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d Institute of Chemistry, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000, Neuchâtel, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Imidazo[1,5-a]pyridines 
Fluorescence 
Alkynyl compounds 
Blue emission 
Boron 

A B S T R A C T   

Five bis(alkynyl)boranes with a (imidazo[1,5-a]pyridin-3-yl)phenolate ligand have been synthesized and char
acterized both in solution (1H, 13C, 11B, 19F NMR) and in the solid state (X-ray). All derivatives, differing for the 
substituent R (H, Me, OMe, CF3, NMe2) in the para position of the phenylacetylene moieties, displayed blue 
fluorescence emission in solution, linearly correlated to the electronic properties of the substituent R (i.e., its σp 
Hammett constant). High Stokes shifts and good quantum yields were recorded. Time-Dependent Density 
Functional Theory (TD-DFT) calculations were performed to describe the percentage contribution of each 
fragment of the molecule to the frontier orbitals. Electron Density Difference Maps (EDDMs) calculated for all 
derivatives allowed to explain the emissive properties of the studied compounds.   

1. Introduction 

Luminescent boron compounds have received great attention in the 
last decades due to their potential applications as stimuli-responsive 
materials [1], emissive layer in Organic Light Emitting Diodes 
(OLEDs) [2–5], anion sensors [6] or bioimaging probes [7,8]. Such 
performances are observed either in tricoordinate [6,7] or tetracoordi
nate boron species [2]. Among the latter, significant consideration has 
been devoted to BF2-containing compounds, in particular to the ubiq
uitous 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, more known as 
boron dipyrromethene (BODIPY) [9], which gained a lot of interest 
owing to very high quantum yields, excellent chemical stability in so
lution and in solid state and the possibility to finely tune the electronic 
properties. Sometimes, a limitation of BODIPY dyes lies in a certain 
instability under irradiation or sensitivity to polar solvents due to the 
presence of B-F bonds [2]. One possible strategy to overcome this 
problem is the substitution of the fluorine atoms with aryl or alkynyl 
groups, the resulting organo-boron compounds showing higher stability 
and better photophysical performances. Among others, bis(alkynyl) 
borane compounds proved to be very successful in this regard. In the 
literature, there are several reports on (N,N)B(alkynyl)2 compounds 

[10–18], with BODIPY being the most employed bidentate N,N-ligand: 
to cite the most recent examples, Hupp [17] synthesized porous organic 
polymers with photocatalytic activity in oxidation reactions starting 
from the BODIPY-based monomer N,N-I (Fig. 1); whereas Ema [16] 
prepared the wide class of carbazole-based BODIPYs N,N-II which 
showed interesting solid state fluorescence. Finally, Ortiz [15] demon
strated how the substitution of fluorine atoms with alkynyl moieties in 
N,N-III led to the generation of highly efficient laser dyes. Also, systems 
with N,N- bidentate ligands other than BODIPY are known, the most 
relevant example being the bis(alkynyl) borane formazanate complexes 
N,N-IV reported by Gilroy [18]. 

Conversely, only limited reports on B(alkynyl)2 compounds with N, 
C-bidentate ligands are known to date [19–21]. Two examples were 
reported by the group led by Yam [19,20] who synthesized different 
classes of readily tunable fluorescent dyes where the nitrogen donor 
atom belongs to a pyridine moiety, whereas the carbon atom bound to 
boron comes from a functionalized thienyl skeleton (N,C-I and N,C-II, 
Fig. 1). In addition, the photophysical behavior of bis(alkynyl) borane 
compounds were described by Harrity [21], who used ligands where 
both N and C donor atoms come from a pyridine fragment (N,C-III, 
Fig. 1). Worthy of note, to the best of our knowledge no B(alkynyl)2 
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compounds having N,O-bidentate ligands have been reported so far. 
In our continuing research on coordination compounds with nitro

gen ligands [22–25], we lately focused our attention on imidazo[1,5-a] 
pyridine scaffolds [26,27], either employed as N,N- [28–30] or N,O- 
[31–34] bidentate ligands. In particular, (imidazo[1,5-a]pyridin-3-yl) 
phenolates have been recently coordinated to a boron center [35–37], 
obtaining the corresponding boron-difluoride derivatives. These 
demonstrated to be a very promising class of fluorescent, blue emissive 
materials, displaying very large Stokes shift (0.80 eV), good photo
stability and high absolute quantum yields. Herein we describe the effect 
of replacing the fluorine atoms in our boron-difluoride compounds with 
aryl-acetylides, leading to bis(alkynyl) boranes which, to our knowl
edge, are the first ever reported bis(alkynyl) borane compounds with a 
N,O-bidentate ligand. 

