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Abstract 

        The widely accepted supervised machine learning classification algorithms are used for 
the semi-automating of the feature extraction process. In the machine learning facies 
classification process, each wireline log is a feature in the feature space. Since features are 
important in classification decisions, using suitable features improves the performance of a 
classification algorithm. 
In this study, three feature sets are compared containing the original conventional features 
(well-logs), and the extracted features from the unsupervised PCA and supervised FDA 
methods, using two classifier algorithms, namely SVM and RF. The FDA showed an 
improvement in the performance of facies classifiers while PCA can even deteriorate the 
results.  An F1 score of 0.61 averaged over the available 20 folds for the combination of FDA 
feature extractor and RF classifier is achieved. This represents a 5% improvement in the 
prediction accuracy, compared to the conventional use of wells information as features with an 
F1 score of 0.56. Moreover, the conventional method uses all seven well-logs while with the 
FDA we only use three features. 
 Keywords: Facies classification, Fisher Discriminant Analysis (FDA), Machine learning, 
Principle Component Analysis (PCA), Random forest (RF), Support Vector Machine (SVM).  
 
  
Introduction 
 
        Facies classification is a fundamental part of geologic investigations. It includes assigning 
a rock type or class to different measured properties. Accurate classification of facies and their 
distributions can provide a better insight into the depositional environment. Depositional facies 
provide useful information about rock properties such as permeability, porosity, density, and 
pore size making it possible to predict the variation of porosity and permeability in a reservoir. 
 
A criterion for lithofacies classification is rock core samples extracted from drilled wells. 
Nevertheless, core samples may not be available. Due to the limited access to the core samples 
in comparison with the number of wells in the field, it is necessary to develop an efficient tool 
to classify lithofacies without cores (Dubois et al., 2006). A conventional petrophysical 
procedure to generalize lithofacies from cored wells to wells without core is matching the 
physical rock properties measured by wire-line logs in these wells. Manually assigning 
lithofacies is a cumbersome process that may be influenced by human errors because of the 
involvement of different interpreters.  
 

 
1 This is a preprint. This paper is published in Journal of Seismic Exploration Volume 31, Issue 6, Pages 563 – 
577, December 2022. 
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The traditional linear methods are not always successful;  mainly because: (a) Features (wire-
line logs) are not linearly related to each other; (b)  a feature space has overlap between 
different facies classes;  (c) the increase in dimensions (increasing the number of well-logs) 
add to the complexity of the problem. 
 
Today, benefiting from the fast development of artificial intelligence (AI) and the success of 
machine learning in solving non-linear classification problems, extensive studies have been 
done on implementing machine learning algorithms to rock facies classification. The earliest 
works were based on applying neural networks to rock-type classification (Wolf et al., 1982; 
Busch et al., 1987; Baldwin et al., 1990; Rogers et al., 1992; Kapur et al., 1998; Saggaf and 
Nebrija, 2000; Russell et al., 2002). Cuddy (1997) did a review of the implementation of fuzzy 
logic in petrophysics. Dubois et al. (2007) compared four machine-learning approaches to 
facies classification (Bayes’, Fuzzy logic, K-Nearest Neighbor (KNN), and feed forward-back 
propagating artificial neural network). Most recently, there have been Support Vector Machine 
(SVM) (Wang et al., 2013; Hall, 2016) and ensemble method (Bestagini et al., 2017) 
implementations. Hall (2016) proposed a geophysical tutorial to demonstrate a basic 
implementation of machine learning techniques for facies classification. To improve the results 
of facies classification tasks, the Society of Exploration Geophysicists (SEG)  held a machine 
learning contest (Hall, 2016), in which the participants were asked to use different methods to 
tackle this problem by utilizing various classifiers. The competition results are documented in 
Hall and Hall, 2017 most of them were based on the implementation of different classifier 
algorithms. 
In this study, we first review the facies classification problem, followed by a description of the 
proposed facies classification algorithms. we improve the accuracy of the facies classification 
based on supervised feature extraction techniques. The strategy is based on adding a feature 
extraction step to the conventional workflow before classification (Figure 1). Using new 
extracted features that allow adequate separation of the facies classes instead of the original 
features, we improve the classification accuracy. We assess two different feature extraction 
methods, namely the supervised and unsupervised approaches. Finally, we apply our method 
to the 2016 SEG well-logging benchmark dataset and show how it further improves the 
reported best machine learning prediction results by Random Forest and Support Vector 
Machine classifiers. 

