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Estimation of stochastic frontier panel data models with spatial inefficiency∗

Federico Belotti† Giuseppe Ilardi‡ Andrea Piano Mortari§

Abstract

This paper proposes a stochastic frontier panel data model in which unit-specific inefficien-

cies are spatially correlated. In particular, this model has simultaneously three important

features: i) the total inefficiency of a productive unit depends on its own inefficiency and

on the inefficiency of its neighbors; ii) the spatially correlated and time varying inefficiency

is disentangled from time invariant unobserved heterogeneity in a panel data model à la

Greene (2005); iii) systematic differences in inefficiency can be explained using exogenous

determinants. We propose to estimate both the “true” fixed- and random-effects variants of

the model using a feasible simulated composite maximum likelihood approach. The finite

sample behavior of the proposed estimators are investigated through a set of Monte Carlo

experiments. Our simulation results suggest that the estimation approach is consistent,

showing good finite sample properties especially in small samples.
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1 Introduction

The analysis of efficiency is an important issue in many economic studies and the Stochastic

Frontier (SF) model, originally proposed by Aigner et al. (1977) and Meeusen & van den Broeck

(1977), is a popular tool to measure this latent indicator. SF models are regression models with

a composite error term given by the difference between a symmetric idiosyncratic error and a

one-sided disturbance representing technical inefficiency.1

The estimation of these models is typically obtained via likelihood-based methods assuming

cross-sectional independence among statistical units. However, as suggested by a well established

stream of research investigating the effect of agglomeration on economic activities (see, among

many others, Rosenthal & Strange, 2001; Ellison et al., 2010; Martin et al., 2011), this assumption

may be difficult to justify since the inefficiency of a productive unit is likely to be affected by the

actions of neighboring units. For example, producers can be more efficient by sharing services

with neighboring firms or by collectively managing their input purchases (Rosenthal & Strange,

2004). Furthermore, geographical proximity may increase producers efficiency via technological

and knowledge spillovers (see Audretsch & Feldman, 2004, and references therein).

In order to capture these externalities, in this work we relax the independence assumption

allowing for a specific type of cross-sectional dependence, namely spatial dependence, and at-

tempt to make three contributions to the SF literature. First, within a panel setting, a spatial

autoregressive structure is explicitly placed on the inefficiency. Second, we consider a statistical

model in which a time varying and spatial auto-regressive inefficiency is disentangled from time-

invariant unobserved heterogeneity. Finally, we allow for systematic inefficiency’s heterogeneity

driven by exogenous determinants. Since both model parameters and inefficiency estimates may

be adversely affected when these determinants are neglected, leading to inconsistent estimates

and potentially misleading policy conclusions (Wang & Schmidt, 2002), this last feature is crucial

from both the methodological and the empirical perspectives.

In particular, we consider the following specification for a stochastic production frontier panel

data model

yit = αi + xitβ + vit − uit, (1)

vit ∼ N (0, ψ2), (2)

uit = ρWut + ũit, (3)

ũit ∼ Fũ(σit), (4)

σit = g(zitδ), i = 1, . . . , n, t = 1, . . . , T, (5)

where, for each unit i and period t, yit represents the output, xit is a 1× k vector of exogenous

inputs and β the corresponding k × 1 vector of technological parameters. The composite error

term is the difference between the symmetric idiosyncratic error vit and the one-sided disturbance

1Notice that when the composite error term is the sum of the two components, the model describes a stochastic

cost frontier, and the one-sided disturbance is interpreted as cost inefficiency.
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uit, which represents technical inefficiency. The vit disturbance is assumed to be normally

distributed with zero mean and variance ψ2.

The key feature of this statistical model is the presence of spatial interactions in the ineffi-

ciency term uit. In particular, the model statement in (3) can rewritten as

ut = (In − ρW )−1ũt = Dũt, t = 1, . . . , T, (6)

where the disturbance ũit is defined as intrinsic inefficiency, i.e. the characteristic inefficiency

of unit i at time t, W is the n× n matrix describing the spatial arrangement of the n units, D

is the spatial multiplier matrix and In is the n-identity matrix. The elements of the intrinsic

inefficiency vector ũ are assumed to be independent between each other as well as from the

elements of both v and α.2 Equation (6) can then be interpreted as indicating that the total

(or global) inefficiency uit is a function of the intrinsic inefficiency of unit i at time t and of a

linear combination of neighboring units’ intrinsic inefficiencies at time t scaled by the spatial

parameter ρ. In order to ensure that uit > 0, we restrict ρ to be in the unit interval. For the

similarity with the classical spatial error model, we call model (1)-(5) the Spatial Inefficiency

Model (SIM).

We will consider the cases in which Fũ is either exponential, with scale parameter σit, or

half normal with standard deviation σit where the unit- and time-specific scale parameter σit

depends on g(.), a known positive monotonic function, zit, a 1×s vector of exogenous covariates
and δ, the corresponding vector of unknown inefficiency effects.

The statistical model is completed by specifying the nature of the unit-specific effects. We

consider two different sets of assumptions which lead to different estimation approaches. In the

first case, the α’s are assumed to be Gaussian random-effects, αi ∼ N (0, τ2), independent from

both the exogenous covariates and the idiosyncratic shocks. Following Greene’s terminology, we

refer to this model as SIM True Random-Effects (SIM-TRE). In the second case, unit-specific

effects are treated as parameters to be estimated and no restrictions are placed on the relationship

with the exogenous covariates. We refer to this model as SIM True Fixed-Effects (SIM-TFE).

The specification in (1)-(5) is quite general and encompasses a number of models of empirical

interest. In particular, the true random- and fixed-effects by Greene (2005) are special cases

when ρ = 0. When αi = α and ρ = 0 with ũit ∼ N+(0, σit), the model can be viewed as a

variant of the Battese & Coelli (1995) model in which the scale of the pre-truncated inefficiency

is heteroskedastic.

We propose to estimate this model exploiting the simulated likelihood principle. In partic-

ular, we derive a computationally feasible simulated composite maximum likelihood estimator

that solves two major issues related to the spatial autoregressive structure of the inefficiency:

i) the multivariate distribution of the composite error term is in general unknown and, ii) even

when a closed form for the likelihood function is available, the estimation is unfeasible.

We investigate the finite sample properties of the proposed estimators using Monte Carlo

simulations. Our results show convincing evidence of consistency when n → ∞ with fixed T .

2In what follows, we denote with v, ũ and α the nT -vectors obtained by stacking the corresponding elements.
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We apply the proposed inferential procedures to a balanced panel of Indonesian rice farms,

documenting the presence of strong spatial inefficiency spillovers. We also find that considering

a spatial autoregressive inefficiency can greatly affect the efficiency ranking of productive units.

The remainder of this paper is organized as follows. Section 2 offers a critical review of the

literature on spatial SF panel data models, Section 3 describes the derivation of the proposed

estimation procedures. Section 4 investigates the small sample properties of the our estimator

through a set of Monte Carlo experiments while Section 5 provides an illustration through an

application based on the well known balanced panel of Indonesian rice farms.3 Finally, Section

6 offers some conclusions.

2 Literature Review

The first contribution in the spatial SF literature for panel data dates back to Druska & Horrace

(2004) where the authors limit the spatial dependence to the idiosyncratic error and, following

Schmidt & Sickles (1984), treat time invariant heterogeneity as if it was inefficiency. Similarly,

Glass et al. (2013) consider a spatial autoregressive process for the dependent variable allowing

for time-varying inefficiencies à la Cornwell et al. (1990).

