame signal recorded by two different methods, in our work we 

ouple a template with any EB-sampled heartbeat. Hence, we can 

ot assume having the same features (in this case slopes) between 

he two compared signals. To overcome these issues, we introduce 
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Fig. 2. A bird-eye view of the system described in Section 3 . Each labeled box cor- 

responds to specific subsections. A: Acquisition ( Section 3.1 ), B: Differential dynamic 

time warping with information injection ( Section 3.2 ), C: Template-based recon- 

struction ( Section 3.3 ), D: Templates computation ( Section 3.4 ). 
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n Section 3 the concept of Information-Injected Differential Dy- 

amic Time Warping (II-DDTW). 

.2. Literature review 

The objective of our work is ECG signal reconstruction from a 

educed set of key samples. This can be interpreted as the inverse 

roblem to the signal compression task. However, classic decom- 

ression techniques [25] are strictly coupled with the relative com- 

ression method. Our work, while requiring a specific class of sig- 

al, does not need a specific EB-sampling method. 

Another related line of study can be identified in ECG repre- 

entational studies. In [10,26,27] the authors represent full ECG 

ecordings through their most representative heartbeats, clustering 

ach beat so to present a comprehensive view of a patient through 

ey examples. While this approach shares similar intuitions with 

ur work, we use the representative heartbeats for a different pur- 

ose, that of templates for heartbeat reconstruction. 

Moreover, contrary to the aforementioned works, we deter- 

ine the representative heartbeats through a graph clustering al- 

orithm [28] called affinity propagation [29] to solve both the un- 

ertainty in the number of clusters and the non-convexity of the 

ormulated clustering problem. 

Finally, EB-sampling has seen a significant rise in interest in re- 

ent years [8,9,20] . However, signal reconstruction has always been 

onsidered a secondary task, assessed using standard interpola- 

ion techniques like linear or spline interpolation [30] . Here, we 

ocus on optimizing signal reconstruction in those instances of EB- 

ampling leading to high sampling reduction factors. 

. Methodology 

A high-level view of the proposed methodology is shown in 

ig. 2 , divided into functional blocks. The reconstruction methodol- 

gy here presented works on a beat-by-beat basis. Our framework 

lgorithmically selects representative heartbeats as templates. It 

hen uses them to reconstruct event-based ECG acquisitions, warp- 

ng templates using the acquired events as fiducial points, i.e. forc- 

ng the warped template to pass through them. 

Section 3.1 details the block in Fig. 2 A, where the system EB- 

amples the ECG signal, mark the QRS complexes, and uses this 

nformation to extract EB-heartbeats. 

Then, Section 3.2 describes Fig. 2 B, where the II-DDTW al- 

orithm (a pattern-matching algorithm) compares each new EB- 

eartbeat with a set of templates, and selects an optimal template. 

Section 3.3 delineates the block in Fig. 2 C, where EB-heartbeats 

re reconstructed based on the warping path defined by the previ- 

us block. 

Finally, Section 3.4 characterize Fig. 2 D, where the templates 

et is updated in order to keep the set relevant to the current EB- 

ample signal. 

.1. Acquisition 

The starting point for reconstruction is a sequence of samples 

cquired by a LC-ADC. Samples are represented by the sequence of 

ime-value tuples (t, v ) : the time of acquisition and the threshold 

alue being crossed. 

In Fig. 2 A, the system EB-samples the ECG signal using a level- 

rossing ADC such as the one described in [8] . Then, it marks the

RS complexes and extracts EB-heart-beats. This can be done, as 

reviously shown in [31] , by re-implementing the gQRS-detection 

lgorithm [32] to work with EB-sampled signals. Using the QRS 

iming information, the processing pipeline computes the instan- 

aneous RR interval and uses it to define the heartbeats bound- 

ries. Finally, this processing pipeline section also provides the uni- 
4 
ormly sampled heartbeats to the templates set re-computation 

lock, whenever the current set is not anymore representative of 

he EB-heartbeats. This would require a hybrid approach to sam- 

ling, which employs both an LC and a uniform ADC, alternating 

heir power state (on or off) according to the situation, switching 

etween EB sampling and uniform acquisition. We herein assume 

uch scenario, abstracting the hardware implementation details. 

.2. Differential dynamic time warping with information injection 

We here introduce a novel algorithm, named Information In- 

ected Differential Dynamic Time Warping (II-DDTW), which is an 

volution of the DTW algorithm described in Section 2.1 . We use 

his novel approach to find the best fitting template for a EB- 

ampled heartbeat, and compute the warping parameters for the 

hosen template. 

Information-Injected DDTW. To address the DTW problems 

entioned in Section 2.1 , first, we opt to use the differential ap- 

roach to the DTW algorithm (DDTW), expressed in Eq. (3) . Then, 

e re-formulated the DDTW accumulated distance to take into ac- 

ount additional information and use it to guide the warping pro- 

ess. The developed formulation for Information-Injected DDTW 

II-DDTW) is shown in Eq. (4) , where the t 1 , and t 2 terms repre-

ent the aforementioned additional information. 

 [ i, j] = (1 + λ
∣∣t 1 [ i ] − t 2 [ j] 

∣∣) 
·
∣∣∣ v 1 [ i ] −v 1 [ i −1] 

t 1 [ i ] −t 1 [ i −1] 
− v 2 [ j] −v 2 [ j−1] 

t 2 [ j] −t 2 [ j−1] 

∣∣∣+ 

min (D [ i, j − 1] , D [ i − 1 , j − 1] , D [ i − 1 , j]) 

(4) 
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Fig. 3. Example of an EB sampled heartbeat coupled with a template. The warp- 

ing path is represented here by the purple lines, connecting events with the corre- 

sponding points in the template. The red lines exemplify the middle point in the 

points set associated with the corresponding event. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 4. Exemplification of warping based on II-DDTW. In blue, a segment defined by 
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of this article.) 
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The motivation of such a formulation can be found in the very 

ature of our study. EB-sampled signals are composed of data 

oints represented by a tuple: (time, value). We can define a time 

ase also for uniformly sampled signals using the sampling period. 

he time difference information leads the mapping between events 

nd templates, enforcing a loose time matching requirement. 

Moreover, since we can not ensure template and EB-sampled 

eartbeats to have the same duration, we normalize the timescale 

or both vectors to 1. We use the differential version of the DTW 

istance to better capture the changes in morphologies. Finally, we 

ntroduce a correction factor λ to modify the behavior of the al- 

orithm, giving more weight to the accumulated distance, as per 

q. (3) , or the additional (injected) information, in our case time, 

esulting in the multiplication factor in Eq. (4) . 

.3. Template based reconstruction 

Using the definition of Section 2.2 , sections of the ECG sig- 

al are represented by morphological deformations of templates. 

iven an EB-heartbeat, the II-DDTW block ( Fig. 2 B) computes the 

I-DDTW between the EB signal and all the elements of the tem- 

lates set. Then, it selects the template with the smallest distance 

s representative. 

