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Abstract. We are concerned with the existence of blowing-up solutions to the following boundary
value problem

−∆u = λV (x)eu − 4πNδ0 in B1, u = 0 on ∂B1,

where B1 is the unit ball in R2 centered at the origin, V (x) is a positive smooth potential, N is a
positive integer (N ≥ 1). Here δ0 defines the Dirac measure with pole at 0, and λ > 0 is a small
parameter. We assume that N = 1 and, under some suitable assumptions on the derivatives of the
potential V at 0, we find a solution which exhibits a non-simple blow-up profile as λ→ 0+.

Mathematics Subject Classification 2010: 35J20, 35J57, 35J61
Keywords: singular Liouville equation, non-simple blow-up, finite-dimensional reduction

1. Introduction

Given Ω a smooth and bounded domain in R2 containing the origin, consider the following
Liouville equation with Dirac mass measure{−∆u = λV (x)eu − 4πNδ0 in Ω,

u = 0 on ∂Ω.
(1.1)

Here λ is a positive small parameter, the potential V is a positive and smooth function, δ0 denotes
Dirac mass supported at 0 and N is a positive integer.

Problem (1.1) is motivated by its applications in conformal geometry and several fields of physics,
where quite a few semilinear elliptic equations defined in two dimensional spaces with an exponen-
tial nonlinear term are very commonly observed and studied. The well known prescribing Gauss
curvature equation, mean field equation, Liouville type equations from the Chern-Simons self-dual
theory, and systems of equations of the Toda system are a few examples of this family. The analy-
sis of these equations is usually challenging as the interesting exponential nonlinear term is always
related to the lack of compactness in the variational approach. One important feature of these
equations is the blow-up phenomenon, the understanding of which is closely related to results on
existence, compactness, a-priori estimates, etc.

The asymptotic behaviour of family of blowing up solutions uk can be referred to the papers
[6], [8], [19], [20], [22], [24] for the regular problem, i.e. when N = 0. An extension to the
singular case N > 0 is contained in [3]-[5]. If a blow-up point p is either a regular point or a
“non-quantized” singular source, the asymptotic behavior of uk around p is well understood (see
[3, 5, 7, 8, 15, 18, 31, 32]). As a matter of fact, uk satisfies the spherical Harnack inequality around
0, which implies that, after scaling, the sequence uk behaves as a single bubble around the maximum
point. However, if p happens to be a quantized singular source, the so-called “non-simple” blow-up
phenomenon does happen (see [17, 28, 29, 30]), which is equivalent to stating that uk violates the
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spherical Harnack inequality around p. The study of non-simple blow-up solutions, whether or not
the blow-up point has to be a critical point of coefficient functions, has been a major challenge for
Liouville equations and its research has intrigued people for years. Recently significant progress
has been made by Kuo-Lin, Bartolucci-Tarantello and other authors ([5, 10, 17, 28, 29, 30]. In
particular it is established in [4] and [17] that there are N + 1 local maximum points and they
are evenly distributed on S1 after scaling according to their magnitude. In [28] and [29] Harnack
inequalities and second order vanishing conditions for non-simple blow-ups are obtained.

The case N ∈ N is more difficult to treat, and at the same time the most relevant to physical
applications. Indeed, in vortex theory the number N represents vortex multiplicity, so that in
that context the most interesting case is precisely when it is a positive integer. The difference
between the case N ∈ N and N 6∈ N is also analytically essential. Indeed, as usual in problems
involving concentration phenomena like (1.1), after suitable rescaling of the blowing-up around a
concentration point one sees a limiting equation which, in this case, takes the form of the planar
singular Liouville equation:

−∆U = eU − 4πNδ0,

∫
R2

eUdx <∞;

only if N ∈ N the above limiting equation admits non-radial solutions around 0 since the family of
all solutions extends to one carrying an extra parameter (see [23]). This suggests that if N ∈ N and
the blow-up point happens to be the singular source, then solutions of (1.1) may exhibit non-simple
blow-up phenomenon.

So, from analytical viewpoints the study of non-simple blow-up solutions is far more challenging
than simple blow-up solutions, but the impact of this study may be even more significant because
they represent certain situations in the blow-up analysis of systems of Liouville equations. Indeed,
if local maxima of blow-up solutions in a system tend to one point, the profile of solutions can be
described by a Liouville equation with quantized singular source. For all this reasons, it is desirable
to know exactly when non-simple blow-up phenomenon happens.

However, the question on the existence of non-simple blowing-up solutions to (1.1) concentrating
at 0 is far from being completely settled. A first definite answer is provided by [11] which rules
out the non-simple blow-up phenomenon for (1.1) if the potential V is constant: more precisely it
is established that there is no non-simple blow-up sequence for (1.1) with V = const., even if we
are in the presence of multiples singularities

∑
iNiδpi . Apart from this, only partial results are

known: in [10] the construction of solutions exhibiting a non simple blow-up profile at 0 is carried
out for equation (1.1) with V ≡ 1 provided that Ω is the unit ball and the weight of the source is a
positive number N = Nλ close an integer N from the right side. On the other hand, in[12], for any
fixed positive integer N , it is proved the existence of a solution to (1.1) with V ≡ 1, where δ0 is
replaced by δpλ for a suitable pλ ∈ Ω, with N + 1 blowing up points at the vertices of a sufficiently
tiny regular polygon centered in pλ; moreover the location of pλ is determined by the geometry of
the domain in a λ−dependent way and does not seem possible to be prescribed arbitrarily. To our
knowledge, the existence of non-simple blow-up phenomenon for (1.1) for a fixed V and a fixed N
independent of λ is still open, even in the case of the ball: the only example is constructed in [9]
for a special class of potentials of the form V (|x|N+1).

In this paper we investigate the existence of non-simple blow-up solutions when Ω is the unit
ball B1 centered at the origin, the potential Vλ = V is fixed and N = 1:

{−∆u = λV (x)eu − 4πδ0 in B1,

u = 0 on ∂B1.
(1.2)
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Let us pass to enumerate the hypotheses on the potential V that will be steadily used throughout
the paper.

(H1) infB1 V (x) > c > 0 for a positive constant c independent of λ and, without loss of generality,
we may assume V (0) = 1;

(H2) V (x) is even, i.e.
V (x) = V (−x) ∀x ∈ B1.

Furthermore we will require sufficient regularity of V at 0 together with crucial conditions on
the derivatives of V at 0:

(H3) V (x) is of class C1 in the closed unit ball B1 and the following holds:

V (x) = 1 +A0(x4
1 + x4

2) +A1(x3
1x2 − x1x

3
2) +A2x

2
1x

2
2

+D0(x6
1 − x6

2) +D1(x5
1x2 + x1x

5
2) +D2(x4

1x
2
2 − x2

1x
4
2) +D3x

3
1x

3
2 +O(|x|7)

(1.3)

for some constants A0, A1, A2, D0, D1, D2, D3 ∈ R.

Let us comment on assumption (H3): in [28], [29], [30] the second and the third authors proved
that if non simple blow up scenarios occur for equation (1.2), then the first derivatives as well as
the Laplacian of coefficient functions must tend to zero at the singular source; so the vanishing
of the second order terms in the expansion (1.3) is not surprising. Moreover, the analysis reveals
that the relation between the forth derivatives and between the sixth derivatives plays a crucial
role since it guarantees that the non simple blow-up solutions can be accurately approximated by
global solutions by allowing an a priori estimate for the error which turns out to be sufficiently
small (see Remark 4.5 and Remark 6.1).

In order to provide the exact formulation of the result let us fix some notation: in the following
G(x, y) is the Green’s function of −∆ over Ω under Dirichlet boundary conditions and H(x, y)
denotes its regular part:

H(x, y) := G(x, y)− 1

2π
log

1

|x− y|
.

In the case of the unit ball we have the explicit formula for the regular part of the Green function
in B1 which is given by

H(x, y) =
1

2π
log

(
|x|
∣∣∣∣y − x

|x|2

∣∣∣∣), x, y ∈ B1. (1.4)

Then the main result of this paper provides a sufficient condition on the potential V , in addition
to the assumptions (H1)− (H2)− (H3), which implies that (1.2) admits a family of non-simple
blowing-up solutions. Such a sufficient condition is expressed in terms of the concept of stable
zeroes for a suitable vector field.