Glass et al. (2014, 2016) and Adetutu et al. (2015) extend the standard spatial autoregressive

(SAR) model allowing for a compounded error term in which the two components of the error are

disentangled using distributional assumptions.4 In analyzing the efficiency spillovers between

African countries, Glass et al. (2017) extend the approach proposed in Glass et al. (2016) by

allowing for unobserved heterogeneity in the form of random-effects. Gude et al. (2018) propose

a generalized version of the SAR and spatial Durbin frontier models allowing for heterogeneous

spatial coefficients in their analysis of Spanish province expenditures. Finally, Ramajo & Hew-

ings (2018) further extend the spatial Durbin stochastic production-frontier panel data model

allowing for time varying technical inefficiency. All these works allow for cross-sectional depen-

dence, but none of them explicitly considers a spatial autoregressive structure for the inefficiency.

As is well known in the spatial econometric literature (Elhorst, 2010), the spatial Durbin model

may be observationally equivalent to a spatial error model under specific parameter configu-

rations. However, in a SF framework, this would imply having the same spatial dependence

structure on both the inefficiency and the idiosyncratic error. Furthermore, as also pointed out

by Glass et al. (2017), a SAR stochastic frontier model does not define the total inefficiency

relative to the estimated best practice frontier. Hence, within such a framework, the analysis of

inefficiency has to be performed using the comparison with the best procedure à la Schmidt &

Sickles (1984). However, while Schmidt & Sickles (1984) estimate inefficiency using fixed-effects,

Glass et al. (2016, 2017) propose to post-estimate it using JLMS estimators. As pointed out

3The same data have been previously analyzed by several authors among which Lee & Schmidt (1993); Horrace

& Schmidt (2000); Druska & Horrace (2004).
4In Glass et al. (2016), the authors provide a way to disentangle direct and indirect efficiency à la LeSage &

Pace (2009).
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by Wang & Schmidt (2009), the collection of JLMS estimates is (in a probabilistic sense) a

shrinkage of the true latent inefficiencies toward the mean of the distribution. On average, the

JLMS estimator will overestimate the smaller realizations of u and underestimate the larger

ones. For this reason we argue that, in a comparison with the best setting, substituting the

fixed-effects estimator with the JLMS one can be problematic since the bias associated with the

JLMS estimator of the best performing unit could potentially contaminate all the other scores.

Mastromarco et al. (2016) propose a traditional SF panel data model accommodating both

time and cross sectional dependence.5 In their model, the total inefficiency is the sum of a ho-

moskedastic time invariant unit-specific component, some unobserved exogenous common factors

and a term, obtained from an endogenous threshold efficiency regime selection mechanism, in-

troducing correlation between units. However, the model does not allow explicitly for a spatial

autoregressive inefficiency and the consistent estimation of the model’s parameters requires that

both n and T are sufficiently large.

As mentioned before, a spatial autoregressive structure for the inefficiency implies a multi-

variate and generally unknown distribution for the composite error term. Nevertheless, when

the inefficiency is half-normally distributed, we can exploit the properties of the Closed Skew-

Normal (CSN) class of distributions and in particular proposition 13.6.1 in Dominguez-Molina

et al. (2004) which shows that the n-dimensional random variable εt = vt−Aut, for t = 1, . . . , T

with vt ∼ Nn(0,Ψ) and ut ∼ N+
n (0,Σ), is distributed as

εt ∼ CSNn,n(0,Ω∗,−AΣΩ−1
∗ ,0,Λ∗), (7)

where Ω∗ = Ψ +A′ΣA and Λ∗ = Σ −ΣA′(Ψ +A′ΣA)−1AΣ.6 Within this framework, two

configurations of Σ, Ψ and A are of interest:

Ψ = ψ2In, A = D and Σ = σ2In, (8)

Ψ = ψ2In, A = In and Σ = σ2D′D, (9)

where D is defined in (6).

In the first case, the one considered in this paper, the spatial multiplier D is applied to a

vector of independent univariate truncated random variables. The likelihood function associated

to this case is given by

f(ǫt) = 2−nφn
(
ǫt;0, ψ

2In + σ2D′D
)

×Φn

[

σ2D′
(
ψ2In + σ2D′D

)−1
ǫt;0, σ

2In − σ4D′
(
ψ2In + σ2D′D

)−1
D

]

. (10)

In the second case, the spatial transformation D is applied before the truncation operation

takes place. In this case the untruncated covariance matrix of the vector ut is a function of D.

5The traditional SF panel data models treat time invariant heterogeneity as if it was inefficiency, thus not

providing any mechanism to disentangle the former from the latter (Schmidt & Sickles, 1984; Pitt & Lee, 1981;

Battese & Coelli, 1988, 1992, 1995; Kumbhakar, 1990).
6A detailed presentation of the CSN family and its properties can be found in Gonzalez-Farias et al. (2004).
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Therefore, the vector ut is a realization from a multivariate truncated normal random variable.7

The likelihood function associated to this case is given by

f(εt) = Φn
(
0;0, σ2D′D

)−1
φn

(
εt;0, ψ

2In + σ2D′D
)

(11)

×Φn

[

σ2D′D
(
ψ2In + σ2D′D

)−1
εt;0, σ

2D′D − σ4D′D
(
ψ2In + σ2D′D

)−1
D′D

]

.

In general, these two likelihood functions cannot be factorized as the product of indepen-

dent univariate densities.8 Moreover, the maximization of (10) or (11) requires the numerical

approximation of several n-dimensional normal integrals for each cross-section in each opti-

mization’s step. Regardless of the method used to approximate these integrals, the associated

computational burden is hardly manageable, even with moderate cross-sectional dimensions.

These considerations suggest the use of alternative inferential procedures which sidestep the

direct evaluation of the n-variate integrals. Schmidt et al. (2009), Areal et al. (2012), Tsionas

& Michaelides (2016) and Carvalho (2018) exploit the Bayesian paradigm, thus estimating the

inefficiencies alongside the other model parameters through simulation. Schmidt et al. (2009)

propose a specification for panel data in which the inefficiencies are modeled using a truncated

normal distribution in which the pre-truncated means are heterogeneous and spatially correlated

via a conditional autoregressive prior. Hence, this specification allows the inefficiencies to be

heteroskedastic and spatially correlated, but it has also some important drawbacks. First,

the estimation of this model requires that T is relatively large with respect to n. Moreover,

for identification purposes the realizations of the pre-truncated means are centred in zero in

each Gibbs iteration, implicitly imposing a relevant characterization of the distribution of the

inefficiencies which may not be supported by the data.9 Finally, this specification does not

allow to have efficiency spillovers among the units, since the correlation between the means

does not imply a direct effect of the inefficiency of unit i on the one of the neighboring unit j.

Areal et al. (2012), Tsionas & Michaelides (2016) and Carvalho (2018) consider special cases

of our statistical model (e.g., time invariant and/or homoskedastic inefficiencies). However,

the data augmentation step for the intrinsic inefficiencies proposed by Areal et al. (2012) and

Carvalho (2018) assumes that the conditional distribution f(ũ|y,θ), where θ is the vector of

unknown parameters to be estimated, can be factorized as independent univariate distributions

while, even if the intrinsic inefficiencies are a priori independent, their conditional distribution

is still multivariate. This is because, in presence of spatial dependence, neighboring units are

informative about ũit since their output is influenced by this latent factor. On the contrary, the

full conditional distribution of ũit given θ, the data and all the other intrinsic inefficiencies is

a univariate (unknown) distribution.10 Finally, concerning the work of Tsionas & Michaelides

7The family of truncated normal distributions is not closed to general linear transformation (Horrace, 2005),

hence the two spatial specifications imply different distributions for the compounded error term.
8As proposed, for instance, by Pavlyuk (2012) and Fusco & Vidoli (2013) in a cross-sectional framework.
9The normalization of the location parameters implies that a non-negligible part of the statistical units will

have a negative pre-truncation mean. A truncated normal distribution with a negative location parameter has a

mode in zero and significantly more mass close to this point compared the half normal distribution.
10 Updating unit intrinsic inefficiencies via Random-walk Metropolis produces a highly autocorrelated Gibbs
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(2016) we note that, while the authors describe a statistical model equivalent to (8) (see p.246 of

Tsionas & Michaelides, 2016), they end up estimating a specification similar to the one reported

in (9).11 It is worth emphasizing that since spatial interactions occur before truncation, it is not

possible to distinguish between intrinsic and total inefficiency.

