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Background and Objective: Cough audio signal classification is a potentially useful tool in screening for respiratory 
disorders, such as COVID-19. Since it is dangerous to collect data from patients with contagious diseases, many 
research teams have turned to crowdsourcing to quickly gather cough sound data. The COUGHVID dataset 
enlisted expert physicians to annotate and diagnose the underlying diseases present in a limited number of 
recordings. However, this approach suffers from potential cough mislabeling, as well as disagreement between 
experts.
Methods: In this work, we use a semi-supervised learning (SSL) approach – based on audio signal processing 
tools and interpretable machine learning models – to improve the labeling consistency of the COUGHVID 
dataset for 1) COVID-19 versus healthy cough sound classification 2) distinguishing wet from dry coughs, and 
3) assessing cough severity. First, we leverage SSL expert knowledge aggregation techniques to overcome the 
labeling inconsistencies and label sparsity in the dataset. Next, our SSL approach is used to identify a subsample 
of re-labeled COUGHVID audio samples that can be used to train or augment future cough classifiers.
Results: The consistency of the re-labeled COVID-19 and healthy data is demonstrated in that it exhibits a high 
degree of inter-class feature separability: 3x higher than that of the user-labeled data. Similarly, the SSL method 
increases this separability by 11.3x for cough type and 5.1x for severity classifications. Furthermore, the spectral 
differences in the user-labeled audio segments are amplified in the re-labeled data, resulting in significantly 
different power spectral densities between healthy and COVID-19 coughs in the 1-1.5 kHz range (𝑝 = 1.2 ×10−64), 
which demonstrates both the increased consistency of the new dataset and its explainability from an acoustic 
perspective. Finally, we demonstrate how the re-labeled dataset can be used to train a COVID-19 classifier, 
achieving an AUC of 0.797.
Conclusions: We propose a SSL expert knowledge aggregation technique for the field of cough sound classification 
for the first time, and demonstrate how it can be used to combine the medical knowledge of multiple experts in 
an explainable fashion, thus providing abundant, consistent data for cough classification tasks.
1. Introduction

Audio signal processing and Machine Learning (ML) can be used to 
automatically screen for various respiratory pathologies, thus enabling 
ubiquitous diagnosis of these disorders in resource-limited settings [1]. 
At the onset of the COVID-19 pandemic, several research teams inves-
tigated whether the disease could be detected easily and noninvasively 
using ML to classify between infected and healthy cough sounds [2–4]. 
Several teams gathered extensive datasets of crowdsourced COVID-19 
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cough sounds, many of which were open-sourced to enable rapid model 
prototyping [2,3]. As a result, researchers have developed ML models 
for COVID-19 cough classification using diverse methods such as tem-
poral decision trees [5], multi-criteria decision making [6], and transfer 
learning [7]. These teams report promising results, such as an Area 
Under the Receiver Operator Characteristics Curve (AUC) of 0.95 on un-
seen testing data [6], as well as a functioning cough diagnosis mobile 
application [8]. Despite these promising results, many of these works 
share the shortcoming that they are trained on crowdsourced samples, 
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which are recorded in uncontrolled environments and may contain mis-
labeled data. Moreover, Xiong et al. reported that ML architectures 
trained with PCR-confirmed cough data were more accurate, required 
less training data, and employed fewer and more stable features than 
those trained with crowdsourced cough recordings [9]. However, since 
the disease is a highly contagious airborne pathogen [10], collecting 
PCR-confirmed cough sound data from COVID-19 positive individuals 
requires significant effort and sanitary precautions to ensure the safety 
of those involved.

In order to enhance the labeling validity of the crowdsourced record-
ings, the COUGHVID dataset enlisted four expert physicians to listen to 
a number of cough recordings and diagnose any audible respiratory dis-
orders (ex. COVID-19, upper and lower respiratory infections), as well 
as characteristics of the cough including its type and severity [2]. How-
ever, the general trend was that the four experts did not agree on the 
COVID-19 diagnosis nor the other cough attributes. Disagreement be-
tween physicians is common in the medical field; a study of medical 
referrals noted that only 12% of final diagnoses agreed with the ini-
tial diagnoses, and 21% of final diagnoses significantly differed from 
the initial ones [11]. Therefore, extra care must be taken to overcome 
the label ambiguity of any crowdsourced cough audio databases, as the 
expert disagreement and user mislabeling can lead to erroneous classi-
fication.

The winners of the 2017 PhysioNet/CinC Challenge on ECG signal 
classification observed that expert annotation inconsistencies in physio-
logical data can be alleviated through manual re-labeling, thus leading 
to significant improvements in classifier performance on unseen data 
[12]. However, manual re-labeling of cough sounds is difficult to per-
form without medical training. Furthermore, manually re-labeling such 
an extensive dataset would require significant time and effort. Semi-
supervised learning (SSL) is a ML paradigm that can be used to auto-
mate the re-labeling process of biomedical signals [13,14]. While SSL is 
most often used in conjunction with Deep Learning models for medical 
inference [13,15,16], it can also be used with classical ML approaches in 
which the extracted features leverage domain knowledge to shed light 
on the inner-workings of the classifier.

While most cough classification algorithms focus on fully supervised 
ML approaches [3,4], several groups have leveraged SSL [17,18]. In this 
paradigm, unlabeled data is exploited in augmenting the dataset to en-
hance the performance of the classifier, thus providing ample training 
data and overcoming the issue of label sparsity [19,20]. Furthermore, 
Han et al. found that incorporating SSL into sound classification en-
abled a reduction of 52.2% in human annotations necessary to achieve 
comparable results to fully-supervised methods [19].

In addition to overcoming label scarcity, SSL approaches have also 
proven successful in alleviating the burden of inconsistent, ambiguous, 
and erroneous labels on ML classification tasks [21]. Considering the 
example of 3D image segmentation tasks, semi-supervised models have 
been shown to outperform fully supervised ones both in the presence 
of human mislabeling and added random noise [22]. Furthermore, SSL 
has been widely utilized in speech emotion recognition, a field that suf-
fers from sparse, inconsistent labeling by multiple untrained annotators 
[13,14]. In particular, Zhu et al. devised an iterative, semi-supervised 
scheme using the ambiguous emotion annotations of six to twelve an-
notators and concluded that sufficient training data and moderately 
reliable labels at the onset of training can significantly improve the clas-
sification performance with respect to fully supervised training [13].

