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Abstract

We study the nonlinear Schrödinger equation for the s-fractional p-Laplacian strongly coupled with the 
Poisson equation in dimension two and with p = 2

s , which is the limiting case for the embedding of the 
fractional Sobolev space Ws,p(R2). We prove existence of solutions by means of a variational approxi-
mating procedure for an auxiliary Choquard equation in which the uniformly approximated sign-changing 
logarithmic kernel competes with the exponential nonlinearity. Qualitative properties of solutions such as 
symmetry and decay are also established by exploiting a suitable moving planes technique.
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1. Introduction

In this paper we investigate existence and symmetry of positive solutions for the following 
strong coupling of the (s, 2

s
)-fractional Schrödinger equation with the Poisson equation in the 

whole plane ⎧⎨⎩(−�)s2
s

u + |u| 2
s
−2u = φ f (u)

−�φ = F(u)
(SPs)

where s ∈ (0, 1), f is a nonnegative real function and F its primitive vanishing at zero. The 
nonlocal operator in the Schrödinger equation is the s-fractional p-Laplacian with p = 2

s
, which 

is the so-called limiting case for the Sobolev embedding of the fractional Sobolev space (see 
Section 2)

Ws,p(R2) ↪→ L
2p

2−sp (R2)

and it is well-known that this implies the nonlinearity may grow exponentially at infinity.
In the local case s = 1, (SPs ) reduces to the deeply studied Schrödinger-Poisson system{

−�u + u = φ f (u)

−�φ = F(u)
(SP)

which emerges in several fields of Physics: in electrostatics, it models the interaction of two 
identically charged particles; in quantum mechanics yields a model for the self-interaction of 
the wave function with its own gravitational field; it is also related with the Hartree model for 
crystals, see [6] and references therein. In the higher-dimensional case N ≥ 3, and when f has a 
polynomial growth, there is an extensive literature about (SP), see the survey [35] and references 
therein. A strategy to investigate (SP) is to move the attention to the corresponding Choquard 
equation

−�u + u = (IN ∗ F(u))f (u) in RN , (Ch)

obtained by solving the Poisson equation in (SP) by means of convolution with the (positive) 
Riesz kernel

IN := CN

|x|N−2 , N ≥ 3

where CN is an explicit positive constant depending on the dimension N , and then formally 
(see the discussion carried out in Section 3) inserting φ = φu := IN ∗ F(u) in the Schrödinger 
equation. Besides the effect of variables reduction, the advantage of this approach is that the 
Choquard equation (Ch) can be studied by variational techniques. Moreover, new interesting 
phenomena arise, such as the appearance of a lower-critical exponent in addition to the usual 
upper-critical exponent, as in the Sobolev case, see [12,13] and references therein.
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In dimension N = 2 just a few results are available. In this case the Riesz kernel is logarithmic

I2 := 1

2π
ln

1

|x| , (1.1)

and therefore unbounded both from below and from above, which together with the fact that it 
is sign changing introduces a major difficulty with respect to the higher dimensional case. In 
fact, the functional associated to the corresponding Choquard equation (Ch) may be not well-
defined in the natural space H 1(R2). When f (u) = u, the approach developed in [4,15,16,23], 
originating from the unpublished work of Stubbe [41], allows one to study the equation in a 
constrained subspace of H 1(R2), in which the log-convolution term is well-defined. However, in 
dimension two it is well-known that H 1(R2) ↪→ Lq(�) for all q ≥ 1 but not in L∞(�) and that 
the maximal degree of summability for functions with membership in H 1(R2) is exponential, 
namely 

´
(eαu2 − 1) dx stays bounded for all α > 0, see [38]. Several extensions and refinements 

to this result have been proposed, among which the extension to the higher-order Sobolev spaces 
Wm,p with m ∈N , in the limiting case N = mp, see [39].

Exponential nonlinearities in (Ch) when N = 2, still maintaining the polynomial Riesz kernel 
and so loosing the connection to the Schrödinger-Poisson system, have been first considered in 
[1]. On the other hand, a special Schrödinger-Poisson system with logarithmic kernel and ex-
ponential nonlinearity, but not in gradient form as (SP), has been studied in [2]. The tuning of 
the two phenomena: logarithmic growth of the Riesz kernel and maximal exponential growth 
for system (SP) was first tackled in [11]. Here, the authors establish a proper functional setting 
by means of a log-weighted version of the Pohožaev-Trudinger inequality, so that the functional 
associated to (Ch) turns out to be well-defined. An extension of these techniques to quasilin-
ear Schrödinger-Poisson systems was established in [8]. A different approach has been recently 
proposed in [10,32,33]. Instead of working directly on the logarithmic Choquard equation, the 
authors consider a family of approximating problems, each of them involving only a polynomial 
Riesz kernel, and prove that the limit of a sequence of approximating solutions converges to a 
solution to the original problem. This approach has the advantage of working in the H 1(R2)

space context and one finds a posteriori that the logarithmic convolution term turns out to be 
well-defined at least on the solution. Let us finally mention that this method has been recently 
used in [37] to cover also the zero-mass case.

As a consequence of [36,46], it is meaningful to study system (SPs) in presence of exponential 
nonlinearities. Fractional Schrödinger-Poisson systems and fractional Choquard equations have 
been recently studied in the subcritical regime, precisely in higher dimension N > sp and with 
polynomial nonlinearities, see [18,25,26,29]. To the very best of our knowledge, the only results 
for fractional Choquard equations with exponential nonlinearities are obtained in [17] in the one 
dimensional case, in [7] where the logarithmic kernel and the exponential nonlinearity are not 
combined, and in [45] where the Riesz kernel is polynomial; see also [44] for related results.

Here we address both the problem of proving existence and establishing qualitative properties 
of solutions to the fractional planar system (SPs), in the limiting case of logarithmic kernel and 
exponential nonlinearity. The first nontrivial step is proving that solutions of the system can be 
obtained by solving the related Choquard equation

(−�)s2 u + |u| 2
s
−2u = 1

(
ln

1 ∗ F(u)

)
f (u) in R2 . (Chs)
s 2π |x|
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Before stating our main results, let us briefly introduce the functional setting and make precise 
the definition of solution we deal with for (SPs) and (Chs). The (s, 2

s
)-fractional Laplace operator 

is pointwisely defined as

(−�)s2
s

u(x) := 2PV

ˆ

R2

|u(x) − u(y)| 2
s
−2(u(x) − u(y))

|x − y|4 dy, x ∈ R2,

where PV stands for the Cauchy Principal Value which is well-defined for all x ∈ R2, for func-
tions in C1,1

loc (R2) which enjoy suitable integrability conditions at infinity, see Section 3 and [14, 
Lemma 5.2].

The fractional Sobolev space Ws, 2
s (R2) is defined by

Ws, 2
s (R2) := {u ∈ L

2
s (R2) : [u]

s, 2
s
< +∞},

where [u]
s, 2

s
denotes the Gagliardo seminorm, which in this context reads as follows

[u]
s, 2

s
=

(ˆ

R2

ˆ

R2

|u(x) − u(y)| 2
s

|x − y|4 dx dy

) s
2

.

The fractional Sobolev-Slobodeckij space Ws, 2
s (R2) is a uniformly convex Banach space with 

norm

‖u‖ :=
(

‖u‖
2
s
2
s

+ [u]
2
s

s, 2
s

) s
2

.

For γ > 0 the weighted Lebesgue space Lγ (R2) is defined as

Lγ (R2) :=
{
u ∈ L1

loc(R
2)

∣∣∣ ˆ
R2

|u(x)|
1 + |x|2+2γ

dx < +∞
}

.

Definition 1.1. For f ∈ S ′(R2) we say that a function φ ∈ L1(R2) is a solution of the linear 
Poisson equation −�φ = f in R2 if

ˆ

R2

φ(−�ϕ) = 〈f,ϕ〉 for all ϕ ∈ S(R2) .

Definition 1.2 (Solution of (SPs)). We say that (u, φ) is a weak solution of the Schrödinger-
Poisson system (SPs) if

ˆ

2

ˆ

2

|u(x) − u(y)| 2
s
−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|4 dx dy +
ˆ

2

|u| 2
s
−2uϕ dx =

ˆ

2

φf (u)ϕ dx
R R R R
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for all ϕ ∈ Ws, 2
s (R2), and φ solves −�φ = F(u) in R2 in the sense of Definition 1.1.

Definition 1.3 (Solution of (Chs)). We say that u ∈ Ws, 2
s (R2) is a weak solution of (Chs) if

ˆ

R2

ˆ

R2

|u(x) − u(y)| 2
s
−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|4 dx dy +
ˆ

R2

|u| 2
s
−2uϕ dx

= 1

2π

ˆ

R2

⎛⎜⎝ˆ

R2

ln
1

|x − y|F(u(y))dy

⎞⎟⎠f (u(x))ϕ(x)dx

(1.2)

for all ϕ ∈ Ws, 2
s (R2).

Assumptions. Throughout the paper, we consider the following assumptions on the nonlinearity 
f :

(f1) f ∈ C1(R), f ≥ 0, f (t) = 0 for t ≤ 0, and f (t) = o(t
2
s
−1) as t → 0+;

(f2) there exist constants b1, b2 > 0 such that for any t > 0,

0 < f (t) ≤ b1 + b2
2,s (α∗|t | 2
2−s ) ,

where 
2,s( · ) has exponential growth, see Proposition 2.1;
(f3) there exists τ ∈ (0, s) such that

1 − s + τ ≤ F(t)f ′(t)
f 2(t)

< 1 + μ(s, τ ) for any t > 0,

where μ(s, τ) is explicitly given in Lemma 5.8;
(f4) lim

t→+∞
F(t)f ′(t)

f 2(t)
= 1 or equivalently lim

t→+∞
d
dt

F (t)
f (t)

= 0;

(f5) there exists β0 > 1 depending on s such that

f (t)F (t) ≥ β t
2
s for all t > T (s),

for some β > β0. The values of β0 and T ( · ) are explicitly given in Lemma 5.5.

Main results. We are now in the position to state our main results. The first one, proved in 
Section 3, concerns the relationship between the solutions of the Choquard equation (Chs) and 
the corresponding Schrödinger-Poisson system (SPs): this is the fractional counterpart of [8, 
Theorem 2.1]. In particular we make rigorous the fact that from a weak solution u of (Chs) one 
obtains a weak solution to (SPs).

Theorem 1.4 ((Chs) =⇒ (SPs)). Suppose the nonlinearity f satisfies (f1)-(f2). Let u ∈
Ws, 2

s (R2) be a positive weak solution of the Choquard equation (Chs) in the sense of Def-

inition 1.3 and define φu := I2 ∗ F(u). Then (u, φu) ∈ Ws, 2
s (R2) × L 1 (R2) is a solution of 
2
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the Schrödinger-Poisson system (SPs) in the sense of Definition 1.2. Moreover u ∈ L∞(R2) ∩
C

0,ν
loc (R2) for some ν ∈ (0, 1), and

φu(x) = −‖F(u)‖1

2π
ln |x| + o(1) as |x| → +∞ . (1.3)

Note that we do not prove that the two problems are equivalent, namely that they have the 
same set of solutions. Finding a proper functional setting in which this holds is still open, even 
for the local case (SP)–(Ch), see [8, Section 2].

The system (SPs) is autonomous, thus we expect that positive solutions enjoy radial sym-
metry. In the next result, by exploiting the connection between (Chs) and (SPs) established in 
Theorem 1.4, we show that this is indeed the case for solutions which are regular enough. The 
regularity will be needed to have a pointwisely defined (s, 2

s
)-fractional Laplace operator and to 

be able to exploit a moving plane technique. This method has been firstly employed to (s, p)-
fractional operators by Chen and Li in [14] for the single Schrödinger equation; here, we further 
develop it to cover the case of systems.