3 Estimation

In what follows, we describe two inferential procedures allowing the estimation of the parameters

of model (1)-(5), both based on the strategy of augmenting the likelihood function by simulating

the inefficiency vector. In particular, depending on the assumptions made about time invariant

unobserved heterogeneity, we derive a simulated likelihood estimator that is computationally

feasible even in presence of a spatial autoregressive structure of the inefficiency.

3.1 Estimation of SIM-TRE

In this section, we present an estimation strategy for the SIM-TRE. Given the independence

assumption between v, α and ũ, the likelihood function can be defined in general terms as

L(θ) =

∫

f(v, ũ,α|X,Z,θ)dαdũ

=

∫

f(y|X,α, ũ,W , ρ,β, ψ2, τ2)f(ũ|Z, δ)f(α|τ2)dαdũ, (12)

where θ = (β′, δ′, σ, τ, ψ, ρ). The derivation of the likelihood function hides two challenges: i)

the marginalization of ũ and α from f(v, ũ,α|X,Z,θ) may not lead to a closed-form expression;

ii) even when an analytical expression is available (e.g., normal-half normal models, see Section

2), its maximization involves the direct evaluation of n-variate Gaussian integrals, thus leading

to a computationally unfeasible estimator, even in presence of moderate sample sizes.

If the intrinsic inefficiency is assumed to belong to a one-parameter family of distributions

(e.g., exponential or half normal), the marginalization in equation (12) can be performed by

simulation. The log-likelihood can be expressed in term of its simulated counterpart as

ℓ(θ) = log

{
∫ n∏

i=1

φT
[
yi −Xiβ + (IT ⊗ di)(σ ⊙ ũ);0, ITψ

2 + ιT ι
′
T τ

2
]
dũ

}

= log

(

Eũ

{
n∏

i=1

φT
[
yi −Xiβ + (IT ⊗ di)(σ ⊙ ũ);0, ITψ

2 + ιT ι
′
T τ

2
]

})

≈ log

{

1

R

R∑

r=1

n∏

i=1

φT
[
yi −Xiβ + (IT ⊗ di)(σ ⊙ ũr);0, ITψ

2 + ιT ι
′
T τ

2
]

}

, (13)

chain for all parameters. In the case of Carvalho (2018), 30000 MCMC draws from the posterior distribution

are equivalent to less then 100 independent draws. This issue is further exacerbated when all remaining intrinsic

inefficiencies are correctly included in the conditioning set of the n full conditional distributions.
11The ambiguity around the statistical model is also reflected in the fact that the authors added an “additional”

inequality constraint in the distribution of the inefficiency which is not needed (see Tsionas & Michaelides, 2016,

p. 250).
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where Xi is the T × k matrix of regressors for unit i, φT (.) is the T -variate Gaussian density,

ιT is a T -vector of ones, di is the i-th row of the matrix D, ũr = (ũ11r, ..., ũnTr)
′ is the

nT × 1 vector of simulated draws from the one sided distribution Fũ with scale parameter

equal to 1, σ = g(Zδ) is a nT × 1 vector, R is the number of draws and, finally, ⊗ and ⊙
denote, respectively, the Kronecker and the element-wise products. However, evaluating the

terms
∏n
i=1 φT (.) is computationally challenging because the standard statistical packages tend

to approximate them to zero. In the double digit approximation, the closest numbers to 0

without being approximated to 0 are ±10−323 and, even in moderate sample sizes (i.e., n = 100

and T = 5), the large majority of the R addenda in (13) fall within the interval defined by these

two thresholds.

Given that the log-likelihood in (13) cannot be maximized, we propose to use the simulation

approach for independently approximating the likelihood contribution of each statistical unit as

ℓ̃i(θ) = logLi(θ)

≈ log

[

1

R

R∑

r=1

φT
(
yi −Xiβ + (IT ⊗ di)(σ ⊙ ũr);0, ITψ

2
v + ιT ι

′
T τ

2
)

]

. (14)

The marginalization of the inefficiencies via simulations is now a simpler task for two reasons.

First the simulation of ũr is straightforward given that its elements are i.i.d. and thus we have

to draw from a univariate distribution. Second the evaluation of equation (14) only requires the

calculation of T -variate normal densities.

If we combine the n simulated log-likelihood contributions ℓ̃i(θ) as

ℓ̃(θ) =
n∑

i=1

ℓ̃i(θ), (15)

the resulting maximizer θ̃ can be viewed as a simulated composite likelihood estimator (SCLE)

for the whole sample in which part of the dependence among the statistical units is voluntarily

misspecified.12 This approach is similar to the partial maximum likelihood approach described

in Wang et al. (2013), but instead of working with the bivariate marginal likelihood contributions

we work with the univariate marginal simulated ones.

The simulated approach requires that the number of simulations draws R is sufficiently large

to guarantee that the simulated average in (14) is a good approximation of the corresponding

expectation. Since the dimension of the integration problem is relatively high, a particular

attention has to be paid on how to obtain the draws efficiently while guaranteeing a good mul-

tidimensional coverage. On this point, we found that the shuffled Halton sequences significantly

reduce the computational burden in this context, while the use of traditional simulations tech-

niques, such as pseudo-uniform random draws or standard Halton sequences, is not advisable

due to their high correlation.13

12A detailed introduction to composite likelihood methods can be found in Varin et al. (2011).
13See Hess et al. (2003) for a detailed discussion about shuffled Halton sequences.
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For inference purposes, we have to recognize that the SCLE belongs to the class of M-

estimators, hence its asymptotic variance is equal to

A−1
0 B0A

−1
0 , (16)

where

A0 = −E

[

∇θθ ℓ̃i(θ0)
]

and B0 = E

[

∇θ ℓ̃i(θ0)∇θ ℓ̃i(θ0)
′
]

, (17)

with ∇θ and ∇θθ denoting the vector of first and second derivatives of the objective function

respectively, and θ0 is the true parameters vector.14

3.2 Estimation of SIM-TFE

The most appropriate estimation procedure for the SIM-TFE depends on the length of the

panel. In long panels (T > 10), where the incidental parameters problem becomes negligible

(Belotti & Ilardi, 2018), the unit-specific intercepts can be treated as parameters to be estimated

as proposed by Greene (2005). On the other hand, when the panel is short, the incidental

parameters problem can be avoided using a data transformation.

In the first case, we propose to exploit a simulated composite likelihood dummy variables

approach. The log-likelihood contribution for unit i in period t can be expressed in terms of its

simulated counterpart as

ℓ̃it(θ) = logLit(θ)

= log

[∫

f(yit|xit, αi, ũ,W , ρ,β, ψ2)f(ũ|Z, δ)dũ
]

= logEũ

[
φ
(
yit − αi − xitβ + di(σt ⊙ ũt); 0, ψ

2
)]

≈ log
1

R

R∑

r=1

[
φ
(
yit − αi − xitβ + di(σt ⊙ ũtr); 0, ψ

2
)]
. (18)

By exploiting the block diagonal structure of the Hessian matrix, the maximization of the

simulated composite log-likelihood function based on (18) is computationally feasible also in

presence of a large number of nuisance parameters.