Recent works leveraging SSL to overcome inconsistencies in expert 
physicians’ labels utilize an approach in which each expert is modeled 
by a Deep Neural Network, and then the outputs of these expert mod-
els are combined to generate a final label for each sample [16,23]. For 
example, Li et al. applied this approach to electronic medical record 
entity recognition by training five distinct models, expanding them to 
the whole dataset by generating pseudo-labels with each model, and 
then using a majority voting algorithm to generate the final labels [23]. 
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Furthermore, Guan et al. used individual expert modeling for diabetic 
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retinopathy classification [16], and found that this approach outper-
formed the Expectation-Maximization algorithm traditionally used for 
weighing the accuracies of multiple raters [24]. This promising SSL ex-
pert modeling technique has not yet been applied to the field of cough 
audio signal classification.

In this work, we utilize a state-of-the-art SSL technique based on 
explainable ML models that integrates knowledge of a variable num-
ber of human annotators. Unlike other works that solely rely on noisy 
crowdsourced labels to generate SSL models to distinguish COVID-19 
from healthy cough sounds [17,18], we combine the user labels with 
expert medical labeling schemes to generate more reliable and consis-
tent pseudo-labels of COVID-19 status, cough type, and cough severity. 
Similarly to [13], we analyze the trade-offs between label consistency 
and training data size when selecting the final SSL approach. As op-
posed to previous works that rely on Deep Learning [13,14,16,18,23], 
which may be difficult to interpret and therefore not amenable to sen-
sitive medical classification tasks, we rely on classical ML algorithms 
using state-of-the-art audio feature computation.

This technique uses the cough sound recordings of the COUGHVID 
dataset that were labeled by expert physicians to train three classifiers, 
where each one models the medical knowledge of a different expert. 
Next, we overcome the issue of expert label scarcity by generating 
pseudo-labels on the entire database using each expert model. Then, the 
outcomes of these models were compared alongside crowdsourced user 
labels to identify a subset of cough recordings with the highest probabil-
ity of originating from either COVID-19 positive or healthy individuals. 
Thus, we overcome the issues of crowdsourced data mislabeling and 
expert label inconsistency by identifying a high-quality subsample of 
datapoints – with a threefold increase in feature separability compared 
to the user-labeled data, as well as a more significant difference in the 
power spectral densities of the two cough classes (𝑝 = 1.2 × 10−64) – 
which can be used to train future cough classifiers. Furthermore, we 
determine the importance of the various features to the classification 
outcome of the SSL approach versus the user or expert label based mod-
els to assess the similarities and differences between the approaches. 
Finally, we use our SSL expert modeling approach to train classifiers 
for wet vs dry cough and cough severity classification, both of which 
are pathology-independent and can thus be used in a variety of cough 
diagnostic tasks beyond COVID-19.

The subsample of cough audio recordings identified through our 
SSL approach was subsequently made available to the public for fur-
ther classifier development and ML exploration. To assess the intra-class 
consistency of this data, we quantify the class separability of standard 
audio features extracted from COVID-19 versus healthy coughs in the 
SSL labeling scheme compared to that of the expert labels and crowd-
sourcing labels of the COUGHVID dataset. Finally, we demonstrate how 
this data can be used to train cough audio signal classifiers by train-
ing final classifiers for COVID-19 screening, cough type detection, and 
cough severity analysis and comparing their classification accuracies 
to those of the fully supervised models. As a result, this work aims to 
provide an automated approach for increasing the labeling quality of 
biosignal datasets, which can be applied to many other pathologies.

2. Methods

2.1. COVID-19 classification methodology overview

One of the challenges of performing COVID-19 classification based 
on user-labeled and expert-annotated data is label ambiguity. Since the 
COUGHVID dataset is crowdsourced, it cannot be known with absolute 
certainty if the cough recordings labeled as COVID-19 or healthy truly 
originated from people with the condition or lack thereof. Furthermore, 
the experts’ cough diagnoses exhibited a Fleiss’ Kappa score of 0.07 
[25], meaning that there was only a slight agreement between the four 

experts about the cough diagnoses [2].
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Fig. 1. An illustration of the COVID-19 screening model development method-
ology, showing the different subsets of the COUGHVID dataset used at each 
stage. The supervised training, semi-supervised learning, and testing procedures 
are described in Sections 2.7, 2.8, and 2.9, respectively.

Table 1

COUGHVID public dataset label counts.

Label 
origin

COVID-19 status Cough type Cough severity
Healthy COVID-19 Dry Wet Mild Severe

Users 15,476 1,315 N/A N/A N/A N/A
Expert 1 259 279 425 72 521 34
Expert 2 67 285 600 133 572 59
Expert 3 199 1 358 291 447 105
Expert 4 221 84 654 120 472 69

As shown in Fig. 1, we assessed the label consistency in each of the 
COVID-vs-healthy classification schemes provided by the dataset (i.e., 
users, experts) by extracting audio signal features and training ML mod-
els based on each set of labels. Then, the semi-supervised learning (SSL) 
approach was employed to produce a final classifier. Therefore, the fol-
lowing ML models were developed and compared in terms of various 
classification accuracy metrics on their respective labeling schemes:

1. User Crowdsourcing Model: In this classifier, the recordings were 
self-labeled as “COVID-19” or “healthy” by the users who uploaded 
the crowdsourced recordings.

2. Expert [1,2,4] Model: Three separate models were developed, cor-
responding to the labels of Experts 1, 2, and 4. Since we see from 
Table 1 that Expert 3 only labeled one recording as COVID-19, 
this is not enough information for a ML model to reliably perform 
generalization. Therefore, this expert’s labels are omitted from con-
sideration in further analysis. The positive class was made up of 
recordings labeled by each expert as “COVID-19”, and the corre-
sponding negative class was labeled as “healthy_cough”.

3. SSL Model: In order to combine the knowledge from both the users 
and the experts into one model, semi-supervised learning was used. 
In this approach, the expert models and user labels were used to fil-
ter the dataset and determine the subset of coughs with the highest 
probability of being COVID-19 positive and healthy. The details of 
3

the implementation are described in Section 2.8.
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Fig. 2. An illustration of the model development methodology for the cough 
type and cough severity classifiers.

2.2. Cough type and severity classification methodology overview

The medical experts who annotated the COUGHVID dataset pro-
vided two additional labels that are important parameters of the cough: 
its type and severity. Cough type refers to whether the cough is wet, 
meaning that mucus is expelled from the lungs, versus a dry cough that 
does not produce mucus. The severity of the cough indicates the degree 
of obstruction the cough causes to the subject’s normal respiratory func-
tion. Unlike the COVID-19 status, the cough type and severity are not 
known by the users and therefore are only labeled by the experts.