To warp the selected representative template, the warping block 

 Fig. 2 C) uses the warping path to match every couple of con- 

ecutive events to a set of corresponding points in the tem- 

late. As shown in Fig. 3 , to define the template segment corre- 

ponding to the each EB tuple the warping block uses the cen- 

ral half of the points assigned to the events: half of the points 

ssociated with the first event, and half of the points associ- 

ted with the second event. This process produces a set of uni- 

ormly sampled segments (coming from the selected template), 

ach associated with a specific segment in the EB sampled 

eartbeat. 

The reconstruction is then performed by deforming each tem- 

late segment such that the edges of the segment match the two 

orresponding EB samples. First, the EB segments are shifted such 

hat the first element is (0,0), as described in Eq. (5) : 

 i s [ j] = E i [ j] − E i [0] 
 i s [ j] = T i [ j] − T i [0] 

(5) 

Where E i s and T i s are the shifted event-segment and the 

emplate-segment. E i is the i th event-segment composed of E i [1] = 

t i [1] , v i [1]) , and E i [2] = (t i [2] , v i [2]) , T i [ j] is the jth element of the

 th template-segment, described by the tuple (t, v ) . 
5

The deformation is then performed by computing a warped 

emplate segment as in Eq. (6) : 

 ime [ j] = T t,i s [ j] 
E t,i s [1] 

T t,i s [ L ] 

 alue [ j] = T v ,i s [ j] + T ime [ j] 
E v ,i s [1] −T v ,i s [ L ] 

T ime [ L ] 

(6) 

Where T t,i s [ j] is the jth time element of the shifted i th tem-

late section, T v ,i s [ j] is the jth value element of the same template 

ection. The same notation can be seen used for the correspond- 

ng shifted event segment, in the form E t,i s [ j] and E v ,i s [ j] , L is the

ength of the template section. Finally, T ime [ j] and V alue [ j] are

he time and value jth component of the newly created resampled 

eartbeat segment. 

This operation is graphically depicted in Fig. 4 , aligning the 

dges of the template and event segments, while smoothly 

arying the values of the template segments by the same 

v = 

E v ,i s [1] −T v ,i s [ L ] 

T ime [ L ] 
for each time-unit. The operations showed in 

q. (6) compute a sequence of (t, v ) vectors uniformly sampled but 

ot with the same time-base as the original signal and segment- 

ependent. Finally, the heartbeat is reconstructed by concatenating 
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ll the warped segments (adding the offset subtracted in Eq. (5) ) 

nd linearly resampling the data to obtain a uniform time-base. 

.4. Templates computation 

The templates computation is divided into five stages: re- 

omputation trigger, U.S. Beats acquisition, clustering, templates fil- 

ering, and set re-computation. 

Templates set re-computation trigger. After a new templates 

et is computed, the template computation block ( Fig. 2 D) col- 

ects a reference set of 400 DTW distances from the results of 

ection 3.2 , assuming that, in this time span, the templates set is 

epresentative of the patient heartbeat morphologies. Hence, the 

istance set acquired is used as a reference to estimate the dis- 

ribution of the DTW distance of a coherent templates set. After 

he initial training time, the template computation block acquires 

 test batch of distances every 60 s and compare it with the refer-

nce distribution using the A.D. test [33] . This test returns a criti- 

al value bounded by the probability that the test sequence came 

rom the same distribution of the reference sequence. If such prob- 

bility is lower than 0.05 for two consecutive times, then a new 

emplates set is computed. This double confirmation is required 

o avoid triggering the templates set re-computation if the sig- 

al in one time window was affected by external factors that do 

ot modify the beats morphology but might modify the record- 

ng (e.g., motion noise). The recomputation trigger presented here 

ssumes only normal sinus rhythms that vary slowly over time. Al- 

hough more precise testing can be used to capture single abnor- 

al heartbeats, we opted for a simpler formulation of our process- 

ng pipeline. The refinement of our strategy to deal with abnormal 

eartbeats is a natural extension of this work. 

U.S. Beats acquisition. When a new templates set is needed, 

he first step is to start the signal acquisition at a uniform sampling 

ate. The uniformly sampled signal is then divided by the beats- 

ivision algorithm in U.S. beats. The first time the templates set is 

omputed, the U.S. beats acquisition is performed for a longer time 

indow (compared to templates set re-computation during normal 

unctioning). Each heartbeat is then min-max normalized and used 

s input for the clustering algorithm ( Fig. 2 ). 

On an opposite note, during the re-computation stage, the ac- 

uisition time is shorter. This short acquisition time is required 

ince this operation is triggered when the morphology of the cur- 

ent heartbeats do not resemble the ones contained in the already 

resent templates set. The processing pipeline, hence, needs to 

uickly adapt to signal changes and a search-space small enough 

o consider the new morphologies as separated clusters and not 

utliers of already present and dominant ones. 

Self-organizing clustering. The templates set is computed by 

lustering the acquired heartbeats and selecting the U.S. beats clos- 

st to the centroids. The choice of the clustering method is then 

riven by three main facts: 1) the number of clusters can not be 

etermined beforehand. While it is true that a heartbeat can as- 

ume only a finite number of morphologies [34] , this would re- 

uire the U.S. beats set under analysis to be statistically complete 

nd without biases, and this can not be ensured for any subset 

f collected beats. 2) We can not ensure the clusters are convex 

or any given metric. Also, since our algorithm iteratively com- 

utes local clusters, their distribution could change between iter- 

tions, making convex conversions techniques such as the kernel 

rick [35] not viable. 3) The clusters centroids need to be elements 

f the clustered set, since we can not ensure a heartbeat defined 

s an aggregation of examples to be physically coherent. 

These constraints are satisfied by graph-based clustering meth- 

ds [28] . Hence, our framework uses a self-organizing, graph-based 

lustering algorithm called affinity propagation [29] . This algorithm 

equires two sets of parameters: graph distances and preferences. 
6 
he preferences vector is equivalent to a statistical prior that de- 

nes the likelihood of a data point to be a centroid. In its mathe- 

atical formulation, affinity propagation can be exemplified as fol- 

ows: given a set X = { x i } N i =1 
of vectors, we define the affinity ma-

rix S ∈ R 

N×N where each element S[ i, j] is defined as a distance

unction between x i and x j . We can then define two matrices: the 

esponsibility matrix R ∈ R 

N×N , which quantifies how well suited 

he vector x i is as an example for x j , relative to other candidates

n X , and the availability matrix A ∈ R 

N×N , which represents how 

ppropriate it would be for each vector x i to pick another vector 

 j as an example, taking into account the responsibility of x j as an 

xample for the remaining points. Both matrices are initialized to 

. We then compute the update of R using Eq. (7) . 