In presence of short panels, a strategy to avoid the incidental parameters problem consists

in eliminating the unit-specific effects through a data transformation. Following Belotti & Ilardi

(2018), we can rewrite the model (1)-(5) in first-differences as

∆yi = ∆Xiβ −∆ηi +∆vi, (19)

14Even if we do not formally establish the asymptotic properties of the SCLE, it is worth noting that our Monte

Carlo simulations show consistency of the proposed estimators and that the ratio between the average standard

errors obtained using the sample analog of (16) and the standard deviations over replications of the estimated

coefficients is close to one.
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where ∆yi = (∆yi2, ...,∆yiT )
′, ∆vi = (∆vi2, ...,∆viT )

′, ∆ηi = (∆ηi2, ...,∆ηiT )
′ and ∆ηit =

di∆ũt with ∆ the first-difference operator, i.e. ∆yit = yit − yit−1.
15

The marginal log-likelihood contribution for the model in first-differences can be expressed

in terms of its simulated counterpart as

ℓ∗i (θ) = log

[∫

f(∆yi|θ,∆Xi,∆ηi)f(∆ũi|σ)d∆ũi

]

(20)

= log {E∆ũ [φT−1 (∆yi −∆Xiβ +∆ηi;0,ΨT−1)]} (21)

≈ log

[

1

R

R∑

r=1

φT−1 (∆yi −∆Xiβ +∆ηir;0,ΨT−1)

]

, (22)

where

ΨT−1 = ψ2












2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . −1

0 0 . . . −1 2












, (23)

and ∆ηir = (∆ηi2r, ...,∆ηiT r)
′ with ∆ηitr = di(σt⊙ũrt−σt−1⊙ũrt−1) and ũrt = (ũ1tr, ..., ũntr)

′.

The maximization can then proceed by combining the n simulated log-likelihood contributions

as in (15).16

3.3 Efficiency analysis

A fundamental feature of SF models is the estimation of technical (cost) inefficiency. The

standard approach is to post-estimate the inefficiency of unit i in period t by exploiting the

mean of the conditional distribution of uit given εit (Jondrow et al., 1982, JLMS). However,

given the spatial autoregressive structure of uit in model (1)-(5), its post-estimation has to be

based on the multivariate conditional distribution of ũ|ε.
15 It is important to remark that unless the inefficiency can be decomposed additively in a time invariant and

a time varying components, the TFE specification can be used to successfully separate unobserved heterogeneity

from inefficiency. As discussed by Belotti & Ilardi (2018) for the non spatial TFE, despite the use of a fixed-effects

killing transformation, the distributional assumptions allow to correctly identify the parameters associated with

time invariant inefficiency factors. Moreover, other transformations can be used to remove the fixed-effects such

as the within-group transformation or a more general unit-specific detrending transformation such as the one used

in Atella et al. (2014) and Kutlu et al. (2019).
16Also in this case, the asymptotic variance has a sandwich structure as reported in equation (16) for the

SIM-TRE.
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In particular, the conditional mean of ũ|ε can be expressed as

E(ũ|ε) =

∫

ũf(ũ|ε)dũ

=
1

f(ε)

∫

ũf(ũ, ε)dũ

=
1

f(ε)

∫

ũf(ε|ũ)f(ũ)dũ

=

∫
ũf(ε|ũ)f(ũ)dũ

∫
f(ε|ũ)f(ũ)dũ . (24)

Given that the integral in equation (24) is intractable, we propose to approximate it using

simulations. Hence, the JLMS estimator can be expressed as

E(ũ|ε̂) ≈
∑R

r=1 σ̂ ⊙ ũrf(ε̂r|ũr)
∑R

r=1 f(ε̂r|ũr)

=
R∑

r=1

ŵr σ̂ ⊙ ũr, (25)

where ũr = (ũ11r, ..., ũnTr)
′ is the nT×1 vector of simulated draws from the one sided distribution

Fũ with scale parameter equal to 1, and the weight ŵr is defined, for the SIM-TRE, as

ŵr =

∏n
i=1 φT

(

yi −Xiβ̂ + (IT ⊗ d̂i)(σ̂ ⊙ ũr);0, IT ψ̂
2
v + ιT ι

′
T τ̂

2
)

∑R
r=1

∏n
i=1 φT

(

yi −Xiβ̂ + (IT ⊗ d̂i)(σ̂ ⊙ ũr);0, IT ψ̂2
v + ιT ι

′
T τ̂

2
) , (26)

while, for the SIM-TFE, we have that

ŵr =

∏n
i=1

∏T
t=1 φ

(

yit − α̂i − xitβ̂ + d̂i(σ̂t ⊙ ũtr); 0, ψ̂
2
)

∑R
r=1

∏n
i=1

∏T
t=1 φ

(

yit − α̂i − xitβ̂ + d̂i(σ̂t ⊙ ũtr); 0, ψ̂2
) . (27)

Here we face a computational problem similar to the one described in Section 3: the evaluation of

equation (26) involves the product of n T -variate densities (or nT univariate Gaussian densities

in equation 27). The problem is that, even with moderate sample size, most of the weights are

approximated to zero. For this reason, and in analogy with the strategy adopted for estimation,

we propose to use the following estimator for the SIM-TRE case

E(ũi|ε̂i) ≈
R∑

r=1

ω̂ir σ̂i ⊙ ũir, ∀i = 1, . . . , n, (28)

where

ω̂ir =
φT

(

yi −Xiβ̂ + (IT ⊗ d̂i)(σ̂ ⊙ ũr);0, IT ψ̂
2
v + ιT ι

′
T τ̂

2
)

∑R
r=1 φT

(

yi −Xiβ̂ + (IT ⊗ d̂i)(σ̂ ⊙ ũr);0, IT ψ̂2
v + ιT ι

′
T τ̂

2
) , (29)
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Similarly, for the SIM-TFE, we can use

E(ũit|ε̂it) ≈
R∑

r=1

ω̂itr σ̂itũitr, ∀i = 1, . . . , n t = 1, . . . , T, (30)

where ω̂itr is defined as

ω̂itr =
φ
(

yit − α̂i − xitβ̂ + d̂i(σ̂t ⊙ ũtr); 0, ψ̂
2
)

∑R
r=1 φ

(

yit − α̂i − xitβ̂ + d̂i(σ̂t ⊙ ũtr); 0, ψ̂2
) . (31)

The evaluation of equation (31) requires, for each unit i, the estimation of αi. When the

model is estimated exploiting the simulated function (22), the fixed-effects are ruled out from

the parameter space, hence their estimation has to be performed in a second stage. The n × 1

vector of fixed-effects can be obtained as

α̂ =
1

T

T∑

t=1

(

yt −Xtβ̂ + ĉt

)

, (32)

where β̂ and ĉt = E(ũt|β̂, σ̂t) are consistent estimates. In particular, ĉt = D̂σ̂t when ũit ∼
E(σit) and ĉt =

√
2π−1D̂σ̂t when ũit ∼ N+(0, σ2it) (σ̂t = σ̂ in the homoskedastic case).17 This

estimator is equivalent to the mean-adjusted estimator of α in the fixed-effects linear model.