The model development overview is visualized in Fig. 2. First, a 
baseline model is obtained by combining the expert knowledge in a sim-
ple, supervised fashion: we take the union of all recordings labeled by 
at least one expert as belonging to a given class (ex. wet or dry), and the 
recordings in both the positive and negative classes are discarded. These 
labels are then used to train and test a baseline ML model. Then, sim-
ilarly to Fig. 1, each expert’s labels are used to train an expert model, 
whose labels are then expanded on all unlabeled data to generate an 
SSL model for the classification task. Unlike the COVID-19 classifica-
tion, though, the cough type and severity classifiers include the labels 
of Expert 3, which were much more balanced for these tasks. Finally, 
each expert’s model, the baseline expert union model, and the final SSL 
model are evaluated on a private test set.

2.3. Dataset description

This analysis uses the COUGHVID crowdsourcing dataset, which 
is a vast repository of cough audio samples originating from diverse 
participants located across the globe [2]. The dataset is made up of 
user-uploaded cough recordings, many of which contain a status label 
indicating whether the user claimed to be diagnosed with COVID-19, 
exhibiting symptoms, or healthy at the time of recording. As an addi-
tional validation step, four expert physicians each labeled 1,000 cough 
recordings to diagnose potential respiratory disorders (i.e., COVID-19, 
upper respiratory infection) that are audible in the recordings, as well 
as any audible respiratory malfunctions, the cough type, and severity of 
the cough. Each expert reported spending approximately 10 hours to la-
bel the cough sounds, which exemplifies the significant time and effort 

human labeling takes for such a task.



L. Orlandic, T. Teijeiro and D. Atienza

An expanded version of the training dataset was used, containing 
recordings uploaded from April 2020 to October 2021. There are about 
34,500 recordings in this dataset, 20,644 of which contain user sta-
tus labels. Both the expert labels and the testing dataset described in 
[2] are unchanged in this work. Table 1 displays the value counts of 
the COVID-19 status, cough type, and cough severity as labeled by the 
users and expert physicians. Although the dataset contains more am-
biguous labels, such as the “symptomatic” user label, or the “unknown” 
cough type expert label, these recordings are not used in the model de-
velopment and each classification task is considered binary. It should 
be noted that the coughs labeled by the users and experts are not mutu-
ally exclusive, and 150 coughs were annotated by all experts to assess 
the level of agreement between the physicians.

2.4. Cough audio signal pre-processing

Since the COUGHVID dataset contains some recordings that do not 
capture cough audio, the cough classifier developed in [2] was used to 
remove non-cough recordings from consideration. Only recordings with 
a cough classifier output greater than 0.8 were used in this work.

As an initial pre-processing step, all of the cough recordings were 
normalized to their maximum absolute value such that the signal val-
ues range from -1 to 1. This enables a fair comparison of the RMS 
power of different signal segments, ensuring that the feature provides 
meaningful cough amplitude information that is not biased by inherent 
amplitude differences between recordings due to the subject’s proximity 
to the microphone or differences in recording hardware. Furthermore, 
this normalization provides numerical stability for subsequent feature 
computation. Next, a 4th order Butterworth lowpass filter with a cut-
off frequency of 6 kHz was applied. Consequently, the recordings were 
downsampled to 12 kHz. This filtering was performed to reduce high-
frequency noise and increase the computational efficiency of all further 
signal processing and feature extraction algorithms. The cutoff fre-
quency was chosen because visual analysis of the cough signal spectra 
revealed that most of the signal power lies below 6 kHz. Furthermore, 
past cough sound classification algorithms used cutoff frequencies rang-
ing from 4 Hz to 8 Hz [26,27], so an intermediate value was chosen.

2.5. Cough segmentation

Once the recordings were pre-processed, a custom cough segmenta-
tion algorithm was employed to isolate each individual cough event 
present in a given recording. The segmentation algorithm exploits 
cough physiology to divide each recording into its constituent cough 
sounds. This algorithm enables feature extraction on each cough, thus 
suppressing silence and extraneous low-amplitude sounds like breath-
ing. Furthermore, the algorithm can be used to perform a simple Signal-
to-Noise Ratio (SNR) calculation, as well as aggregation of the ML 
classifier labels of all coughs originating from the same recording.

The algorithm is depicted in Fig. 3 on a recording of a breath, 
two coughs, another breath, and two more coughs. First, the signal 
is squared to compute its power. Next, a hysteresis comparator is ap-
plied to extract the sudden bursts in sound amplitude that arise from 
coughing. This means that potential cough candidates are determined 
to be regions started by the signal exceeding the upper threshold and 
ended by the signal going below the lower threshold. A tolerance of 
10 ms is applied to the thresholds, meaning that the signal should ei-
ther exceed the upper threshold or go below the lower threshold for at 
least 10 ms for a cough onset or offset to be recorded. The lower and 
upper hysteresis thresholds were set to 0.1 and 2 times the RMS sig-
nal power, respectively. These multipliers were empirically determined 
through analysis of a variety of cough audio signals.

Next, the cough segments were analyzed and discarded based on the 
physiological limitations of cough duration. The cough is composed of 
4

three segments: inspiration, compression, and expiration. The latter two 
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have known timing constraints: the compressive phase, during which in-
haled air is compressed in the lungs to increase lung pressure, typically 
lasts 200 ms [28]. The expiratory phase is initiated by a brief opening 
of the glottis (30-50 ms), causing the loudest phase of the cough sound 
and rapid airflow, followed by 200-500 ms of lower respiratory airflow 
[28]. Therefore, the minimum possible cough sound length is approxi-
mately 230 ms. We consequently discard any cough sound candidates 
shorter than 200 ms, and we include the 200 ms before and after the 
cough candidate in each segmented cough to capture any low-amplitude 
noise caused during the compressive and expiratory phases.

The cough segmentation algorithm was subsequently used to elim-
inate cough recordings with significant background noise. An estimate 
of the SNR was calculated for each signal as described in [2] by compar-
ing the RMS signal power of the cough segments of a recording to that 
of the non-cough segments. The training and testing datasets were fur-
ther filtered by retaining only the recordings with a SNR greater than 
5, above which cough sounds were clearly more prominent than back-
ground noise. The cough segmentation and SNR estimation algorithms, 
as well as all feature extraction functions needed to reproduce the fea-
ture vectors of each cough sample are available in the COUGHVID
public git repository1 to foster reproducibility.

2.6. Feature extraction

The set of 60 features extracted from each cough audio segment 
are the same as those computed in the cough classification algorithm 
in [2]. These features are a mixture of time, frequency, and Mel fre-
quency domain computations that were chosen due to their previous 
implementation in automatic cough sound classification ML algorithms 
[26,27]. These features provide both general information about the 
signal spectra, as well as detailed computations regarding specific fre-
quency bands, thus allowing the feature elimination step to select only 
the relevant features to each classification task. The code used for fea-
ture extraction is available in the COUGHVID repository [2].