2. Results and discussion 

2.1. Syntheses and characterization 

The boron difluoride derivative 1 was prepared as previously 
described [36]. The one-pot two-steps synthesis of the bis(alkynyl) 
borane compounds followed a published procedure [16] (Scheme 1): 
first, treatment of acetylenes 2a-e with methyl magnesium bromide 
afforded the corresponding acetylides, which were then reacted in situ 
with 1 to give 3a-e as light brown solids, in moderate to good yields (see 
experimental part). All these bis(alkynyl)boranes are very stable in the 
solid state and can be stored under air for prolonged time. They also 
showed good stability in solution, where no degradation occurred 
regardless the solvent. 

The infrared spectra (ATR) of all borane compounds showed a me
dium intensity signal at ≈2165 cm− 1, consistent with the presence of the 
C––– C triple bond (Figs. S1–S5). The 1H NMR spectra of compounds 3a-e 
recorded in CDCl3 (Supporting Information) showed a series of reso
nances between 6.50 and 8.50 ppm attributed to the aromatic protons of 
the imidazopyridine ligand and the phenyl ring of the acetylene moiety, 
and a singlet around 2.40–2.70 ppm associated to the methyl group on 

the imidazolic ring. The corresponding resonances in the 13C NMR were 
detected between 116 and 132 ppm (aromatic CH) and at 10–11 ppm for 
the methyl carbon (Supporting Information). The resonances of the 
alkynyl carbon atoms directly bound to boron were not detected due to 
coupling with the quadrupolar boron nucleus [11], whereas the other 
alkynyl carbon atoms were observed around 94–96 ppm. The 11B NMR 
spectrum (CDCl3, 25 ◦C) is characterized by a typical broad singlet 
centered at − 6.7 ppm (Fig. S17), slightly upfield shifted compared to 
values reported in the literature for N,N-I and N,C-II (Fig. 1) bis(alkynyl) 
borane compounds. 

Crystals of 3a and 3c suitable for X-ray structure analysis were grown 
by slow diffusion of diethyl ether in dichloromethane. Selected bond 
distances and angles are reported in Table 1. In both compounds, the 
boron center shows the expected tetrahedral geometry, as confirmed by 
the calculated τ4 indexes [38] (0.96 for 3a and 0.95 for 3c). The bond 
lengths around the boron atoms, 1.59–1.60 Å (B-N), 1.47–1.48 Å (B-O) 
and 1.57–1.59 Å (B-C(alkynyl)), are comparable to those reported in the 
literature for similar bis(alkynyl) borane compounds [11,20]. A very 
slight deformation on the B-C––– C connector is observed, with angles 

Fig. 1. Most relevant examples of bis(alkynyl) borane compounds with N,N- or N,C-bidentate ligands.  

Fig. 2. ORTEP representation of 3a and 3c at 50% probability level, with 
atom labeling. 
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ranging from 173◦ to 176◦. Also, the C(alkyne)-B-C(alkyne) angles, 
respectively measuring 110.8(2)◦ for 3a and 110.1(2)◦ for 3c, are 
comparable to those observed for structurally similar N,N- and N,C-bis 
(alkynyl) borane compounds [11,20]. Worthy of note, these values 
perfectly match those obtained by DFT calculations for the optimized 
ground state (S0) of compounds 3a-3e (vide infra). 

3. Optical properties 

All these compounds showed relevant fluorescence emission in so
lution, but little or no emission in the solid state; accordingly, their 
photophysical properties have been investigated only in solution. The 

absorption and emission spectra of compounds 3a-3e are collected in 
Fig. 3. 