Theorem 1.5 (Symmetry for (Chs)). Suppose (f1)-(f2) are satisfied, and let u ∈ C
1,1
loc (R2) ∩

Ws, 2
s (R2) be a positive solution of (Chs). Then u is radially symmetric about the origin and 

monotone decreasing.

Observe that in Theorems 1.4 and 1.5 we only need that f is subcritical or critical in the sense 
of Proposition 2.1. In order to establish the existence of solutions for (Chs) – and therefore for 
(SPs) by Theorem 1.4 – we require the full set of assumptions (f1)–(f5).

Theorem 1.6 (Existence for (Chs)). Suppose f satisfies (f1)-(f5), then (Chs) possesses a positive 
radially symmetric solution u ∈ Ws, 2

s (R2) such that∣∣∣∣ˆ
R2

(
ln

1

|x| ∗ F(u)

)
F(u)dx

∣∣∣∣ < +∞ . (1.4)

As a consequence of Theorems 1.4 and 1.6, we have

Corollary 1.7 (Existence for (SPs)). Suppose f satisfies (f1)-(f5), then (SPs) possesses a solu-

tion (u, φ) ∈ Ws, 2
s (R2) × L 1

2
(R2) such that:

i) u ∈ L∞(R2) ∩ C
0,ν
loc (R2) for some ν ∈ (0, 1), is positive, radially symmetric and (1.4) holds;

ii) φ = φu := I2 ∗ F(u) and the asymptotic behaviour (1.3) is satisfied.

Overview. In the next section we give motivations and discuss consequences of our assumptions 
together with some preliminaries. In Section 3 we study the relationship between solutions of 
the Choquard equation (Chs) and the related Schrödinger-Poisson system (SPs) which is quite 
delicate as it depends on the notion of solution and regularity issues. Apparently there is no 
equivalence in general, even in the local case, see [8]; Theorem 1.4 is a step forward towards 
a complete understanding of this phenomenon. In Section 4 we prove the symmetry result of 
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Theorem 1.5 by extending the moving-plane technique of [14]. Finally, in Section 5 we exploit 
all previous results to prove Theorem 1.6 by means of a variational approach together with a 
uniform asymptotic approximation technique.

Notation. For R > 0 and x0 ∈ R2 we denote by BR(x0) the ball of radius R and centre x0. 
Given a set � ⊂ R2, we denote �c := R2 \ �, and its characteristic function as χ�. The space 
of the infinitely differentiable functions which are compactly supported is denoted by C∞

0 (R2), 
while Lp(R2) with p ∈ [1, +∞] is the Lebesgue space of p-integrable functions. The norm of 
Lp(R2) is denoted by ‖ · ‖p . The spaces C0,ν(R2) for ν ∈ (0, 1) are usual spaces of Hölder 
continuous functions. The space S is the Schwartz space of rapidly decreasing functions and S ′
the dual space of tempered distributions. For q > 0 we define q! := q(q −1) · · · (q −�q�), where 
�q� denotes the largest integer strictly less than q; if q > 1 its conjugate Hölder exponent is 
q ′ := q

q−1 . Finally, on(1) denotes a vanishing real sequence as n → +∞. Hereafter, the letter C
will be used to denote positive constants which are independent of relevant quantities and whose 
value may change from line to line.

2. Preliminaries

The Pohožaev-Trudinger inequality has been extended to the Sobolev fractional setting by 
Parini and Ruf [36] for bounded domains and by Zhang [46] for the whole space, results which 
we resume below. Let


2,s(t) := et −
j 2

s
−2∑

j=0

tj

j ! ,

for t ≥ 0, where j 2
s
:= min{j ∈N : j ≥ 2

s
}.

Proposition 2.1 ([36,46]). Let s ∈ (0, 1), then for all α > 0 one has

ˆ

R2


2,s(α|u| 2
2−s )dx < +∞ . (2.1)

Moreover, there exists α∗ ∈ (0, +∞) such that for 0 ≤ α < α∗,

sup
u∈Ws, 2

s (R2),‖u‖
W

s, 2
s (R2)

≤1

ˆ

R2


2,s (α|u| 2
2−s )dx < +∞ .

Hence

α∗ := sup

{
α : sup

u∈Ws, 2
s (R2),‖u‖

W
s, 2

s (R2)
≤1

ˆ

R2


2,s (α|u| 2
2−s )dx < +∞

}
.

Moreover, for α > α∗ ,
s,2
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sup
u∈Ws, 2

s (R2),‖u‖
W

s, 2
s (R2)

≤1

ˆ

R2


2,s (α|u| 2
2−s )dx = +∞ ,

where

α∗
s,2 := 2

4+s
2−s

(
π2�(1 + 2

s
)

+∞∑
k=0

1

(1 + k)2/s−1

) s
2−s

.

Remark 2.2. As remarked in [36,46], the result of Proposition 2.1 is not sharp in the sense of 
Moser, since α∗

s,2 is just an upper bound for the sharp exponent α∗, while obtaining the precise 
value of α∗ is still an open problem.

Let us point out some immediate consequences of the assumptions (f1)–(f5):

Remark 2.3.

(i) From (f1) and (f2) it is easy to infer that there exists a constant C such that

F(t) ≤ C
(
t

2
s + t

2
s 
2,s(α∗|t | 2

2−s )
)

for all t > 0 ;

(ii) Assumption (f3) implies that f is monotone increasing. Moreover,

d

dt

F (t)

f (t)
= f 2(t) − F(t)f ′(t)

f 2(t)
≤ s − τ ,

from which one infers

F(t) ≤ (s − τ)tf (t) for any t ≥ 0 ,

a Ambrosetti-Rabinowitz type condition. The upper bound in (f3) is fulfilled by nonlinear-

ities of the kind t �→ etα with α > 1, in particular by the critical growth t �→ et
2

2−s ;
(iii) Assumption (f4) requires that the function f grows exponentially at infinity. Moreover, 

from (f4) one may deduce that for any ε > 0 there exists Mε such that for t ≥ Mε

F(t) ≤ εtf (t) . (2.2)

Indeed, there exists Nε > 0 such that d
ds

F (s)
f (s)

< ε
2 for all s > Nε , and integrating over [Nε, t]

one gets

F(t)

f (t)
− F(Nε)

f (Nε)
=

tˆ

Nε

d

ds

F (s)

f (s)
ds <

ε

2
(t − Nε) .

Then (2.2) follows, by restricting to t > Mε ≥ Nε , where Mε is chosen such that F(Nε)
f (Nε)

−
εNε < ε Mε;
2
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(iv) (f5) is a condition about middle-range values of f (t), since by (f4) it is automatically ver-
ified at infinity. It can be related to the De Figueiredo-Miyagaki-Ruf condition [22], and is 
crucial in order to estimate the mountain pass level and gain compactness, see Lemma 5.5. 
We point out that the fractional analogue of the Moser sequence, usually exploited to esti-
mate the mountain pass level, is here spoiled by the fact that it is not known whether the 
value α∗ coincides with αs,2 in Proposition 2.1. Assumption (f5), combined with the choice 
of a simple fixed test function, which allows explicit computations of its seminorm, will 
enable us to give an explicit estimate of the mountain pass level.

(v) Finally let us give an example of nonlinearity satisfying (f1)–(f5). Let A, B, t∗ > 0 and 
define

F(t) =
⎧⎨⎩At

2
s
+1 for t ∈ (0, t∗),

B et
2

2−s for t ≥ t∗,

and extend it by 0 on R−. Note that F has critical growth at ∞, and that assumptions (f1) 
and (f2) are readily satisfied for any choice of the constants. Moreover, for t ∈ (0, t∗) one 
has

F(t)f ′(t)
f 2(t)

= 1 − s

2 + s
,

which is bigger than or equal to 1 − s + τ , e.g. with the choice τ = τ(s) := s(1+s)
2+s

. Hence 
the lower bound in (f3) is satisfied on (0, t∗). Assumption (f4) is also easily verified, since

lim
t→+∞

F(t)f ′(t)
f 2(t)

= lim
t→+∞

(
1 + s

2
t−

2
2−s

)
= 1 .

By the same computation we also note that the lower bound in (f3) is trivially satisfied on 
(t∗, +∞), whereas the upper bound in (f3) holds, provided

s

2
t−

2
2−s < μ(s, τ (s)) ,

with μ(s, τ) given in Lemma 5.8, that is, for t > t∗ where

t∗ :=
(

s

2μ(s, τ (s))

) 2−s
2

.

In order for f = F ′ to be continuous on R, one needs to impose a linear dependence be-
tween the constants A and B . Finally, (f5) is also satisfied, provided one chooses A and B
large enough. This is a working example, however, let us point out that these restrictions on 
constants can be relaxed.

For s ∈ (0, 1) and � ⊂R2 we define

W
s, 2

s (�) :=
{
u ∈ Ws, 2

s (R2) |u| 2 ≡ 0
}

.
0 R \�
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The subspace of radial functions in Ws, 2
s (R2) is defined as

W
s, 2

s
r (R2) := {u ∈ Ws, 2

s (R2) | u(x) = u(|x|)} .

The following compactness result due to Lions [31] will be crucial in our analysis.

Lemma 2.4. Let s ∈ (0, 1]. Then W
s, 2

s
r (R2) is compactly embedded in Lq(R2) for any 2

s
< q <

∞.

Let us also recall the well-known Hardy-Littlewood-Sobolev inequality, see [30, Theorem 
4.3], which will be frequently used throughout the paper.

Lemma 2.5. (Hardy-Littlewood-Sobolev inequality) Let N ≥ 1, q, r > 1, and α ∈ (0, N) with 
1
q

+ α
N

+ 1
r

= 2. There exists a constant C = C(N, α, q, r) such that for all f ∈ Lq(RN) and 

h ∈ Lr(RN) one has

ˆ

RN

(
1

|x|α ∗ f (x)

)
h(x)dx ≤ C‖f ‖q‖h‖r .

The following technical lemma will be useful in the sequel,

Lemma 2.6. Assume u ∈ Ws, 2
s (R2) and (f1)-(f2) hold. Then for any 0 < κ ≤ 1 we have

ˆ

R2

F(u(y))

|x − y|κ dy − 1

|x|κ
ˆ

R2

F(u(y))dy → 0 , as |x| → +∞ .

Proof. First, we have F(u) ∈ L1(R2) by Remark 2.3(i) and Proposition 2.1. Consider now |x| ≥
1 and note that

ˆ

R2

F(u(y))

|x − y|κ dy − 1

|x|κ
ˆ

R2

F(u(y))dy =
ˆ

R2

(
1

|x − y|κ − 1

|x|κ
)

F(u(y))dy .

For x, y ∈ R2 define g(x, y) := 1
|x−y|κ − 1

|x|κ . Observe that g(x, y) → 0 as |x| → +∞ for every 

y ∈R2. Moreover,

−1 ≤ g(x, y)χ|x−y|≥ 1
2
(y) ≤ 2κ for x, y ∈R2 with |x| ≥ 1 .

Hence, Lebesgue’s theorem implies that

ˆ

|y−x|≥ 1
2

g(x, y)F (u(y))dy → 0 as |x| → +∞ .