 
 
Figure 1: The workflow illustrates the steps involved in the supervised machine learning facies classification.  
Feature extraction step added to conventional works. 
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Methodology 
 
Feature extraction 

A feature plays a significant role in machine learning classification tasks. Features are extracted 
from an original set of measured data and are expected to be informative and non-redundant, 
assisting the subsequent classification (and learning) of problems. Therefore, in pattern 
recognition, it is more beneficial to insert a feature extraction step in the algorithm, before the 
classification. We utilize supervised and unsupervised feature extraction methods in facies 
classification which include feature extraction methods of Principal Component Analysis 
(PCA) and Fisher Discriminant Analysis (FDA). 
 
 
Principal Component Analysis  
There exist various techniques for dimensionality reduction; Principal Component Analysis 
(PCA) is one of the oldest and most commonly used ones. The PCA reduces a large set of 
primary features (conventional logs) to highlight variations in the data by a linear combination 
of original features and find new reduced features. PCA is a linear and unsupervised 
dimensionality reduction technique that projects data with higher dimensions into a lower 
dimension while preserving the main information in the original input data set. 
  
Let m and n be the number of original variables and number of observations for each variable 
(i.e. the number of data samples), respectively.  The input data set is then a matrix of 
dimension	𝐗 ∈ ℝ!×#, wherein ℝ denotes the field of real numbers.   
The standard PCA algorithm is briefly described as follows: 
 
Step 1: Normalize the columns of X (variables) by subtracting the mean of each column 
followed by division with the standard deviation of each column in such a way that the mean 
and variance of each column are equal to 0 and 1, respectively. 
 
Step 2: Compute covariance matrix C: 

𝐂 =
1

𝑛 − 1𝐗
$𝐗. (1) 

 
Step 3: Calculate the eigenvectors (V) and eigenvalues (A) from the covariance matrix (or 
correlation matrix) C by the eigenvalue decomposition (EVD): 
 

𝐂 = 𝐕𝐀𝐕$ ,		 
where 

𝐀 = 𝑑𝑖𝑎𝑔(𝜆% ≥ 𝜆& ≥ ⋯ ≥ 𝜆# ≥ 0), 

(2) 

 
where 𝜆' is the set of eigenvalues. Of note, eigenvectors are arranged according to their 
eigenvalues in descending order. In this step feature extraction by PCA is completed and the 
new features are extracted as: 

𝐓 = 𝐗𝐕, (3) 
 
where T is the 𝑛 × 𝑛 transformed data in the PCA domain. 
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Step 4: Decision on the number of eigenvectors. Determining the number of principal 
components by another analysis method and decomposing V into a score space (𝐕()) and a 
residual space (𝐕*+,): 

𝐀 = 9
𝐀() 0
0 𝐀*+,

:, 

𝐕 = 	 ;𝐕() ∈ ℝ#×-	 𝐕*+, ∈ ℝ#×(#0-)	<, 

(4a) 
 

(4b) 

 
where, 
 

𝐀23 = 𝑑𝑖𝑎𝑔(𝜆%. 𝜆&… . 𝜆-), 
 

𝐀456 = 𝑑𝑖𝑎𝑔(𝜆-7%. 𝜆-7&… . 𝜆#). 
 

(5a) 
 

(5b) 

 
 

 
Step 5: Compute the projection matrix T: 

𝐓 = 𝐗𝐕(), (6) 
 

Where T is 𝑛 × 𝑎 reduced transformed data in the PCA domain. 
Fisher discriminant analysis (FDA) 
 
The process of PCA ignores class labels and does not consider the information (discrimination) 
between different classes during the calculation of the transformed matrix (T). This problem is 
addressed within Fisher Discriminant Analysis (FDA) technique. FDA transformation matrix 
includes vectors that maximize scatter between classes while minimizing the within-class 
separation. In other words, FDA can be considered, a supervised PCA.  
  
Let 𝑥' be a column vector constructed from the ith row of data set matrix, X. Besides, let p be 
the number of classes and 𝑛8 be the number of samples within the jth class.   
The standard FDA framework is briefly formulated as follows: 
 
Step 1: Compute the total-scatter matrix 𝐒9 by,  

𝑆9 =B(𝐗' − 𝐗C)(𝐗' − 𝐗C):
!