Bis(alkynyl) borane derivatives 3a-3d present a strong absorption at 
about 250 nm (π-π*) and a lower energy transition centered at about 
355 nm (n- π*). In the UV–vis spectrum of compound 3e, a bathochromic 
shift of the strongest absorption is observed (300 nm), whereas the 
second low-energy transition still appears as a shoulder at 354 nm. Thus, 
despite some little differences observed for 3e, it can be concluded that 
there is no significant effect of substituent R of the acetylene moiety on 
the UV–vis spectra. The same result is noted for the emission spectra: all 
the derivatives show a strong, unstructured emission band in the blue 
region centered at about 455 nm (Fig. 3, Table 2) regardless of the 
substituent on the aromatic ring. Such outcomes are in accordance with 
what was reported for some N,N-bis(alkynyl) boranes [18] and for the 
corresponding BF2-containing precursors [36]. However, at a deeper 
inspection, a slight influence of the Hammett constant σp of the sub
stituent R on the emission maxima of compounds 3a-3e was detected 
(Table 2). Indeed, σp values higher than 0 (H) lead to a slight decrease of 
the emission maxima, corresponding to higher values of emission 
expressed in cm− 1. The opposite effect is induced by donor substituents 
having σp values lower than 0, which produce a slight bathochromic 
shift of the emission. As a result, a linear correlation between the fluo
rescence emission (expressed in cm− 1) and the σp Hammett constant of 
substituent R could be derived (Fig. S18). Nevertheless, these shifts are 
minimal, and as already mentioned the emission maxima is always 
centered in the blue region (about 455 nm) for all derivatives. As ex
pected, the presence of the (imidazo[1,5-a]pyridin-3-yl)phenolate 
ligand induces large Stokes shift (100–110 nm, ca. 0.80 eV) for all de
rivatives. Additionally, any possible solvent effect can be ruled out in 
our case: indeed, UV–vis (Fig. S19), excitation (Fig. S20) and emission 
spectra (Figs. S21–S25) were collected for 3a-3e in solvents with 
different polarity (dichloromethane, tetrahydrofuran, chloroform, ethyl 
acetate, acetonitrile) and no significant differences were noticed. As an 
example, Fig. 4 reports the UV–vis and emission spectra collected for 3a, 
whereas similar spectra for all other derivatives are reported in 
Figs. S19–S25 (Supporting Information). The intense blue fluorescence 
emission is maintained in all solvents for all derivatives, which always 
show a mono-exponential lifetime decay in the range 2.90–3.90 ns. 
Absolute fluorescence quantum yields experience a little variation ac
cording to solvent, usually being slightly lower in chloroform and 
acetonitrile (mainly due to lesser solubility of the bis(alkynyl) boranes in 
these solvents). In general, when compared to those of the correspond
ing BF2-containing derivatives [36], ФPL values increase of about 
20–25%, thus supporting the strategy of introducing alkynyl moieties. 
BODIPY-based similar compounds like those reported in Fig. 1 (N,N-I 
and N,N-III) and other N,N-containing bis(alkynyl) boranes (N,N-II) 
show higher quantum yields (ca. 0.40–0.45). Also thiophen-based spe
cies N,C-I and N,C-II are characterized by higher quantum yields (0.31 
and 0.47 respectively). However, our compounds with imidazo[1,5-a] 
pyridin-3-yl)phenolate ligand show better performances than N,N-IV 
(ФPL < 0.5) and N,C-III (ФPL = 0.12). All the photophysical data are 

Scheme 1. One-pot two-steps synthesis of bis(alkynyl) borane compounds 3a-e.  

Table 1 
Selected bond distances (Å) and angles (◦) for 3a and 3c.  

Distances (Å) Angles (◦) 

3a 
B(1)-N(1) 1.597(3) N(1)-B(1)-O(1) 105.8(2) 
B(1)-O(1) 1.468(3) N(1)-B(1)-C(15) 112.6(2) 
B(1)-C(15) 1.569(3) N(1)-B(1)-C(23) 107.3(2) 
B(1)-C(23) 1.591(3) O(1)-B(1)-C(15) 107.7(2) 
C(15)-C(16) 1.197(3) O(1)-B(1)-C(23) 112.6(2) 
C(23)-C(24) 1.206(3) C(15)-B(1)-C(23) 110.8(2)   

B(1)-C(15)-C(16) 173.2(2)   
B(1)-C(23)-C(24) 176.2(2)  

3c 
B(1)-N(1) 1.598(3) N(1)-B(1)-O(1) 105.5(2) 
B(1)-O(1) 1.476(3) N(1)-B(1)-C(15) 113.2(2) 
B(1)-C(15) 1.574(3) N(1)-B(1)-C(24) 106.5(2) 
B(1)-C(24) 1.593(3) O(1)-B(1)-C(15) 108.7(2) 
C(15)-C(16) 1.203(3) O(1)-B(1)-C(24) 112.9(2) 
C(24)-C(25) 1.206(3) C(15)-B(1)-C(24) 110.1(2)   

B(1)-C(15)-C(16) 173.0(2)   
B(1)-C(24)-C(25) 176.5(2)  

Fig. 3. Normalized absorption (full lines) and emission (dashed lines) spectra 
of compounds 3a-3e recorded in solution (CH2Cl2, 5•10− 5 M). 
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collected in Table 2 (for 3a) and Tables S1–S5 (Supporting). 