For each classification task described in Section 2.7, an additional 
set of Power Spectral Density (PSD) features were selected by inspecting 
the averaged PSD of each class in the training dataset, divided by the 
total average signal power such that the PSD curve is normalized to 
a unit area. The frequency bands displaying a large variation between 
the average normalized PSDs of the two classes were noted, and the 
bandpowers within these frequency ranges were added as features. This 
produced a variable number of PSD features for each classifier.

Some of the user-labeled data in the COUGHVID dataset contains 
user metadata information, such as their reported age, gender, and pres-
ence of respiratory disorders. In order to provide the model with some 
user-specific information to assist in classification, the binary gender 
value was added to the feature set. In case no gender information was 
provided, a gender identification model was developed using the ML 
model optimization procedure described in Section 2.7. The model was 
trained using the training data subset containing gender labels and re-
sulted in a classifier with an AUC of 0.8 on the testing dataset described 
in Section 2.9. This classifier was used to assign a gender of “male” or 
“female” to any cough in the dataset for which this was not provided.

2.7. Model comparison and optimization

For each classification task described in Sections 2.1 and 2.2, a ML 
model was trained to distinguish COVID-19 from healthy coughs, wet 
versus dry coughs, and severe versus mild coughs based on the feature 
vectors of the training dataset. Prior to optimization, the features were 
standardized by removing the mean and scaling to unit variance.

As shown in Table 1, there is a significant class imbalance in each of 
the classification tasks. This issue was addressed using the Synthetic Mi-
nority Over-Sampling Technique (SMOTE) [29], which was employed 
1 https://c4science .ch /diffusion /10770/.

https://c4science.ch/diffusion/10770/
https://c4science.ch/diffusion/10770/
https://c4science.ch/diffusion/10770/


Computer Methods and Programs in Biomedicine 241 (2023) 107743L. Orlandic, T. Teijeiro and D. Atienza

Fig. 3. A step-by-step illustration of the cough segmentation procedure. A hysteresis comparator was applied to the signal power to detect the sound bursts, which 
enables us to consistently discard the segments without relevant inputs for the subsequent ML process.
to generate synthetic training samples. This technique generates a bal-
anced dataset in each CV fold by interpolating between existing feature 
vectors of the minority class, thus generating synthetic feature vectors. 
In theory, samples in the same class should have similar features, so 
this method exploits these similarities to generate new feature vectors 
of the minority class. SMOTE is considered the standard framework for 
learning from imbalanced datasets and has previously been employed 
in semi-supervised learning scenarios [30].

Next, we compared the efficacy of seven different state-of-the-art bi-
nary classification ML algorithms: Logistic Regression (LR), K Nearest 
Neighbors (KNN), Decision Tree Classifier (DTC), Gaussian Naive Bayes 
(GNB), Random Forests (RF), eXtreme Gradient Boosting (XGB), and 
Linear Discriminant Analysis (LDA). These models were implemented 
using the scikit-learn and XGBoost Python libraries [31,32]. To ensure 
a fair comparison between the different algorithms, the hyperparam-
eters of each model were tuned simultaneously using Tree-structured 
Parzen Estimates (TPE) [33], implemented using the Python hyper-

opt package [34]. The objective of the TPE procedure was to find 
the combination of hyperparameters that produced the highest mean 
AUC across 5 cross-validation (CV) folds. The hyperparameters tuned 
for each model, as well as their possible values and the method of TPE 
choice, are listed in Appendix A.

The utilized CV procedure was a 5-fold GroupShuffleSplit [35]; in 
each CV fold, 20% of the recordings were randomly selected and used 
for validation, and the remaining recordings were used for training. The 
5

segmented coughs that comprised these recordings were correspond-
ingly assigned to training or validation. This ensured that no coughs 
originating from the same recording were included in both the training 
and validation sets of each fold, thereby maintaining the generalizabil-
ity of our results to unseen cough recordings.

Following TPE, the final mean and standard deviation AUC scores of 
all of the optimized models were analyzed. The model with the highest 
mean AUC was chosen, and its learning curve was analyzed to deter-
mine if the model was underfitting or overfitting, and whether or not 
the results converged to a consistent performance with the amount of 
data available. In the case of overfitting, Recursive Feature Elimination 
with Cross-Validation (RFECV) was performed on the optimized model 
to recursively remove the weakest features of the model. This technique 
has the potential to reduce the variance of the model through the elim-
ination of weak features, but risks increasing the bias of the model by 
potentially eliminating important features [36]. Finally, the same TPE 
procedure was used to re-optimize the hyperparameters of the model 
with a reduced feature set.

An advantage of cough segmentation is that it enables aggregation 
of the classifier outputs of coughs originating from the same recording, 
which potentially enhances the accuracy of the classifier. Each record-
ing was segmented into 𝑁 cough sounds, and each cough was processed 
separately by the trained classifier. This resulted in a series of classi-
fier output probabilities [𝑝1, 𝑝2, ..., 𝑝𝑁 ], corresponding to the probability 
that each cough signal is COVID-19 positive. Since this diagnosis cannot 

change from one cough to the next, the probabilities can be combined 
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Fig. 4. The SSL approach consists of 1) training three separate ML models based on each expert’s labels, 2) using the models to classify the unlabeled samples, 3) 
training a new classifier with the samples exhibiting a significant agreement between the user labels and expert models, and 4) testing the final model.
to form one classifier output per recording, 𝑝𝑡𝑜𝑡𝑎𝑙 . We combined these 
probabilities by computing their logit mean:

𝑝𝑡𝑜𝑡𝑎𝑙 =
1
𝑁

𝑁∑

𝑖=𝑛
𝑙𝑜𝑔(

𝑝𝑖

1 − 𝑝𝑖
). (1)

Once the optimized model was selected, one final 80%-20% CV split 
was generated to form a training and validation dataset. The model was 
trained on this reduced training dataset, and the ROC curve was plot-
ted using the logit aggregation method. The optimal classifier decision 
threshold was determined for computing further accuracy metrics by se-
lecting the aggregated logit threshold with the highest geometric mean 
between the model’s sensitivity and specificity. These final hyperparam-
eters were noted for use in testing, and the model was re-trained using 
the full training dataset. The final model was tested on the private, un-
seen COUGHVID test set, as described in Section 2.9.