';%

, 
 

(7) 

where 𝐗C represents the total mean vector. 
Step 2: Compute intra-class scatter matrix 𝐒<  

𝐒< =B𝐒8

(

8;%

, 
 

(8) 
 

 
where: 

𝑺8 = B E𝐗' − 𝐗C8FE𝐗' − 𝐗C8F
:

!

𝑿!∈𝑿"

, 
 

(9) 

 
also, 𝐗C8 denotes the mean of the jth class. 
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Step 3:  Calculate the inter-class scatter matrix, 𝐒?:   

𝐒? =B𝑛8E𝐗' − 𝐗C8FE𝐗' − 𝐗C8F
:

(

8;%

, 
 

(10) 

we have  
𝐒9 = 𝐒< + 𝐒?		.	 (11) 

 
Step 4: The FDA vectors, W, can be obtained using the generalized eigenvalue decomposition:  
 

𝐒?𝐖 = 𝜆𝐒<𝐖. (12) 
 
Since 𝑟𝑎𝑛𝑘(𝐒?) < 𝑝, there exist at most 𝑝 − 1 eigenvectors corresponding to non-zero 
eigenvalues (Fukunaga, 1990).  Simply put, the FDA can find at most 𝑝 − 1 meaningful 
features (the remaining FDA features are arbitrary). This is a fundamental bottleneck of the 
FDA in dimensionality reduction. Let k be several non-zero eigenvalues :  
 

𝐖@ = [𝐰% 𝐰&				… 𝐰@] (13) 
 
Step 5: Calculate the FDA transformation vectors:  
 

𝐙' = 𝐖@
$𝐗' (14) 

 
Unlike PCA, FDA considers the between-classes information to compute projection vectors. 
Therefore, in multi-class classification problems, it is expected that FDA transformation 
vectors discriminate better between different classes compared to PCA (Fakhari and Hashemi, 
2019). 
 
Random forest (RF) and support vector machine (SVM) classifiers, which are reportedly 
robust (Hall and Hall, 2017; Mosser and Briceno, 2017; Chen and Guestrin, 2016), are 
chosen for machine learning facies classification. In the following, we give a brief description 
of them.  

Random Forest  

Random forest (RF) is based on the principle of using a decision tree as the basic classifier. 
Decision Tree is one of the easiest and most popular classification algorithms. It includes a 
series of nodes, a directional path that starts at the base with a single node and extends to the 
many leaf nodes that represent the categories that the tree can classify. Each node represents 
one of the features of our data, each branch explains a decision and each leaf shows a class 
label (Breiman, 2001).  

Random Forest is an example of a learning methods ensemble that aggregates, or forest, 
multiple decision trees to limit overfitting and minimize error (Breiman, 2001). RF classifier 
outperforms most classifiers because of resistance to overfitting, ease of tuning parameters, and 
being fast (Kavzoglu, 2017). The final decision of determination of class label for a new sample 
is a decision made by combining individual tree votes in the decision forest. The main purpose 
of the RF classifier is to reduce error by creating multiple decision trees using a bootstrapped 
sampling method. The bootstrap method and the random feature selection can decrease the 
correlation between the classification trees by reducing the strength of individual trees, which 
reduces the risk of overfitting using uncorrelated trees (James et al. 2013; Pelletier et al. 2017). 
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Any RF classification model has two parameters that have to be tuned before model training: 
The number of trees in the forest and the maximum number of randomly selected features for 
node-splitting decisions (Cracknell and Reading 2014). We select these two parameters 
through cross-validation analysis. The best parameter pair is chosen by the lowest validation 
error. 
 
 
Support Vector Machine  
 
Support vector machine (SVM) is a supervised non-parametric classifier method that has been 
extensively used for classification and regression problems. The main idea of SVM is to find 
the optimal separating boundary which maximizes the margin of the two classes (Corres and 
Vapnik, 1995). For a detailed explanation of SVM, the theory refers to Corres and Varpnik 
(1995). The generalized SVM can classify nonlinear and multi-class data (Liu and Zheng 
2005). In general, the SVM is a linear classifier. In this paper, we use a Radial Basis Function 
(RBF) kernel for the SVM classifier which is successfully used for non-linear classification 
models. The radial basis function (RBF) kernel is a popular kernel function employed in 
various kernel-based learning schemes. 
 