3.1. Optical band gap 

The optical band gap (Eg) for molecular compounds can be approx
imated to the HOMO-LUMO energy difference and can be determined by 
extrapolation of the lower-energy absorption edge in the UV–vis spec
trum, according to Eq. (1) [39]. Eg denotes the optical band gap 
expressed in eV whereas λonset is the absorption edge wavelength (in nm) 
obtained from the onset wavelength of the low energy absorption band 
as shown in Fig. 5. 

Eg = h •
c

λonset
=

1240
λonset (nm)

(Eq. 1)  

where h is the Planck’s constant and c is the speed of light in vacuum. 
As an example, Fig. 5 reports the UV–vis spectra of compounds 3a 

and 3e recorded in dichloromethane, with the respective band gap en
ergy estimation. The analogous representations for compounds 3b-3d 
are reported in Fig. S26. Due to their very similar UV–vis spectra, the 
optical band gaps (Eg) obtained for compounds 3a-3d as onset wave
length of the absorption at about 355 nm are nearly identical (404–406 
nm, corresponding to 3.05–3.07 eV). For species 3e, the shoulder at 354 
nm in the UV–vis trace was considered, again leading to a Eg value in the 
same range (3.05 eV) (Fig. 5). Such identical optical band gaps can 
explain the comparable emission spectra recorded for 3a-3e derivatives 
(Fig. 3), regardless substituent R on the acetylene moiety. 

4. DFT calculations 

Starting from the X-ray crystal structures of compounds 3a and 3c, 
the geometries of all the derivatives were optimized in the ground state 
(S0). We first performed a benchmark experiment, using five different 
functionals (PBE0 [40], BLYP-D3(BJ) [41], PBE-D4(EEQ) [42], SAOP 
[43], M11 [44]) to acquire computed UV–vis spectra for compound 3a. 
The results are summarized in Fig. S27: overall, we could conclude that 
there are no significant variations in the spectra calculated with the 
different functionals as regards the energies of the transitions, whereas 
major differences are noticed regarding the relative intensities of the 

Table 2 
Photophysical data for compounds 3a-3e recorded in dichloromethane solution and for 3a in different solvents. All measured solutions were 5 ⋅10− 5 M.   

R σp solvent λabs (nm) ε (M− 1 cm− 1) λexc (nm) λem (nm) Stokes (eV) ΦPL τ (ns) kr (⋅107 s− 1) knr (⋅108 s− 1) 

3a H 0 CH2Cl2 259, 353 432394 264, 353 456 0.80 0.25 3.43 7.3 2.2 
3b Me − 0.17 CH2Cl2 262, 353 264077 261, 354 457 0.80 0.24 3.41 7.0 2.2 
3c OMe − 0.27 CH2Cl2 259, 353 312248 273, 354 457 0.79 0.23 3.29 7.0 2.3 
3d CF3 0.54 CH2Cl2 253, 353 246703 263, 353 453 0.78 0.16 3.46 4.6 2.4 
3e NMe2 − 0.83 CH2Cl2 299, 351 415631 313, 353 459 0.81 0.17 3.36 5.1 2.5 
3a H 0 THF 264, 354 457919 266, 356 456 0.76 0.23 3.85 6.0 2.0 
3a H 0 CHCl3 256, 353 409241 263, 355 459 0.79 0.06 2.91 2.1 3.2 
3a H 0 AcOEt 260, 353 458407 264, 355 454 0.76 0.12 3.65 3.3 2.4 
3a H 0 CH3CN 257, 351 415819 262, 352 453 0.79 0.17 3.86 4.4 2.2  

Fig. 4. Absorption (left) and emission (right) spectra of compound 3a 
measured in various solvents (5•10− 5 M). Color code: red ( ), dichloro
methane; blue ( ), THF; black (▬), chloroform; green ( ), ethyl acetate; 
brown ( ), acetonitrile. Inset: CIE 1931 chromaticity plot for emission of 
compound 3a in the different solvents. 