Theorem 1.1. Assume that hypotheses (H1)− (H2)− (H3) hold and, in addition,

A0 = 2, A1 = 0 A2 = 4. (1.5)

Let ξ ∈ R2, ξ 6= 0, be a zero for the following vector field which is stable under uniform perturbations1

F : (ξ1, ξ2) 7−→

3D0ξ
2
1 +D1ξ1ξ2 +

3D0 −D2

4
ξ2

2 +
15D0 −D2

4
D1

2
ξ2

1 +
3D0 −D2

2
ξ1ξ2 + 3

2D1 +D3

8
ξ2

2 +
10D1 + 3D3

8

 . (1.6)

1Given F : R2 → R2 a continuous vector filed, we say that ξ is a zero for F which is stable with respect to uniform
perturbations if F (ξ) = 0 and for any neighborhood U of ξ and ε > 0 there exists η > 0 such that if Ψ : U → R2 is
continuous and ‖Ψ − F‖∞ ≤ η, then Ψ has a zero in U . A sufficient condition which implies that 0 is a stable zero
of a vector field F is deg(F,U, 0) 6= 0 for some neighborhood U of ξ, where deg denotes the standard Brower degree.
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Then, for λ sufficiently small the problem (1.2) has a family of solutions uλ satisfying uλ(x) =
uλ(−x) and blowing up at the origin as λ→ 0+:

λeuλ → 16πδ0 in the measure sense.

More precisely there exist δ = δ(λ) > 0 and b = b(λ) ∈ B1 in a neighborhood of 0 such that uλ
satisfies

uλ + 4πG(x, 0) = −2 log
(
µ4 + |x2 − b|2

)
+ 8πH(x2, b) + o(1)

in H1-sense, where

b(λ) =
ξ0

4
√

2

√
λ log

1

λ

(
1 + o(1)

)
, µ2(λ) =

√
λ

4
√

2
(1 + o(1)). (1.7)

In particular, µ2 = o(|b|).

The solution constructed in Theorem 1.1 reveals a non-simple blow-up profile: indeed, denoting
by ±β the square complex roots of b, since the rate of convergence β → 0 is lower than the speed of
the concentration parameter µ→ 0 (see estimate (1.7)), then uλ develops 2 local maximum points
concentrating at 0 which are arranged close to two opposite vertices. The analysis shows that the
configuration of the limiting local maxima is determined by the interaction of two crucial aspects:
the effect of the potential V , which tends to shrink the bubble to 0, and the boundary effect,
represented by the Robin function H(ξ, ξ), which tends to repel the bubble from 0. On the other
hand, the existence of this kind of non-simple blow-up is still open for more general potential V .
Indeed, as we will observe in Remark 6.1, if we apply our method for generic values A0, A1, A2 not
satisfying (1.5), then we find out that the forces exerted between the potential and the boundary
may not balance and we are unable to catch a solution different from the radially symmetric one.

Remark 1.2. Let us observe that F actually corresponds to a gradient field, precisely F (ξ) =
∇J(ξ), where the potential J is given by

J(ξ) = D0ξ
3
1 +

D1

2
ξ2

1ξ2 +
3D0 −D2

4
ξ1ξ

2
2 +

2D1 +D3

8
ξ3

2 +
15D0 −D2

4
ξ1 +

10D1 + 3D3

8
ξ2.

Example 1.3. Let us provide explicit examples of coefficients D0, D1, D2 for which 0 is a stable
zero for F , so that, according to Theorem 1.1 the corresponding V will produce a non simple blowing
up solution for eqation (1.2). Indeed, if we take D0 = 0, D1 = 2, D2 = −4, D3 = −4, then the
potential J defined in Remark 1.2 becomes

J(ξ) = ξ2
1ξ2 + ξ1ξ

2
2 + ξ1 + ξ2.

It is immediate to check that (1,−1) (respectively (−1, 1)) is a critical points for J , so

F (1,−1) = ∇J(1,−1) = 0

Moreover, the Hessian matrix of J at (1,−1) is given by(−2 0

0 2

)
.

Then (1,−1) (respectively (−1, 1)) turns out to be a nondegenerate critical point for J of saddle
type, so deg(F,U, 0) 6= 0 where deg denotes the standard Brower degree and U is a sufficiently small
neighbourhood of (1,−1). Consequently, (1,−1) is a stable (with respect to uniform perturbations)
zero for F . Then, according to Theorem 1.1, if V satisfies (H1)− (H2) and

V (x) = 1 + 2x4
1 + 4x2

1x
2
2 + 2x4

2 + 2(x5
1x2 + x1x

5
2) + 4(x4

1x
2
2 − x2

1x
4
2)− 4x3

1x
3
2 +O(|x|7)

then ξ0 := (1,−1) (respectively ξ0 := (−1, 1)) gives rise to a non-simple blowing up family of
solutions to (1.2).
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The phenomena of non-simple bubbling solutions not only occur in single equations, but also
in systems. In a recent work of the third author and Gu ([16]) the non-simple blow-up behaviours
are studied for singular Liouville systems. In another work of the second, third authors and Wu
[27] non-simple blowup is ruled out for Toda systems. Examples of non-simple blow-up solutions
are available for other models: we recall, for instance, the Liouville equation with anisotropic
coefficients in [26] and the Toda system in [1].

The proofs use singular perturbation methods which combine the variational approach with a
Lyapunov-Schmidt type procedure. Roughly speaking, the first step consists in the construction
of an approximate solution, which should turn out to be precise enough. In view of the expected
asymptotic behaviour, the shape of such approximate solution will resemble, after the change of
variables x 7→ x1/2, a bubble of the form (2.6) with a suitable choice of the parameter δ = δ(λ, b).

We point out that in the new variables the potential V (x1/2) would not be regular at the origin, in
general; however a careful evaluation carried out in Lemma 4.2 shows that the delicate balance in
the coefficients of the Taylor expansion given by hypothesis (H3) guarantees, among other things,
that it is three times differentiable at the origin (see also Remark 4.3). Then we look for a solution to
(1.2) in a small neighborhood of the first approximation. As quite standard in singular perturbation
theory, a crucial ingredient is nondegeneracy of the explicit family of solutions of the limiting
Liouville problem (2.5), as established in [2]. This allows us to study the invertibility of the
linearized operator associated to the problem (1.2) under suitable orthogonality conditions. Next
we introduce an intermediate problem and a fixed point argument will provide a solution for an
auxiliary equation, which turns out to be solvable for any choice of b. Finally we test the auxiliary
equation on the elements of the kernel of the linearized operator and we find out that, in order
to find an exact solution of (1.2), the location of the maximum points, which is detected by the
parameter b, should be a zero for a reduced finite dimensional map. The main technical difficulty
in the proof is that we need to expand the reduced map up to higher orders to catch a nontrivial
zero b, which will give rise to a non-simple blow-up solution. Moreover the method fails for N ≥ 2:
indeed if we try to apply our technique to N ≥ 2, then the analogous of assumption (H3) would give
that the potential has vanishing derivatives up to the order N + 1 at 0, and this implies that the
approximation rate for the reduced finite dimensional map is unfortunately not sufficiently small
to carry out the argument.

The rest of the paper is organized as follows. Section 2 is devoted to some preliminary results,
notation, and the definition of the approximating solution. Moreover, a more general version
of Theorems 1.1 is stated there (see Theorem 2.1). In Section 3 we sketch the solvability of
the linearized problem by referring to [13] and [14] for the proof. The error up to which the
approximating solution solves problem (1.2) is estimated in Section 4. Section 5 considers the
solvability of an auxiliary problem by a contraction argument. In Section 6 we complete the proof
of Theorem 1.1. In Appendix A we collect some results, most of them well-known, which are usually
referred to throughout the paper.

NOTATION: In our estimates throughout the paper, we will frequently denote by C > 0, c > 0
fixed constants, that may change from line to line, but are always independent of the variables
under consideration.
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2. Preliminaries and statement of the main results

We are going to provide an equivalent formulation of problem (1.2) and Theorem 1.1. Indeed,
setting v the regular part of u, namely

v = u+ 4πG(x, 0) = u+ 2 log
1

|x|
, (2.1)

problem (1.2) is then equivalent to solving the following boundary value problem{
−∆v = λ|x|2V (x)ev in B1

v = 0 on ∂B1
. (2.2)

Here G and H are the Green’s function and its regular part as defined in the introduction.
In what follows, we identify x = (x1, x2) ∈ R2 with x1 + ix2 ∈ C and we denote by x y the

multiplication of the complex numbers x, y and, analogously, by x2 the square of the complex
number x.