2.8. Semi-supervised learning (SSL)

Instead of relying solely on the potentially noisy user labels or the 
often contradictory expert labels described in Section 2.3, an SSL ap-
proach was used to overcome the issues of label inconsistency and 
ambiguity by identifying a subset of consistent training data with a 
high probability of belonging to COVID-19-positive or healthy subjects, 
exhibiting a dry or wet cough, or having a known cough severity. At a 
high level, this method aims to distill the knowledge of each expert onto 
samples that the expert did not annotate, similarly to what is done in 
the state-of-the-art Pseudo-Label method [20]. Then, the agreement be-
tween the experts’ models is used to identify a set of recordings with 
high label confidence, similarly to previous work on SSL applied to 
medical datasets with inconsistent labels [16]. This is similar to the 
cross-voting methodology utilized by Li et al. [23], except that instead 
of randomly partitioning the data to train each model, the data is di-
vided based on the expert that annotated it, thereby modeling each 
expert’s medical expertise using ML.

The semi-supervised learning methodology of the COVID-19 vs 
healthy classification task is illustrated in Fig. 4. First, three distinct ML 
models were trained based on each expert’s COVID-19 versus healthy 
cough labels and optimized based on the procedure in Section 2.7. Then, 
the optimal classification threshold of each model was applied on these 
scores to produce a binary COVID-19 or healthy label for each record-
ing. This procedure resulted in three to four labels per recording: three 
labels from the expert models, and one user label for the recordings for 
which this information was provided. In the event that an expert labeled 
a given recording, the expert’s original COVID-19 or healthy diagnosis 
was maintained rather than the output of the model corresponding to 
that expert.

Next, a subset of high-confidence samples was identified by compar-
ing the agreement of the expert models and user labels. The recordings 
with a high degree of agreement for being either COVID-19 positive or 
6

healthy were used to train one final classifier, and the rest were dis-
carded. In order to select the final dataset, three different agreement 
schemes were tested and assessed in terms of database size and class 
separation:

1. Universal Agreement: All three expert models have the same label 
as the user label. This scheme limits the analysis to only the user-
labeled datapoints.

2. Expert Agreement: All three expert models have the same label. This 
scheme bypasses the user label and can thus be applied on unla-
beled samples in the dataset.

3. Majority Agreement: Either all three expert models have the same 
label, or two expert models have the same label as a user. This 
is the least conservative scheme as it allows one disagreement or 
missing user label.

In the case of the dry-vs-wet and mild-vs-severe cough classification 
tasks, in which no user labels were available, the same Pseudo-Label 
approach was performed for each of the four experts. The recordings in 
which at least three of the four expert models – or the original expert 
label if available – agreed were used to train the final model.

2.9. Model evaluation

Once all of the models described in Section 2.7 were trained and 
optimized, they were tested on the COUGHVID private test set to deter-
mine their generalization capabilities on unseen recordings [2]. This is 
a set of 625 recordings that have been labeled by at least one expert, 
and most recordings contain a user COVID-19 status label. The utilized 
success metric is AUC because it is a fair metric in terms of class imbal-
ance. For each classification task, the training data labeling scheme was 
also used for testing. For example, when a model was trained using the 
annotations of Expert 2, it was tested only on the subset of testing data 
that had been labeled by Expert 2. In the case of the semi-supervised 
learning approach, the expert model label propagation procedure de-
scribed in Section 2.8 was also performed on the testing set, and the 
final testing samples were identified using the same agreement scheme. 
Although the labels of the testing data may change between classifica-
tion tasks, all data is drawn from the same set of recordings.

Once the various success metrics of the classifiers were computed, 
we assessed the most important features contributing to each classi-
fier’s outcome using the Shapley additive explanation (SHAP) values. 
These are measures of the relative importance of each feature, indi-
cating which feature domains and specific measures had the greatest 
influence on the model’s decision [37].

3. Results

3.1. COVID-19 classification SSL agreement scheme selection

First, we evaluate which agreement scheme among the expert mod-

els and user labels, described in Section 2.8, strikes the optimal trade-off 
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Table 2

Agreement scheme dataset coverage.

Label 
Scheme

Training 
Recs.
(+)

Training 
Coughs
(+)

Testing 
Recs.
(+)

Testing 
Coughs
(+)

Jensen-Shannon 
Divergence

User 10,850
(720)

25,227
(1,716)

287
(163)

1,098
(637)

0.00877

SSL
Universal

2325
(14)

5515
(45)

28
(2)

104
(10)

0.0954

SSL
Expert

4128
(98)

9583
(295)

141
(12)

501
(62)

0.0519

SSL
Majority

8331
(285)

20337
(848)

240
(53)

876
(239)

0.0284

between training dataset coverage and label consistency. The three 
schemes were applied on the entire database and the number of re-
maining samples, both recordings and segmented coughs, of each class 
is reported in Table 2. This analysis provides an idea of how much 
training and testing data is maintained, as insufficient data may result 
in significant overfitting in the final model. Furthermore, the features 
described in Section 2.6 were computed for all of the segmented cough 
signals in each scheme to assess how the agreement scheme affects the 
class separation, which is used as a proxy measure of the label con-
sistency across expert models. To quantify this class separation, the 
Jensen-Shannon divergence of each feature distribution in the COVID-
19 and healthy cough classes was computed and averaged across all of 
the computed features of the training data. This metric ranges from 0 to 
1, with higher values corresponding to a larger class separation. These 
results are displayed in Table 2, along with the same metrics computed 
on the user-labeled data subset.

As Table 2 shows, in the universal agreement scheme, there were 
only 14 COVID-19 positive recordings remaining in the training dataset. 
This amount is insufficient for the model to perform generalization. As 
expected, the majority agreement scheme produces the largest num-
ber of training samples. Intuitively, the Jensen-Shannon divergence 
decreases as the agreement scheme gets less conservative, meaning 
that the universal agreement scheme exhibits the largest class sepa-
ration across features while the majority scheme has less pronounced 
differences between features. However, this increase in class separation 
comes at the expense of a decrease in dataset coverage, so the method 
that conserves the most data is maintained. This decision is in line with 
the findings of Zhu et al., which noted that SSL schemes prioritizing a 
larger initial dataset with moderately consistent labels performed better 
than small datasets with very reliable labels [13].

The majority agreement scheme was selected to identify the final 
COVID-19 and healthy cough samples. While this scheme has the small-
est class separation of the other semi-supervised learning schemes, its 
Jensen-Shannon divergence is still more than three times higher than 
that of the user-labeled scheme. Furthermore, the number of training 
samples used in this agreement scheme is only 23% smaller than that 
of the user-labeled scheme, meaning that the increase in class separa-
bility does not sacrifice much of the data coverage. The percentage of 
COVID-19-labeled coughs in the majority agreement scheme is 3.3%, 
which is lower than the 6.2% in the user-labeled dataset. However, this 
class imbalance is handled in training by applying the SMOTE method 
described in Section 2.7.