In all cases, the global inefficiency can be computed using

û =
[
(In − ρ̂W )−1 ⊗ IT

]
ξ̂, (33)

where ξ̂ = E(ũ|ε̂). A measure of global technical efficiency (TE) for unit i in period t is given

by

TEit = exp(−ûit). (34)

Under stationarity, the Leontief expansion of D is D = I + ρW + ρ2W 2 + . . ., thus the vector

of global efficiency can be approximately decomposed as

TEt = exp(−D̂ξ̂t) = exp(−ξ̂t)
︸ ︷︷ ︸

Intrinsic efficiency

× exp(−ρ̂Wξ̂t)× . . .× exp(−ρ̂HWH ξ̂t)
︸ ︷︷ ︸

Spillover efficiency

, (35)

where the total efficiency can be obtained as the product of intrinsic and spillover efficiency.18

In the spirit of LeSage & Pace (2009), the n× 1 vector of global (total) inefficiencies ût, can

17Equation (32) refers to the case of production frontiers. For cost frontiers, the ĉt term enters the expression

with a minus sign.
18We follow Waugh (1950) for selecting H in the Leontief expansion by setting the approximation error to 10−7.
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be decomposed into direct (ûDirt ) and indirect (ûIndirt ) inefficiencies as 19

ût = D̂











ξ̂1t

ξ̂2t

.

.

ξ̂nt











=











ûDir11t + ûIndir12t + . . + ûIndir1nt

ûIndir21t + ûDir22t + . . + ûIndir2nt

. + . + . . + .

. + . + . . + .

ûIndirn1t + ûIndirn2t + . . + ûDirnnt











. (36)

The diagonal elements of (36) univocally define the unit-specific direct inefficiencies, ûDirii,t , as the

sum of the intrinsic inefficiency of unit i plus the feedback effects, the latter being the impacts

passing through neighboring units and back to the unit itself. As for the indirect inefficiency,

it is possible to construct two different measures: ûIndiri,t =
∑

j 6=i û
Indir
ij,t , which refers to the

inefficiency spillovers to unit i from all the j units and, ûIndirj,t =
∑

i 6=j û
Indir
ji,t , which represents

the spillovers from unit j to all i units. Since ûIndiri,t can be thought as the portion of total

inefficiency imported from other units while ûIndirj,t represent the inefficiency that is exported to

other units, this decomposition can be useful for the identification of the most relevant productive

units in generating the spillover effects.

4 Monte Carlo evidence

In this Section we study the finite sample properties of the SCLE for a heteroskedastic SIM

via numerical simulations.20 In all the experiments we consider the following heteroskedastic

normal-half normal SIM

yit = 1 + αi + βxit + vit − uit (37)

vit ∼ N (0, ψ2) (38)

uit = ρ

n∑

j=1

wijujt + ũit (39)

ũit ∼ N+(0, σ2it) (40)

σit = exp(δ0 + 0.5zit) (41)

where zit ∼ N (0, 1), β = 1, ψ = τ = 0.25. We investigate the effect of different sample sizes

(n = 121, 256), different (average) signal-to-noise ratios λ̄ = σ̄
ψ = 1 or 2, obtained by setting

δ0 = (−1.5,−0.8) and different degrees of spatial interaction (ρ = 0.3, 0.7). Following Shi &

Lee (2017), the spatial weights matrix W is generated from as rook matrix. Individual units

are arranged row by row on a n× n chessboard where neighbors are defined as those who share

19In our case this decomposition derives naturally from the statistical model, while models with a spatial

autoregressive structure for the dependent variable, e.g. SAR or SDM specifications, require a reduced form.

This implies that the point estimates of global inefficiency are not comparable with those obtained from a non-

spatial SF model since they are not relative to the estimated best practice frontier.
20The Stata code implementing the methods described in this paper is available upon request.
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a common border. Units in the interior of the chessboard have 4 neighbors, and units on the

border and corner have respectively 3 and 2 neighbors.21 Define the n × n matrix M̃n such

that M̃n,ij = 1 if and only if units i and j are neighbors on the chessboard, and M̃n,ij = 0

otherwise. The spatial weights matrix Wn is defined as a row normalized M̃n.
22 All simulation

designs have a common base: the unit-specific parameters α1, ..., αn are drawn from a standard

Gaussian random variable, just one explanatory variable is used xit ∼ N (0, 1) when the model is

SIM-TRE and xit = 0.5αi +
√
0.52wit with wit ∼ N (0, 1) when the model is SIM-TFE. Finally,

the number of replications is 1000.

Simulation results are summarized for each set of simulations by reporting the average bias

and Mean Squared Error (MSE) of the estimates, together with the linear (ru,û) and the Spear-

man rank correlation coefficients between the (true) simulated inefficiencies and the estimated

ones. The inefficiency’s bias and MSE are reported for both intrinsic and global inefficiency scores

and are computed for each replication over the N = n×T observations, and then these quantities

are averaged over replications, e.g., MSE(ûit)= R−1
∑R

r=1(NT )
−1

∑n
i=1

∑T
t=1(E(uit|ε̂it)− u0it)

2,

where E(uit|ε̂it) is the JLMS estimate and u0it is the simulated (true) inefficiency.

4.1 Random-effects estimator

The first simulation exercise considers the SIM in the random-effects case. Table 1 and 2

summarize the simulation results showing evidence of consistency of the SCLE: an increase in

the cross-sectional dimension produces significant reductions in both bias and MSE. In the “low”

spatial correlation case (ρ = 0.3), all parameters are accurately estimated regardless of the value

of λ̄. In particular, the bias is negligible, in the order of the third decimal digit, except for γ0 and

γ1 for which, in any case, the maximum absolute percentage bias is around 8 percent (n = 121,

T = 5, λ̄ = 1).

In the “high” spatial correlation case (ρ = 0.7), we still observe evidence of consistency,

although when λ̄ = 2, the estimator of β0 is less accurate. Overall, we find that the spatial

correlation parameter ρ is always very well estimated.

The inefficiencies are accurately estimated in all the scenarios, with the correlation between

u and û ranging from 76% to 88%. We do not find significant improvements when the cross-

sectional dimension increases, implying that inefficiencies are correctly estimated even in small

samples. Likewise, the results remain substantially unaffected by changes in ρ. On the other

hand, as expected, the performance of the inefficiency estimator are greatly affected by the

signal-to-noise ratio (Wang & Schmidt, 2009).

21This design of the spatial weights matrix is motivated by the observation that regions in most observed

regional structures have similar connectivity as units in a rook matrix.
22Note that a row-normalized W is consistently used in Monte Carlo experiments in the spatial econometrics

literature (e.g., Shi & Lee, 2017; LeSage & Pace, 2018).
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4.2 Fixed-effects estimator

Table 3 and 4 summarize the simulation results for the SCLE, using the same structure adopted

before. Overall the results show that the SCLE does not suffer the incidental parameters prob-

lem, especially in the estimation of ψ. In the “low” spatial correlation case all parameters

are accurately estimated with significant reductions in both bias and MSE when n gets larger.

Similarly to the TRE case, the bias is always negligible except for γ0 for which the maximum

absolute percentage bias is around 13 percent (n = 121, T = 5, λ̄ = 1).

When ρ gets larger, although the estimator still shows consistency, γ0 has a moderate bias

when n = 121 and λ̄ = 2. Nevertheless, it is worth emphasizing that the bias is halved when the

cross-sectional dimension increases, going from around -0.11 to -0.053. Overall, we find that the

performances of the fixed-effects SCLE are comparable with those of the random-effects case.

As for the TRE case, the inefficiency scores are accurately estimated in all the scenarios, with

the correlation between u and û ranging from 75% to 86%. As expected, the performances of

the JLMS estimator remains substantially the same in the estimation of intrinsic inefficiencies,

while they improve when ρ gets larger, especially the Spearman rank correlation. It is worth

noting that we do not observe noticeable differences in the performance of the JLMS estimator

compared to the random-effects case. This evidence suggests that, even in short panels, the

estimation of the inefficiency scores is not affected by the additional stage required to estimate

the fixed-effects.