Since V and the solutions considered in the paper are even, we can rewrite problem (2.2) as a

regular Liouville problem: more precisely, denoting by x
1
2 the complex 2-roots of x, the change of

variables

w(x) = v
(
x

1
2
)

(2.3)

transforms problem (2.2) into a (regular) Liouville problem of the form−∆w =
λ

4
V
(
x

1
2
)
ew in B1

w = 0 on ∂B1

. (2.4)

Theorem 1.1 will be a consequence of a more general result concerning Liouville-type problems.
In order to provide such a result, we now give a construction of a suitable approximate solution for
(2.4). We can associate to (2.4) a limiting problem of Liouville type which will play a crucial role
in the construction of blowing up solutions as λ→ 0+:

−∆W = eW in R2,

∫
R2

eW (x)dx < +∞. (2.5)

All solutions of this problem are given, in complex notation, by the three-parameter family of
functions

Wδ,b(x) := log
8δ2

(δ2 + |x− b|2)2
δ > 0, b ∈ C. (2.6)

The following quantization property holds:∫
R2

eWδ,b(x)dx = 8π. (2.7)

In the following we agree that

Wλ(x) = Wδ,b(x), δ > 0, b ∈ C,
where the value δ = δ(λ, b) is defined by

δ2 :=
λ

32
V (b

1
2 )e8πH(b,b) =

λ

32
V (b

1
2 )(1− |b|2)4. (2.8)

We point out that the diagonal H(b, b) appearing in (2.8) is called the Robin function of the
domain and in the case of the ball it takes the form

H(x, x) =
1

2π
log(1− |x|2), x ∈ B1
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according to (1.4). To obtain a better first approximation, we need to modify the function Wλ in
order to satisfy the zero boundary condition. Precisely, we consider the projection PWλ onto the
space H1

0 (B1), where the projection P : H1(RN )→ H1
0 (B1) is defined as the unique solution of the

problem

∆Pv = ∆v in B1, Pv = 0 on ∂B1.

We recall that the regular part H(x, b) of the Green function, defined in (1.4), is harmonic in B1

and satisfies H(x, b) = 1
2π log |x− b| for x ∈ ∂B1; a straightforward computation gives that for any

x ∈ ∂B1

PWλ −Wλ + log
(
8δ2
)
− 8πH(x, b) = −Wλ + log

(
8δ2
)
− 4 log |x− b| = 2 log

(
1 +

δ2

|x− b|2
)

= 2
δ2

|x− b|2
+O(δ4) = 2

δ2

1 +O(|b|)
+O(δ4)

= 2δ2 +O(δ2|b|) +O(δ4)

with uniform estimate for x ∈ ∂B1 and b in a small neighborhood of 0. Since the expressions
PWλ − Wλ + log

(
8δ2
)
− 8πH(x, b) and 2δ2 are harmonic in B1, then the maximum principle

applies and implies the following asymptotic expansion

PWλ =Wλ − log
(
8δ2
)

+ 8πH(x, b) + 2δ2 +O(δ2|b|) +O(δ4)

= −2 log
(
δ2 + |x− b|2

)
+ 8πH(x, b) + 2δ2 +O(δ2|b|) +O(δ4)

(2.9)

uniformly for x ∈ B1 and b in a small neighborhood of 0.
We point out that, in order to simplify the notation, in our estimates throughout the paper we

will describe the asymptotic behaviors of quantities under considerations in terms of δ = δ(λ, b)

instead of the parameter λ of the equation. Clearly according to (2.8) δ has the same rate as λ
1
2 ,

so at each step we can easily pass to the analogous asymptotic in terms of λ: for instance, in (2.9)
the error term “O(δ4)” can be equivalently replaced by “O(λ2)”.

We shall look for a solution to (2.4) in a small neighborhood of the first approximation, namely
a solution of the form

wλ = PWλ + φλ,

where the rest term φλ is small in H1
0 (B1)-norm.

Let us reformulate the main theorem for problem (2.4), which prove that a non symmetric blow-
up occurs for problem (2.4). More precisely, we provide a solution which develops a bubble centered
at a point b; and since the rate of convergence b→ 0+ is lower than the speed of the concentration
parameter δ → 0+ (see estimate (2.10)), then the blowing up turns out to be non symmetric in the
first approximation.

Theorem 2.1. Assume that hypotheses (H1)− (H3) and (1.5) hold. Let b ∈ R2 be a zero for the
vector field (1.6) which is stable under uniform perturbations. Then, for λ sufficiently small the
problem (2.4) has a family of solutions wλ satisfying

wλ = −2 log
(
δ2 + |x− bλ|2

)
+ 8πH(x, bλ) + o(1)

in H1-sense, where

bλ =
ξ0

4
√

2

√
λ log

1

λ

(
1 + o(1)

)
. (2.10)

In particular, by (2.8), δ2 = o(|bλ|).
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In the remaining part of this paper we will prove Theorems 2.1 and at the end of Section 6 we
shall see how Theorems 1.1 follows quite directly as a corollary.

We end this section by setting notation and basic well-known facts which will be of use in the
rest of the paper. Given Ω a bounded domain, we denote by ‖ · ‖ and ‖ · ‖p the norms in the space
H1

0 (Ω) and Lp(Ω), respectively, namely

‖u‖ := ‖u‖H1
0 (Ω), ‖u‖p := ‖u‖Lp(Ω) ∀u ∈ H1

0 (Ω).

In next lemma we recall the well-known Moser-Trudinger inequality ([21, 25]).

Lemma 2.2. There exists C > 0 such that for any bounded domain Ω in R2∫
Ω
e

4πu2

‖u‖2 dy ≤ C|Ω| ∀u ∈ H1
0 (Ω),

where |Ω| stands for the measure of the domain Ω. In particular, for any q ≥ 1

‖eu‖q ≤ C
1
q |Ω|

1
q e

q
16π
‖u‖2 ∀u ∈ H1

0 (Ω).

As commented in the introduction, our proof uses the singular perturbation methods. For that,
the nondegeneracy of the functions that we use to build our approximating solution is essential.
Next proposition is devoted to the nondegeneracy of the finite mass solutions of the Liouville
equation (see [2] for the proof).

Proposition 2.3. Assume that ξ ∈ R2 and φ : R2 → R solves the problem

−∆φ =
8

(1 + |z − ξ|2)2
φ in R2,

∫
R2

|∇φ(z)|2dz < +∞. (2.11)

Then there exist c0, c1, c2 ∈ R such that

φ(z) = c0Z0 + c1Z1 + c2Z2,

Z0(z) :=
1− |z − ξ|2

1 + |z − ξ|2
, Z1(z) :=

z1 − ξ1

1 + |z − ξ|2
, Z2(z) :=

z2 − ξ2

1 + |z − ξ|2
.

3. Analysis of the linearized operator

According to Proposition 2.3, by the change of variable x = δz, we immediately get that all
solutions ψ of

−∆ψ =
8δ2

(δ2 + |x− b|2)2
ψ = eWλψ in R2,

∫
R2

|∇φ(x)|2dx < +∞.

are linear combinations of the functions

Z0
δ,b(x) =

δ2 − |x− b|2

δ2 + |x− b|2
, Z1

δ,b(x) =
δ(x1 − b1)

δ2 + |x− b|2
, Z2

δ,b(x) =
δ(x2 − b2)

δ2 + |x− b|2
.

We introduce the projections PZjδ,b onto H1
0 (B1). It is immediate that

PZ0
δ,b(x) = Z0

δ,b(x) + 1 +O
(
δ2
)

=
2δ2

δ2 + |x− b|2
+O(δ2) (3.1)

and

PZjδ,b(x) = Zjδ,b(x) +O(δ) for j = 1, 2 (3.2)

uniformly with respect to x ∈ B1 and b > 0 in a small neighborhood of 0.
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We agree that Zjλ := Zjδ,b for any j = 0, 1, 2, where δ is defined in terms of λ and b according to

(2.8). Let us consider the following linear problem: given h ∈ H1
0 (B1), find a function φ ∈ H1

0 (B1)
and constant c1, c2 ∈ R satisfying

−∆φ− λ

4
V
(
x

1
2
)
ePWλφ = ∆h+

∑
j=1,2

cjZ
j
λe
Wλ

∫
B1

∇φ∇PZjλ = 0 j = 1, 2

. (3.3)

In order to solve problem (3.3), we need to establish an a priori estimate. For the proof we refer
to [13] (Proposition 3.1) or [14] (Proposition 3.1).