Fig. 5. UV–vis spectra of compounds 3a and 3e (CH2Cl2, 5•10− 5 M) with the 
respective band gap energy estimation. 
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absorptions. We then opted for performing the following calculations 
using the hybrid functional PBE0, which, despite it is more 
time-consuming than other lighter functionals like BLYP-D3(BJ), gives a 
better description of the UV–vis spectra and a good agreement with 
experimental data [45]. 

Calculated and experimental (X-ray) bond distances and angles for 
3a and 3c are in good agreement (Supporting Information for cartesian 
coordinates). The optimized S0 structures present a C(alkyne)-B-C 
(alkyne) angle in the range 109–116◦ (Table S6), not so far from those 
measured in the crystal structure of compounds 3a and 3c, with slight 
deviations mainly due to solvent effects. TD-DFT calculations were 
useful to determine the nature of the transitions responsible for the 
absorptions: Fig. 6 reports the comparison between calculated and 
experimental UV–vis spectra (in dichloromethane) for compound 3a, 
showing the good accordance of both intensities and position of ab
sorption bands when calculated with the PBE0 functional. All other 
calculated UV–vis spectra for 3b-3e are collected in Fig. S28. 

The energies of the frontier molecular orbitals (HOMO-1, HOMO, 
LUMO, LUMO+1) for all compounds are reported in Fig. 7, whereas the 
major contributions of single orbital transitions to the absorption at 
lower energy are collected in Table S7. 

Regarding the HOMO-LUMO energies (Fig. 7), the introduction of 
donor substituents (3b, 3c and 3e) only slightly increases the HOMO 
energy, whereas the LUMO is reduced (except for 3e). This results in a 
little lower energy gap (ΔH-L) for the latter. On the contrary, the pres
ence of the electron withdrawing CF3 group leads to a decrease in both 
HOMO and LUMO energies, overall resulting in a slightly lower ΔH-L 
when compared to 3a. 

The topologies of the frontier orbitals (HOMO-1, LUMO, LUMO+1) 
present some differences among the series (Fig. 8): HOMO-1 is centered 
on the acetylene moieties, except for 3d, where a considerable contri
bution from imidazopyridine is observed. HOMO is always distributed 
over the nitrogen heterocycle for 3a-3d, whereas for 3e it is localized 
only on the B(acet)2 fragment. Also considering the topologies of LUMO 
and LUMO+1, some differences are noticed for compound 3d compared 
to the others. 

Additionally, a deeper inspection of the distribution of the frontier 
orbitals in the molecules allowed to highlight these differences. Indeed, 
for 3a-3c derivatives, the HOMO is distributed on both the imidazo
pyridine (60–63%) and the phenol portions (32–35%), whereas the 
HOMO-1 is mainly (if not entirely) localized on the B(acet)2 fragment. 
Unoccupied orbitals are placed on the acceptor imidazopyridine scaffold 

(LUMO, 76–80%) and on both the imidazopyridine (>60%) and the 
phenol (ca. 30%) (LUMO+1). On the contrary, 3d and 3e compounds 
show a very different distribution: for the CF3-substitued derivative 3d, 
the HOMO shape is similar to the previous (3a-3c), but HOMO-1 has a 
strong prevalence of the phenol skeleton. The B(acet)2 portion has major 
contribution in LUMO (46%) and even higher in LUMO+1 (67%). The 
opposite is observed for compound 3e, bearing the strong donor sub
stituent NMe2: here, both HOMO and HOMO-1 are entirely localized on 
the B(acet)2 fragment (95–98%), whereas LUMO and LUMO+1 show a 
predominance of the electron-withdrawing imidazopyridine moiety. All 
these features are well visualized in Fig. 9, whereas all the percentages 
are reported in Table S8 (Supporting Information). 

Next, optimization of the first singlet excited state (S1) of compounds 
3a-3e was performed again at DFT/PBE0 level of theory: in general, a 
1–2% increase in the values of the C(alkyne)-B-C(alkyne) angles is 
observed moving from S0 to S1. The Electron Density Difference Maps 
(EDDMs) calculated for 3a-3e show that the electronic transition is 
centered on the imidazopyridine skeleton (from phenol to imidazopyr
idine), with no involvement of the Bis(alkyne)2 fragment (Fig. 10, where 
electron density goes from red to green). This nearly identical shapes for 
EDDMs predict very similar electronic structures for all compounds, and 
accounts for the absence of influence of the substituent R on phenyl
acetylene moiety on the emission maxima of the compounds (indeed all 
centered at about 455 nm). 