3.2. Intra-class consistency analysis

Once all three expert models were trained and optimized using the 
procedure in Section 2.7, these labels were propagated onto both the 
training and testing datasets. By selecting the subset of recordings for 
which the majority of labels were in agreement, we expanded the expert 
knowledge, combined with user self-report labels, to identify training 
7

and testing samples that had a high probability of having correct labels. 
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Table 3

Final COVID-19 vs healthy model selection.

Label Type Model Used Hyperparameters

User LDA None

Expert 1 LR C=18.31,
class_weight=None,
solver=“newton-cg”

Expert 2 LR C=0.01038,
class_weight=“balanced”,
solver=“newton-cg”

Expert 4 LR C=0.3306,
class_weight=None,
solver=“lbfgs”

SSL LR C=0.01009,
class_weight=“balanced”,
solver=“newton-cg”

Fig. 5. Average normalized PSD of all cough signals in the training dataset 
belonging to each class according to the user labels and SSL labels.

The final optimized models evaluated in this work are displayed in Ta-
ble 3, complete with their respective hyperparameters selected through 
TPE.

To assess the difference in audio properties of coughs labeled as 
COVID-19 and healthy in this new dataset compared to those of the user 
labels, the average normalized PSD curves of cough signals belonging 
to each class are plotted in Figs. 5a and 5b. The figures show a solid 
line, indicating the average PSD, as well as the 95% confidence interval 
across all segmented cough audio samples of a given class in each label-
ing scheme. Fig. 5a shows very few differences between the spectra of 
the user-labeled COVID-19 and healthy coughs, with a slight variation 
in the 400-550 Hz and 1000-1500 Hz ranges. In comparison, Fig. 5b de-
picts a similarly shaped spectrum of healthy coughs as the user-labeled 
healthy coughs, but there are much more pronounced differences be-
tween the COVID-19 coughs and healthy ones. The bandpowers of 
the COVID-19 coughs are significantly higher in the 400-550 Hz and 

1000-1500 Hz ranges than those of healthy coughs, with p-values of 



L. Orlandic, T. Teijeiro and D. Atienza

Table 4

SHAP feature ranking across COVID-19 classifiers.

Feature 
Ranking 
(SHAP)

User Expert 1 Expert 2 Expert 4 SSL

1 EEPD 
350-400

Spectral 
Centroid

Gender Crest 
Factor

MFCC 
Std. 0

2 EEPD 
600-650

RMS 
Power

MFCC 
Mean 7

MFCC 
Mean 0

MFCC 
Mean 1

3 RMS 
Power

MFCC Std. 
0

PSD 
550-800

Spectral 
Slope

MFCC 
Mean 9

4 EEPD 
900-950

Spectral 
Spread

MFCC 
Std. 5

Spectral 
Rolloff

Gender

5 Dominant 
Frequency

Spectral 
Skewness

EEPD 
400-450

MFCC 
Mean 9

MFCC 
Mean 7

1.4 ×10−36 and 1.2 ×10−64, respectively. This analysis highlights the sub-
stantial difference in spectral features of COVID-19 and healthy coughs 
identified through the SSL approach. It is also consistent with the find-
ings of Table 2, which shows that on average, the chosen SSL dataset 
exhibits over 3x more class separability than the user-labeled data in 
terms of the average Jensen-Shannon divergence across all extracted 
audio features.

To expand on the feature analysis, the top five most important fea-
tures for each classifier, determined by their SHAP values, are displayed 
in Table 4. When we analyze the three expert models, it is clear that 
there are few features in common between the classifiers and they 
each weigh features of different domains (i.e., time, frequency, and 
Mel frequency) with varying importance. The semi-supervised learn-
ing classifier, on the other hand, has features in common with several 
expert models (MFCC standard deviation 0, MFCC mean 7, and gender). 
Furthermore, the majority of its top features are in the Mel frequency 
domain, which is meant to model how the human auditory system pro-
cesses sound signals.

3.3. Open-sourced SSL dataset

In order to contribute to further research in the field of COVID-
19 cough sound diagnosis, we have added the training labels obtained 
through our SSL majority agreement scheme to the latest version of the 
COUGHVID dataset public Zenodo repository. This version has been ex-
panded to include all of the crowdsourced recordings obtained through 
October 2021, whereas the original dataset only contained recordings 
uploaded through December 2020. These new labels can be found in 
the newly added status_SSL column of the metadata_ compiled
CSV file.

The new SSL scheme provides labels for 1,018 recordings that were 
previously unlabeled by users or experts, which demonstrates the utility 
of SSL in utilizing data that had previously been unusable. Furthermore, 
there are 581 recordings that the users labeled with the ambiguous 
“symptomatic” label, but the SSL model provides a “COVID-19” or 
“healthy” label. A mere 32 of these coughs were labeled by the SSL 
model as COVID-19 positive, which is feasible considering the COVID-
19 infection rates during the period of recording.

Users of the COUGHVID dataset can use these new labels and corre-
sponding data samples to augment their COVID-19 cough classification 
models with highly consistent training data. The same SSL label expan-
sion procedure was conducted for the private testing dataset described 
in 2.9, so users are welcome to test their models against these labels as 
ground-truth, but must acknowledge that these labels are not confirmed 
by RT-PCR tests.

3.4. Cough type and severity SSL

As described in Section 2.2, a similar SSL approach to that of the 
8

COVID-19 detection was employed for the cough type (wet vs. dry) and 
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Table 5

Cough type and severity model training.

Label 
scheme

Dry (-)
wet (+)
coughs

Mild (-)
severe (+)
coughs

Wet
vs dry
AUC

Severe
vs mild
AUC

Wet
vs dry
J-S Div.

Severe
vs mild
J-S Div.

Exp.1 1,093 -
203 +

1,360 -
122 +

0.76 0.65 0.032 0.038

Exp.2 1,506 -
395 +

1,520 -
234 +

0.55 0.6 0.011 0.024

Exp.3 834 -
897 +

1,130 -
442 +

0.66 0.61 0.019 0.018

Exp.4 1,591 -
361 +

1,260 -
295 +

0.69 0.6 0.021 0.024

Union 4,393 -
1725 +

4,635 -
1,070 +

0.61 0.62 0.0053 0.0084

SSL 28,771 -
1,192 +

12,558 -
2,160 +

0.9 0.9 0.06 0.034

Table 6

COVID-19 classification model testing results.

Model CV AUC Test AUC 
(Not Agg.)

Test AUC 
(Agg.)