Proposition 3.1. There exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), any b in a small
neighborhood of 0 and any h ∈ H1

0 (B1), if (φ, c1, c2) ∈ H1
0 (B1)×R2 solves (3.3), then the following

holds
‖φ‖ ≤ C| log δ|‖h‖.

For any p > 1, let
i∗p : Lp(B1)→ H1

0 (B1) (3.4)

be the adjoint operator of the embedding ip : H1
0 (B1) ↪→ L

p
p−1 (B1), i.e. u = i∗p(v) if and only if

−∆u = v in B1, u = 0 on ∂B1. We point out that i∗p is a continuous mapping, namely

‖i∗p(v)‖ ≤ cp‖v‖p, for any v ∈ Lp(B1), (3.5)

for some constant cp which depends on p. Next let us set

K := span
{
PZ1

λ, PZ
2
λ

}
and

K⊥ :=

{
φ ∈ H1

0 (B1) :

∫
B1

∇φ∇PZjλdx = 0 j = 1, 2

}
and denote by

Π : H1
0 (B1)→ K, Π⊥ : H1

0 (B1)→ K⊥

the corresponding projections. Let L : K⊥ → K⊥ be the linear operator defined by

L(φ) :=
1

4
Π⊥
(
i∗p
(
λV
(
x

1
2
)
ePWλφ

))
− φ. (3.6)

Notice that problem (3.3) reduces to

L(φ) = Π⊥h, φ ∈ K⊥.
As a consequence of Proposition 3.1 we derive the invertibility of L.

Proposition 3.2. For any p > 1 there exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), any
b in a small neighborhood of 0 and any h ∈ K⊥ there is a unique solution φ ∈ K⊥ to the problem

L(φ) = h.

In particular, L is invertible; moreover,

‖L−1‖ ≤ C| log δ|.

Proof. Observe that the operator φ 7→ Π⊥
(
i∗p(λV

(
x

1
2

)
ePWλφ)

)
is a compact operator in K⊥. Let

us consider the case h = 0, and take φ ∈ K⊥ with L(φ) = 0. In other words, φ solves the system
(3.3) with h = 0 for some c1, c2 ∈ R. Proposition 3.1 implies φ ≡ 0. Then, Fredholm’s alternative
implies the existence and uniqueness result.

Once we have existence, the norm estimate follows directly from Proposition 3.1. �
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4. Estimate of the error term

The goal of this section is to provide an estimate of the error up to which the approximate
solution PWλ solves problem (2.4). First of all, we perform the following estimates.

Lemma 4.1. Let γ = 0, 1, 2 and p > 1 be fixed. The following holds:

‖|x− b|γeWλ‖p ≤ Cδγδ−2 p−1
p , ‖|x− b|γλePWλ‖p ≤ Cδγδ−2 p−1

p (4.1)

uniformly for b in a small neighborhood of 0.

Proof. We compute

‖|x− b|γeWλ‖pp = 8pδ2p

∫
B1

|x− b|γp

(δ2 + |x− b|2)2p
dx ≤ 8pδγp−2(p−1)

∫
R2

|z|γp

(1 + |z|2)2p
dz.

Taking into account that the last integral is finite for γ = 0, 1, 2 and p > 1 we deduce the first part
of (4.1). To prove the second part it is sufficient to observe that by (2.9) and by the choice of δ in
(2.8) we derive

λePWλ =
λ

8δ2
eWλ+O(1) = eWλ(1 +O(1)). (4.2)

�

Lemma 4.2. Assume that hypotheses (H1)− (H3) hold. There exists P : R2 → R a homogeneous
polynomial of degree 2 such that

V (x
1
2 )

V (b
1
2 )

= 1 + 2A0b1(x1 − b1) +
A1

2

(
b1(x2 − b2) + b2(x1 − b1)

)
+
(
A0 +

A2

2

)
b2(x2 − b2)

+D0

(
(x1 − b1)3 + 3b21(x1 − b1)

)
+
(D1

4
+
D3

8

)(
(x2 − b2)3 + 3b22(x2 − b2)

)
+
D1

2

(
(x1 − b1)2(x2 − b2) + b21(x2 − b2) + 2b1b2(x1 − b1)

)
+

1

4

(
3D0 −D2

)(
(x1 − b1)(x2 − b2)2 + b22(x1 − b1) + 2b1b2(x2 − b2)

)
+ P (x− b) +O(|b||x− b|2) +O(|b|3|x− b|) +O(|x− b|

7
2 ) +O(|b|

7
2 )

uniformly for b in a small neighborhood of 0.

Proof. Let us first consider a more general potential V of the form

V (x) = 1 +

4∑
j=0

Ajx
4−j
1 xj2 +

6∑
j=0

Djx
6−j
1 xj2 +O(|x|7), Aj , Dj ∈ R,

and, using the polar coodinates x = ρeiθ = (ρ cos θ, ρ sin θ), we have

V (x
1
2 ) = 1 + ρ2

4∑
j=0

Aj cos4−j θ

2
sinj

θ

2
+ ρ3

6∑
j=0

Dj cos6−j θ

2
sinj

θ

2
+O(|x|

7
2 ).

Now we use standard trigonometric identities to obtain:

cos4 θ

2
=

sin2 θ + 2 cos θ + 2 cos2 θ

4
, sin4 θ

2
=

sin2 θ − 2 cos θ + 2 cos2 θ

4

cos6 θ

2
=

1 + 4 cos3 θ + 3 cos θ sin2 θ + 3 cos2 θ

8
, sin6 θ

2
=

1− 4 cos3 θ − 3 sin2 θ cos θ + 3 cos2 θ

8

cos
θ

2
sin3 θ

2
= sin θ

1− cos θ

4
, sin

θ

2
cos3 θ

2
= sin θ

1 + cos θ

4
, sin2 θ

2
cos2 θ

2
=

1

4
sin2 θ,
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cos5 θ

2
sin

θ

2
= sin θ

2 cos2 θ + sin2 θ + 2 cos θ

8
, sin5 θ

2
cos

θ

2
= sin θ

2 cos2 θ + sin2 θ − 2 cos θ

8
,

sin3 θ

2
sin3 θ

2
=

1

8
sin3 θ, cos2 θ

2
sin4 θ

2
= sin2 θ

1− cos θ

8
, sin2 θ

2
cos4 θ

2
= sin2 θ

1 + cos θ

8
.

According to (H3) we get

A0 = A4, A1 = −A3, D0 = −D6, D1 = D5, D4 = −D2, (4.3)

so we derive

V (x
1
2 ) = 1 +A0

(
x2

1 +
x2

2

2

)
+
A1

2
x1x2 +

A2

4
x2

2

+D0

(
x3

1 +
3

4
x1x

2
2

)
+D1

(x2
1x2

2
+
x3

2

4

)
− D2

4
x1x

2
2 +

D3

8
x3

2 +O(|x|3+ 1
2 )

= 1 +A0x
2
1 +

A1

2
x1x2 +

(A0

2
+
A2

4

)
x2

2

+D0x
3
1 +

D1

2
x2

1x2 +
1

4

(
3D0 −D2

)
x1x

2
2 +

(D1

4
+
D3

8

)
x3

2 +O(|x|3+ 1
2 ).