5. Experimental section 

5.1. Materials and methods 

Infrared Spectra (ATR) were acquired on a Thermo Scientific™ 
Nicolet™ iS20 FTIR Spectrometer with a 1 cm− 1 resolution. Elemental 
analyses were obtained with a Perkin-Elmer CHN Analyzer 2400 Series 
II. NMR spectra were recorded on a Bruker AVANCEIII 400 spectrometer 
operating at 400 MHz for 1H NMR, 100 MHz for 13C{1H} NMR, 376 MHz 
for 19F and 128 MHz for 11B NMR. Chemical shifts are given as δ values 
in ppm relative to residual solvent peaks as the internal reference. J 
values are given in Hz. 13C{1H} NMR spectra were acquired using an 
APT pulse sequence. The UV–vis, excitation and emission spectra were 
measured using a fluorescence spectrometer (Edinburgh Instruments 
FS5) equipped with a 150 W continuous Xenon lamp as a light source 
and were corrected for the wavelength response of the instrument; 
lifetime measurements were performed on the same FS5 Edinburgh In
struments using an EPLED-320 (Edinburgh Instruments) as the pulsed 
source. Analysis of the lifetime decay curve was done using Fluoracle® 
Software package (Ver. 1.9.1) which runs the FS5 instrument. Absolute 
fluorescence quantum yields were determined on a Photon Technology 
International (PTI) QuantaMaster QM-40 spectrometer (Xe arc lamp, 70 
W) with a PhotoMed GmbH K-Sphere Integrating Sphere (3.2 inch. 
diameter). The integrated luminescence areas were obtained by the 
Felix32™ analysis software and used to determine the absolute PLQYs 
(ΦPL, uncertainties of ±5%) according to the literature [46]. Acetylene 
2e was prepared according to the method reported by Karuso [47]; all 
other chemicals were of reagent grade quality and were purchased 
commercially (AlfaAesar, Acros, TCI Chemicals, Fluorochem) and used 
as received. 

6. General procedure for the synthesis of bis(alkynyl)boranes 
3a-e 

In a two-necked round flask, the acetylene (15 eq.) was dissolved in 
20 mL of anhydrous tetrahydrofuran. Then, 15 eq. of methylmagnesium 
bromide (3 M solution in diethyl ether) were slowly added dropwise. 
The mixture was refluxed for 4 h, then the boron difluoride compound 1 
(1 eq.) was added in small portions, obtaining a deep red solution. The 
reaction was refluxed for 72 h, during which time the color turned to 
yellow, then it was cooled to room temperature and 70 mL of water were 

Fig. 6. Calculated vs. experimental UV–vis traces in dichloromethane solution 
for compound 3a. Vertical bars represent calculated transitions with oscillator 
strength f > 0.1. 
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added. The resulting mixture was extracted with dichloromethane (100 
mL), dried over sodium sulphate and the solvent removed under reduced 
pressure to give the final product as a light brown solid. 

3a: Yield: 0.36 g (75%). Anal. Calcd. (%) for C30H21N2OB: C, 82.58; 
H, 4,85; N, 6,42. Found (%): C, 82.56; H, 4.98; N, 6.33. 1H NMR (400 
MHz, CDCl3, 298 K, J [Hz]): δ = 8.49 (d, J = 6.9, 1H), 7.77 (d, J =
7.2, 1H), 7.55 (d, J = 8.6, 1H), 7.44–7.36 (m, 4H), 7.34–7.27 (m, 
2H), 7.25–7.16 (m, 5H), 7.04–6.95 (m, 1H), 6.94–6.75 (m, 2H), 3.01 
(s, 3H). 13C NMR (101 MHz, CDCl3, 298 K): δ = 156.90, 131.91, 
131.79, 127.84, 127.17, 125.03, 123.84, 122.10, 121.90, 121.17, 
119.93, 119.23, 119.00, 116.69, 112.31, 95.99, 10.85. 11B NMR 