5 Empirical application: Indonesian Rice Farming

In this section we apply the proposed estimators to a balanced panel of Indonesian rice farms.

This data set has been analyzed by several authors (Erwidodo, 1990; Lee & Schmidt, 1993;

Horrace & Schmidt, 1996, 2000; Druska & Horrace, 2004) and is described in Section 5.1. We

estimate both the true random- and fixed-effects versions of the Spatial Inefficiency Model

(denoted SIM-TRE and SIM-TFE, respectively). We also estimate the corresponding non-

spatial versions of the true random- and fixed-effects SF models (denoted NS-TRE and NS-TFE,

respectively) together with the pooled non-spatial SF model (PSF). Except for the PSF model,

all other specifications account for time invariant unobserved heterogeneity and, the SIM-TRE

and SIM-TFE account for global spatial interactions via a spatial auto-regressive inefficiency.

Following Druska & Horrace (2004), we employ the following Cobb-Douglas specification for

the frontier function:

yit = αi + gitβ + sitδ + η1t+ η2t
2 + vit − uit (42)

uit = ρ

171∑

j=1

wijujt + ũit (43)

ũit ∼ N+(0, σ2it) (44)

σ2it = exp(zitγ) (45)
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where yit is output of the i-th farm at time t and git is a vector of inputs (in logs). The remaining

variables in equation (42) are: i) a vector of dummy variables to shift the frontier technology

sit; ii) a second order polynomial in time to account for Hicks-neutral technological change

(η1, η2). In the case of NS-TRE and SIM-TRE the last element of git is the intercept. Equation

(45) includes a set of variables to model the variance of the intrinsic inefficiency zit. Finally,

θ = (β′, δ′, η1, η2, ρ,γ
′, ν1, ν2) is the parameter vector to be estimated.

5.1 Data and spatial weights matrix

The data originates from a survey, dated 1977, of 171 rice farms located in the production area

of the Cimanuk River Basin in West Java, Indonesia. The survey aimed at investigating their

farming practices over six (three wet and three dry) growing seasons.23 The summary statistics

are reported in Table 5. In our application, kilograms of rice produced by farm i at time t is

the output. Inputs include: seed (kg), urea (kg), trisodium phosphate (kg), labor (labor-hours),

and land (hectares). We include a set of dummy variables that shift the production frontier and

that are, respectively, equal to one if pesticide are used, if high yielding varieties are planted, if

mixed varieties are planted or if it was a wet season. Furthermore, we interact the wet season

and the pesticide dummy because more bugs may be present during the wet season. Finally, we

control for a quadratic time trend.

As determinant of inefficiency equation we include the share of family labor over total labor, a

dummy variable equal to one if the farmer doesn’t share the field with others and an dummy

equal to one if the wage payed in that farm is above the average wage in the period. All variables

are in logs except shares and dummies.

As for the spatial weighting matrix W we follow Druska & Horrace (2004) and construct a

weighting matrix based on the the inverse of geographical distance between individual farms.

Since we only have information on the villages where the farms are located we use geographical

coordinates of the villages to determine physical distances between producing units while the

individual distance between farms within the same village are arbitrarily set to 10 km. In order

to maintain the symmetry of W we follow Ord (1975) and use W = M−1/2W0M
−1/2, where

W0 is the non-normalized spatial weighting matrix and M is a diagonal matrix containing the

row sums of W0.

5.2 Results

The empirical results for the five estimated models are reported in Table 6. In terms of estimated

frontier parameters, most of the results are quite similar. As expected all the inputs (labor, land,

seed, urea and phosphate) are productive with positive and statistically significant elasticities,

and returns-to-scale are constant or slightly decreasing. These findings are consistent with

previous analyses of this data (Lee & Schmidt, 1993; Druska & Horrace, 2004). High-yielding and

mixed rice varieties are significantly more productive than traditional varieties, and productivity

23For a detailed discussion of the data see Erwidodo (1990).
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is higher during the wet season than in the dry season. We do not find a significant effects of

pesticides adoption even if we explicitly control for their usage in the wet season, which could

be characterized by more water and insects. As for the coefficient estimates of the second order

polynomial in time, they describe a U-shaped technological trend.

As for the determinants of technical inefficiency, we note that the negative effect associated

with paying a wage above the average becomes statistically significant when we control for

time-invariant unobserved heterogeneity. Furthermore, not sharing the plot with somebody else

increases the variance of inefficiency but only when we add a spatial autoregressive structure for

the latter. Across all models we find no significant effect for the share of family labour.

As mentioned in Section 1, our spatial inefficiency random- and fixed-effects models (SIM-

TRE and SIM-TFE) nest both their non-spatial version (NS-TRE and NS-TFE) and the pooled

one (PSF). Hence, a set of appropriate Wald and Hausman tests can be used to select the best

model. First, we note that the τ̂ parameter, i.e. the estimated standard deviation of α in the

“true” random-effects variant of the fitted SF models, is strongly statistically significant.24 This

can be interpreted as evidence of the presence of time-invariant unobserved heterogeneity and,

consequently, the NS-TRE is preferred to the PSF model.25 Secondly, the estimated spatial

autoregressive parameter ρ̂ in the SIM-TRE model is 0.83 and strongly statistically significant,

signalling the presence of strong spatial correlation in the inefficiency component.26 Based on

this evidence, we conclude that a SF model controlling simultaneously for both time-invariant

unobserved heterogeneity and a spatial autoregressive inefficiency better fits the data at hand.

Finally, in order to choose between a fixed- or a random-effects specification, we rely on the

Hausman test.27 The p-value for the aforementioned test reported in Table 6 suggest that we

cannot reject the random-effects assumption at the 1% level. Given the moderate sample size,

we interpret this result as evidence in favor of the SIM-TRE model.

As shown in Figure 1, the estimated intrinsic technical inefficiency scores from SIM-TRE is

very similar to the scores obtained from the NS-TRE model while the global scores are substan-

tially higher. Since the global inefficiency is also a function of neighboring unit inefficiencies and

given the very high estimated spatial correlation coefficient, we are not surprised by this find-

ing. A similar evidence can be depicted from the bottom panel of Table 6 where the summary

statistics for the estimated inefficiency scores are reported. We find that the maximum value

estimated for the NS-TRE inefficiency is equal to the minimum value obtained for the global

inefficiency from the SIM-TRE.

Explicitly introducing the spatial dimension also has a high impact on the ranking, in terms

24Testing the statistical significance of τ is a non standard problem since under the null hypothesis the parameter

lies on the boundary of the parameter space (Molenberghs & Verbeke, 2007).
25The same conclusion can be obtained in this case using a non standard LR test.
26Applying a different statistical model on the same data, Druska & Horrace (2004) find similar values for the

spatial correlation coefficient. We also estimated the heteroskedastic version of the SDM SF model proposed by

Glass et al. (2017) finding a small and statistically insignificant estimate for the spatial correlation parameter.
27The test has been implemented by assessing the joint statistical significance of the Mundlak terms in a

correlated SIM-TRE.
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of efficiency, of the productive units. This evidence is clear by looking at Table 7 where the

pairwise Spearman correlation rank between different models is reported. We note that there

is a very high correlation (about 0.93) between the rankings obtained from PSF and NS-TRE

while their correlation with our preferred spatial inefficiency model drops below 70%.

Finally, Figure 2 shows the evolution over time of direct (ûdiri,t ), indirect (û
Indir
i,t ) and global

technical inefficiency for a selected farm. For example, between the first and the second cropping

seasons, while the direct inefficiency remains almost constant, the global inefficiency decreases.