(4.4)

Next observe that, setting x1 = (x1 − b1) + b1 and x2 = (x2 − b2) + b2 and making trivial
computations we get

A0x
2
1 +

A1

2
x1x2 +

(A0

2
+
A2

4

)
x2

2

+D0x
3
1 +

D1

2
x2

1x2 +
1

4

(
3D0 −D2

)
x1x

2
2 +

(D1

4
+
D3

8

)
x3

2

= 2A0b1(x1 − b1) +
A1

2

(
b1(x2 − b2) + b2(x1 − b1)

)
+
(
A0 +

A2

2

)
b2(x2 − b2)

+D0

(
(x1 − b1)3 + 3b21(x1 − b1)

)
+
D1

2

(
(x1 − b1)2(x2 − b2) + b21(x2 − b2) + 2b1b2(x1 − b1)

)
+

1

4

(
3D0 −D2

)(
(x1 − b1)(x2 − b2)2 + b22(x1 − b1) + 2b1b2(x2 − b2)

)
+
(D1

4
+
D3

8

)(
(x2 − b2)3 + 3b22(x2 − b2)

)
+A0b

2
1 +

A1

2
b1b2 +

(A0

2
+
A2

4

)
b22 +D0b

3
1 +

D1

2
b21b2 +

1

4

(
3D0 −D2

)
b1b

2
2 +

(D1

4
+
D3

8

)
b32

+ P (x− b) +O(|b||x− b|2).

Finally, since by (4.4)

V (b
1
2 ) = 1 +A0b

2
1 +

A1

2
b1b2 +

(A0

2
+
A2

4

)
b22

+D0b
3
1 +

D1

2
b21b2 +

1

4

(
3D0 −D2

)
b1b

2
2 +

(D1

4
+
D3

8

)
b32 +O(|b|3+ 1

2 )

and, consequently, 1

V (b
1
2 )

= 1 +O(|b|2), substituting into (4.4) we obtain the thesis.

�

Remark 4.3. Let us observe that thanks to the symmetry of the coefficients (4.3) we obtain that

V (x
1
2 ) turns out to be three times differentiable at 0: indeed the choice of coefficients implies that

the two sums
∑4

j=0Aj cos4−j θ
2 sinj θ2 and

∑6
j=0Dj cos6−j θ

2 sinj θ2 turn out to be polynomials in the
variables cos θ, sin θ of degree 2 and 3 respectively.

Now we are in the position to provide the error estimate.
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Proposition 4.4. Assume that hypotheses (H1)− (H2)− (H3) and (1.5) hold and define

Rλ :=
λ

4
V
(
x

1
2
)
ePWλ + ∆PWλ =

λ

4
V
(
x

1
2
)
ePWλ − eWλ .

Then the following holds

Rλ = 2δ2eWλ +D0e
Wλ

(
(x1 − b1)3 + 3b21(x1 − b1)

)
+
D1

2
eWλ

(
(x1 − b1)2(x2 − b2) + b21(x2 − b2) + 2b1b2(x1 − b1)

)
+

1

4

(
3D0 −D2

)
eWλ

(
(x1 − b1)(x2 − b2)2 + b22(x1 − b1) + 2b1b2(x2 − b2)

)
+
(B1

4
+
D3

8

)
eWλ

(
(x2 − b2)3 + 3b22(x2 − b2)

)
+ P (x− b)eWλ

+O(δ2|x− b|)eWλ +O(|b||x− b|2)eWλ +O(|b|3|x− b|)eWλ +O(|x− b|
7
2 )eWλ

+O(|b|
7
2 )eWλ +O(δ2|b|)eWλ +O(δ4)eWλ

(4.5)

uniformly for b in a small neighborhood of 0. Moreover for any p > 1

‖Rλ‖p ≤ C(δ2 + |b|3)δ
−2 p−1

p

uniformly for b in a small neighborhood of 0.

Proof. By (2.9) and the choice of δ in (2.8) we derive

λ

4
V (x

1
2 )ePWλ =

λ

32δ2
V (x

1
2 )eWλ+8πH(x,b)+2δ2+O(δ2|b|)+O(δ4)

=
V (x

1
2 )

V (b
1
2 )
eWλe8π(H(x,b)−H(b,b))+2δ2+O(δ2|b|)+O(δ4)

=
V (x

1
2 )

V (b
1
2 )
eWλe8π(H(x,b)−H(b,b))

(
1 + 2δ2 +O(δ2|b|) +O(δ4)

)
.

(4.6)

Using the expression of H given in (1.4) we compute

H(x, b) =
1

4π
log
(

1 + |x|2|b|2 − 2b1x1 − 2b2x2

)
=

1

4π
log
(

1 + |x− b|2|b|2 + |b|4 − 2|b|2 − 2b1(x1 − b1)− 2b2(x2 − b2) +O(|b|3|x− b|)
)

by which

e8π(H(x,b)−H(b,b))

=
(1 + |x|2|b|2 − 2b1x1 − 2b2x2)2

(1− |b|2)4

=

(
1 + |x− b|2|b|2 + |b|4 − 2b1(x1 − b1)− 2b2(x2 − b2)− 2|b|2 +O(|b|3|x− b|)

)2
(1− |b|2)4

=

(
1 +
|x− b|2|b|2 − 2b1(x1 − b1)− 2b2(x2 − b2) +O(|b|3|x− b|)

(1− |b|2)2

)2

=
(

1− 2b1(x1 − b1)− 2b2(x2 − b2) +O(|b|3|x− b|) +O(|b|2|x− b|2)
)2

= 1− 4b1(x1 − b1)− 4b2(x2 − b2) +O(|b|2|x− b|2) +O(|b|3|x− b|).
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Then (4.6) becomes

λ

4
V (x

1
2 )ePWλ = (1 + 2δ2)

V (x
1
2 )

V (b
1
2 )
eWλ − 4

V (x
1
2 )

V (b
1
2 )
eWλ(b1(x1 − b1) + b2(x2 − b2)

+ eWλ

(
O(|b|2|x− b|2) +O(|b|3|x− b|) +O(δ2|b|) +O(δ4)

)
.

(4.7)

Using the expansion provided by Lemma 4.2 into (4.7), and the crucial assumption (1.5), we get
the estimate (4.5). Observe that (4.5) can be written in more approximate way as

Rλ = eWλ

(
O(δ2) +O(|b|2|x− b|) +O(|x− b|2) +O(|b|

7
2

)
.

So, by applying Lemma 4.4 we obtain the Lp estimate. �

Remark 4.5. We observe that for general coefficients A0, A1, A2, after substituting the expansion
of Lemma 4.2 into (4.7) we obtain that the following term

eWλ(2A0 − 4)b1(x1 − b1) + eWλ

(
A0 +

A2

2
− 4
)
b2(x2 − b2) + eWλ

A1

2

(
b1(x2 − b2) + b2(x1 − b1)

)
does not vanish and actually shall represent the leading term in the estimate of the error Rλ.
This will explain later in Remark 6.1 why the result of Theorem 1.1 fails in general without the
assumption (1.5).

5. The nonlinear problem: a contraction argument

In order to solve (2.4), let us consider the following intermediate problem:
−∆(PWλ + φ)− λ

4
V (x

1
2 )ePWλ+φ =

∑
j=1,2

cjZ
j
λe
Wλ ,

φ ∈ H1
0 (B1),

∫
B1

∇φ∇PZjλdx = 0, j = 1, 2.

(5.1)

Then it is convenient to solve as a first step the problem for φ as a function of b.
Let us rewrite problem (5.1) in a more convenient way. In what follows we denote by N :

H1
0 (B1)→ K⊥ the nonlinear operator

N(φ) = Π⊥
(
i∗p

(
λ

4
V
(
x

1
2
)
ePWλ(eφ − 1− φ)

))
.

Therefore problem (5.1) turns out to be equivalent to the problem

L(φ) +N(φ) = R̃, φ ∈ K⊥ (5.2)

where, recalling Lemma 4.1,

R̃ = Π⊥
(
i∗p
(
Rλ
))

= Π⊥
(
PWλ − i∗p

(
λ

4
V
(
x

1
2
)
ePWλ

))
.

We need the following auxiliary lemma.