(128 MHz, CDCl3, 298 K): δ = − 6.70. FT-IR (ATR) (cm− 1): 2166 (m) 
C––– C. 
3b: Yield: 0.35 g (69%). Anal. Calcd. (%) for C32H25N2OB: C, 82.77; 
H, 5.43; N, 6.03. Found (%): C, 82.15; H, 5.32; N, 6.13. 1H NMR (400 
MHz, CDCl3, 298 K, J [Hz]): δ = 8.47 (d, J = 7.0, 1H), 7.75 (d, J =
7.2, 1H), 7.54 (d, J = 8.7, 1H), 7.41–7.33 (m, 2H), 7.30 (d, J = 8.0, 
4H), 7.12 (d, J = 7.9, 1H), 7.04–6.98 (m, 4H), 6.96 (d, J = 7.1, 1H), 
6.91–6.79 (m, 2H), 2.99 (s, 3H), 2.27 (d, J = 11.1, 6H). 13C NMR 
(101 MHz, CDCl3): δ = 157.11, 137.17, 132.17, 131.99, 131.82, 
129.21, 128.75, 127.84, 122.23, 122.16, 122.04, 121.32, 119.99, 
119.28, 119.14, 116.77, 96.21, 21.53, 10.99. 11B NMR (128 MHz, 
CDCl3, 298 K): δ = − 6.58. FT-IR (ATR) (cm− 1): 2164 (m) C––– C. 

Fig. 7. Frontier molecular orbital energy levels (eV) and HOMO-LUMO energy gaps (ΔH-L).  

Fig. 8. Molecular orbitals shape (HOMO-1, HOMO, LUMO, LUMO+1) for compounds 3a-3e calculated in dichloromethane solution.  

G. Colombo et al.                                                                                                                                                                                                                               



Dyes and Pigments 220 (2023) 111722

7

3c: Yield: 0.39 g (71%). Anal. Calcd. (%) for C32H25N2O3B: C, 77.43; 
H, 5.08; N, 5.64. Found (%): C, 77.40; H, 5.00; N, 5.81. 1H NMR (400 
MHz, CDCl3, 298 K, J [Hz]): δ = 8.39 (d, J = 7.1, 1H), 7.69 (d, J =
7.7, 1H), 7.49 (d, J = 9.0, 1H), 7.34 (d, J = 8.7, 4H), 7.30 (d, J = 7.4, 
1H), 7.25 (d, J = 7.8, 1H), 6.91 (t, J = 7.3, 1H), 6.81 (m, 3H), 6.74 (d, 
J = 8.7, 4H), 3.74 (s, 6H), 2.97 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 
158.88, 156.98, 133.69, 133.21, 131.82, 127.79, 123.83, 122.15, 
122.06, 121.14, 120.04, 119.16, 118.94, 116.75, 114.06, 113.61, 
112.39, 95.78, 75.89, 55.29, 10.95. 11B NMR (128 MHz, CDCl3, 298 
K): δ = − 6.69. FT-IR (ATR) (cm− 1): 2170 (m) C––– C. 
3d: Yield: 0.29 g (62%). Anal. Calcd. (%) for C32H19N2OBF6: C, 
67.16; H, 3.35; N, 4.89. Found (%): C, 67.36; H, 3.42; N, 4.81. 1H 
NMR (400 MHz, CDCl3, 298 K, J [Hz]): δ = 8.51 (d, J = 7.0, 1H), 7.79 
(d, J = 7.1, 1H), 7.58 (d, J = 9.7, 1H), 7.48 (q, J = 8.6, 8H), 
7.44–7.36 (m, 1H), 7.31 (d, J = 7.7, 1H), 7.07–6.98 (m, 1H), 
6.95–6.86 (m, 2H), 2.99 (s, 3H). 13C NMR (101 MHz, CDCl3, 298 K, J 
[Hz]): δ = 156.68, 132.27, 132.08, 130.83, 129.43 (q, 2JCF = 32.3 
Hz), 129.00, 128.01, 124.99 (q, 3JCF = 3.8), 124.22 (q, 1JCF = 270.3 
Hz), 123.70, 122.27, 122.12, 121.22, 119.73, 119.14, 117.08, 