 [ i, j] = S[ i, j] − max (A [ i, l] + S[ i, l]) , l � = j (7)

he availability matrix is then updated following Eq. (8) 

A [ i, j] = min (0 , R [ j, j] + 

∑ 

l / ∈ (i, j) 

max (R [ l, j])) , i � = j, 

A [ i, i ] = 

∑ 

l � = i 
max (R [ l, i ]) 

(8) 

hese operations are executed iteratively until convergence or for a 

redefined number of iterations. Cluster centroids are then defined 

s elements in X such that R [ i, i ] + A [ i, i ] > 0 

Our system uses the DTW measurement as the graph distance 

o capture the concept of morphological similarity between the 

ataset points. We then use the same preference value for each 

ataset point since we want the representative heartbeats to be 

merging from the graph itself, without any external bias. 

Centroids filtering. The centroids and relative clusters are fil- 

ered to satisfy two criteria: cluster dominance and the smallest 

ossible signal-to-noise ratio (SNR). The first filter removes clusters 

hat do not contain enough heartbeats. This threshold is 5% of the 

otal number of points in the dataset. In this scenario, the outliers 

o the clustering algorithms are the noisy portion of the signal. The 

econd filter searches in each of the not discarded clusters a data 

oint that is both the nearest possible to the centroid and with an 

NR bigger than 17dB (50 in the linear scale). The values used for 

hese two filters were empirically computed with the objective of 

eing very selective, and yet always allowing a non-zero amount 

f cluster and centroids in the small signal section analyzed. 

To calculate the SNR value, the templates set computation stage 

rst estimate the true signal and then the over-imposed noise. 

hen, assuming the noise to be a zero-median signal, it divide the 

ignal from the noise applying a median filter to the acquired sig- 

al. This approach, however, requires the median filter to be as 

ong as possible and short enough to not classify main signal fea- 

ures as noise. Given these conditions, the median filter time-span 

s set to 24 ms, based on the average duration of the QRS complex 

n an average heartbeat [11] . 

Templates set update. To create an updated version of the tem- 

lates set, we compare the old and the newly computed tem- 

lates. Algorithm 1 details the templates set update process. The 

pdat e _ t emplat es _ set procedure inputs are the old templates set 

 old _ t , list of templates) and the newly computed clusters ( new _ t ,

 data structure holding the new templates, clusters centroids, 

nd distances between all cluster elements and relative centroid). 

oreover, the dist _ f rom _ centroid (lines 7 and 16), computes the 

TW distance between a template and a centroid. 

In Algorithm 1 , lines from 4 to 11 check if old templates are

epresented in the new clusters: first, line 5 fetches the nearest 

luster to the old template under analysis, then, line 6 defines the 

hreshold below which the old template is considered part of the 

ew cluster. This threshold is the average DTW distance plus one 

tandard deviation between the centroid and the elements of the 

luster. If the old template is considered inside its nearest cluster, 
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Algorithm 1 Templates set update algorithm. 

1: procedure updat e _ t emplat es _ set ( old _ t , new _ t ) 

2: near _ t emplat es ← Dict (List ) 

3: new _ set ← List 

4: for old ∈ old _ t do 

5: near _ new = get _ nearest (old, new _ t ) 

6: t hreshold = cumpute _ t h (near _ new.all _ dists ()) 

7: d = dist _ f rom _ centroid (old , near _ new ) 

8: if d ≤ threshold then 

9: near _ t emplat es [ near _ new.id] ← old 

10: else 

11: new _ set ← old � Keep old 

12: for new ∈ new _ t do 

13: if new.id ∈ near _ t emplat es.id then 

14: old _ cand id ates = near _ templates [ new.id] 

15: near _ old = get _ nearest(new, old _ cand id ates ) 

16: d = dist _ f rom _ centroid (near _ old , n ) 

17: if d ≤ new.dist then 

18: new _ set ← near _ old � Keep old 

19: else 

20: new _ set ← new � Update old 

21: else 

22: new _ set ← new � Insert new 

return new _ set 
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cutes in constant time. 

6 https://gitlab.epfl.ch/zanoli/EB _ ECG _ Smart _ Resampler 
t is added to the list of possible representatives (line 9). Other- 

ise, it is kept (line 11) since it represents a morphology not cap- 

ured by the current clustering iteration. Lines 12 to 22 check if a 

ew cluster is either a) represented by an old template (line 18), 

) represented by the newly identified one (line 20), or c) if it rep-

esents a new morphology (line 22). 

.5. Processing pipeline composition 

The run-time behaviour of the framework depicted in Fig. 2 and 

etailed in the previous sections can be summarized as follows: 

1. As the pipeline execution starts, no templates set is defined. 

The re-computation trigger initializes the templates acquisi- 

tion block. This computation lasts for a defined but parametric 

amount of time. 

2. The beats division block divides the uniformly sampled signal 

into heartbeats. Each heartbeat is sent to the clustering algo- 

rithm block. 

3. The centroids computed by the clustering algorithm get filtered 

as described in Section 3.4 . As no previous templates set exist, 

the obtained centroids are not compared to any previous tem- 

plate. 

4. When the templates set computation is ready, the system starts 

the event-based signal acquisition. 

5. The EB-gQRS [31] algorithm finds the QRS complexes in the 

event-based signal and, consequently, subdivide the EB signal 

in EB heartbeats. 

6. The II-DDTW algorithm in the DTW matching block matches 

any EB heartbeat to every template in the temples set. It then 

selects the template with the minimum distance from the ana- 

lyzed EB heartbeat and marks it as representative of this heart- 

beat. 

7. For each EB heartbeat, the DTW matching block matches and 

warps template segments accordingly to the recorded events 

and the warping path obtained from the II-DDTW algorithm. 

8. Each warped segment is then recomposed together by the tem- 

plate warp block to obtain the reconstructed heartbeat. 
7 
9. In order to find if a new templates set is needed, the A.D. Test 

block saves back the warping distances between the EB heart- 

beats and the selected representative template. 

0. After a new templates set is computed, the A.D. Test block ac- 

quires a vector of DTW distances as reference, assuming that 

a newly computed template is representative of the heartbeats 

generated immediately after the set computation. 

1. After defining the reference distance vector, the A.D. Test block 

acquires a new test vector and checks if it comes from the same 

probability distribution. 

2. In case the A.D. Test fails ( p − v alue ≤ 0 . 05 ) for two consecutive

times the re-computation trigger signal starts a new templates 

set acquisition. 

3. Once a new templates set is computed, the clustering block 

compares it with the previous set and merges the two as seen 

in Section 3.4 . 

An implementation of this processing pipeline has been pub- 

ished as open-source 6 , using Python as the primary language, with 

 implementations for the most compute-intensive routines such 

s II-DTW. The implementation is highly modular and paramet- 

ic, allowing to freely vary the acquisition time for templates set 

omputation, the lengths of the reference and test distance vec- 

ors, the clustering and centroids filtering parameters, the beats- 

ubdivision window timing, and the number of points relevant for 

ach template-segment/event bounding. The parameterization ca- 

ability makes the algorithm suited for patient-specific tuning and 

pplication on different, non-ECG-related, self-similar signals that 

an be explored in future studies. 