Lemma 5.1. For any p > 1 and any φ1, φ2 ∈ H1
0 (B1) with ‖φ‖1, ‖φ2‖ < 1 the following holds

‖eφ1 − φ1 − eφ2 + φ2‖p ≤ C(‖φ1‖+ ‖φ2‖)‖φ1 − φ2‖, (5.3)

‖N(φ1)−N(φ2)‖ ≤ Cδ−2 p
2−1

p2 (‖φ1‖+ ‖φ2‖)‖φ1 − φ2‖ (5.4)

uniformly for b in a small neighborhood of 0.
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Proof. A straightforward computation gives that the inequality |ea−a−eb+b| ≤ e|a|+|b|(|a|+|b|)|a−b|
holds for all a, b ∈ R. Then, by applying Hölder’s inequality with 1

q + 1
r + 1

t = 1, we derive

‖eφ1 − φ1 − eφ2 + φ2‖p ≤ C‖e|φ1|+|φ2|‖pq(‖φ1‖pr + ‖φ2‖pr)‖φ1 − φ2‖pt
and (5.3) follows by using Lemma 2.2 and the continuity of the embeddings H1

0 (B1) ⊂ Lpr(B1) and
H1

0 (B1) ⊂ Lpt(B1). Let us prove (5.4). According to (3.5) we get

‖N(φ1)−N(φ2)‖ ≤ C‖λV (x
1
2 )ePWλ(eφ1 − φ1 − eφ2 + φ2)‖p,

and by Hölder’s inequality with 1
p + 1

q = 1, we derive

‖N(φ1)−N(φ2)‖ ≤ C‖λV (x
1
2 )ePWλ‖p2‖eφ1 − φ1 − eφ2 + φ2|‖pq

≤ C‖λV (x
1
2 )ePWλ‖p2(‖φ1‖+ ‖φ2‖)‖φ1 − φ2‖

by (5.3), and the conclusion follows by Lemma 4.1. �

Problem (5.1) or, equivalently, problem (5.2) turns out to be solvable for any choice of point b
in a small neighbourhood of 0, provided that λ is sufficiently small. Indeed we have the following
result.

Proposition 5.2. Assume (H1)− (H2)− (H3) and (1.5) hold and let ε > 0 be a fixed small number.

Then there exists λ0 > 0 such that for any λ ∈ (0, λ0) and any b ∈ R2 with |b| ≤ δ
2
3 there is a

unique φλ = φλ,b ∈ K⊥ satisfying (5.1) for some c1, c2 ∈ R and

‖φλ‖ ≤ δ2−ε. (5.5)

Moreover the map b 7→ φλ,b ∈ H1
0 (B1) is continuous.

Proof. Since problem (5.2) is equivalent to problem (5.1), we will show that problem (5.2) can be
solved via a contraction mapping argument. Indeed, in virtue of Proposition 3.2, let us introduce
the map

T := L−1(R̃−N(φ)), φ ∈ K⊥.
Let us fix p > 1 sufficiently close to 1. By (3.5) and Proposition 4.4, if |b| ≤ δ

2
3 we get

‖R̃‖ ≤ Cδ2− ε
2 . (5.6)

Next, by (5.4),

‖N(φ1)−N(φ2)‖ ≤ Cδ−
ε
2 (‖φ1‖+ ‖φ2‖)‖φ1 − φ2‖ ∀φ1, φ2 ∈ H1

0 (B1), ‖φ1‖, ‖φ2‖ < 1. (5.7)

In particular, by taking φ2 = 0,

‖N(φ)‖ ≤ Cδ−
ε
2 ‖φ‖2 ∀φ ∈ H1

0 (B1), ‖φ‖ < 1. (5.8)

We claim that T is a contraction map over the ball

B :=
{
φ ∈ K⊥

∣∣∣ ‖φ‖ ≤ δ2−ε
}

provided that λ is small enough. Indeed, combining Proposition 3.2, (5.6), (5.7), (5.8), for any
φ ∈ B we have

‖T (φ)‖ ≤ C| log δ|
(
‖R̃‖+ ‖N(φ)‖

)
≤ C| log δ|δ2− ε

2 < δ2−ε.

Similarly, for any φ1, φ2 ∈ B

‖T (φ1)− T (φ2)‖ ≤ C| log δ|‖N(φ1)−N(φ2)‖ ≤ Cδ−
ε
2 | log δ|(‖φ1‖+ ‖φ2‖)‖φ1 − φ2‖ ≤

1

2
‖φ1 − φ2‖.

Uniqueness of solutions implies continuous dependence of φλ = φλ,b on b. �
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6. Proof of Theorems 1.1 and Theorem 2.1

During this section we assume that the crucial assumption (H1)− (H2)− (A3) and (1.5) of
Theorem 1.1 hold.

After problem (5.1) has been solved according to Proposition 5.2, then we find a solution to the

original problem (2.4) if b ∈ R2 is such that |b| ≤ δ
2
3 and

c1 = c2 = 0.

Let us find the condition satisfied by b in order to get c1, c2 equal to zero.

Proof of Theorem 2.1. We multiply the equation in (5.1) by PZiλ and integrate over B1:∫
B1

∇(PWλ + φλ)∇PZiλdx−
λ

4

∫
B1

V
(
x

1
2
)
ePWλ+φλPZiλdx

=
∑
h=1,2

ch

∫
B1

Zhλe
WλPZiλdx.

(6.1)

The object is now to expand each integral of the above identity and analyze the leading term. In

the remaining part of the section all the estimates hold uniformly for |b| ≤ δ
2
3 , without further

notice.
Let us begin by observing that the orthogonality in (5.1) gives∫

B1

∇φλ∇PZiλdx =

∫
B1

eWλφλZ
i
λdx = 0 (6.2)

and, by (3.2), ∫
B1

Zhλe
WλPZiλdx =

∫
R2

8zizh
(1 + |z|2)4

dz + o(1) =


2

3
π + o(1) if h = i

o(1) if h 6= i
(6.3)

where we have used that
∫
R2

z2i
(1+|z|2)4

dz = 2
3π and

∫
R2

z1z2
(1+|z|2)4

dz = 0. Using the definition of Rλ in

Lemma 4.4, (6.2) and (6.3), then (6.1) becomes

∫
B1

RλPZ
i
λdx+

λ

4

∫
B1

V (x
1
2 )ePWλ(eφλ − 1)PZiλdx =

−
2

3
π + o(1) if h = i

o(1) if h 6= i
. (6.4)

Let us first estimate the term containing the function φλ: recalling (6.2)

λ

4

∫
B1

V (x
1
2 )ePWλ(eφλ − 1)PZiλdx =

∫
B1

Rλ(eφλ − 1)PZiλdx

+

∫
B1

eWλ(eφλ − 1− φλ)PZiλdx

+

∫
B1

eWλφλ(PZiλ − Ziλ)dx.

(6.5)

Now, let us fix ε > 0 sufficiently small and p > 1 sufficiently close to 1. Next let 1 < q < ∞ be
such that 1

p + 1
q = 1. Then, (5.3) with φ2 = 0 and Proposition 5.2 give

‖eφλ − 1− φλ‖q ≤ C‖φλ‖2 ≤ Cδ4−2ε

and, consequently,

‖eφλ − 1‖q ≤ C‖φλ‖ ≤ Cδ2−ε. (6.6)
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Therefore, Lemma 4.1 implies∫
B1

eWλ(eφλ − 1− φλ)PZiλdx = O(‖eWλ(eφλ − 1− φλ)‖1) = O(‖eWλ‖p‖eφλ − 1− φλ‖q)

= O
(
δ

4−2 p−1
p
−2ε
)
.

(6.7)

Now, by Lemma 4.4∫
B1

Rλ(eφλ − 1)PZiλdx = O
(∥∥Rλ(eφλ − 1)

∥∥
1

)
= O

(∥∥Rλ‖p‖eφλ − 1‖q
)

= O
(
δ

4−2 p−1
p
−ε
)
.

(6.8)

Finally by Lemma A.3 and Lemma 4.1, using that |b| ≤ δ
2
3 ,∫

B1

eWλφλ(PZiλ − Ziλ)dx = −δ
∫
B1

eWλφλ(x1 − b1)dx+O

(
δ

5
3

∫
B1

eWλ |φλ|dx
)

= O(δ‖|x− b|eWλ‖p‖φλ‖) +O(δ
5
3 ‖eWλ‖p‖φλ‖)

= O(δ
4−ε−2 p−1

p ) +O(δ
11
3
−2 p−1

p
−ε

).