SVM classifier has two hyperparameters that demand optimization: (i) The penalty function C 
which controls the trade-off between minimizing the training error and maximizing the 
classification margin and the model complexity; (ii) The gamma kernel parameters (𝛾). Thus, 
we need to find the best combination of C and 𝛾 to improve classification performance.  
 
Experimental Results 
 
Problem Dataset 
SEG in 2016 provided a well-log dataset for their facies classification challenge. This dataset 
contains 3232 samples in 8 wells in the Hugoton field of southwest Kansas (Dubois et al., 
2007). In this dataset, each sample was placed at a depth of one of the eight wells which 
comprised of five wireline log curves, two indicator variables, measured depth, and labeled 
facies data based on core analysis. Wireline log curves include gamma-ray (GR), resistivity 
(ILD_log10), photoelectric effect (PE), neutron density porosity difference (DeltaPHI), and 
average neutron density porosity (PHIND).  

The cyclical vertical succession of the Council Grove Group reveals a pattern of eight main 
facies in this region. Puckette et al. (1995) derived a set of 9 lithofacies which are mostly used 
for lithofacies classification using machine learning in this area (Hall, 2016). The facies 
descriptions are labeled as Non-marine sandstone (SS), Non-marine coarse siltstone (CSiS), 
Non-marine fine siltstone (FSiS), Marine siltstone and shale (SiSh), Mudstone (MS), 
Wackstone (WS), Dolomite (D), Packstone grainstone (PS) and Phylloid-algal bafflestone 
(BS).  

Figure 2 displays the wireline logs of an available well (Shankle) as well as interpreted 
lithofacies assigned in the well. 
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Figure 2: Displays the wireline logs: gamma-ray (GR), resistivity (ILD_log10), an average of the neutron and 
density log porosity (DeltaPHI), the difference between the neutron log and the density porosity (PHIND), 
photoelectric factor (PE) and interpreted lithofacies assigned in the Shankle well.  

From a pattern recognition point of view, each wireline log information is called a ‘feature’. In 
classification tasks, the feature selection criteria are based on the facies class separability. 
Figure 3 shows a cross-plot between wireline log parameters in which each facies category is 
indicated by a color.  It can be seen that the facies (indicated by colors) are not completely 
separable in the feature space.  
 
 

 
Figure 3: Scatter plot diagram of the distribution of wireline logs (PE, GR, ILD_log10, DeltaPHI, PHIND) is 
shown. Each facies is represented with different colors for better visualization. 

To have a better facies classification, we propose to apply feature extraction methods, 
beforehand. This means generating new features from the available primary features for a better 
separation of the classes into extracted feature space.  
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Our experimental results have been carried out on published data sets for the facies 
classification described by Hall (2016). First, we implement both supervised and unsupervised 
feature extraction methods namely PCA and FDA on the original dataset before classification. 
We extract new features from a primary set of wireline logs to better separate facies classes in 
the new extracted space and further increase classification performance.  
 
Figure 4 shows how facies classes are separated in the new space. In Figure 4 the cross-plot of 
three elements of log data (out of the seven primary features) is compared with the three first 
features extracted from FDA. In Figure 4a, the overlapping facies classes in 3D space are 
difficult to separate with parametrically certain boundaries in the logs domain. But in Figure 
4b, we can observe that the facies classes are better clustered. Although FDA is not a clustering 
method, it can help visualize the patterns such as facies classes by reducing dimensionality. 
Due to a large number of facies classes (9 classes), these patterns might not be well visible on 
a 3D FDA plot, but they show up more clearly in higher-dimensional space.  

 

 
Figure 4: a) A representative cross-plot of three elements (out of the seven elements) of log data (raw features) 
compared with b) three first features extracted from FDA. Each facies class is depicted by color. 

With the PCA and FDA extracted features we have three datasets: well logs, PCA features, and 
FDA features datasets to compare. To evaluate the predictive performance of a classification 
model, we need to split data into training and test parts. We select Shankle well data as the test 

a) 

b) 
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well (similar to Hall, 2016) to evaluate the performance of the final classification process. We 
evaluate the classification models in terms of F1 score criteria to have a comparable assessment 
with those reported in  Hall and Hall, 2017. 
 