.6. Computational complexity 

Finalizing our methodology characterization, we describe its 

omputational complexity. 

Following the description in Section 3.5 , we can see that, con- 

idering each heartbeat as input, all the forward operations (i.e.: 

ot the templates set re-computation), execute in linear time: 

hen executing the forward operations, for each functional block 

een in Fig. 2 , the output is solely dependent on the current heart-

eat, hence, increasing the number of heartbeats leads to a directly 

roportional increase in computation time. Moreover, the complex- 

ty of the DTW algorithm is O (N × T ) [29] where N is the dimen-

ion of the first input and T is the dimension of the second input. 

I-DDTW does not change the complexity of the algorithm, since 

he main difference between the two methods consists in using 

q. (4) instead of Eq. (1) , which does not change the complexity of 

he similarity matrix definition operation (i.e., the operation with 

 (NXT ) complexity). However, their execution time is fixed when 

he input size is fully determined. Although in our environment 

his is not strictly true, the average sizes of the input parameters 

re well-defined and do not change depending on the number of 

eartbeats processed. The deployed A.D. test has a linear complex- 

ty and is executed every 60 s. Hence, the number of times the 

e-computation trigger is set (i.e.: when the obtained critical value 

s smaller than 0.05), must be an integer fraction of the number 

f times the A.D. test was executed. Hence, the number of times 

he feedback loop is triggered depends linearly on the number of 

eartbeats processed. Finally, we notice that the templates set re- 

omputation, and especially the affinity propagation algorithm, be- 

ave quadratically with respect to the number of inputs. However, 

he number of heartbeats used for clustering is determined by the 

onstant acquisition time used for templates set re-computation. 

ince this time span is fixed, the templates-set feedback loop exe- 

https://gitlab.epfl.ch/zanoli/EB_ECG_Smart_Resampler
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From this analysis, we can conclude that the processing pipeline 

eveloped has a linear complexity with respect to the number of 

eartbeats analyzed. 

However, we notice that while we can define the algorithmic 

omplexity of the full processing pipeline, this complexity does 

ot characterize a potential hardware deployment, since in a real- 

orld scenario the proposed methodology would be split between 

n edge device and a back-end server, to optimize edge energy 

onsumption. 

. Experimental setup 

.1. Data and methods 

To validate our work, we test it against the MIT-BIH Normal Si- 

us Rhythm database [32] . This database comprises 18 long-term 

approximately one day) ECG recordings of subjects referred to the 

rrhythmia Laboratory at Boston’s Beth Israel Hospital (now the 

eth Israel Deaconess Medical Center). The total number of heart- 

eats analyzed is approximately 1.8 million. The ECG recordings are 

ampled at a frequency of 128 Hz. 

To decouple the performances of QRS detection from our algo- 

ithm, we relied on the ground-truth annotations in the selected 

ataset. This decision allows us to focus on the performance eval- 

ation of the work developed here (the processing pipeline), ef- 

ectively uncoupling our results from the performance of any QRS 

etection algorithm. 

Using the QRS time locations, the processing pipeline computes 

he instantaneous RR interval and uses it to define the heartbeats 

indow. The window boundaries for each heartbeat is defined by 

he time of the QRS complex minus 40% and plus 60% of the RR 

nterval. Then, the acquisition block checks if any event is present 

t the boundaries time and, if not, it insert a synthetic event with 

 zero value. This approach is consequence of the boundary timing, 

s it is computed so to fall after a T-wave and prior to a P-wave,

here no cardiac activity is present. 

In our experiments, the regularizer λ in Eq. (4) has been set 

o 1. An empirical exploration of this meta-parameter led to the 

onclusion that, for our specific problem, a different choice of λ
as a very weak influence on the reconstruction result. 

Finally, the initial long-term U.S. beats acquisition for the first 

emplates set computation is set to 3 min, while the shorter time 

pan for template-set re-computation is set to 40 s. These values 

ave been empirically selected: a shorter acquisition time leads 

o less representative templates (undermining the results), and a 

onger time span do not lead to significant improvements. 

.2. Data rate reduction metric 

One important outcome to consider in our experiments is 

he potential for energy savings of our methodology. While we 

resented, in the previous sections, a fully algorithmically de- 

ned pipeline, we can use its functional block formulation to de- 

ne an energy-efficient strategy of implementation in an edge-to- 

loud scenario. The implementation strategy we envision for our 

ethodology uses an edge device to solely acquire and send data, 

sing the smallest amount possible of processing power, while del- 

gating the more difficult and energy-intensive tasks to a more 

owerful back-end. This creates a clear division of the tasks. In par- 

icular: 

• The edge device: Acquires templates, acquires EB Signal, com- 

putes templates coherence with respect to EB Signal, sends data 

to back-end. 
• The back-end: receives EB heartbeats, receives templates, com- 
putes optimal II-DDTW reconstruction. c

8 
The proposed processing pipeline makes use of the II-DDTW 

istance to evaluate the coherence of the templates. This increases 

he energy computation on the edge device, as this operation is 

epeated every new EB-heartbeat is acquired. However, this effect 

s counterbalanced by the smaller number of events acquired and 

ransmitted. Moreover, template recomputation also poses a sig- 

ificant processing overhead in the edge device application. While 

his is a limitation of our methodology, many different strategies 

xist to accomplish templates coherence evaluation, and the im- 

act of templates set recomputation is largely dependent on the 

verage time between each recomputation. To evaluate the poten- 

ial energy savings in the edge device, we compute the average 

eduction in data rate. While a complete analysis would require 

he energy evaluation of the edge device computation, this is de- 

ice specific and out of this work scope. Moreover, the energy for 

ata processing is orders of magnitude lower than both the energy 

equired for memory retention and RF transmission. As an exam- 

le, we can notice how Bluetooth low energy consumes, at least, 

.1W [36] , while the consumption of a low power microcontroller 

nit while in active state is usually lower than 10 μW [5] . To eval-

ate the data rate savings, we then use Eq. (9) . 