Moreover, we have
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0 ≤ 1

|x|κ
ˆ

|x−y|≤ 1
2

F(u(y))dy ≤ 1

|x|κ
ˆ

R2

F(u(y))dy → 0 as |x| → +∞ ,

and

0 ≤
ˆ

|x−y|≤ 1
2

1

|x − y|κ F (u(y))dy

≤
( ˆ

B 1
2
(x)

1

|y|κσ
dy

) 1
σ
(ˆ

R2

F(u(y))σ
′
dy

) 1
σ ′

→ 0 as |x| → +∞ ,

(2.3)

by Theorem 2.1, for σ > 1 large enough and σ ′ = σ
σ−1 . Based on the above estimates, we infer 

that ˆ

R2

g(x, y)F (u(y))dy → 0 as |x| → ∞ . �

3. On the relationship between the nonlocal Choquard equation and the 
Schrödinger-Poisson system: proof of Theorem 1.4

It is commonly used in the literature [2,11,15,16,23] that solutions u of the Choquard equation 
(Chs) correspond to solutions (u, φ) of the Schrödinger-Poisson system (SPs) by formally invert-
ing the Laplace operator in the second equation and considering the only solution φ given by the 
convolution of the nonlinearity with the Riesz kernel, namely φ = φu := IN ∗ F(u). However, 
the Sobolev limiting case N = sp is affected by regularity issues which have roots in the lack of 
regularity of the Fourier transform, see [27]. This turns out to be a quite delicate situation which 
we redeem in Theorem 1.4 where we settle a suitable functional framework in order to obtain 
solutions for (SPs) from solutions of the Choquard equation (Chs). The complete equivalence 
between (SPs) and (Chs) is still open even in the non fractional case, see [8].

As a first step to prove Theorem 1.4, we show that solutions to (Chs) are bounded by means 
of a Nash-Moser iteration argument in the spirit of [3,34]. This fact, together with a suitable 
polynomial estimate of the decay at infinity, yields a log-weighted L1-estimate for F(u), which is 
the crucial ingredient to prove Theorem 1.4. Then, we end up with C0,ν

loc (R2) for some ν ∈ (0, 1), 
by standard regularity results. Throughout this section we assume (f1)-(f2).

Remark 3.1. Note that any nontrivial weak solution u ∈ Ws, 2
s (R2) of (Chs) is positive. Indeed, 

take u− := min{u, 0} ∈ Ws, 2
s (R2) as test function in (1.2), to get

0 =
ˆ

R2

ˆ

R2

|u(x) − u(y)| 2
s
−2(u(x) − u(y))(u−(x) − u−(y))

|x − y|4 dx dy +
ˆ

R2

|u| 2
s
−2uu− dx

− 1

2π

ˆ

2

⎛⎜⎝ˆ

2

ln
1

|x − y|F(u(y))dy

⎞⎟⎠f (u(x))u−(x)dx
R R
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≥
ˆ

R2

ˆ

R2

|u−(x) − u−(y)| 2
s

|x − y|4 dx dy +
ˆ

R2

|u−| 2
s dx ,

which implies that u− ≡ 0. Hence, using the strong maximum principle for the p-fractional 
Laplacian [19, Theorem 1.4] we can infer that u > 0 in R2.

Lemma 3.2. Let u ∈ Ws, 2
s (R2) be a positive solution of the Choquard equation (Chs), then 

u ∈ L∞(R2).

Proof. Since f (u) ≥ 0, for a nonnegative test function ϕ ∈ Ws, 2
s (R2) we have

ˆ

R2

ˆ

R2

|u(x) − u(y)| 2
s
−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|4 dx dy +
ˆ

R2

|u| 2
s
−2uϕ dx

= 1

2π

ˆ

R2

⎛⎜⎝ˆ

R2

ln
1

|x − y|F(u(y))dy

⎞⎟⎠f (u(x))ϕ(x)dx

≤ 1

2π

ˆ

R2

⎛⎜⎝ˆ

R2

F(u(y))

|x − y| dy

⎞⎟⎠f (u(x))ϕ(x)dx

≤ C

ˆ

R2

f (u(x))ϕ(x)dx ,

(3.1)

where in the last inequality we have used the fact that 1
|·| ∗ F(u) is bounded, which follows 

arguing as in [1, Lemma 4.1]. For any L > 0 and γ > 1 define

ψ(t) := t (min{t,L}) 2
s
(γ−1), �(t) :=

tˆ

0

(ψ ′(τ ))
s
2 dτ, K(t) := s

2
|t | 2

s (3.2)

for t > 0. By Jensen’s inequality it is possible to show that

|�(a) − �(b)| 2
s ≤ K ′(a − b)(ψ(a) − ψ(b)) (3.3)

holds for any a, b ∈R+. Therefore

|�(u(x)) − �(u(y))| 2
s ≤ |u(x) − u(y)| 2

s
−2(u(x) − u(y))[u(x)uL(x)

2
s
(γ−1)

− u(y)uL(y)
2
s
(γ−1)] ,

where uL := min{u, L}. Taking ψ(u) = uu
2
s
(γ−1)

as test function in (3.1), we obtain
L
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[�(u)]
2
s

s, 2
s

≤
ˆ

R2

ˆ

R2

|u(x) − u(y)| 2
s
−2(u(x) − u(y))[u(x)uL(x)

2
s
(γ−1) − u(y)uL(y)

2
s
(γ−1)]

|x − y|4 dx dy

≤ C

ˆ

R2

f (u)uu
2
s
(γ−1)

L dx −
ˆ

R2

|u| 2
s u

2
s
(γ−1)

L dx .

(3.4)

Recall that from (f1)-(f2) we have that for any ε > 0, there exists Cε > 0 such that

f (u) ≤ ε|u| 2
s
−1 + Cε|u| 2

s
−1
2,s (α∗|u| 2

2−s ) .

Hence, from (3.4) we infer

[�(u)]
2
s

s, 2
s

≤ (Cε − 1)

ˆ

R2

|u| 2
s u

2
s
(γ−1)

L dx + Cε

ˆ

R2


2,s (α∗|u| 2
2−s )|u| 2

s u
2
s
(γ−1)

L dx

≤ (Cε − 1)

ˆ

R2

|u| 2
s u

2
s
(γ−1)

L dx

+ Cε

(ˆ

R2

|u| 2p
s u

2p
s

(γ−1)

L dx

) 1
p
(ˆ

R2


2,s (α∗p′|u| 2
2−s )dx

) 1
p′

≤ (Cε − 1)‖uu
γ−1
L ‖

2
s
2
s

+ Cε‖uu
γ−1
L ‖

2
s
2p
s

,

(3.5)

for p > 1 and p′ = p
p−1 by (f2) and Theorem 2.1. By (3.3) one has �(u) ≤ uu

γ−1
L . Moreover,

�(u) ≥ 1

γ
uu

γ−1
L ,

due to the definition of �. Indeed, on the one hand if u(x) < L one has ψ(u)(x) = u(x)
2
s
(γ−1), 

thus

�(u)(x) =
(

2

s
(γ − 1) + 1

) s
2

u(x)ˆ

0

tγ−1dt =
( 2

s
(γ − 1) + 1

) s
2

γ
u(x)γ ≥ 1

γ
u(x)uL(x)γ−1.

On the other hand, if u(x) > L, one has

�(u)(x) =
L̂

0

(ψ ′(t))
s
2 dt +

u(x)ˆ

L

(ψ ′(t))
s
2 dt =

( 2
s
(γ − 1) + 1

) s
2

γ
Lγ + Lγ−1(u(x) − L)

≥ Lγ

+ Lγ−1

(u(x) − L) = 1
u(x)uL(x)γ−1.
γ γ γ
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Hence, taking ε = 1
2C

in (3.5) and using the Sobolev embedding Ws, 2
s (R2) ↪→ Lq(R2) with 

q >
2p
s

, one obtains

Sq

γ
2
s

‖uu
γ−1
L ‖

2
s
q ≤ C‖uu

γ−1
L ‖

2
s
2p
s

,

where Sq is the best constant of the embedding inequality (see [9] for related results). Letting 
L → +∞, we immediately deduce

‖u‖
2
s
qγ ≤ C

γ
2
s

Sq

‖u‖
2
s
2pγ

s

. (3.6)

Finally, buying the line of [34, Lemma 21], we get ‖u‖∞ ≤ C. �
Next, in order to prove a crucial decay estimate, let us recall a standard lemma from [14, 

Lemma 5.1].

Lemma 3.3. For G(t) = |t | 2
s
−2t , it is well-known that by the mean value theorem, we have

G(t2) − G(t1) = G′(ξ)(t2 − t1)

for some ξ ∈ [t1, t2]. Then there exists a constant c0 > 0 independent of t1 and t2 such that

|ξ | ≥ c0 max{|t1|, |t2|} .

Lemma 3.4. Let u ∈ Ws, 2
s (R2) be a positive solution of the Choquard equation (Chs). Then 

there exist C, R > 0 for which

u(x) ≤ C

1 + |x| 7s
2(2−s)

for all |x| > R .

Proof. We first claim that

ˆ

R2

ln
1

|x − y|F(u(y))dy ≤ ln
2

|x|
ˆ

{
|y|≤ |x|

2

} F(u(y))dy + C0, (3.7)

where C0 is a constant independent of x. Indeed, denoting by

� :=
{
(x, y) ∈R2 : |y| > |x|

2
, |x − y| < 1

}
,

we have
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ˆ

R2

ln
1

|x − y|F(u(y))dy ≤
ˆ

|y|≤ |x|
2

ln
2

|x|F(u(y))dy +
ˆ

�

ln
1

|x − y|F(u(y))dy

≤
ˆ

|y|≤ |x|
2

ln
2

|x|F(u(y))dy + C

ˆ

|x−y|<1

ln
1

|x − y| dy ,

with C depending on ‖u‖∞, from which (3.7) follows. Hence, there exists R1 > 0 such that

ˆ

R2

ln
1

|x − y|F(u(y))dy < 0 for all |x| ≥ R1 .

Hence, taking ϕ ∈ Ws, 2
s (R2) such that ϕ ≥ 0 and suppϕ ⊂ BR1(0)c , we deduce

ˆ

R2

ˆ

R2

|u(x) − u(y)| 2
s
−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|4 dx dy +
ˆ

R2

|u| 2
s
−2uϕ dx

= 1

2π

ˆ

R2

⎛⎜⎝ˆ

R2

ln
1

|x − y|F(u(y))dy

⎞⎟⎠f (u(x))ϕ(x)dx ≤ 0.

(3.8)

Defining now w(x) := (
1 + |x| 7s

2(2−s)
)−1, by [20, Lemma 7.1] there exists R2 > 0 such that

|(−�)s2
s

w(x)| ≤ c

|x|4 for |x| ≥ R2

and hence

(−�)s2
s

w + |w| 2
s
−2w ≥ 0, for |x| ≥ R̃2 (3.9)

for a suitable R̃2 ≥ R2. Note that (−�)s2
s

w is pointwisely well-defined since w ∈ C
1,1
loc (R2) ∩

L
s, 2

s
(R2). Since u ∈ L∞(R2) by Lemma 3.2, one may find C1 > 0, depending on ‖u‖∞, for 

which

ψ(x) := u(x) − C1w(x) ≤ 0 for |x| = R3 := max{R1, R̃2}.

Defining ψ̃ := ψχR2\BR3 (0) and taking ψ̃+ = max{ψ̃, 0} ∈ W
s, 2

s

0 (BR3(0)c) as a test function in 
(3.8), and noting that by homogeneity the inequality (3.9) holds also for w̄ := C1w, we deduce 
that

ˆ

2

ˆ

2

h(x, y)(ψ̃+(x) − ψ̃+(y))

|x − y|4 dx dy +
ˆ

2

(|u| 2
s
−2u − |w̄| 2

s
−2w̄

)
ψ̃+ dx ≤ 0 , (3.10)
R R R
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where

h(x, y) := |u(x) − u(y)| 2
s
−2(u(x) − u(y)) − |w̄(x) − w̄(y)| 2

s
−2(w̄(x) − w̄(y)).