First, classification is performed via an SVM classifier and the conventional features (well 
logs) without using any feature extraction. In a similar test, Hall (2016) achieved an average 
F1 score of 0.43 on the blind test well (Shankle well). We obtained the average F1 score of 
0.49 for the blind test well, using an SVM with Radial Basis Function (RBF) kernel which 
optimized its hyperparameters.  
 
Next, we performed an SVM classifier using features extracted from PCA and FDA 
approaches. 
To rank features in classification for every three datasets (well legs, PCA, FDA), we compare 
both SVM and RF classification methods by adding features in the learning step. For SVM and 
RF classifications, the average F1 score of 20 cross-validation experiments for each available 
dataset as inputs of classifier, are shown in Figures 5 and 6, respectively. 
 

 
Figure 5: Averaged SVM classification F1 score after 20 cross-validation experiments for Original features (red), 
PCA (blue), and FDA (red) versus the number of features. 

In Figure 5, the red line shows that the proposed SVM prediction accuracy for the test data 
(Shankle Well) increases by increasing the number of features in all three models. This trend 
indicates that more features provide more discriminative power. When using FDA features 
(green line in Figure 5), the F1 score grows fast with the addition of the first 3 FDA features 
and approximately stabilizes near a certain point. Another point of evidence in this figure is the 
failure of the unsupervised PCA method (blue line). Among the three input datasets provided 
by different features approaches, which are tested here, the FDA results in a higher cross-
validation F1 score and converges to this score with fewer features. 
  
Next, we repeat the classification problem by RF classifier. The RF predicts the facies classes 
with an F1 score of 0.56 for the Shankle blind well, when using the conventional features (well 
logs) without using any feature extraction. With the FDA-generated features, the F1 score 
improves up to 0.61 (Figure 5). 
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Figure 6: Averaged RF classification F1 score after 20 cross-validation experiments for Original features (red), 
PCA (blue), and FDA (red) versus the number of features. 

Comparing the classification accuracy of the results of the two classifiers algorithms (Figures 
5 and 6), the RF classifier performs better than SVM for all the available datasets (collected 
dataset with well logs, PCA, and FDA features). The accuracy of prediction for both classifiers 
is improved by inserting a supervised feature extraction (FDA)  step before running 
classification. The FDA approach can also be useful for feature reduction purposes. In our 
problem, there are 9 facies classes and 7 original features. Since the number of facies classes 
is more than the number of primary original features, computed features from FDA have the 
same size as primary dimension space. However, as shown in Figures 5 and 6, acceptable 
results can be obtained by using only the first three FDA dimensions for both classifications 
by different algorithms.  
 
A predicted facies label is obtained for each approach. Figure 7 shows a comparison between 
true facies labels, predicted facies from SVM, and RF classifiers with and without using the 
FDA approach on the test well. 

 
 

Figure 7: Representation of vertical facies sequence versus depth in the testing data from Shankle well for a) true 
facies, b) SVM classification results, c) combination of FDA with SVM, d) RF classification, and e) combination 
of FDA with FDA algorithm. 

a) b) c) d) e) 
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Figure 8 compares the predicted versus actual facies for predictions on the Shankle test data. 
In Figure 8 the five wireline logs are plotted as raw features, while the true and predicted facies 
labels are shown using the same depth information. We achieved the best predictions by 
combining the FDA approach with the RF classifier.  

 
Figure 8: Wireline log measurements and comparison of facies classification between true labels and our proposed 
combination of FDA and RF methods. 

 
Conclusions 

The performance of facies classification based on conventional well-log is improved by 
implementing a supervised feature extraction method. To examine the verifiable 2016 SEG 
well dataset the Support Vector Machine (SVM) and Random Forest (RF) was applied. Then 
the results were compared with conventional well-log data as features versus extracted features 
as inputs of the machine learning classification process. Both supervised and unsupervised 
feature extraction techniques were implemented in facies classification. The obtained results 
from the Principal Component Analysis (PCA) as an unsupervised and Fisher Discriminant 
Analysis (FDA) as a supervised feature extraction method were compared. The supervised 
feature extraction method showed that it can improve machine learning facies classification 
results. The FDA improves the performance of facies classification and can reduce dimensions 
if a high number of conventional primary features are available. The proposed strategy provides 
a more accurate and consistent workflow for facies classification-based applications. 
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