 = 1 − 2 p(1 − SRF ) T f + (1 − p) T f 

T f 
= p(2 SRF − 1) (9) 

here p is the percentage of time the system is acquiring an 

B signal, T is the total time length of the recording, f is the 

niformly sampled signal frequency, and SRF is the sampling re- 

uction factor achieved by the EB sampling, defined as SRF = 

Tot .Point s −EB _ point s 
Tot .Point s 

: the ratio between the points discarded by the EB- 

ampler and the number of points in the uniformly sampled signal. 

nalyzing Eq. (9) , the term p(1 − SRF ) T f is the number of points

ampled by the EB-ADC, and the factor 2 is due to the need to send

nformation about time and value, which is not strictly needed for 

niformly sampled signals. Finally, while Eq. (9) does not include 

he energy needed to transmit the templates, together with the 

ignal. However, we can notice that the templates are among the 

niformly sampled heartbeats, hence, it is always possible to ob- 

ain the template-set relative to each EB-sampled heartbeat by ei- 

her using the clustering algorithm in the back-end a second time, 

r by adding a single bit to every uniformly acquired heartbeats to 

dentify which one is considered representative. Considering an av- 

rage number of 94 points per heartbeat (acquiring at a sampling 

ate of 125Hz time the average heart rate in seconds: 0.75 bps, or 

0 bpm), each point being represented by 10 bits, we can state that 

q. (9) is a good approximation for data rate saving. 

.3. Evaluation metrics 

The performances of the hereby proposed processing pipeline 

re evaluated using three merit figures: 1) percentage root mean 

quare difference (PRD) [37] , 2) Dynamic time warping distance, 

nd 3) P and T wave delineation F 1 score. These three metrics 

omplement each other, depicting a comprehensive view of the 

trengths and weaknesses of our approach, as discussed in the fol- 

owing. 

The PRD is a normalized distance between two vectors, com- 

uted as in Eq. (10) , where x org and x rec are the samples of the

riginal and reconstructed signal: 

 RD = 100 ·
√ ∑ n 

i =1 (x org [ i ] − x rec [ i ]) 2 ∑ n 
i =1 x org [ i ] 2 

(10) 

The next metric explored broadens the definition of distance to 

 non-strictly mathematical one [38] using the original DTW warp- 

ng distance as a merit figure (i.e., D N,M 

in Eq. (1) ). This is the

umulative � distance between elements in the optimal warping 
1 
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Fig. 5. Spline interpolation of an event-based acquired heartbeat, using an LC-ADC 

with 6 bits of dynamic range. The non-uniform time distance between samples 

forces the spline polynomial to be ill conditioned, exhibiting erratic behavior at the 

end of the signal or at the edges of the QRS complex. 
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eat. 

The final metric we analyze is wave delineation. A normal ECG 

eartbeat is composed of three main waves: P, T, and QRS. The 

RS complex detection is, in this instance, a trivial task: it is 

 fundamental part of the processing pipeline and the clearest 

eature of an ECG signal. This feature is, hence, always present 

nd correctly positioned. Conversely, the presence or absence 

f the P and T waves, alongside with their correct positioning, 

s a strong marker of well-reconstructed heartbeats. To evalu- 

te the wave presence/correctness, we first use the delineation 

ool ECGPUWAVE included in the wfdb software package [32] . 

his tool identifies the P and T waves in a record. Then, we 

se the bxb tool, also contained in the wfdb software pack- 

ge, to find if the waves found in the original signal coincide 

ith the waves found in the reconstructed heartbeats. Using the 

tandards given by the bxb software, two waves are considered 

atching if their labels are, at most, 0.15 s apart. This measure 

s numerically evaluated measuring the correctly detected waves 

 T rue Positi v e, T P ), the waves wrongly inserted by our approach

 F alse Positi v e, F P ), and the waves our approach did not manage

o recover ( F alse Negati v e, F N). Using this data, we compute the

ensitivity score S = 

T P 
T P+ F N , and the positive predictive value P P V =

T P 
T P+ F P . Sensitivity measures the percentage of waves in the original 

ignal correctly reconstructed and well-positioned, while the pos- 

tive predictive value P P V measures the probability of a detected 

reconstructed) wave to be present in the original signal and not 

e wrongly inserted. Finally, we compute the F 1 = 2 S·P P V 
S+ P P V score: 

he harmonic mean between S and P P V . Since the labeling in the

riginal dataset and in the reconstructed signal are computed us- 

ng the ECGPUWAVE , the obtained F 1 score measures the difference 

hen using a delineation algorithm on a uniformly sampled signal 

ather than on a reconstructed one. 

While the PRD (which is a sum of element-wise distances) rep- 

esents well the difference in values between two vectors, it also 

as intuition pitfalls. For example, both a constant signal and a 

lightly skewed but overall correct reconstructed heartbeat can re- 

ult in the same PRD. 

The DTW distance captures the morphological distance of our 

esults from the true signal, making this operation well suited for 

valuating a reconstruction operation. Still, this approach can be 

isleading, mainly in discerning how a feature is better repre- 

ented. For example, when approximating a quadratic function, a 

-pieces wise linear function might present a smaller DTW than a 

uadratic function well centered but with slightly higher values. 

The PRD and DTW metrics give us an intuition on the correct- 

ess of the values of a reconstructed sequence, while the wave 

dentification marks the presence of the feature of clinical interest. 

n summary, the correct positioning of such features is insufficient 

o deem the results correct, but a combination of correct wave po- 

itioning, standard DTW, and PRD values denotes a reconstruction 

here the main ECG elements are correctly placed, with similar 

alues and morphology to the original waves. 

.4. Baselines 

Alongside the developed pipeline results, we also compute the 

etrics mentioned above for the EB signal reconstructed through 

hree standard resampling techniques. 

1. Sample-and-hold method, where we hold the last recorded 

value in-between events. This technique represents the com- 

plete set of information obtained from the level-crossing tech- 

nique sampling, as we have no means to know intermediate 

samples. 
9 
2. Linear interpolation. This technique assumes a constant deriva- 

tive between two consecutive points. 

3. Quadratic spline interpolation [39] . This technique ensures a 

smooth interpolation. We use 0-valued derivative as a bound- 

ary condition. Higher-order spline interpolations were tested as 

well. However, in these cases the reconstruction suffered un- 

stable oscillations, especially in Q and S waves reconstruction, 

due to the intrinsic non-linear sparsity of the EB-sampled ECG 

signal. 

All the obtained results are evaluated against the EB sampling 

evel, described by the number of bits used for the level-crossing 

lgorithm (the number of levels being equal to 2 B , where B is the

umber of bits). However, this measurement does not directly rep- 

esent the effect of the sampling on the signal. We tackle this 

roblem by computing a compression figure called sampling re- 

uction factor (SRF) for each EB sampling level. This metric is the 

atio of discarded samples with respect to the total number of 

amples in the uniformly sampled signal. 

To compute all the results mentioned above, we apply the de- 

eloped processing pipeline to every heartbeat in every record in 

he dataset. We then compute each metric for each resulting re- 

onstructed beat. Then, we re-evaluate the same metrics using the 

hosen resampling techniques. Finally, we derive the statistical dis- 

ributions for both methods and metrics. 