Note that by Lemma 3.3 one has

ˆ

R2

ˆ

R2

h(x, y)(ψ̃+(x) − ψ̃+(y))

|x − y|4 dx dy

≥
ˆ

R2

ˆ

R2

|h̄(x, y)| 2
s
−2(ψ̃(x) − ψ̃(y)))(ψ̃+(x) − ψ̃+(y))

|x − y|4 dx dy ≥ 0 ,

where h̄(x, y) lies in the segment [(u(x) − u(y)), (w̄(x) − w̄(y))]. By (3.10) this implies

0 ≤
ˆ

BR3 (0)c

(|u| 2
s
−2u − |w̄| 2

s
−2w̄

)
(u − w̄)+dx ≤ 0 .

As a consequence we get

u(x) ≤ C1w(x) ≤ C1

1 + |x| 7s
2(2−s)

for |x| ≥ R3 ,

as desired. �
Lemma 3.5. Let u ∈ Ws, 2

s (R2) be a positive solution of (Chs). Then

ˆ

R2

ln(e + |x|)F (u)dx < +∞ . (3.11)

Proof. Lemma 3.4 and (f2) imply that there exists R > 0 for which

F(u(x)) ≤ C
[
1 + |x| 7s

2(2−s)

]− 2
s

as |x| > R. Therefore, since ‖u‖∞ ≤ C by Lemma 3.2, one has

ˆ

R2

ln(e + |x|)F (u)dx =
ˆ

|x|<R

ln(e + |x|)F (u)dx +
ˆ

|x|≥R

ln(e + |x|)F (u)dx

≤ C

ˆ

|x|<R

ln(e + |x|)dx + C

ˆ

|x|≥R

ln(e + |x|)
[
1 + |x| 7s

2(2−s)

]− 2
s

dx

≤ C + C

ˆ
|x| · |x|− 7

2−s dx < +∞ . �

|x|≥R
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We are now in the position to prove Theorem 1.4.

Proof of Theorem 1.4. We already proved that u ∈ L∞(R2) in Lemma 3.2. To show that φu ∈
L 1

2
(R2) we compute as follows:

2π

ˆ

R2

|φu(x)|
1 + |x|3 dx ≤

ˆ

R2

F(u(y))

⎛⎜⎝ˆ

R2

∣∣∣∣ln(
1

|x − y|
)∣∣∣∣ 1

1 + |x|3 dx

⎞⎟⎠dy

≤
ˆ

R2

F(u(y))

⎛⎜⎝ ˆ

|x−y|>1

ln |x − y|
1 + |x|3 dx +

ˆ

|x−y|≤1

ln
1

|x − y| dx

⎞⎟⎠dy

≤
ˆ

R2

F(u(y))dy

ˆ

R2

ln(1 + |x|)
1 + |x|3 dx +

ˆ

R2

ln(1 + |y|)F (u(y))dy

ˆ

R2

dx

1 + |x|3

+ ‖F(u)‖L1(R2)‖ ln(·)‖L1(B1(0)) < +∞ ,

using the elementary estimate ln |x − y| ≤ ln(1 + |x|) + ln(1 + |y|) for |x − y| > 1, and 
Lemma 3.5.

In order to show that (u, φu) solves (SPs), we follow the approach of [8, Theorem 2.1]. By 
[27, Lemma 2.3] the function

ṽu(x) := 1

2π

ˆ

R2

ln

(
1 + |y|
|x − y|

)
F(u(y))dy

belongs to H 1
loc(R

2) and solves −�ṽu = F(u) in R2 in the sense of Definition 1.1. Moreover, 
by [27, Lemma 2.4] we know that all such solutions of −�φ = F(u) in R2 are of the form 
φ = ṽu +p with p polynomial of degree at most one. We aim to prove that φu solves the Poisson 
equation in (SPs) by showing that ̃vu − φu is constant. Indeed,

ṽu(x) − φu(x) = 1

2π

ˆ

R2

(
ln

(
1 + |y|
|x − y|

)
− ln

(
1

|x − y|
))

F(u(y))dy

= 1

2π

ˆ

R2

ln(1 + |y|)F (u(y))dy < +∞

by Lemma 3.5. Finally, we prove the logarithmic behaviour (1.3) of φu at ∞ in the spirit of [15, 
Proposition 2.3 (ii)]. One has

2πφu(x) + ln |x|
ˆ

R2

F(u(y))dy =
ˆ

R2

ln
|x|

|x − y|F(u(y))dy =: −
ˆ

R2

l(x, y)F (u(y))dy ,

where l(x, y) := ln |x−y|
|x| . Note that for |x| → +∞ one has l(x, y) → 0 for any fixed y ∈R2. Let 

now |x| > 1, then if |x − y| ≥ 1 one has
2
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ln
1

2
≤ ln

1

2
− ln

1

|x| ≤ l(x, y)χ|x−y|≥ 1
2
(y) ≤ ln

( |x| + |x||y|
|x|

)
≤ ln(1 + |y|) .

This yields∣∣∣∣∣∣∣∣−
ˆ

|x−y|≥ 1
2

l(x, y)F (u(y))dy

∣∣∣∣∣∣∣∣ ≤
ˆ

R2

max {ln 2, ln(1 + |y|)}F(u(y))dy

≤ ‖F(u)‖L1(R2) ln 2 +
ˆ

R2

ln(1 + |y|)F (u(y))dy < +∞ ,

by Lemma 3.5. By the dominated convergence theorem, we infer

ˆ

|x−y|≥ 1
2

l(x, y)F (u(y))dy → 0 as |x| → +∞ . (3.12)

On the other hand, recalling that |x| > 1, in the case |x − y| ≤ 1
2 , we have |y| ≥ |x|

2 , therefore

0 ≤
ˆ

|x−y|≤ 1
2

ln |x|F(u(y))dy ≤
ˆ

R2\B |x|
2

(0)

ln(2(1 + |y|))F (u(y))dy → 0

as |x| → +∞ for the same reason. Moreover, by (f2) and Theorem 2.1 there exists β > 1 for 
which F(u) ∈ Lβ(R2), and we have that

0 ≤ −
ˆ

|x−y|≤ 1
2

ln |x − y|F(u(y))dy =
ˆ

B 1
2
(0)

− ln |z|F(u(x − z))dz

≤ ‖ ln(·)‖
Lβ′

(B 1
2
(0))

‖F(u)‖Lβ(B 1
2
(x)) → 0

as |x| → +∞. Eventually we conclude that also

ˆ

|x−y|≤ 1
2

l(x, y)F (u(y))dy → 0

as |x| → +∞, which together with (3.12) implies (1.3). �
Finally, we prove that solutions of (Chs) are Hölder continuous. Following [21,28], for all 

measurable u : R2 → R, we define its 
(
s, 2

s

)
-non-local tail centred at x ∈ R2 with radius R > 0

as
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Tail(u;x,R) := R2

⎛⎜⎝ ˆ

R2\BR(x)

|u(y)| 2
s
−1

|x − y|4 dy

⎞⎟⎠
s

2−s

.

Lemma 3.6. Let u ∈ Ws, 2
s (R2) be a positive solution of (Chs), then u ∈ Cν

loc(R
2) for some ν ∈

(0, 1).

Proof. First, as in the proof of Lemma 3.2, one has (−�)s2
s

u ≤ C̄ weakly in R2 for some constant 

C̄ > 0. To prove the weak bound from below, take a test function ϕ ≥ 0 and estimate

ˆ

R2

ˆ

R2

|u(x) − u(y)| 2
s
−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|4 dx dy +
ˆ

R2

|u| 2
s
−2uϕ dx

= 1

2π

ˆ

R2

⎛⎜⎝ˆ

R2

ln
1

|x − y|F(u(y))dy

⎞⎟⎠f (u(x))ϕ(x)dx

≥ − 1

2π

ˆ

|x−y|≥1

ˆ

R2

ln |x − y|F(u(y))f (u(x))ϕ(x)dx dy

≥ − 1

2π

ˆ

R2

ˆ

R2

(ln(1 + |x|) + ln(1 + |y|))F (u(y))f (u(x))ϕ(x)dx dy.

(3.13)

Since u ∈ L∞(R2) and by the decay estimate of Lemma 3.4 we have

ˆ

R2

ˆ

R2

ln(1 + |x|)F (u(y))f (u(x))ϕ(x)dx dy

≤ C

ˆ

R2

ln(1 + |x|)ϕ(x)(
1 + |x| 7s

2(2−s)

) 2
s
−1

dx

ˆ

R2

dy(
1 + |y| 7s

2(2−s)

) 2
s

≤ C

ˆ

R2

ln(1 + |x|)ϕ(x)

1 + |x| 7
2

dx

ˆ

R2

dy

1 + |y| 7
2−s

≤ C

ˆ

R2

ϕ ,

and analogously

ˆ

R2

ˆ

R2

ln(1 + |y|)F (u(y))f (u(x))ϕ(x)dx dy ≤ C

ˆ

R2

ϕ(x)

1 + |x| 7
2

dx

ˆ

R2

ln(1 + |y|)
1 + |y| 7

2−s

dx ≤ C

ˆ

R2

ϕ.

Since 
´
R2 |u| 2

s
−2uϕ ≤ C

´
R2 ϕ, this yields (−�)s2

s

u ≥ −C weakly. Finally, Tail(u; x, R) is 

bounded uniformly in (x, R), since
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Tail(u;x,R) ≤ R2‖u‖∞

⎛⎜⎝ ˆ

R2\BR(0)

dy

|y|4

⎞⎟⎠
s

2−s

≤ C . (3.14)

Then, by [28, Corollary 5.5] there exists a universal constant C̃ and ν ∈ (0, 1) such that for all 
x0 ∈R2 one has

[u]Cν(BR(x0)) ≤ C̃R−ν
(
(C̄R2)

s
2−s + ‖u‖L∞(B2R(x0)) + Tail(u;x0,2R)

)
≤ C(R)

with C(R) independent of the choice of x0. This readily implies u ∈ Cν
loc(R

2). �
4. Symmetry of positive solutions: proof of Theorem 1.5

As a consequence of Theorem 1.4, we have that solutions u of (Chs) (which are positive, see 
Remark 3.1) correspond to solutions (u, φ) of (SPs) which enjoy the following

u ∈ L∞(R2) and φ(x) = φu(x) = (I2 ∗ F(u)) (x) → −∞ as |x| → +∞. (4.1)

Next we are going to prove Theorem 1.5 and for this purpose we rely on the method of moving 
planes, which has been adapted to the p-fractional context by Chen and Li in [14], provided the 
operator (−�)s2

s

is pointwisely defined. For this reason we require u ∈ C
1,1
loc (R2) ∩ Ws, 2

s (R2), 

see [14, Lemma 5.2] and also [43].
For β ∈R, let us set

�β := {x ∈ R2 : x1 < β} and ∂�β = {x ∈ R2 : x1 = β}.

Moreover, for any x ∈ R2, denote by xβ the reflection of x with respect to ∂�β , that is xβ =
(2β − x1, x2). Set also

uβ(x) := u(xβ) and φβ(x) := φ(xβ) for x ∈ R2.

Note that φ is a continuous function on R2 by (f1) and Lemma 3.4. Defining

uβ := uβ − u and φβ := φβ − φ ,

the following holds

(−�)s2
s

uβ − (−�)s2
s

u + |uβ | 2
s
−2uβ − |u| 2

s
−2u = φβf (uβ) + φhβuβ, x ∈ �β, (4.2)

where

hβ(x) :=
{

f (uβ(x))−f (u(x))
uβ(x)

, uβ(x) �= 0,

f ′(u(x)), u (x) = 0.
β
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Recalling that f ∈ C1(R), there exists C = C(u) > 0 such that ‖hβ‖L∞(�β) ≤ C for any β ∈ R. 
Moreover,

−�φβ = Kβ(x)uβ, x ∈ �β, (4.3)

where

Kβ(x) :=
{

F(uβ(x))−F(u(x))
uβ(x)

, uβ(x) �= 0,

f (u(x)), uβ(x) = 0.