This is the result of some kind of positive externalities coming from neighboring units (the

indirect inefficiency decreases). Similarly, between seasons four and five, the increase of the

considered unit’s direct inefficiency is offset by a positive spillover, leading to a decrease in the

global inefficiency. The same evidence is shown in Figure 3, where the global efficiency is the

product between intrinsic and spillover efficiency.

6 Concluding remarks

In this work we propose a statistical model in which time invariant unobserved heterogene-

ity may be disentangled from time-varying heteroskedatic inefficiency while allowing for weak

cross-sectional dependence, namely spatial dependence. This model nests the “true” fixed- and

random-effects models proposed by Greene (2005) as well as other well known SF models for

panel data. Compared to SAR SF models for panel data, our model features a measure of total

inefficiency that is relative to the estimated best practice frontier.

Regardless of the assumptions on the relationship between the explanatory variables and

the time-invariant unobserved heterogeneity, a spatial autoregressive inefficiency component

makes the standard maximum likelihood (ML) estimation of the parameters unfeasible since

it implies the approximation of n-variate Gaussian integrals. Furthermore we find that, even

with moderate cross-sectional dimensions, the simulated ML approach cannot be applied since

the vast majority of simulated likelihood contributions is approximated to zero being below the

minimum allowed number in the standard double digit approximation. We originally solve this

problem by exploiting a simulated first-order composite likelihood approach, proposing both a

fixed- and a random-effects version of our inferential procedure. We propose a simulation-based

approach in order to obtain point estimates of inefficiency. In the spirit of LeSage & Pace

(2009), the proposed procedure allows to disentangle unit specific inefficiency from system-wide

spillovers and study their dynamic over time.

We study the finite sample behaviour of the proposed inferential procedures using Monte

Carlo simulations finding convincing evidence of consistency when n gets larger with fixed T .

We illustrate the usefulness of the new approach using a balanced panel of Indonesian rice farms,

documenting the presence of strong spatial inefficiency spillovers. Furthermore, we show that

considering a spatial autoregressive inefficiency can greatly influence the ranking of productive

units and that this modelling framework may be useful to capture the spillover effects described

by the agglomeration economics literature.
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Table 1: Simulation results for the SIM-TRE. The Spearman rank correlation coefficient is in

parentheses (λ̄=1).

(a) ρ = 0.3

n = 121 T = 5

Bias MSE

β0 0.0081 0.0098

β1 -0.0008 0.0002

γ0 -0.0279 0.0739

γ1 0.0207 0.0167

ψ -0.0054 0.0004

σa -0.0035 0.0004

ρ -0.0286 0.0387

E(u|ε) 0.0049 0.0270

ru,û 0.7603

( 0.6008 )

E(ũ|ε) -0.0010 0.0194

rũ,ˆ̃u 0.7595

( 0.5796 )

(b) ρ = 0.7

n = 121 T = 5

Bias MSE

β0 -0.0054 0.0488

β1 -0.0008 0.0002

γ0 -0.0628 0.1223

γ1 0.0392 0.0253

ψ -0.0038 0.0008

σa 0.0028 0.0005

ρ -0.0256 0.0148

E(u|ε) -0.0129 0.0749

ru,û 0.8038

( 0.7189 )

E(ũ|ε) -0.0037 0.0189

rũ,ˆ̃u 0.7725

( 0.5922 )

n = 256 T = 5

Bias MSE

β0 0.0017 0.0046

β1 -0.0004 0.0001

γ0 -0.0300 0.0373

γ1 0.0135 0.0080

ψ -0.0033 0.0002

σa 0.0004 0.0002

ρ -0.0136 0.0207

E(u|ε) -0.0018 0.0229

ru,û 0.7650

( 0.6102 )

E(ũ|ε) -0.0045 0.0182

rũ,ˆ̃u 0.7611

( 0.5853 )

n = 256 T = 5

Bias MSE

β0 0.0043 0.0257

β1 -0.0007 0.0001

γ0 -0.0289 0.0358

γ1 0.0121 0.0073

ψ -0.0031 0.0004

σa 0.0048 0.0002

ρ -0.0086 0.0066

E(u|ε) -0.0041 0.0514

ru,û 0.8132

( 0.7332 )

E(ũ|ε) -0.0044 0.0174

rũ,ˆ̃u 0.7755

( 0.6003 )
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Table 2: Simulation results for the SIM-TRE. The Spearman rank correlation coefficient is in

parentheses (λ̄=2).

(a) ρ = 0.3

n = 121 T = 5

Bias MSE

β0 -0.0161 0.0115

β1 -0.0012 0.0003

γ0 -0.0335 0.0159

γ1 0.0264 0.0063

ψ 0.0029 0.0006

σa -0.0045 0.0006

ρ -0.0243 0.0162

E(u|ε) -0.0212 0.0535

ru,û 0.8742

( 0.7431 )

E(ũ|ε) -0.0118 0.0425

rũ,ˆ̃u 0.8713

( 0.7125 )

(b) ρ = 0.7

n = 121 T = 5

Bias MSE

β0 -0.1359 0.0853

β1 -0.0012 0.0004

γ0 -0.0683 0.0419

γ1 0.0551 0.0123

ψ 0.0307 0.0024

σa 0.0171 0.0013

ρ -0.0359 0.0099

E(u|ε) -0.1482 0.1635

ru,û 0.8785

( 0.8139 )

E(ũ|ε) -0.0166 0.0493

rũ,ˆ̃u 0.8573

( 0.6942 )

n = 256 T = 5

Bias MSE

β0 -0.0166 0.0061

β1 -0.0011 0.0001

γ0 -0.0276 0.0084

γ1 0.0168 0.0027

ψ 0.0030 0.0003

σa -0.0003 0.0003

ρ -0.0184 0.0096

E(u|ε) -0.0228 0.0483

ru,û 0.8761

( 0.7472 )

E(ũ|ε) -0.0119 0.0412

rũ,ˆ̃u 0.8718

( 0.7161 )

n = 256 T = 5

Bias MSE

β0 -0.0802 0.0508

β1 -0.0011 0.0002

γ0 -0.0464 0.0177

γ1 0.0275 0.0043

ψ 0.0203 0.0012

σa 0.0145 0.0007

ρ -0.0171 0.0047

E(u|ε) -0.0948 0.1234

ru,û 0.8819

( 0.8200 )

E(ũ|ε) -0.0159 0.0459

rũ,ˆ̃u 0.8599

( 0.7013 )
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Table 3: Simulation results for the SIM-TFE. The Spearman rank correlation coefficient is in

parentheses (λ̄=1).

(a) ρ = 0.3

n = 121 T = 5

Bias MSE

β1 0.0006 0.0002

γ0 -0.0622 0.0784

γ1 0.0228 0.0155

ψ -0.0031 0.0004

ρ -0.0288 0.0417

E(u|ε) -0.0035 0.0279

ru,û 0.7480

( 0.5911 )

E(ũ|ε) -0.0004 0.0200

rũ,ˆ̃u 0.7472

( 0.5714 )

(b) ρ = 0.7

n = 121 T = 5

Bias MSE

β1 0.0007 0.0003

γ0 -0.0910 0.1265

γ1 0.0373 0.0215

ψ -0.0003 0.0007

ρ -0.0154 0.0150

E(u|ε) -0.0167 0.0725

ru,û 0.7891

( 0.7026 )

E(ũ|ε) 0.0295 0.0210

rũ,ˆ̃u 0.7618

( 0.5855 )

n = 256 T = 5

Bias MSE

β1 0.0000 0.0001

γ0 -0.0363 0.0387

γ1 0.0130 0.0083

ψ -0.0024 0.0002

ρ -0.0139 0.0228

E(u|ε) -0.0013 0.0245

ru,û 0.7581

( 0.6027 )

E(ũ|ε) 0.0004 0.0186

rũ,ˆ̃u 0.7547

( 0.5788 )

n = 256 T = 5

Bias MSE

β1 0.0000 0.0001

γ0 -0.0421 0.0373

γ1 0.0149 0.0084

ψ -0.0027 0.0005

ρ -0.0082 0.0079

E(u|ε) 0.0008 0.0630

ru,û 0.8008

( 0.7161 )

E(ũ|ε) 0.0319 0.0193

rũ,ˆ̃u 0.7679

( 0.5915 )
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Table 4: Simulation results for the SIM-TFE. The Spearman rank correlation coefficient is in

parentheses (λ̄=2).