(6.9)

By inserting (6.7)-(6.8)-(6.9) into (6.5), we obtain

λ

∫
B1

V
(
x

1
α
)
ePWλ(eφλ − 1)PZiλdx = O(δ3) (6.10)

provided that that ε is chosen sufficiently close to 0 and p sufficiently close to 1. Next, by (4.5),
using Lemma A.2 and Lemma A.4, we get∫

B1

RλPZ
1
λdx = 2πδ

(
3b21D0 +D1b1b2 +

15D0 −D2

4
δ2 log

1

δ
+

3D0 −D2

4
b22

)
+O(δ3) +O(δ2|b|) +O(|b|

7
2 ) +O(|b|3δ).∫

B1

RλPZ
2
λdx = 2πδ

(
D1

2
b21 +

3D0 −D2

2
b1b2 +

10D1 + 3D3

8
δ2 log

1

δ
+ 3

2D1 +D3

8
b22

)
+O(δ3) +O(δ2|b|) +O(|b|

7
2 ) +O(|b|3δ).

By inserting the above identity and (6.10) into (6.4) we deduce

2πδ2 log
1

δ
F

(
b

δ
√

log 1
δ

)
+O(δ3) +O(δ2|b|) +O(|b|

7
2 ) +O(|b|3δ) = −2

3
πc+ o(|c|), (6.11)

where c = (c1, c2) and F : R2 → R2 denotes the vector field defined in (1.6).
Now let ξ0 6= 0 be a zero for F which is stable under uniform perturbations according to Theorem

1.1; then (6.11) gives that the following holds

δ2 log
1

δ
F

(
b

δ
√

log 1
δ

)
+ o

(
δ2 log

1

δ

)
= − c

3
+ o(|c|) unif. for |b| ≤ 2|ξ0|δ

√
log

1

δ
. (6.12)

Now, setting

b̃ =
b

δ
√

log 1
δ

,
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we rewrite (6.12) as

δ2 log
1

δ

(
F (b̃) + o(1)

)
= − c

3
+ o(|c|) unif. for |b̃| ≤ 2|ξ0|. (6.13)

The continuity of the map b 7→ φλ = φλ,b guaranteed by Proposition 5.2 implies that the left hand
side of (6.13) is continuous too. So, the uniform stability gives that, if η > 0 is sufficiently small,

then for λ small enough the left hand side of (6.13) has a zero b̃λ with |b̃λ− ξ0| ≤ η or, equivalently,

the left hand side of (6.12) has a zero bλ with
∣∣ bλ

δ
√

log 1
δ

− ξ0

∣∣ ≤ η. The arbitrariness of η implies

bλ = ξ0δ

√
log

1

δ
(1 + o(1)).

Remark 6.1. We point put that, for general coefficients A0, A1, A2, then the error term Rλ reduces
to the expression in Remark 4.5 at the leading part and, thanks to Lemma A.2, when we multiply
it against PZλi we actually obtain

2πδ(2A0 − 4)b1 + πA1δb2 + h.o.t, 2πδ
(
A0 +

A2

2
− 4
)
b2 + πA1δb1 + h.o.t.

which in general admits the only trivial zero b = 0 for the leading term, so we are unable to catch
a non-simple blow-up solution without the assumption (1.5).

6.1. Proof of Theorems 1.1. Theorem 2.1 provides a solution to the problem (2.4) of the form

wλ = PWλ + φλ

where φλ = φλ,bλ ∈ H1
0 (B1) satisfies (5.5) and b = bλ satisfies (1.7).

Moreover, using (6.6) and Lemma 4.1, by Hölder’s inequality with 1
p + 1

q = 1 we get

λ‖V (y
1
2 )(ewλ − ePWλ)‖1 = λ‖V (y

1
2 )ePWλ(eφλ − 1)‖1

≤ λ‖ePWλ‖p‖eφλ − 1‖q

= O(δ
2−2 p−1

p
−ε

) = o(1),

if p is chosen sufficiently close to 1 and ε sufficiently close to 0. Similarly, by Proposition 4.4,∥∥∥λ
4
V (y

1
2 )ePWλ − eWλ

∥∥∥
1

= ‖Rλ‖1 = O(δ
2−2 p−1

p ) = o(1).

Therefore ∥∥∥λ
4
V (y

1
2 )ewλ − eWλ

∥∥∥
1

= o(1).

Clearly, by (2.1) and (2.3),

uλ(x) = wλ(x2)− 4πG(x, 0) = wλ(x2)− 2 log
1

|x|

solves equation (1.1) and

‖λV (x)euλ(x) − 4|x|2eWλ(x2)‖1 = 4
∥∥∥λ

4
|x|2V (x)ewλ(x2) − |x|2eWλ(x2)

∥∥∥
1

= 2
∥∥∥λ

4
V (y

1
2 )ewλ(y) − eWλ(y)

∥∥∥
1

= o(1)
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by Lemma A.5. Hence, recalling (2.7) and Lemma A.5,

λ

∫
B1

V (x)euλdx = 4

∫
R2

|x|2V (x)eWλ(x2)dx+ o(1)

= 2

∫
R2

V (y
1
2 )eWλ(y)dy + o(1) = 16π + o(1).

Similarly for every neighborhood U of 0

λ

∫
U
V (x)euλdx→ 16π.

Theorem 1.1 is thus completely proved by setting µ2 = δ.

Appendix A

In this appendix we derive some crucial integral estimates which arise in the asymptotic expansion
of the energy of approximate solution PWλ.

Lemma A.1. The following holds:∫
B1

eWλ |x− b|dx = O(δ),

∫
B1

eWλ |x− b|2dx = 16πδ2| log δ|+O(δ2),

∫
B1

eWλ |x− b|3dx = O(δ2)

uniformly for b in a small neighborhood of 0.

Proof. We compute∫
B1

eWλ |x− b|dx ≤ 8δ

∫
R2

1

(1 + |z − δ−1b|2)2
|z − δ−1b|dz = 8δ

∫
R2

|z|
(1 + |z|2)2

dz

and the first estimate follows. In order to show the second estimate let us observe that B(b, 1−|b|) ⊂
B(0, 1) ⊂ B(b, 1 + |b|), so we compute∫

B1

eWλ |x− b|2dx = 8

∫
B1

δ2|x− b|2

(δ2 + |x− b|2)2
dx

= 8

∫
B(b,1−|b|)

δ2|x− b|2

(δ2 + |x− b|2)2
dx+O

(∫
B(b,1+|b|)\B(b,1−|b|)

δ2|x− b|2

(δ2 + |x− b|2)2
dx

)
= 8

∫
B(0,1−|b|)

δ2|x|2

(δ2 + |x|2)3
dx+O

(∫
B(0,1+|b|)\B(0,1−|b|)

δ2|x|2

(δ2 + |x|2)2
dx

)
= 8δ2

∫
|z|≤ 1−|b|

δ

|z|2

(1 + |z|2)2
dz +O

(
δ2

∫
1−|b|
δ
≤|z|≤ 1+|b|

δ

1

|z|2
dz

)
= 8δ2

∫
|z|≤ 1−|b|

δ

1

1 + |z|2
dz +O(δ2)

= 16πδ2| log δ|+O(δ2).

In order to prove the third estimate, let R > 1 so that B(0, 1) ⊂ B(b, R) if b lies in a small
neighborhood of 0. Then,∫

B1

eWλ |x− b|3dx = 8δ3

∫
|z|≤ 1

δ

1

(1 + |z − δ−1b|2)2
|z − δ−1b|3dz

≤ 8δ3

∫
B(0,R

δ
)

|z|3

(1 + |z|2)2
dz ≤ Cδ2.

�
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Since the key part in the proof of Theorem 2.1 relies in testing the equation (5.1) with PZiλ in
order to catch the leading terms, a crucial step consists in the evaluation of some integral estimates,
as provided by the following lemma.

Lemma A.2. The following holds for i, j = 1, 2:∫
B1

eWλPZiλdx = O(δ),∫
B1

eWλPZiλ(xi − bi)dx = 2πδ +O(δ2),

∫
B1

eWλPZiλ(xj − bj)dx = O(δ2) i 6= j,∫
B1

eWλ |PZiλ||x− b|2dx = O(δ2),∫
B1

eWλPZiλ(xi − bi)3dx = 6πδ3 log
1

δ
+O(δ3)

∫
B1

eWλPZiλ(xj − bj)3dx = O(δ3) i 6= j,∫
B1

eWλPZiλ(xj − bj)2(xi − bi)dx = 2πδ3 log
1

δ
+O(δ3) i 6= j,∫

B1

eWλPZiλ(xi − bi)2(xj − bj)dx = O(δ3) i 6= j,∫
B1

eWλ |PZiλ||x− b|
7
2dx = O(δ3)

uniformly for b in a small neighborhood of 0.