From the definition of φ, we deduce that

φβ(x) =
ˆ

�β

ln
|x − yβ |
|x − y| Kβ(y)uβ(y)dy . (4.4)

Since |x−yβ |
|x−y| > 1 for any x, y ∈ �β , we have φβ ≥ 0 in �β if uβ ≥ 0 in �β for every β ∈ R. In 

what follows, for a function v we denote by v− := min{v, 0} its negative part. Notice that φ−
is a nonpositive function with this convention. Actually we have the following lemma which is 
inspired by [14, Theorem 2.1].

Lemma 4.1. If β ∈ R is such that uβ ≥ 0 in �β , then also φβ ≥ 0 on �β . Furthermore, either 
uβ ≡ 0 ≡ φβ or uβ > 0, φβ > 0 on �β .

Proof. From the expression of φβ in (4.4) we know that uβ ≥ 0 in �β implies φβ ≥ 0 in �β . In 
particular, φβ > 0 in �β if uβ �≡ 0. Conversely, if φβ �≡ 0, then also uβ �≡ 0 again using (4.4). We 
claim:

uβ > 0 for x ∈ �β . (4.5)

Indeed, if not, there exists x0 ∈ �β such that uβ(x0) = min�β uβ = 0. Let G(t) = |t | 2
s
−2t , then 

G(t) is a strictly increasing function, and G′(t) = ( 2
s

− 1)t
2
s
−2 ≥ 0. On the one hand, a direct 

computation using the definition of the (s, 2
s
)-fractional operator yields

(−�)s2
s

uβ(x0) − (−�)s2
s

u(x0) + |uβ(x0)| 2
s
−2uβ(x0) − |u(x0)| 2

s
−2u(x0)

= C · PV

ˆ

R2

G(uβ(x0) − uβ(y)) − G(u(x0) − u(y))

|x − y|4 dy

= C · PV

ˆ

�β

G(uβ(x0) − uβ(y)) − G(u(x0) − u(y))

|x − y|4 dy

+ C · PV

ˆ

�

G(uβ(x0) − u(y)) − G(u(x0) − u(yβ))

|x − yβ |4 dy (4.6)
β
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= C · PV

ˆ

�β

[
1

|x − y|4 − 1

|x − yβ |4
](

G(uβ(x0) − uβ(y)) − G(u(x0) − u(y))
)

dy

+ C · PV

ˆ

�β

G′(ξ(y)) + G′(η(y))

|x − y|4 uβ(x0)dy

= −C · PV

ˆ

�β

[
1

|x − y|4 − 1

|x − yβ |4
]
G′(θ(y))uβ(y)dy ≤ 0 ,

where ξ(y) lies between uβ(x0) − uβ(y) and u(x0) − uβ(y), η(y) between uβ(x0) − u(y) and 
u(x0) − u(y), and θ(y) between uβ(x0) − uβ(y) and u(x0) − u(y). Here we have used the mean 
value theorem in the third and fourth identities, and the fact that

1

|x − y|4 >
1

|x − yβ |4 , ∀x, y ∈ �β.

On the other hand, by assumption (f1) and since wβ(x0) > 0, observe that

φβ(x0)f (uβ(x0)) + φ(x0)hβ(x0)uβ(x0) = φβ(x0)f (uβ(x0)) > 0 ,

which implies by (4.2) that

(−�)s2
s

uβ(x0) − (−�)s2
s

u(x0) + |uβ(x0)| 2
s
−2uβ − |u(x0)| 2

s
−2u(x0) > 0 , (4.7)

which contradicts (4.6). �
Let us next recall a maximum principle for the p-fractional laplacian and a key boundary 

estimate lemma for anti-symmetric functions, both established in [14]. These results play an 
important role in carrying out the method of moving planes.

Lemma 4.2 (A maximum principle for anti-symmetric functions). Let � be a bounded domain in 
�β . Assume that u ∈ C

1,1
loc (R2) ∩ Ws, 2

s (R2). If

{
(−�)s2

s

uβ(x) ≥ (−�)s2
s

u(x) x ∈ �,

uβ(x) ≥ u(x) x ∈ �β \ �,
(4.8)

then uβ(x) := uβ(x) − u(x) ≥ 0 in �. If uβ = 0 at some point in �, then uβ(x) = 0 a.e. x ∈ R2. 
These conclusions hold for an unbounded region � if we further assume that

lim|x|→+∞uβ(x) ≥ 0 .

Lemma 4.3 (A key boundary estimate). Assume that uβ0 > 0 for x ∈ �β0 . Suppose βk → β0, and 
xk ∈ �β , such that
k
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uβk
(xk) = min

�βk

uβk
≤ 0 and xk → x0 ∈ ∂�β0 .

Let δk := dist(xk, ∂�βk
) ≡ |βk − xk

1 |. Then

lim sup
δk→0

1

δk

{
(−�)s2

s

uβ(xk) − (−�)s2
s

u(xk)

}
< 0 .

Lemma 4.4. There exists β < 0 such that

uβ(x) ≥ 0, for all x ∈ �β . (4.9)

Proof. Note that u satisfies (4.2). Suppose on the contrary that (4.9) is violated. Then, there 
exists β0 < 0 such that for all β < β0 one is always able to find x∗ ∈ �β for which

uβ(x∗) = min
�β

uβ < 0

holds First, observe that

0 ≤ ln
|x∗ − yβ |
|x∗ − y| ≤ ln

(
1 + |y − yβ |

|x∗ − y|
) ≤ |y − yβ |

|x∗ − y| = 2(β − y1)

|x∗ − y| (4.10)

for any x, y ∈ �β . Set

Mβ := {u ∈ �β : uβ < 0} .

Recalling that, by assumption (f1), Kβ is non-negative function. Based on the above facts, we 
deduce from the expression of φβ in (4.4) that

φβ(x∗) :=
ˆ

�β

ln
|x∗ − yβ |
|x∗ − y| Kβ(y)uβ(y)dy

≥ uβ(x∗)
ˆ

Mβ

2(β − y1)

|x∗ − y| Kβ(y)dy

≥ uβ(x∗)
ˆ

Mβ

2(β − y1)

|x∗ − y| f (u(y))dy

≥ uβ(x∗)
ˆ

Mβ∩{|x∗−y|}>1

2|y|
|x∗ − y|f (u(y))dy

+ uβ(x∗)
ˆ

M ∩{|x −y|}≤1

2(β − y1)

|x∗ − y| f (u(y))dy (4.11)
β ∗
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≥ uβ(x∗)
ˆ

�β

2|y|f (u(y))dy

+ uβ(x∗)
( ˆ

{|x∗−y|≤1}

dy

|x∗ − y| 3
2

) 2
3
(ˆ

�β

|2(β − y1)f (u(y))|3 dy

) 1
3

=: uβ(x∗)cβ .

It is easy to check that cβ is finite and cβ → 0 as β → −∞. Indeed |y|f (u) ∈ L1(R2) by (f2) 
by Theorem 2.1, and the second integral is finite. Moreover, for |β| large enough in B|β|(0)c one 

has |u(x)| ≤ C
(

1 + |x| 7s
2(2−s)

)
by Lemma 3.4, and using (f1) we obtain

ˆ

�β

|2(β − y1)f (u(y))|3dy ≤ C

ˆ

B|β|(0)c

|β − y1|3|y| 21
2 dy ≤ Cβ− 11

2 → 0 as β → −∞ .

Moreover, by assumption (f1), for any fixed ε > 0 and β sufficiently negative,

f (uβ(x∗)) ≤ f (u(x∗)) ≤ ε|u(x∗)| 2
s
−2u(x∗) . (4.12)

Thanks to (4.1) and the fact that hβ is a non-negative function, for sufficiently negative β ,

φ(x∗)hβ(x∗)uβ(x∗) ≥ 0 . (4.13)

Combining (4.11), (4.12), and (4.13) yields

φβ(x∗)f (uβ(x∗)) + φ(x∗)hβ(x∗)uβ(x∗) ≥ cβ |u(x∗)| 2
s
−2u(x∗)uβ(x∗) . (4.14)

It follows from Lemma 3.3 that there exists co > 0 such that

|uβ(x∗)| 2
s
−2uβ(x∗) − |u(x∗)| 2

s
−2u(x∗) ≥ co|u(x∗)| 2

s
−2uβ(x∗) . (4.15)

By using (4.14) and (4.15) in (4.2) and β sufficiently negative so that cβu(x∗) < co, we get

(−�)s2
s

uβ(x∗) − (−�)s2
s

u(x∗) > 0 . (4.16)

Next, similar computations as in (4.6) yield
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(−�)s2
s

uβ(x∗) − (−�)s2
s

u(x∗)

= C · PV

ˆ

�β

[
1

|x − y|4 − 1

|x − yβ |4
](

G(uβ(x∗) − uβ(y)) − G(u(x∗) − u(y))
)

dy

+ C · PV

ˆ

�β

G′(ξ(y)) + G′(η(y))

|x − y|4 uβ(x∗)dy

≤ C · PV

ˆ

�β

[
1

|x − y|4 − 1

|x − yβ |4
](

G(uβ(x∗) − uβ(y)) − G(u(x∗) − u(y))
)

dy .

(4.17)

Since G(t) = |t | 2
s
−2t is a strictly increasing function, and

uβ(x∗) − uβ(y) − u(x∗) + u(y) = uβ(x∗) − uβ(y) ≤ 0 ,

we infer that

G(uβ(x∗) − uβ(y)) − G(u(x∗) − u(y)) ≤ 0 .

This implies by (4.17) that

(−�)s2
s

uβ(x0) − (−�)s2
s

u(x∗) ≤ 0 ,

which contradicts (4.16). �
Proof of Theorem 1.5. So far, Lemma 4.4 provides a starting point to move the plane ∂�β . 
Now, let us move the plane to the right, as long as (4.9) holds, up to some limiting position. In 
particular, define

β0 := sup{β ∈ R |uμ(x) ≥ 0, x ∈ �μ, μ ≤ β} . (4.18)

Let us divide the proof into two steps:

Step 1. Let us prove that u is symmetric about the limiting plane �β0 , that is,

uβ0 ≡ 0, for all x ∈ �β0 . (4.19)

By contradiction, assume that (4.19) is false, that is to say, uβ0(x) ≥ 0 and uβ0(x) �= 0 for some 
x ∈ �β0 . Moreover, it follows from (4.2) that

(−�)s2
s

uβ0 − (−�)s2
s

u + |uβ0 | 2
s
−2uβ0 − |u| 2

s
−2u − φhβ0uβ0 ≥ 0, x ∈ �β0 . (4.20)

So, by the strong maximum principle (see Lemma 4.2) together with the fact that the map t �→
|t | 2

s
−2t is increasing and t �→ φhβ t is linear, we have uβ > 0 and hence by (4.4) also
0 0

238



D. Cassani, Z. Liu and G. Romani Journal of Differential Equations 383 (2024) 214–269
φβ0(x) > 0, ∀x ∈ �β0

by Lemma 4.1. Now, according to the definition of β0, there exists a sequence βn ↘ β0, and 
xn ∈ �βn such that

uβn(x
n) = min

�βn

uβn < 0, and ∇uβn(x
n) = 0 . (4.21)

Remind that u ∈ C1(R2). Up to subsequence, we claim:

xn → x∗ as n → +∞ . (4.22)

Indeed, let BR := BR(0) for R > 0, by (4.1), we can choose R > 1 large enough such that

φ ≤ 0 in �βn \ BR for any βn (4.23)

and

( ˆ

|xn−y|≤1

dy

|xn − y| 3
2

) 2
3

⎛⎜⎝ ˆ

�βn\BR

|2(βn − y1)f (u(y))|3dy

⎞⎟⎠
1
3

<
co

4
,

ˆ

�βn\BR

2|y|f (u(y))dy <
co

4
in �βn \ BR for any βn ,

(4.24)

where co has appeared in (4.15). Assume by contradiction that there exists N > 0 such that 
xn ∈ �βn \ BR for all n > N . Then by (4.23) and the definition of hβ , one has for n > N

φ(xn)hβn(x
n)uβn(x

n) ≥ 0 . (4.25)

Moreover, by assumption (f1), for any fixed ε > 0, taking N large enough,

f (uβn(xn)) ≤ f (u(xn)) ≤ ε|u(xn)| 2
s
−2u(xn) (4.26)

holds for n > N . Note that for y ∈ BR one has

ln
|xn − yβn |
|xn − y| → 0 as n → ∞ .