(a) ρ = 0.3

n = 121 T = 5

Bias MSE

β1 0.0008 0.0004

γ0 -0.0570 0.0253

γ1 0.0294 0.0079

ψ 0.0059 0.0008

ρ -0.0213 0.0189

E(u|ε) -0.0275 0.0593

ru,û 0.8597

( 0.7228 )

E(ũ|ε) -0.0074 0.0464

rũ,ˆ̃u 0.8569

( 0.6947 )

(b) ρ = 0.7

n = 121 T = 5

Bias MSE

β1 0.0019 0.0006

γ0 -0.1095 0.0734

γ1 0.0601 0.0158

ψ 0.0353 0.0031

ρ -0.0278 0.0127

E(u|ε) -0.1398 0.1916

ru,û 0.8559

( 0.7825 )

E(ũ|ε) 0.0442 0.0565

rũ,ˆ̃u 0.8428

( 0.6761 )

n = 256 T = 5

Bias MSE

β1 0.0003 0.0002

γ0 -0.0222 0.0078

γ1 0.0099 0.0027

ψ 0.0020 0.0004

ρ -0.0145 0.0103

E(u|ε) -0.0163 0.0523

ru,û 0.8641

( 0.7308 )

E(ũ|ε) 0.0001 0.0438

rũ,ˆ̃u 0.8603

( 0.7005 )

n = 256 T = 5

Bias MSE

β1 0.0000 0.0002

γ0 -0.0543 0.0183

γ1 0.0287 0.0045

ψ 0.0208 0.0013

ρ -0.0154 0.0050

E(u|ε) -0.0924 0.1304

ru,û 0.8642

( 0.7939 )

E(ũ|ε) 0.0540 0.0524

rũ,ˆ̃u 0.8485

( 0.6860 )
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Table 5: Summary statistics (n=171, T=6)

Variable Mean Std. Dev. Min. Max.

Total output (Kg) 1405.167 1921.757 42 20960

Seeds (Kg) 18.206 45.251 1 1250

Urea (Kg) 95.441 127.149 1 1250

Phosphate (Kg) 34.728 47.588 1 701

Total labor 388.447 484.204 17 4774

Cultivated area (Ha) 0.432 0.547 0.01 5.322

Pesticide 0.305 0.461 0 1

High yielding varieties 0.287 0.452 0 1

Mixed varieties 0.049 0.215 0 1

Wet season 0.5 0.5 0 1

Non sharecropper 0.717 0.451 0 1

Share of family labor 0.533 0.287 0 1

Wage above the average 0.516 0.5 0 1
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Table 6: Estimation results on Indonesian rice farms data (n=171, T=6).

PSF NS-TRE SIM-TRE NS-TFE SIM-TFE

Frontier

Seeds 0.158 *** 0.153 *** 0.134 *** 0.131 *** 0.126 **

(0.025) (0.025) (0.034) (0.028) (0.038)

Urea 0.110 *** 0.100 *** 0.104 *** 0.087 *** 0.088 ***

(0.016) (0.017) (0.021) (0.020) (0.025)

Phosphate 0.057 *** 0.060 *** 0.064 *** 0.064 *** 0.062 ***

(0.010) (0.010) (0.011) (0.012) (0.015)

Total labor 0.214 *** 0.216 *** 0.230 *** 0.223 *** 0.233 ***

(0.027) (0.027) (0.031) (0.030) (0.036)

Cultivated area 0.474 *** 0.473 *** 0.472 *** 0.447 *** 0.444 ***

(0.029) (0.029) (0.044) (0.033) (0.054)

Pesticide 0.014 0.022 0.019 0.043 0.038

(0.035) (0.035) (0.036) (0.038) (0.042)

High yielding varieties 0.156 *** 0.167 *** 0.130 *** 0.156 *** 0.149 ***

(0.027) (0.029) (0.033) (0.041) (0.044)

Mixed varieties 0.124 * 0.136 ** 0.129 ** 0.147 ** 0.155 **

(0.049) (0.049) (0.043) (0.053) (0.052)

Wet season 0.070 ** 0.073 ** 0.074 ** 0.085 *** 0.086 **

(0.026) (0.025) (0.023) (0.025) (0.027)

Wet×Pesticides -0.017 -0.019 -0.016 -0.026 -0.016

(0.045) (0.043) (0.042) (0.042) (0.047)

t -0.263 *** -0.257 *** -0.251 *** -0.243 *** -0.236 ***

(0.030) (0.029) (0.025) (0.029) (0.031)

t2 0.039 *** 0.038 *** 0.039 *** 0.037 *** 0.038 ***

(0.004) (0.004) (0.003) (0.004) (0.004)

Constant 5.551 *** 5.618 *** 6.290 ***

(0.191) (0.195) (0.375)

Inefficiency

Non sharecropper 0.848 0.610 0.444 * 0.259 0.387 *

(0.574) (0.396) (0.226) (0.132) (0.181)

Share of family labor 0.350 0.326 -0.054 0.104 -0.022

(0.644) (0.488) (0.298) (0.175) (0.232)

Wage above the average -1.122 -0.856 * -0.487 ** -0.317 *** -0.334 ***

(0.573) (0.366) (0.152) (0.092) (0.097)

Constant -3.998 *** -3.292 *** -1.703 *** -1.272 *** -1.405 ***

(1.133) (0.866) (0.409) (0.223) (0.323)

ρ 0.830 *** 0.866 ***

λ 0.518 0.791 0.729 1.284 1.187

σ̄ũ 0.160 0.217 0.199 0.309 0.277

σv 0.309 *** 0.275 *** 0.273 *** 0.241 *** 0.233 ***

τ 0.113 *** 0.111 ***

Estimated technical inefficiencies, ûit

Mean 0.128 0.173 0.922 0.243 1.623

SD 0.057 0.078 0.118 0.120 0.240

Min 0.047 0.054 0.667 0.046 1.141

Max 0.437 0.668 1.368 0.893 2.355

ℓ -303.599 -289.838 -284.203a -347.690 -343.633a

Notes: * 0.05, ** 0.01, *** 0.001.a Simulated composite log-likelihood.
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Figure 1: Kernel densities of technical inefficiency scores.

Table 7: Spearman rank correlations for inefficiencies.

PSF NS-TRE NS-TFE SIM-TRE* SIM-TFE*

PSF 1.000 0.934 0.738 0.625 0.413

NS-TRE 0.934 1.000 0.913 0.686 0.519

NS-TFE 0.738 0.913 1.000 0.662 0.576

SIM-TRE* 0.625 0.686 0.662 1.000 0.948

SIM-TFE* 0.413 0.519 0.576 0.948 1.000
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Figure 2: Dynamic of direct, indirect and global technical inefficiency for a selected farm (SIM-

TRE).

Figure 3: Dynamic of intrinsic, spillover and global technical efficiency for a selected farm (SIM-

TRE).
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