User 0.591 0.564 0.562
Exp. 1 0.653 0.652 0.681
Exp. 2 0.669 0.663 0.743
Exp. 4 0.644 0.561 0.593
SSL 0.883 0.763 0.797

severity (severe vs. mild) classification tasks. Table 5 lists the dataset 
coverage, CV AUC, and average J-S divergence across extracted features 
of each expert model, as well as the baseline expert union and SSL 
models. The detailed implementations of these models, including which 
specific classifiers were used and their respective hyperparameters, are 
discussed in Appendix B.

For the wet vs. dry cough classification task, the SSL approach in-
creases the training dataset coverage by a factor of 5. We can see from 
the average J-S divergences that the SSL model has the highest fea-
ture separability between the two classes of all other labeling schemes, 
including those of individual experts. Furthermore, the feature separa-
bility of the SSL-relabeled samples increases by 11.3x compared to the 
baseline expert union labeling scheme. These results are reflective of 
the low agreement between each of the experts, and the SSL relabeling 
approach produces relabeled samples with distinct acoustic differences 
compared to simply combining all of the experts’ labels. As a result 
of the increased feature separability, the CV AUC of the SSL model is 
47.5% higher than that of the expert union model.

Next, for the severe vs. mild cough classifier, the dataset coverage 
and average J-S divergence are 3x and 5.1x higher in the SSL approach 
than the expert union modeling approach. The CV AUC of the SSL model 
is 45.2% higher than that of the expert union model.

3.5. ML model evaluation

To demonstrate how the SSL dataset can be used to train cough 
analysis ML models for the three classification tasks, the final model 
was developed using the procedure in Section 2.7 using the SSL labels. 
The final testing results of each model of the COVID-19 classifier are dis-
played in Table 6, which shows all of the accuracy metrics, as well as the 
AUC obtained during cross-validation, non-aggregated testing (i.e., test-
ing on every individual cough sound), and aggregated testing on each 
recording using Equation (1). We observe an average 5.26% increase in 
accuracy between non-aggregated and aggregated testing. This implies 
that testing each cough separately and combining the results for each 
recording enhances the model’s performance. Aggregating the proba-
bilities of each cough sound in a recording may exploit the correlations 
between the coughs and diminish the effects of outlier cough sounds, 
thus providing a more robust classification than predicting each cough 

sound separately.

https://zenodo.org/record/7024894#.YwjMAXZByUk
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Fig. 6. Learning curve of the final optimized COVID-19-vs-healthy SSL classifier 
displaying the training and cross-validation accuracy using varying sizes of the 
training dataset.

The model trained on self-reported user data exhibited the worst 
performance. Reaching only a testing AUC of 0.562, it was scarcely bet-
ter than a random classifier. We observe a high variance in the success 
of the expert models, with Expert 2 having the highest AUC and Expert 
4 the lowest. The AUC of the semi-supervised classification method is, 
on average, 15.6% higher than that of the expert models, and 29.5% 
higher than that of the user model.

The final SSL model utilized 32 of the available 66 features, which 
were selected through RFECV. The learning curve of the final SSL model 
is displayed in Fig. 6, which shows the effect of varying the training 
data size (in terms of number of segmented coughs) on the training and 
validation accuracy. The solid line depicts the mean scores across the 
five CV folds, and the shading around the line indicates one standard 
deviation from the mean. We can see that the model converges to a val-
idation accuracy at around 4,000 training coughs, indicating that the 
model has sufficient training samples to gain insights from the features. 
Furthermore, the relatively small 2% gap between the training and val-
idation scores indicates that the variance of the model is low, meaning 
that it is not over-fitting on the training samples.

The ROC curve of the semi-supervised learning classifier is displayed 
in Fig. 7. The model had an AUC of 0.797 on the private testing set. To 
evaluate the classification accuracy of such a model, we compare its 
sensitivity and specificity to those of commonly-used at-home COVID-
19 tests. The Direct Antigen Rapid Test (DART) for COVID-19 screening 
was reported to have a sensitivity of 78.9% and specificity of 97.1% 
within 0 to 12 days from symptom onset [38]. To achieve a compara-
ble sensitivity, our classifier exhibits a specificity of 65.8%, which is 
a 32.8% decrease from that of DART tests. This decrease in specificity 
could be justified by the inexpensive, ubiquitous, and non-invasive na-
ture of an audio-based screening tool versus the traditional nasal swab.

Finally, we evaluate the final testing AUC of all of the classifiers 
trained throughout the study and report the performance in Fig. 8. 
These AUC results were obtained for each model using the private test 
set described in Section 2.9 and the aggregation method in Equation 
(1) was used. We can observe that regardless of the classification task, 
the SSL re-labeling led to a higher testing score than any of the individ-
ual classifiers. The baseline expert union models in both the cough type 
and severity models performed no better than a random classifier. The 
SSL models out-performed the baselines by 65% and 44% in the cough 
type and severity classifiers, respectively.

4. Discussion

Labeling medical data requires significant time and effort from ex-
pert annotators. Moreover, this tedious process often leads to inconsis-
9

tencies due to a lack of agreement between experts. This situation is a 
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Fig. 7. The final ROC curve of the semi-supervised classifier on the aggregated 
testing set. At the red point, the model achieves a sensitivity of 79.2%, which is 
comparable to that of DART COVID-19 tests, and a specificity of 65.8%.

key drawback to confront new viruses, as it has happened with COVID-
19. In this work, we have shown that using an SSL model development 
method, it is possible to overcome expert label scarcity and inconsis-
tency – as well as user mislabeling of crowdsourced medical datasets 
– to identify a subset of data points with a high-class separability. The 
re-labeled data was then publicly provided to the research community 
to assist in COVID-19 classification from cough sounds.

By integrating the knowledge from three medical experts with the 
user labels through the SSL approach, we identified a subset of cough 
recordings that had a high probability of belonging to COVID-19 vs 
healthy individuals, with or without mucus secretion, exhibiting mild 
or severe cough pathologies. We see from the averaged PSD curves 
of COVID-19 and healthy coughs in Fig. 5b that the majority-voting 
approach between the expert pseudo-labels successfully identified two 
classes of coughs with significantly different spectral characteristics and 
a high class separation in the extracted audio features. As each ex-
pert model and user labels aimed to separate COVID-19 versus healthy 
coughs, it can be postulated that these spectral characteristics are 
present in the underlying distributions of the two classes of cough 
sounds. Furthermore, these spectral differences were much less pro-
nounced when the same analysis was performed for the user-labeled 
data in Fig. 5a. These figures illustrate the fact that the class separation 
was over 3x higher in the SSL training data than of the user labeling 
in terms of the Jensen-Shannon divergence of the feature distributions. 
This increase in class separation did not come at a significant cost to the 
data coverage, as the training data size only decreased by 23%. When 
comparing the SSL approach to the union of experts’ labels, the training 
dataset size of the wet-vs-dry classification task increased 5x, while the 
average separability between features increased by 11.3x. Similarly for 
the severe-vs-mild classification task, the SSL approach increased the 
dataset size 3x with a 5.1x increase in feature separability.