Set

Mβn := {u ∈ �βn : uβn < 0} .

We deduce from (4.4), Lemma 3.4, (4.10), and (4.24) that for n > N with N large enough
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φβn(x
n) : =

ˆ

�βn

ln
|xn − yβn |
|xn − y| Kβn(y)uβn(y)dy

≥
ˆ

Mβn∩BR

ln
|xn − yβn |
|xn − y| Kβn(y)uβn(y)dy

+
ˆ

Mβn\BR

2(βn − y1)

|xn − y| Kβn(y)uβn(y)dy

≥ uβn(x
n)

ˆ

Mβn\BR

2(βn − y1)

|xn − y| f (u(y))dy + on(1) · uβn(x
n)

≥ uβn(x
n)

ˆ

Mβn∩{|xn−y|≥1}\BR

2|y|
|xn − y|f (u(y))dy

+ uβn(x
n)

ˆ

Mβn∩{|xn−y|≤1}\BR

2(βn − y1)

|xn − y| f (u(y))dy + on(1) · uβn(x
n)

≥ uβn(x
n)

( ˆ

|xn−y|≤1

dy

|xn − y| 3
2

) 2
3
( ˆ

�βn\BR

|2(βn − y1)f (u(y))|3dy

) 1
3

+ uβn(x
n)

ˆ

�βn\BR

2|y|f (u(y))dy + on(1) · uβn(x
n)

≥ co

2
uβn(x

n) .

(4.27)

On the other hand, as for (4.15), it follows from Lemma 3.3 that for n > N with N large enough

|u(xn)| 2
s
−2u(xn) − |uβn(xn)| 2

s
−2uβn(xn) ≥ co|u(xn)| 2

s
−2uβn(x

n) . (4.28)

Combining (4.25), (4.26) and (4.27), we have

φβn(x
n)f (uβn(xn)) + φ(xn)hβn(x

n)uβn(x
n) ≥ ε

co

2
|u(xn)| 2

s
−2u(xn)uβn(x

n) .

Take ε > 0 sufficiently small such that εu(xn) < 2, when n is large enough. Hence, from (4.28)
and (4.2) we immediately deduce that for n > N with N large enough

(−�)s2
s

uβn(x
n) − (−�)s2

s

u(xn) > 0 .

Moreover, arguing as in Lemma 4.4, one may deduce

(−�)s2 uβn(x
n) − (−�)s2 u(xn) < 0 .
s s
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This is a contradiction. Therefore, (xn)n must be bounded. The claim (4.22) holds true. Thus, by 
(4.21) we have

uβ0(x
∗) = min

�β0

uβ0 ≤ 0, and ∇uβ0(x
∗) = 0 . (4.29)

By the definitions of δn, hβn and recalling that φ is a continuous function, it follows that

lim inf
n→∞

φ(xn)hβn(x
n)uβn(x

n)

δn

= φ(x∗)hβ0(x
∗) lim inf

n→∞
uβ(xn)

δn

= 0 , (4.30)

where δn := |βn −xn
1 |. By the definitions of Kβ and Mβ , Lemma 3.4, (4.10), and (f1)-(f2), there 

exists C > 0 such that for R > 1

φβn(x
n) =

ˆ

�βn

ln
|xn − yβn |
|xn − y| Kβn(y)uβn(y)dy

≥ uβn(x
n)

( ˆ

Mβn∩BR

2(βn − y1)

|xn − y| f (u(y))dy +
ˆ

Mβn\BR

2(βn − y1)

|xn − y| f (u(y))dy

)

≥ uβn(x
n)

( ˆ

Mβn∩BR

2|y|
|xn − y|f (u(y))dy +

ˆ

Mβn\BR

2|y|f (u(y))dy

)

≥ Cuβn(x
n) .

(4.31)

Hence

lim inf
n→∞

φβn(x
n)f (uβn(xn))

δn

≥ lim inf
n→∞

Cuβn(x
n)f (uβn(xn))

δn

= 0 ,

which implies, together with (4.31) and (4.2) for β = βn and x = xn, that

lim inf
δn→0+

1

δn

{
(−�)s2

s

uβ(xn) − (−�)s2
s

u(xn)

}
≥ 0 .

This contradicts Lemma 4.3 and therefore (4.19) holds true.

Step 2. We next complete the proof showing that u is radially symmetric. Recalling Lemma 3.4
and the definition of β0 in (4.18), we first have β0 < ∞. It follows from Lemma 4.3 that β0 >

−∞. According to Lemma 4.1 and Step 1, we get uβ0 ≡ 0 and φβ0 ≡ 0. By using the same 
argument for the second coordinate direction x2, we can find β2 ∈R such that uβ2 ≡ 0 and φβ2 ≡
0. Consider β = (β0, β2), then ũ(x) := u(x − β) and φ̃(x) := φ(x − β) is a solution of equation 
(4.2). By invariance under translation, we may assume that ũ(x) = ũ(−x) and φ̃(x) := φ(−x) for 
x ∈ R2. So it is not hard to check that each symmetry hyperplane of ũ(x) and φ̃(x) contains the 
origin. Thus, repeating the above arguments for an arbitrary direction replacing the x1-coordinate 
direction, we deduce that ũ(x) and φ̃(x) are symmetric with respect to any hyperplane containing 
the origin, thus radially symmetric. Moreover, as a byproduct of the method, ũ(x) and φ̃(x) are 
also strictly decreasing in the distance from the symmetry centre. �
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5. Existence results for (Chs) by asymptotic approximation: proof of Theorem 1.6

As we mentioned in the Introduction, the applicability of variational methods to the planar 
Choquard equation (Chs) is not straightforward. Indeed (Chs) has, at least formally, a variational 
structure related to the energy functional

I (u) := s

2

ˆ

R2

ˆ

R2

|u(x) − u(y)| 2
s

|x − y|4 dx dy + s

2

ˆ

R2

|u| 2
s dx

− 1

4π

ˆ

R2

ˆ

R2

ln
1

|x − y|F(u(y))F (u(x))dx dy . (5.1)

However, this energy functional is not well-defined on the natural Sobolev space Ws, 2
s (R2) be-

cause of the presence of the convolution term and the fact that the logarithm is unbounded both 
from below and from above. To overcome this difficulty, inspired by [10,33] we will use an 
approximation technique as follows. Set

Gα(x) := |x|−α − 1

α
, α ∈ (0,1] ,

x ∈R2, and consider the modified approximating problem

(−�)s2
s

u + |u| 2
s
−2u = (Gα(·) ∗ F(u))f (u) on R2, (5.2)

with corresponding functional

Iα(u) : = s

2
‖u‖ 2

s + 1

4πα

[ˆ
R2

F(u)dx

]2

− 1

4πα

ˆ

R2

ˆ

R2

1

|x − y|α F (u(x))F (u(y))dx dy

= s

2
‖u‖ 2

s − 1

4π

ˆ

R2

(Gα(·) ∗ F(u))F (u)dx .

Unlike the original functional I , the power-type singularity in Gα can be handled by the Hardy-
Littlewood-Sobolev inequality (Lemma 2.5), and it is standard to prove that Iα is well-defined 
and C1 on Ws, 2

s (R2) with

I ′
α(u)v =

ˆ

R2

ˆ

R2

|u(x) − u(y)| 2
s
−2(u(x) − u(y))(v(x) − v(y))

|x − y|4 dx dy +
ˆ

R2

|u| 2
s
−2uv dx

− 1

2π

ˆ

2

(Gα(·) ∗ F(u))f (u)v dx
R
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for u, v ∈ Ws, 2
s (R2). In order to retrieve compactness in light of Lemma 2.4, we will restrict 

the functional Iα to the subspace W
s, 2

s
r (R2) of radially symmetric functions. Note that in the 

previous section we established symmetry of all strong positive solution for (Chs) belonging to 
C

1,1
loc (R2). Because of the singular behaviour of the (s, 2

s
)-fractional Laplacian, it seems difficult 

to prove regularity for weak solutions of (5.2) belonging to Ws, 2
s (R2), so that the assumptions 

for the symmetry result in Theorem 1.5 can be fulfilled (see [5]). However, since the problem is 
autonomous, it is natural to restrict Iα to the radial symmetric setting, by means of Palais’ Prin-

ciple of Symmetric Criticality (see [42]), for which critical points of Iα restricted to W
s, 2

s
r (R2)

are still unconstrained critical points for Iα on Ws, 2
s (R2).

In the sequel we will use some elementary estimates which we collect in the next lemma.

Lemma 5.1. Let α ∈ (0, 1]. Then,

t−α − 1

α
≥ ln

1

t
for all t ∈ (0,1] .

Moreover, for all ν > α there exists Cν > 0 such that

t−α − 1

α
≤ Cνt

−ν for all t > 0 .

Let us show that for all α ∈ (0, 1] the functional Iα enjoys a mountain-pass geometry.

Lemma 5.2. Let α ∈ (0, 1] and assume (f1)-(f3). Then, there exist constants ρ, η > 0 and e ∈
W

s, 2
s

r (R2) such that:

(i) ‖e‖ > ρ and Iα(e) < 0;

(ii) Iα|Sρ ≥ η > 0, where Sρ = {
u ∈ W

s, 2
s

r (R2) | ‖u‖ = ρ
}
.

Proof. (i) Take e0 ∈ W
s, 2

s
r (R2) such that e0(x) = 1 for x ∈ B 1

8
(0), e0(x) = 0 for x ∈R2 \B 1

4
(0). 

For t > 0 set

�(t) := 1

2

(ˆ

R2

F(te0)dx

)2

. (5.3)

By Remark 2.3-(ii) we infer that

�′(t)
�(t)

≥ 2

(s − τ)t
for all t > 0

and integrating over [1, t] we find
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�(t) ≥ �(1)t
2

s−τ = 1

2

⎛⎜⎝ˆ

R2

F(e0)dx

⎞⎟⎠
2

t
2

s−τ . (5.4)

It follows from Lemma 5.1, (5.3) and (5.4) that

Iα(te0) ≤ s

2
t

2
s ‖e0‖ 2

s − 1

4π

ˆ

R2

ˆ

R2

|x − y|−α − 1

α
F
(
te0(y)

)
F
(
te0(x)

)
dx dy

= s

2
t

2
s ‖e0‖ 2

s − 1

4π

¨

{|x−y|≤ 1
2 }

|x − y|−α − 1

α
F
(
te0(y)

)
F
(
te0(x)

)
dx dy

≤ s

2
t

2
s ‖e0‖ 2

s − 1

4π

¨

{|x−y|≤ 1
2 }

ln
1

|x − y|F
(
te0(y)

)
F
(
te0(x)

)
dx dy

≤ s

2
t

2
s ‖e0‖ 2

s − ln 2

4π

(ˆ

R2

F(te0)dx

)2

≤ s

2
t

2
s ‖e0‖ 2

s − ln 2

4π

⎛⎜⎝ˆ

R2

F(e0)dx

⎞⎟⎠
2

t
2

s−τ .