. Results and discussion 

The analysis of the spline interpolation results shows, in the 

istance-based metrics, an error at least one order of magni- 

ude higher than the other resampling techniques. As illustrated 

n Fig. 5 , the reason behind this behavior is the sparse nature of 

oints in the initial and final section of every heartbeat together 

ith high derivative values where the data-point density increases 

ear the QRS complex. This behavior causes the polynomial ap- 

roximation to be non-representative of the true underlying sig- 

al. This problem resides in the very nature of level-crossing sam- 

ling, making the spline interpolation a non-effective interpolation 

ethod for level-crossing ADCs. The results about spline interpo- 

ation are hence not discussed in the remaining part of this sec- 

ion while still being present in the numerical tabulated results. 

.1. Data rate reduction 

Figure 6 shows the average SRF value, computed by EB- 

ampling all the signals in the dataset, for an increasing number of 

its in the level-crossing EB-ADC. A negative SRF means that the 

umber of points is higher than in uniformly sampled signals. 
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Fig. 6. Sampling reduction factor vs. LC-ADC BIT numbers. Negative values repre- 

sent a higher number of points with respect to uniform sampling. 

Table 1 

SRF, Percentage of EB-heartbeat (p), data rate re- 

duction (R). 

ADC bits number 3 4 5 

SRF 0.935 0.887 0.785 

p 0.961 0.967 0.965 

R 0.836 0.748 0.550 

Table 2 

Average number of templates needed for the reconstruction (T#), 

and average time between templates set re-computation (TBT, in 

minutes). 

ADC bits number 3 4 5 

T# 4 . 73 ± 2 . 53 5 . 22 ± 2 . 55 5 . 48 ± 2 . 80 

TBT 18 . 3 ± 16 . 6 21 . 0 ± 19 . 8 20 . 0 ± 18 . 3 
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Fig. 7. PRD distance distribution against LC-DC bit number and resam- 

pling/reconstruction method, using the number of bits discussed in Section 5.1 . 

S&H: Sample&hold resampling, Lin: Linear resampling, T.B. (our): template-based 

reconstruction (our method). 

Table 3 

Average and standard deviation PRD for different resam- 

pling/reconstruction techniques and increasing EB-ADC bits. 

ADC bits number 3 4 5 

Spline interpolation 989 ± 2993 681 ± 1505 552 ± 990 

Sample & Hold 79 . 2 ± 25 . 0 72 . 2 ± 26 . 8 52 . 3 ± 16 . 9 

Linear interpolation 71 . 3 ± 27 . 1 56 . 8 ± 16 . 1 37 . 9 ± 14 . 3 

Template based (ours) 70 . 5 ± 32 . 0 52 . 7 ± 19 . 8 36 . 0 ± 14 . 2 
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We restrict the analysis of our results to the 3,4, and 5 bits LC- 

DCs, f or two reasons: first, while using a 2-bits LC-ADC does not 

ignificantly lower the SRF, it fails to detect a single event in each 

eartbeat most of the times. This leads to results that are discon- 

ected from any signal measurements. Second, the results show 

nly a marginal improvement for LC-ADCs with more than 5 bits, 

hile the results obtained for higher number of bits ( Bits ≥ 7 ) are

ndistinguishable from the uniform sampling approach. We then 

eepen our results analysis, observing in detail 4-bit LC-ADC per- 

ormances as we notice it to achieve a high SRF while obtaining 

verall good results. 

To obtain the data rate reduction described in Eq. (9) , we mea- 

ure the percentage of heartbeats acquired using EB-Sampling. 

able 1 presents the SRF, percentage of EB-heartbeat, and overall 

ata rate reduction. Moreover, as part of characterization of the de- 

cribed methodology, we also report in Table 2 the average number 

f templates needed for the reconstruction and the average time 

etween templates set re-computation. 

.2. Percentage root mean square difference 

Figure 7 presents the distribution of the PRD distance of the 

hree considered reconstruction techniques, using an LC-ADC with 

, 4, and 5 bits of dynamic range. The enclosed box spans from the 

5th to the 75th percentiles, the horizontal central line is the me- 

ian, and the thin outreaching lines enclose the 5-to-95 percentile. 

sing this figure, we can derive two interesting points: 1) the flat 
10 
nterpolation is consistently outperformed by either the linear in- 

erpolation or the II-DTW method, 2) the II-DTW method is com- 

arable to the linear interpolation, outperforming it when applied 

o a 4-bits LC-ADC. 

The first point is the result of the step-defined function the 

ample&hold method creates. This behavior causes, in fast varying 

ignals, an increasing difference between the constant held value 

nd the true underlying signal. The second point shows us that our 

echnique is as valid as linear interpolation when we only consider 

amples magnitude. The specific numerical values of the average 

RD and standard deviation are shown in Table 3 . 

Figure 8 shows the PRD value distribution of the linear resam- 

le method and the II-DTW reconstruction using a 4-bits LC-ADC. 

he multi-modal distribution shown in the figure is caused by the 

ifferent magnitudes of P and T waves. A small number of bits 

n the LC-ADC causes the distance between sampled levels to be 

ometime higher than the magnitude of the waves we desire to 

ample, with several possible behaviours: 1) P-wave is sampled, T- 

ave not, 2) P-wave is not sampled, T-wave is, 3) both P and T- 

aves are sampled, 4) both P and T-waves are not sampled. These 

onditions are less representative as the number of bits increases 

and the span between ADC values diminishes). Our methodol- 

gy significantly mitigates this effect, explaining the better per- 

ormances displayed in Fig. 7 for LC-ADC with 4 bits of dynamic 

ange. 

.3. Dynamic time warping pseudo-edit distance 

Figure 9 presents the distribution of the DTW distance of the 

hree considered reconstruction techniques, using an LC-ADC with 

, 4, and 5 bits of dynamic range. We observe that our proposed 

echnique shows a consistently lower error for all choices of LC- 

DC dynamic range. 



S. Zanoli, G. Ansaloni, T. Teijeiro et al. Computer Methods and Programs in Biomedicine 240 (2023) 107712 

Fig. 8. PRD distribution using an LC-ADC with 4 bits of dynamic range with high- 

lighted average and standard deviation (horizontal bounded lines). Orange is Linear 

interpolation while blue is our proposed template based technique. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 9. DTW distance distribution against LC-DC bit number and resam- 

pling/reconstruction method, using the number of bits discussed in Section 5.1 . 

S&H: Sample&hold resampling, Lin: Linear resampling, T.B. (our): template-based 

reconstruction (our method). 
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Fig. 10. DTW distribution using an LC-ADC with 4 bits of dynamic range with high- 

lighted average and standard deviation (horizontal bounded lines). Orange is Linear 

interpolation, while blue is our proposed template-based technique. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 11. Heartbeat reconstruction associated with the 50 th DTW distance percentile, 

which includes an LC-ADC using 3, 4, and 5 bits of dynamic range. 
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Figure 10 shows the detailed DTW distribution for the linear in- 

erpolation technique and our warping method for an LC-ADC with 

 bits of dynamic range. Here we can see differences in the distri- 

ution type between the two methods, with our warping recon- 

truction exhibiting a unimodal distribution while the linear inter- 

olation method exhibits a composite behavior. These results can 

e explained by observing Fig. 11 , where we select, for all the an-

lyzed levels, the heartbeat reconstruction whose DTW distance 

orresponds to the 50th percentile distance in the DTW distribu- 

ion, behaving similar to what we would observe in an average 

cenario. The self-similarity prior knowledge allows our method 

o recover significant features also when no points are sampled in 

he section of interest, while the linear resampling technique is not 

ble to recover any information that has not been recorded. 