112.33, 94.88, 10.96. 11B NMR (128 MHz, CDCl3, 298 K): δ = − 6.87. 
19F NMR (376 MHz, CDCl3, 298 K): δ = − 62.68. FT-IR (ATR) (cm− 1): 
2166 (m) C––– C. 
3e: Yield: 0.31 g (64%). Anal. Calcd. (%) for C34H31N4OB: C, 78.16; 
H, 5.98; N, 10.72. Found (%): C, 78.22; H, 6.06; N, 10.64. 1H NMR 
(400 MHz, CDCl3, 298 K, J [Hz]): δ = 8.39 (d, J = 7.2, 1H), 7.69 (d, J 
= 7.8, 1H), 7.48 (d, J = 9.0, 1H), 7.29 (m, J = 8.8, 6H), 6.90 (t, J =
7.0, 1H), 6.80 (m, 2H), 6.55 (d, J = 8.8, 4H), 2.97 (s, 3H), 2.90 (s, 
12H). 13C NMR (101 MHz, CDCl3, 298 K, J [Hz]): δ = 157.27, 149.56, 
133.33, 132.92, 131.72, 130.73, 127.71, 124.06, 122.16, 122.02, 
121.27, 119.81, 118.98, 116.59, 112.84, 112.52, 111.98, 96.70, 
84.99, 11.13. 11B NMR (128 MHz, CDCl3, 298 K): δ = − 6.44. FT-IR 
(ATR) (cm− 1): 2164 (m) C––– C. 

7. Computational details 

All calculations were carried out at the density functional (DFT) level 
of theory with the ADF2021.102 program package [48]. The PBE0 
functional [40] was employed for all calculations. Frequency analyses 
were performed for all optimized structures to establish the nature of the 
stationary points. TD-DFT implemented in the ADF package was used to 
determine the excitation energies: the 30 lowest singlet-singlet excita
tions were calculated by using the optimized geometries. For geometry 
optimizations B, C, F, N, and O atoms were described through TZ2P basis 
set [triple-ξ Slater-type orbitals (STOs) plus two polarization function]. 
Hydrogen atoms were described through the TZP basis set [triple-ξ 
Slater-type orbitals (STOs) plus one polarization function]. The corre
sponding augmented basis sets were employed in TD-DFT calculations 
[49]. Restricted formalism, no-frozen-core approximation (all-electron) 
and no-symmetry constrains were used in all calculations. Solvent ef
fects (CH2Cl2) were simulated employing the conductor-like continuum 
solvent model (COSMO) [50] as implemented in the ADF suite. 

8. Single-crystal X-ray structure analyses 

Crystals of 3a and 3c were mounted on a Stoe Image Plate Diffraction 
system equipped with a φ circle goniometer, using Mo-Kα graphite 
monochromated radiation (λ = 0.71073 Å) with φ range 0–200◦. The 
structures were solved by direct methods using the program SHELXS 
[51], while refinement and all further calculations were carried out 
using SHELXL [52]. The H-atoms were included in calculated positions 
and treated as riding atoms using the SHELXL default parameters. The 
non-H atoms were refined anisotropically, using weighted full-matrix 
least-square on F2. Crystallographic details are summarized in 

Fig. 9. Percentage contribution to frontier orbitals from the three fragments of the molecules.  

Fig. 10. Electron Difference Density Maps (EDDMs) for the lowest energy 
singlet electronic transition computed by TD-DFT (red indicates a decrease in 
electron density, green indicates an increase). 
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Table S9. Fig. 2 was drawn with ORTEP–32 [53]. In 3c, one methoxy 
group is disordered over two positions, with the occupancy factors being 
50:50. 

CCDC-2266308 (3a) and 2266309 (3c) contain the supplementary 
crystallographic data for this paper. These data can be obtained free of 
charge via www.ccdc.cam.ac.uk/data_request/cif, by e-mailing data_req 
uest@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic 
Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 
336033. 

9. Conclusions 

In conclusion, we have described the synthesis and full character
ization of five bis(alkynyl)boranes with a (imidazo[1,5-a]pyridine-3-yl) 
phenolate ligand. Both electron-donating (Me, OMe, NMe2) and 
electron-withdrawing groups (CF3) were introduced in para-position of 
the phenyl residue on the phenylacetylene moieties. Only a minor effect 
of the substituents on the photophysical properties was observed, with 
all compounds showing blue fluorescence emission, large Stokes shifts 
and good absolute quantum yields. Nevertheless, a linear correlation 
between the fluorescence emission and the σp Hammett constant of 
substituent R could be observed. 

TD-DFT calculations performed on S0 state were useful to define the 
nature of the electronic transitions involved in absorption processes 
(mainly a HOMO-LUMO transition), together with the contribution of single 
fragments to the topology of frontier orbitals. In addition, optimization 
of the first singlet excited state (S1) allowed to obtain EDDMs, which 
gave explanation of the equal emission of the compounds in solution. 

To the best of our knowledge, the present work represents the first 
report on bis(alkynyl)boranes containing N,O-bidentate ligands, thus 
paving the way to a new class of emissive boron compounds. 
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