Therefore, one can find t0 > 0 large enough such that Iα(t0e0) < 0.

(ii) By Remark 2.3(i) there exists C > 0 such that

|F(u)| 4
3 ≤ C

(
|u| 8

3s + |u| 8
3s 
2,s

( 4
3α∗|u| 2

2−s
))

.

Hence, by Hardy-Littlewood-Sobolev’s inequality and Theorem 2.1, we have

ˆ

R2

ˆ

R2

1

|x − y|F(u(x))F (u(y))dx dy ≤ C

(ˆ

R2

|F(u)| 4
3 dx

) 3
2

≤ C

⎛⎜⎜⎝‖u‖
4
s
8
3s

+ ‖u‖
4
s
8
3s

p′

⎛⎜⎝ˆ

R2


2,s

( 4
3pα∗‖u‖ 2

2−s

( |u|
‖u‖

) 2
2−s )

dx

⎞⎟⎠
3

2p

⎞⎟⎟⎠
(5.5)

for some p > 1 and 1
p

+ 1
p′ = 1. By Theorem 2.1, we can find p > 1 such that the last factor is 

bounded independently of u provided ‖u‖ <
( 3

4

) 2−s
2 . From (5.5) we deduce that

Iα(u) = s

2
‖u‖ 2

s − 1

4π

ˆ

2

ˆ

2

|x − y|−α − 1

α
F(u(y))F (u(x))dx dy
R R
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≥ s

2
‖u‖ 2

s − 1

4π

¨

{|x−y|≤1}

|x − y|−α − 1

α
F(u(y))F (u(x))dx dy

≥ s

2
‖u‖ 2

s − 1

4π

¨

{|x−y|≤1}

F(u(y))F (u(x))

|x − y| dx dy

≥ s

2
‖u‖ 2

s − C(‖u‖
4
s
8
3s

+ ‖u‖
4
s
8
3s

p′).

So, let ‖u‖ = ρ > 0 be sufficiently small, and recall the embedding W
s, 2

s
r (R2) ↪→ Lt(R2) for all 

t > 2
s
, to obtain η > 0 such that Iα(u) ≥ η for any α ∈ (0, 1]. �

As a consequence of Lemma 5.1, the mountain pass level

cα := inf
γ∈�

max
t∈[0,1] Iα(γ (t)),

where

� := {γ ∈ C([0,1],Ws, 2
s

r (R2)) : γ (0) = 0, γ (1) = e} ,

turns out to be well defined. Moreover, from the Ekeland Variational Principle, the mountain pass 
geometry yields the existence of a Cerami sequence at level cα for any fixed α ∈ (0, 1], see e.g. 

[24]. Namely, there exists (uα
n)n ⊂ W

s, 2
s

r (R2) such that

Iα(uα
n) → cα and (1 + ‖uα

n‖)I ′
α(uα

n) → 0 in (Ws, 2
s (R2))′

as n → +∞. For the sake of a lighter notation, we will simply use un := uα
n .

Remark 5.3. Observe from Lemma 5.2 that there exist two constants a, b > 0 independent of α
such that a < cα < b.

The next technical Lemma will be crucial in estimating the mountain pass level cα. Let R > 0
and w̄ ∈ C(R2) be such that

w̄(x) :=

⎧⎪⎨⎪⎩
1 for |x| ≤ R

2 ,

2 − 2
R

|x| for |x| ∈ (R
2 ,R),

0 for |x| ≥ R.

(5.6)

Lemma 5.4. For all R > 0 and s ∈ (0, 1) we have w̄ ∈ W
s, 2

s
r (R2) and

‖w̄‖ 2
s ≤ πR2 (

1 + s(2 + 3s)
)

+ 4π2 (
31

s + 10
)

.

4 (2 + s)(1 + s) 2 − s 18 3
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Proof. We have

‖w̄‖
2
s
2
s

= πR2

4
+ 2π

R̂

R
2

∣∣∣∣2 − 2

R
r

∣∣∣∣ 2
s

r dr = πR2

4
+ 2π

(
2

R

) 2
s

R
2ˆ

0

y
2
s (R − y)dy

= πR2

4
+ 2π

R2

2

(
s

2 + s
− s

4 + 4s

)
= πR2

4

(
1 + s(2 + 3s)

(2 + s)(1 + s)

)
.

(5.7)

Let us now compute the seminorm of w̄. Since w̄ is radially symmetric, according to the equiv-
alent formulations of the seminorm for radial functions established in [36, Proposition 4.3], we 
have

[w̄]
2
s

s, 2
s

= 4π2

+∞ˆ

0

+∞ˆ

0

|w̄(r) − w̄(t)| 2
s rt

r2 + t2

|r2 − t2|3 dr dt

= 8π2

⎛⎜⎜⎝
R
2ˆ

0

R̂

R
2

+
R
2ˆ

0

+∞ˆ

R

+
R̂

R
2

+∞ˆ

R

⎞⎟⎟⎠ + 4π2

R̂

R
2

R̂

R
2

=: 8π2 (I1 + I2 + I3) + 4π2I4

and let us next estimate Ii , i = 1, . . .4, separately. Recalling that

d

dr

(
1

2

r2

(t2 − r2)2

)
= r

r2 + t2

(t2 − r2)3 , (5.8)

we have

I1 =
R̂

R
2

∣∣∣∣ 2

R
t − 1

∣∣∣∣ 2
s

t

⎛⎜⎝
R
2ˆ

0

r
r2 + t2

(t2 − r2)3 dr

⎞⎟⎠dt = 1

2

R̂

R
2

∣∣∣∣ 2

R
t − 1

∣∣∣∣ 2
s

t
R2

4

dt

(t − R
2 )2(t + R

2 )2

≤ R

8

(
2

R

) 2
s

R̂

R
2

∣∣∣∣t − R

2

∣∣∣∣ 2
s
−2

dt = s

4(2 − s)
.

Again using (5.8) we compute the second term I2 as

I2 =
R
2ˆ

0

r

⎛⎝ +∞ˆ

R

t
r2 + t2

(t2 − r2)3 dt

⎞⎠dr = R2

2

R
2ˆ

0

r

(R2 − r2)2 dr = 1

3
.

The third term I3 can be estimated as
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I3 =
R̂

R
2

∣∣∣∣ 2

R
r − 1

∣∣∣∣ 2
s

r

⎛⎝ +∞ˆ

R

t
r2 + t2

(t2 − r2)3 dt

⎞⎠dr

= 1

2

(
2

R

) 2
s

R̂

R
2

(R − r)
2
s r

R2

(R − r)2(R + r)2 dr

≤ 2

9
R

(
2

R

) 2
s

R̂

R
2

(R − r)
2
s
−2 dr = 4

9

s

2 − s
.

Finally, integrating by parts we get

I4 =
(

2

R

) 2
s

R̂

R
2

r

⎛⎜⎜⎝
R̂

R
2

|r − t | 2
s t

r2 + t2

(t2 − r2)3 dt

⎞⎟⎟⎠dr

=
(

2

R

) 2
s

R̂

R
2

r

[
|r − t | 2

s · 1

2

t2

(t2 − r2)2

]t=R

t= R
2

dr

+
(

2

R

) 2
s

R̂

R
2

r

s

rˆ

R
2

[
(r − t)

2
s
−1 · t2

(t2 − r2)2

]
dt dr

−
(

2

R

) 2
s

R̂

R
2

r

s

R̂

r

[
(t − r)

2
s
−1 · t2

(t2 − r2)2

]
dt dr

=: A1 + A2 − A3 .

By inspection one has A3 ≥ 0. Moreover,

A1 ≤
(

2

R

) 2
s
[ R̂

R
2

r

2
|r − R| 2

s
−2 R2

(r + R)2 dr −
R̂

R
2

r

2
|r − R

2 | 2
s
−2

1
4R2

(r + R/2)2 dr

]

≤
(

2

R

) 2
s R

2

R̂

R
2

|r − R| 2
s
−2dr = s

2 − s

and
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A2 =
(

2

R

) 2
s

R̂

R
2

r

s

( rˆ

R
2

(r − t)
2
s
−3 · t2

(t + r)2 dt

)
dr

≤
(

2

R

) 2
s R

s

R̂

R
2

(r − R
2 )

2
s
−2 dr = 2

2 − s
.

Eventually we get

[w̄]
2
s

s, 2
s

= 4π2(2I1 + 2I2 + 2I3 + I4) ≤ 4π2

2 − s

(
31

18
s + 10

3

)
. (5.9)

The desired estimate for the norm of w̄ is obtained combining (5.7) with (5.9). �
Lemma 5.5. Suppose (f1)–(f5) hold. Then cα < s

4 for all α ∈ (0, 1].

Proof. Let R ∈ (
0, 13

]
to be fixed later, and w̄ ∈ W

s, 2
s

r (R2) be as in (5.6). Define w := ‖w̄‖−1w̄. 
As in the proof of Lemma 5.2, we deduce the existence of T > 0 such that

Iα(T w) := max
t≥0

Iα(tw) ,

and therefore, since Iα is a functional of class C1, one has d
dt

∣∣
t=T

Iα(tw) = I ′
α(T w)w = 0. Since 

by definition cα ≤ Iα(T w), we aim at proving that Iα(T w) < s
4 . Suppose by contradiction that 

for all ε > 0 there exists α ∈ (0, 1] such that

Iα(T w) ≥ s

4
,

then

s

2
T

2
s ≥ s

4
+ 1

4π

ˆ

R2

(Gα(x) ∗ F(T w))F (T w)dx . (5.10)

Observe that if x, y ∈ BR(0), with R ≤ 1
3 then Gα(x − y) ≥ ln 1

|x−y| ≥ ln 3
2 > 0. Thus, since w

supported in BR(0), it follows from (5.10) that

T ≥
(

1

2

) s
2

. (5.11)

Moreover, I ′
α(T w)T w = 0 yields

T
2
s = 1

2π

ˆ

2

(Gα(x) ∗ F(T w))f (T w)T w dx . (5.12)
R
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Let us estimate from below the right-hand side. We have

ˆ

R2

(Gα(x) ∗ F(T w))f (T w)T w dx

≥
ˆ

B R
2

×B R
2

Gα(x − y)F (T w(y))f (T w(x))T w(x)dx dy

≥
ˆ

B R
2

×B R
2

ln
1

|x − y|F(T w(y))f (T w(x))T w(x)dx dy

≥ ln 3
ˆ

|y|≤ R
2

F(T w(y))dy

ˆ

|x|≤ R
2

f (T w(x))T w(x)dx

≥ ln 3

( ˆ

|x|≤ R
2

√
F(T w(x))f (T w(x))T w(x)dx

)2

(5.13)

by the Hölder inequality. Note that in BR
2
(0) one has

T w = T ‖w̄‖−1 ≥ ‖w̄‖−1

2
s
2

by (5.11). By the computations of the norm of w̄ carried out in Lemma 5.4, one has ‖w̄‖ < 1

2
s
2 T (s)

by taking R = 1
3 and

T (s) :=
(

π

18

4s2 + 5s + 2

(2 + s)(1 + s)
+ 4π2

9

31s + 60

2 − s

)− s
2

. (5.14)

Hence, by (f5) we deduce from (5.12) and (5.13) that

T
2
s ≥ β

2π
ln 3

( ˆ

|x|≤ R
2

(T w(x))
2+s
2s dx

)2

= β

2π
ln 3|BR

2
(0)|2

(
T

‖w̄‖
) 2

s
+1

= β
πR4 ln 3

32

T
2
s
+1

‖w̄‖ 2
s
+1

,

which implies

T < βT ≤ 32‖w̄‖ 2
s
+1

πR4 ln 3
≤ 32

πR4 ln 3

(
1

s

) 2
s
+1

= 24− s
2 34

π ln 3

(
1

T (s)

) 2
s
+1

, (5.15)

2 2 T (s)
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since β > 1 and taking R = 1
3 . Hence, combining (5.15) and (5.11), we infer

24− s
2 34

π ln 3

(
1

T (s)

) 2
s
+1

≥ βT ≥ β

(
1

2

) s
2

.