Finally, Table 4 shows the average and standard deviation of the 

ifferent reconstruction methods for the selected LC-ADC dynamic 

anges. While showing an advantage of our method over classi- 
11
al resampling, these results highlight the accomplishment of the 

ain objective of our work: a good morphological representation 

f an EB-sampled signal. 

.4. Delineation results 

Wave delineation is one of the main objectives in ECG signal 

nalysis. This task consists in detecting the presence, position, and 

haracteristics of P and T waves, alongside the QRS complex. Here, 

e focus on a sub-task of the wave delineation problem: p and T 

aves detection. 

Table 5 shows the delineation results for the proposed resam- 

ling methods and our technique, in terms of F 1 score. We can ob- 

erve that our method outperforms any resampling technique for 

ny selected LC-ADC range. This is due to the usage of templates 
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Table 4 

Average and standard deviation DTW for different resam- 

pling/reconstruction techniques and increasing EB-ADC bits. The 

results are here scaled down by a factor 10 3 . 

ADC bits number 3 4 5 

Spline interpolation 38 . 4 ± 36 . 6 23 . 0 ± 24 . 0 15 . 2 ± 19 . 2 

Sample & Hold 3 . 05 ± 2 . 07 2 . 77 ± 1 . 37 2 . 22 ± 0 . 90 

Linear interpolation 2 . 94 ± 1 . 70 2 . 42 ± 1 . 14 1 . 62 ± 0 . 71 

Template based(ours) 2 . 16 ± 1 . 69 1 . 74 ± 1 . 19 1 . 32 ± 0 . 78 

Table 5 

P and T wave delineation results F 1 score for different re- 

sampling/reconstruction techniques and increasing EB-ADC 

bits. 

ADC bits number 3 4 5 

Spline interpolation - P 0.111 0.237 0.351 

Spline interpolation - T 0.655 0.598 0.620 

Sample & Hold - P 0.009 0.051 0.101 

Sample & Hold - T 0.231 0.394 0.697 

Linear interpolation - P 0.007 0.039 0.114 

Linear interpolation - T 0.231 0.353 0.617 

Template based (ours) - P 0.646 0.696 0.699 

Template based (ours) - T 0.814 0.852 0.870 
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Fig. 12. DTW distance distribution against LC-DC bit number and Templates ac- 

quisition type, using the number of bits discussed in Section 5.1 . Prog.: Progres- 

sive templates acquisition, Init.: Multiple initial templates, Sing. : Single initial tem- 

plates. 
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hat, if correctly chosen by the processing pipeline, contain similar 

 and T waves to the true signal, as shown in Fig. 11 . The pre-

ented waves, warped accordingly to the recorded events, closely 

esemble the original signal, making the delineation more effective 

han when applied to a resampled signal. 

Finally, we noted that the increase in F 1 score is mainly caused 

y an increase in the sensitivity score S, and only marginally 

hanks to a bigger positive predictivity P P V value. To exemplify this 

oint, we observe P wave delineation, using a 4-bits LC-ADC, for 

inear resampling and templates-based reconstruction. The linear 

esampling achieve: S = 0 . 019 , and P P V = 0 . 630 , while using our

ethod we measure: S = 0 . 566 , and P P V = 0 . 725 . 

These results represent the core argument and contribution of 

ur study. The DTW and PRD distances capture an overall improve- 

ent achieved by our method over classical resampling. However, 

hey fail to reflect how this improvement is achieved or how it 

ight be helpful for any task. The F 1 score in wave delineation 

hows that the improvements are caused by an effective recon- 

truction of the otherwise removed fundamental bio marker of the 

CG signal. Moreover, we do not only show an effective reconstruc- 

ion of the P and T waves but also their correct positioning with 

espect to the ground truth signal. 

.5. Results discussion 

We now discuss how the three metrics analyzed, and their rel- 

tive improvements, relate to each other. For the sake of brevity, 

e are going to compare our methodology only with the best- 

erforming approximation (linear interpolation), but similar argu- 

ents can be made for each of the considered standard resampling 

echniques. 

First, we must divide the three behaviours observed when eval- 

ating the three described metrics. In delineation, our methodol- 

gy outperforms linear resampling greatly. Furthermore, the per- 

ormance gain for the PRD metric achieves an improvement over 

inear resampling between 1% and 7% for the cases in Table 1 . 

inally, the performance of our methodology with respect to the 

TW metric achieves an improvement over linear resampling be- 

ween 19% and 28% in the same tabulated cases. 

PRD is certainly an important metric to test the correctness of 

he results, but, being the magnitude of the normalized distance 

ector, it carries little information about the overall morphology 
12 
nd position of the signal characteristics. Although the improve- 

ent in these regards is not significant, they are still useful in 

howing that, on average, the samples obtained with our method 

ave similar distributions to the samples generated through stan- 

ard resampling techniques (although with a very different density 

unction, see Fig. 8 ). 

DTW, on the other hand, is a useful tool to assess the morpho- 

ogical similarity of two vectors. We can observe how the DTW 

istance is already relatively small for linear resampled signal, and 

his is because, while missing all the details of the uniformly sam- 

led signal, it still has a proportional evolution to its uniform 

ounterpart: as the signal changes, thresholds are crossed, and the 

vents drawn from the signal follow the same average behavior of 

he underlying uniformly sampled signal, making the linear resam- 

ling behaving similar in each segment but lacking all the details. 

sing our methodology, we are able to recover much of that fine 

etails lost due to linear resampling, bringing a clear improvement 

o this metric. 

Finally, delineation requires the precise location of P and T 

aves. While linear interpolation has a similar morphology to the 

niformly sampled heartbeat, its peak and valleys (hence the char- 

cteristic defining apexes and ends of P and T waves) are bounded 

o be positioned at sampling instances. But this is not true in our 

ethodology: between two events our method can fit any appro- 

riate template section, without requiring the section to contain 

ny maxima or minima. The same discussion can be made for in- 

exion points. 

Hence, the recorded increase in DTW performance (i.e.: lower 

TW distance between ground truth and reconstructed heartbeat) 

esults in better positioning of P and T waves, while also recon- 

tructing them better and with details more similar to the uni- 

ormly sampled signal, making the delineation more effective. 

.6. Different templates acquisition mode 

As described in Section 3 , we compare the performance of our 

rocessing pipeline with two computationally lighter, open loop, 

ariations of it: 1) the templates set is computed only at the be- 

inning of the process, 2) only one template is acquired at the be- 

inning of the process. 