Proof. We compute∫
B1

eWλZiλdx = 8

∫
|z|≤ 1

δ

1

(1 + |z − δ−1b|2)3
(zi − δ−1bi)dz

= 8

∫
R2

1

(1 + |z − δ−1b|2)3
(zi − δ−1bi)dz +O(δ3)

= 8

∫
R2

zi
(1 + |z|2)3

dz +O(δ3) = O(δ3),

since
∫
R2

zi
(1+|z||2)3

dz = 0 by oddness. Next∫
B1

eWλZiλ(xi − bi)dx = 8δ

∫
|z|≤ 1

δ

1

(1 + |z − δ−1b|2)3
(zi − δ−1bi)

2dz

= 8δ

∫
R2

1

(1 + |z − δ−1b|2)3
(zi − δ−1bi)

2dz +O(δ3)

= 8δ

∫
R2

z2
i

(1 + |z|2)3
dz +O(δ3)

= 2πδ +O(δ3)

where we have used the identity
∫
R2

(zi)
2

(1+|z|2)3
= 1

2

∫
R2

|z|2
(1+|z|2)3

= π
4 . Similarly for i 6= j∫

B1

eWλZiλ(xj − bj)dx = 8δ

∫
R2

zizj
(1 + |z|2)3

dz +O(δ3) = O(δ3)

since
∫
R2

zizj
(1+|z|2)3

dz = 0. Next,∫
B1

eWλ |Ziλ||x− b|2dx ≤ 8δ2

∫
R2

|x− b|3

(δ2 + |x− b|2)3
dx = 8δ2

∫
R2

|z|3

(1 + |z|2)3
dz ≤ Cδ2.
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Using that B(b, 1− |b|) ⊂ B(0, 1) ⊂ B(b, 1 + |b|), we compute∫
B1

eWλZiλ(xi − bi)3dx

= 8δ3

∫
B1

(xi − bi)4

(δ2 + |x− b|2)3
dx

= 8δ3

∫
B(b,1−|b|)

(xi − bi)4

(δ2 + |x− b|2)3
dx+O

(
δ3

∫
B(b,1+|b|)\B(b,1−|b|)

|x− b|4

(δ2 + |x− b|2)3
dx

)
= 8δ3

∫
B(0,1−|b|)

(xi)
4

(δ2 + |x|2)3
dx+O

(
δ3

∫
B(0,1+|b|)\B(0,1−|b|)

|x|4

(δ2 + |x|2)3
dx

)
= 8δ3

∫
|z|≤ 1−|b|

δ

(zi)
4

(1 + |z|2)3
dz +O(δ3)

= 6πδ3| log δ|+O(δ3)

where we have used the identity
∫
|z|≤r

(zi)
4

(1+|z|2)3
dz = 3

8π log(1 + r2) + 3
4

π
1+r2

− 3
16

π
(1+r2)2

− 9
16π.

Similarly, for i 6= j∫
B1

eWλZiλ(xj − bj)3dx = 8δ3

∫
|z|≤ 1−|b|

δ

zi(zj)
3

(1 + |z|2)3
dz +O(δ3) = O(δ3)

since
∫
|z|≤r

zi(zj)
3

(1+|z|2)3
dz = 0.

Next, for i 6= j∫
B1

eWλZiλ(xj − bj)2(xi − bi)dx = 8δ3

∫
|z|≤ 1−|b|

δ

(zi)
2(zj)

2

(1 + |z|2)3
dz +O(δ3)

= 2πδ3| log δ|+O(δ3)

where the last equality follows by
∫
|z|≤r

(zi)
2(zj)

2

(1+|z|2)3
dz = π

8 log(1 + r2) + 1
4

π
1+r2

− 1
16

π
(1+r2)2

− 3
16π.

Similarly for i 6= j∫
B1

eWλZiλ(xi − bi)2(xj − bj)dx = 8δ3

∫
|z|≤ 1−b

δ

(zi)
3zj

(1 + |z|2)3
dz +O(δ3) = O(δ3)

by
∫
|z|≤r

(zi)
3zj

(1+|z|2)3
dz = 0. Finally∫

B1

eWλ |Ziλ||x− b|
7
2dx ≤ 8δ2

∫
B(b,1+|b|)

δ|x− b|
9
2

(δ2 + |x− b|2)3
dx = 8δ

7
2

∫
|z|≤ 1+|b|

δ

|z|
9
2

(1 + |z|2)3
dz ≤ Cδ3.

Taking into account that PZiλ = Ziλ +O(δ) by (3.2), and recalling Lemma A.1, the above integral
estimates give the thesis. �

In order to derive next integral estimate we need to expand the projections PZiλ to a higher
order with respect to (3.2).

Lemma A.3. For i = 1, 2 the following holds:

PZiλ = Ziλ(x)− δ(xi − bi) +O(δ3) +O(δ|b|) in B1

uniformly for b in a small neighborhood of 0.
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Proof. Let us consider i = 1. Observe that

if |x| = 1 : Z1
λ(x) =

δ(x1 − b1)

δ2 + |x− b|2
=

δ(x1 − b1)

1 + δ2 +O(|b|)

= δ(x1 − b1)
(

1 +O(|b|) +O(δ2)
)

= δ(x1 − b1) +O(|b|δ) +O(δ3).

Therefore, if we set

Ẑ1
λ := Z1

λ(x)− δ(x1 − b1),

we get

Ẑ1
λ(x) = O(δ3) +O(δ|b|) if |x| = 1

and
−∆Ẑ1

λ(x) = −∆Z1
λ(x) = ∆PZ1

λ(x) in B1.

Hence, since by construction PZ1
λ = 0 for |x| = 1, the maximum principle applies and gives

PZ1
λ = Ẑ1

λ +O(δ3) +O(δ|b|) = Z1
λ(x)− δ(x1 − b1) +O(δ3) +O(δ|b|) in B1.

�

Lemma A.4. Let P be a homogeneous polynomial of degree 2. Then the following holds:∫
B1

eWλPZiλP (x− b)dx = O(δ3) +O(δ2|b|) i = 1, 2

uniformly for b in a small neighborhood of 0.

Proof. We compute∫
B1

eWλZiλP (x− b)dx = 8δ2

∫
|z|≤ 1

δ

P (z − δ−1b)

(1 + |z − δ−1b|2)3
(zi − δ−1bi)dz

= 8δ2

∫
R2

P (z)

(1 + |z|2)3
zidz +O(δ3) = O(δ3)

(A.1)

where we have used that
∫
R2

P (z)
(1+|z|2)3

zidz = 0 by oddness. Taking into account of Lemma A.3 we

get ∫
B1

eWλPZiλP (x− b)dx =

∫
B1

eWλZiλP (x− b)dx− δ
∫
B1

eWλ(xi − bi)P (x− b)dx

+
(
O(δ3) +O(δ|b|)

)∫
B1

eWλ |x− b|2dx

=

∫
B1

eWλZiλP (x− b)dx+O(δ)

∫
B1

eWλ |x− b|3dx

+
(
O(δ3) +O(δ|b|)

)∫
B1

eWλ |x− b|2dx

and the thesis follows by (A.1), and recalling Lemma A.1. �

Finally we deduce some integral identities associated to the change of variable x 7→ xα which
appears frequently when dealing with α-symmetric functions.

Lemma A.5. Let α ∈ N, α ≥ 2, and let f ∈ L1(B1). Then we have that |x|2(α−1)f(xα) ∈ L1(B1)
and ∫

B1

|x|2(α−1)f(xα)dx =
1

α

∫
B1

f(y)dy.
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Proof. It is sufficient to prove the thesis for a smooth function f . Using the polar coordinates (ρ, θ)
and then applying the change of variables (ρ′, θ′) = (ρα, αθ)∫

B1

|x|2(α−1)f(xα)dx =

∫ +∞

0
dρ

∫ 2π

0
ρ2α−1f(ραeiαθ)dθ

=
1

α2

∫ +∞

0
dρ′
∫ 2απ

0
ρ′f(ρ′eiθ′)dθ′

=
1

α

∫ +∞

0
dρ′
∫ 2π

0
ρ′|f(ρ′eiθ′)|2dθ′

=
1

α

∫
B1

f(y)dy.

�
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