A SHAP analysis of the most important features of the expert and 
SSL COVID-19 classifiers in Table 4 revealed that there were few im-
portant features common among all expert classifiers, which may be 
reflective of the lack of expert agreement observed in [2]. This anal-
ysis also showed that three of the five most important features of the 
final SSL classifier were also significant in each expert classifier, which 
implies that the model successfully integrated each expert’s medical 
knowledge. Furthermore, the fact that the SSL model relies almost en-
tirely on MFCC features might imply that the classifier is learning to 
model the human auditory system, since these features model how hu-
mans perceive sound.

Finally, an analysis of the model testing results in Fig. 6 reveals 
the drawbacks of classic supervised learning approaches, as well as the 
improved performance of SSL. First, we note that the model that was 

trained and tested on crowdsourced user labels achieved a testing AUC 
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Fig. 8. Final AUC results on the private test set of the various classifiers on each inference task.
of 0.562, and such a low score implies that there is significant mislabel-
ing present in the dataset. Additionally, taking the union of all experts’ 
labels resulted in testing AUC scores of 0.52 for both the cough type and 
severity classifiers, which is reflective of the poor agreement between 
the experts for these tasks.

Next, we note a wide variance between the success of each expert 
model, with the COVID-19 classifier AUC scores ranging from 0.593 to 
0.743. This means that the expert labels tend to be inconsistent between 
and even within each expert’s labels. Similar trends were observed 
in the four expert models of both the cough type and cough severity 
classifiers. However, despite the setback of label ambiguity, the semi-
supervised modeling approach achieved a high final AUC score of 0.797 
for the COVID-19 classifier, which leads to a sensitivity of 79.2% and 
specificity of 65.8%. The AUC of the SSL model was at least 7.3% higher 
than any of the expert models. This highlights the increase in labeling 
consistency and consequent model success.

Finally, the cough type and severity classifiers exhibited final AUC 
scores of 0.86 and 0.75, respectively, which are significantly higher 
than any of the expert models or expert union model. These results in-
dicate that integrating the medical knowledge of multiple experts in 
a semi-supervised fashion results in a more robust, consistent classi-
fier than supervised learning based on any of the individual experts’ 
labels. Furthermore, as the cough type and severity are not specific to 
any pathology in particular, this modeling approach and its consequent 
re-labeled data can be used to develop classifiers for other conditions 
beyond COVID-19.

The primary limitation of our study is a lack of clinically-validated 
labels on which to test the final models. Although the proposed SSL 
method showed an increased model performance on the COUGHVID 
hidden test set, this approach must be thoroughly validated on PCR-
confirmed cough samples. Such ground-truth data would also be neces-
sary to determine whether the frequency-domain differences between 
SSL-relabeled COVID-19 and healthy coughs displayed in Fig. 5 truly 
correspond to the underlying distributions of the two cough classes. 
Furthermore, the algorithm is unable to account for concept drift due 
to the varying symptomologies of the different COVID-19 virus vari-
ants. The data used in training was obtained through October 2021, 
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whereas the Omicron variant – which had a significantly lower rate 
of respiratory symptoms than previous variants – was first reported in 
November 2021 [39]. Moreover, the cough type and severity were not 
validated by any clinical tests, so it cannot be known from this analysis 
how well these models perform on patients. Finally, the cough type clas-
sifier would require more fine-grained ground-truth labeling to work on 
a per-cough basis, as there may be both dry and wet coughs present in 
a given recording. Therefore, these issues must be addressed in future 
work to accurately assess the clinical usefulness of such respiratory dis-
order classification models. However, in the absence of an extensive, 
RT-PCR-validated dataset, our proposed approach can be used to im-
prove the quality of large, crowdsourced cough databases and identify 
samples with consistent patterns in the cough recordings of each class. 
These re-labeled coughs can then be used to augment datasets of med-
ically confirmed cough sounds to enhance the training data size and 
potentially improve the classification accuracy.
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Appendix A. Optimized hyperparameters

The hyperparameters of each model that are optimized through TPE 
are displayed in Table A.7. The table lists the possible values or ranges 
of values of each hyperparameter, as well as the way that the parame-
ter was selected. “Choice” means that discrete values were chosen from 

the given range, “Uniform” means that a value was selected on a uni-
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Table A.7

Hyperparameter optimization.

Model name Hyperparameter Possible values Selection

LR
C [10−2 ,106] Log
class_weight None, “balanced” Choice
solver “newton-cg”, “lbfgs” Choice

SVM C [10−2 ,106] Log

KNN
n_neighbors [1,n_features/2] Choice
weights “uniform”,“distance” Choice

NB var_smoothing [10−10 ,102] Log

DTC
min_samples_split [2,5] Choice
min_samples_leaf [1,n_features] Choice
max_features [1,n_features] Choice

RF
n_estimators [10,300] Choice
max_features [1,n_features] Choice
criterion “gini”, “entropy” Choice

XGB

max_depth [1,10] Choice
max_delta_step [1,10] Choice
gamma [0,1] Uniform
subsample [0,1] Uniform
reg_lambda [0.5,2] Uniform
eta [0,1] Uniform
sampling_method “uniform”,“gradient-based” Choice

LDA N/A N/A N/A

Table B.8

Wet vs dry cough model configurations.

Label 
type

Model 
used

Hyperparameters

Expert 1 RF criterion: “entropy”,
max_features: 4,
n_estimators: 299

Expert 2 LR C: 1.1,
class_weight: “balanced”,
solver: “lbfgs”

Expert 3 LR C: 0.01,
class_weight: “balanced”,
solver: “newton-cg”

Expert 4 LR C: 0.01,
class_weight: None,
solver: “newton-cg”

Union RF criterion: “entropy”,
max_features: 44,
n_estimators: 297

SSL RF criterion: “gini”,
max_features: 8
n_estimators: 100

form distribution within the range, and “Log” means that the logarithms 
within the range were sampled at a random distribution.

Appendix B. Cough type and severity model implementations

For each model implementation, the hyperparameters listed in Ap-
pendix A were optimized using TPE, as described in Section 2.7. Ta-
bles B.8 and B.9 list the specific model implementations, complete with 
their lists of optimized hyperparameters, for the cough type and cough 
severity classifications, respectively.
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