Fig. 12 shows the distributions of the DTW distance for the 

hree proposed processing pipeline variations, using an LC-ADC 

ith either 3, 4, or 5 bits of dynamic range. These results highlight 
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Fig. 13. Heartbeat reconstruction associated with the 50 th DTW distance per- 

centile, with an LC-ADC using 4 bits of dynamic range. Each column is a different 

templates-computation method. First column: progressive multi-template, second 

column: multiple templates acquired only at the beginning, third column: single 

initial template acquired at the beginning. 

Table 6 

Average and standard deviation PRD for linear interpolation, our processing 

pipeline using II-DDTW, and the same pipeline using standard DTW, with increas- 

ing EB-ADC bits. 

ADC bits number 3 4 5 

Linear interpolation 71 . 3 ± 27 . 1 56 . 8 ± 16 . 1 37 . 9 ± 14 . 3 

Template based (standard DTW) 77 . 4 ± 27 . 0 58 . 5 ± 18 . 7 41 . 2 ± 17 . 0 

Template based (II-DDTW) 70 . 5 ± 32 . 0 52 . 7 ± 19 . 8 36 . 0 ± 14 . 2 
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Table 7 

Average and standard deviation DTW distance for linear interpolation, our pro- 

cessing pipeline using II-DDTW, and the same pipeline using standard DTW, with 

increasing EB-ADC bits. 

ADC bits number 3 4 5 

Linear interpolation 2 . 94 ± 1 . 70 2 . 42 ± 1 . 14 1 . 62 ± 0 . 71 

Template based (standard DTW) 2 . 88 ± 1 . 78 2 . 38 ± 1 . 33 1 . 56 ± 0 . 76 

Template based(II-DDTW) 2 . 16 ± 1 . 69 1 . 74 ± 1 . 19 1 . 32 ± 0 . 78 

Table 8 

P and T wave delineation results F 1 score for different resam- 

pling/reconstruction techniques and increasing EB-ADC bits. 

ADC bits number 3 4 5 

Linear interpolation - P 0.007 0.039 0.114 

Linear interpolation - T 0.231 0.353 0.617 

Template based (standard DTW) - P 0.438 0.634 0.626 

Template based (standard DTW) - T 0.316 0.456 0.706 

Template based (II-DDTW) - P 0.646 0.696 0.699 

Template based (II-DDTW) - T 0.814 0.852 0.870 
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 condition of indifference under this type of measurement. More- 

ver, an analysis of the previously explored merit figures (PRD and 

 1 delineation score) also shows no statistically significant differ- 

nces between the three reconstruction methodologies. However, 

s shown in Fig. 13 , the observation of the heartbeats in the 50th

ercentile of the DTW distance distributions shows a progressive 

orsening in the reconstruction as we use leMoreoverss adaptive 

nd lighter reconstruction techniques. 

Since every heartbeat of a patient shares common features [11] , 

ven only one generic heartbeat can be representative of a signifi- 

ant portion of a complete record. This makes the warping and the 

onsequential main waves positioning as effective as using more 

pecialized templates. However, as we show in Fig. 13 , the lack of 

n adaptive technique to determine the best template for a set of 

vents, and the absence of a mechanism to detect templates set 

ignificance, makes the solution not effective in representing the 

orrect type of waves, especially in long-lasting recordings like the 

ne obtained by a Holter ECG. 

.7. Standard DTW comparison 

The final result to consider is the impact of the II-DDTW al- 

orithm in our processing pipeline. In particular, we observe the 

ifference in performances between the standard DTW algorithm 

nd our implementation of the newly described II-DDTW. For all 

hree metrics analyzed, we compare the performance measure- 

ents obtained for linear interpolation (the best-performing clas- 

ical interpolation method), the processing pipeline as described 

n Section 3 , and the same processing pipeline where II-DDTW has 

een replaced with the standard DTW algorithm. 

First, we analyze the PRD results: Table 6 shows the result- 

ng average and standard deviation of the PRD score in the three 

escribed cases. The approach using the standard DTW algorithm 

s slightly outperformed by II-DTW, and behave similarly, if not 

lightly worse, to linear resampling. As discussed previously in 

ection 5.5 , this is mostly an indicator of the overall correctness 

f the samples distribution. Hence, while being numerically worse 

han the II-DDTW case, this measurement still carries the same in- 
13 
ormation: the average re-sampled points distribution is similar, in 

verage and standard deviation, between all three analyzed meth- 

ds. 

Table 7 presents the resulting average and standard deviation 

f the DTW distance in the three described cases. The approach 

sing the standard DTW algorithm performs very similarly to the 

inear resampling, being outerformed by our implementation us- 

ng II-DDTW. The lack in prior injection makes the templates sec- 

ion definition more challenging, resulting in a sub-optimal solu- 

ion. 

As shown in Table 8 , using the standard DTW algorithm, the 

econstruction delineation still outperforms the delineation of the 

inearly resampled signal. However, especially when using a low 

umber of bits in our EB-ADC, the II-DTW algorithm still results 

n significantly better performances: when using standard DTW, 

-wave detection worsens from 9% to 32% in the tabulated cases. 

or T-wave detection, the delineation results worsen from 20% to 

1% in the same experiments. This performance worsening (in P 

ave, and especially in T-wave) is due to the fact that our ap- 

roach (using II-DDTW) is especially effective when reconstructing 

ignals with a very small number of samples (hence, low number 

f levels), while the improvement is more marginal (but still rele- 

ant) when more data is available. This behaviour is to be expected 

ince the information prior we inject (the sampling timing) is less 

nd less relevant for correct feature positioning, as more informa- 

ion about the signal is available. 

Summarizing the discussed results, the usage of II-DTW instead 

f DTW lead to an average lower PRD and DTW distance, result- 

ng in a better delineation of signals reconstructed when using our 

roposed methodology. 

. Conclusions 

In this work, we have developed and implemented a signal 

rocessing pipeline able to reconstruct event-based (EB) sampled 

lectrocardiogram (ECG) signals, through patient-specific heartbeat 

emplates. This is accomplished by computing a set of locally 

epresentative heartbeats, selecting the best fitting one for each 

vent-based sampled heartbeat, and warping it accordingly to the 

ecorded events. We warp the templates using a novel formulation 

f the DDTW algorithm, named Information Injected-DDTW (II- 

DTW), which uses the timing information of each event to bias 

he distance metric. The templates are dynamically re-computed 

henever they stop being representative of the underlying physical 

ignal, allowing the processing pipeline to select the most repre- 
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entative template for each patient and signal section. When com- 

ared to standard resampling techniques (i.e., spline, sample-and- 

old, and linear interpolation), we have shown that our proposed 

ipeline obtains a 10x improvement in P-wave reconstruction, a 2x 

mprovement in T-wave reconstruction, and a 30% improvement, 

n average, in morphological similarity with the underlying physi- 

al signal. 
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