This is in contradiction with (f5) provided one takes

β > β0 := 24 34

π ln 3

(
1

T (s)

) 2
s
+1

. � (5.16)

The estimate of the mountain-pass level obtained in Lemma 5.5 enables us to obtain the 
following compactness results

Lemma 5.6. Assume that (f1)–(f5) hold. Let (un)n ⊂ Ws, 2
s (R2) be a Cerami sequence of Iα at 

level cα , then (un)n is bounded in Ws, 2
s (R2) with

‖un‖ 2
s <

s

τ
, (5.17)

as well as∣∣∣∣ˆ
R2

[Gα(x) ∗ F(un)]F(un)dx

∣∣∣∣ < C ,

∣∣∣∣ˆ
R2

[Gα(x) ∗ F(un)]f (un)un dx

∣∣∣∣ < C . (5.18)

Proof. Since (un)n ⊂ Ws, 2
s (R2) is a Cerami sequence, one has

s

2
‖un‖ 2

s − 1

4π

ˆ

R2

[Gα(x) ∗ F(un)]F(un)dx → cα (5.19)

and for all v ∈ Ws, 2
s (R2)

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s
−2(un(x) − un(y))(v(x) − v(y))

|x − y|4 dx dy

+
ˆ

R2

|un| 2
s
−2unv dx − 1

2π

ˆ

R2

[Gα(x) ∗ F(un)]f (un)v dx = on(1)‖v‖ .

(5.20)

Taking v = un, we get

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s

|x − y|4 dx dy +
ˆ

R2

|un| 2
s dx − 1

2π

ˆ

R2

[Gα(x) ∗ F(un)]f (un)un dx = on(1) .

(5.21)
In order to prove the boundedness of (un)n, we introduce a suitable test function as follows
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vn :=
{

F(un)
f (un)

, un > 0,

(s − τ)un, un ≤ 0,

where τ is the positive constant appearing in (f3). It is easy to check that |vn| ≤ C|un| since 
F(t) ≤ (s − τ)f (t)t by Remark 2.3(ii) and f (t) = 0 if and only if t ≤ 0. Furthermore,

ˆ

R2

ˆ

R2

|vn(x) − vn(y)| 2
s

|x − y|4 dx dy =
¨

un(x)>0;un(y)>0

∣∣∣F(un(x))
f (un(x))

− F(un(y))
f (un(y))

∣∣∣ 2
s

|x − y|4 dx dy

+ 2
¨

un(x)≤0;un(y)>0

∣∣∣(s − τ)un(x) − F(un(y))
f (un(y))

∣∣∣ 2
s

|x − y|4 dx dy

+ (s − τ)
2
s

¨

un(x)≤0;un(y)≤0

|un(x) − un(y)| 2
s

|x − y|4 dx dy

≤
ˆ

R2

ˆ

R2

(
1 − F(ξn(x,y))f ′(ξn(x,y))

f 2(ξn(x,y))

) 2
s |un(x) − un(y)| 2

s

|x − y|4 dx dy

+ 3(s − τ)
2
s

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s

|x − y|4 dx dy

≤ C

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s

|x − y|4 dx dy ,

(5.22)

by (f4), where ξn(x, y) ∈ R. Thus vn is well defined in Ws, 2
s (R2). Taking v = vn in (5.20) and 

recalling that f (t) = 0 and F(t) = 0 for any t ≤ 0, we infer

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s
−2(un(x) − un(y))(vn(x) − vn(y))

|x − y|4 dx dy + (s − τ)

ˆ

{un<0}
|un| 2

s dx

+
ˆ

R2

|un| 2
s
−2un

F(un)

f (un)
dx − 1

2π

ˆ

R2

[Gα(x) ∗ F(un)]F(un)dx = on(1)‖un‖ .

Recalling (5.19), this yields

ˆ

2

ˆ

2

|un(x) − un(y)| 2
s
−2(un(x) − un(y))(vn(x) − vn(y))

|x − y|4 dx dy
R R
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+
ˆ

R2

(s − τ)|un| 2
s dx + 2cα − s‖un‖ 2

s ≥ on(1)‖un‖ . (5.23)

Similarly to (5.22), we also obtain

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s
−2 (un(x) − un(y)) (vn(x) − vn(y))

|x − y|4 dx dy

≤
¨

un(x)>0;un(y)>0

|un(x) − un(y)| 2
s
−2 (un(x) − un(y))

(
F(un(x))
f (un(x))

− F(un(y))
f (un(y))

)
|x − y|4 dx dy

+ 2
¨

un(x)≤0;un(y)>0

|un(x) − un(y)| 2
s
−2 (un(x) − un(y))

(
(s − τ)un(x) − F(un(y))

f (un(y))

)
|x − y|4 dx dy

+
¨

un(x)≤0;un(y)≤0

(s − τ) |un(x) − un(y)| 2
s

|x − y|4 dx dy

≤(s − τ)

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s

|x − y|4 dx dy .

Combining this and (5.23) we get

τ

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s

|x − y|4 dx dy + τ

ˆ

R2

|un| 2
s dx ≤ on(1)‖un‖ + 2cα .

As a consequence, we have

‖un‖ 2
s ≤ 2

τ
cα <

s

τ
,

by (5.5), where we note that the constant on the right is independent of n and α. Finally, from 
(5.19) and (5.21) we immediately obtain (5.18). �
Remark 5.7. Thanks to the uniform boundedness of Cerami sequences of Lemma 5.6, from now 
on we can always suppose that Cerami sequences at level cα are nonnegative. Indeed, u−

n :=
min{un, 0} ∈ Ws, 2

s (R2) and thus, following the same argument used in Remark 3.1, one has

ˆ

2

ˆ

2

|u−
n (x) − u−

n (y)| 2
s

|x − y|4 dx dy +
ˆ

2

|u−
n | 2

s ≤ I ′
α(un)u

−
n ≤ ‖I ′

α(un)‖‖un‖ = on(1) ,
R R R
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since ‖un‖ ≤ C by Lemma 5.6. This implies that u−
n → 0 in Ws, 2

s (R2) as n → +∞ and there-
fore, setting u+

n := max{un, 0}, (u+
n )n is a Cerami sequence of Iα at level cα , which we will 

denote simply by (un)n.

Lemma 5.8. Suppose (f1)–(f5) hold and let (un)n be a Cerami sequence of Iα at level cα . Then 
there exists C > 0 independent of n and α such that

ˆ

R2

f (un)un dx ≤ C and
ˆ

R2

F(un)
κ dx ≤ C

for any κ ∈ [
1, 1

γs,τ

)
, where γs,τ ∈ (0, 1) is a constant depending just on s and τ .

In the proof we will use the following

Lemma 5.9. Let W ∈ [0, 1) and q > 1. Then

(1 + W)q ≤ 1 + qW max{1, (1 + W)q−1} (5.24)

and

(1 + W)q − W − 1 ≤ q!
q − �q�

W

1 − W
. (5.25)

Proof. We have

(1 + W)q = 1 + q

1+Wˆ

1

tq−1dt ≤ 1 + qW max{1, (1 + W)q−1} .

Next, let N = �q�. Hence, applying (5.24) iteratively, and from max{1, (1 + W)q−(N+1)} = 1, 
we get

(1 + W)q − W − 1 ≤ 1 + qW(1 + W)q−1 − W − 1

≤ 1 + qW + q(q − 1)W 2 + · · · + q(q − 1) · · · (q − N)WN+1 − W − 1

≤ (q − 1)W + q(q − 1)W 2 + · · · + q(q − 1) · · · (q − N)WN+1

≤ q(q − 1) · · · (q − N + 1)W(1 + W + · · · + WN)

= q!
q − �q�W

1 − WN+1

1 − W

≤ q!
q − �q�

W

1 − W
. �

Proof of Lemma 5.8. Since (un)n is a Cerami sequence of Iα at level cα , by Lemma 5.5 we 
have
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‖un‖ 2
s <

s

τ
. (5.26)

Let us introduce the following auxiliary function

G(t) := t − 1

s

F (t)

f (t)
for t ≥ 0 ,

and define vn := G (un). Similarly to the proof of Lemma 5.6, one has vn ∈ Ws, 2
s

(
R2

)
. We first 

show that there exists γs,τ ∈ (0, 1) depending just on s and τ , such that

‖vn‖ 2
s ≤ γs,τ < 1 (5.27)

for n large enough. Indeed, recall by (5.19)-(5.20) that

1

2π

ˆ

R2

[Gα(x) ∗ F (un)]F (un) dx = s ‖un‖ 2
s − 2cα + on(1)

and

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s
−2 (un(x) − un(y))

|x − y|4
(

F (un(x))

f (un(x))
− F (un(y))

f (un(y))

)
dx dy

+
ˆ

R2

|un| 2
s
−2 un

F (un)

f (un)
dx − 1

2π

ˆ

R2

[Gα(x) ∗ F (un)]F (un) dx = on(1),

which together imply

1

s

ˆ

R2

ˆ

R2

|un(x) − un(y)| 2
s
−2 (un(x) − un(y))

|x − y|4
(

F (un(x))

f (un(x))
− F (un(y))

f (un(y))

)
dx dy

+ 1

s

ˆ

R2

|un| 2
s
−2 un

F (un)

f (un)
dx − ‖un‖ 2

s − 2

s
cα = on(1) .

(5.28)

Hence, one has

‖vn‖ 2
s =

ˆ

R2

ˆ

R2

|G(un(x)) − G(un(y))| 2
s

|x − y|4 dx dy +
ˆ

R2

|G(un)| 2
s dx

=
ˆ

R2

ˆ

R2

|G(un(x)) − G(un(y))| 2
s + 1

s
|un(x) − un(y)| 2

s
−2 (un(x) − un(y))

(
F(un(x))
f (un(x))

− F(un(y))
f (un(y))

)
|x − y|4

dy dx

+
ˆ

R2

|G(un)| 2
s dx + 1

s

ˆ

R2

|un| 2
s
−2un

F(un)

f (un)
dx + 2

s
cα − [un]

2
s

s, 2
s

− ‖un‖
2
s
2
s

+ on(1) . (5.29)
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Observe that for all x, y ∈R2 by the mean value theorem one has

F(un(x))

f (un(x))
− F(un(y))

f (un(y))
=

(
1 − F(θ(x, y))f ′(θ(x, y))

f 2(θ(x, y))

)
(un(x) − un(y)) ,

for some θ(x, y) ∈ (min {un(x),un(y)} ,max {un(x),un(y)}). Therefore, by the definition of G
we also get

G(un(x)) − G(un(y)) =
(

1 − 1

s
+ 1

s

F (θ(x, y))f ′(θ(x, y))

f 2(θ(x, y))

)
(un(x) − un(y)) .

Hence, we can estimate as follows:

Z(un) :=
ˆ

R2

ˆ

R2

|G(un(x)) − G(un(y))| 2
s + 1

s |un(x) − un(y)| 2
s
−2 (un(x) − un(y))

(
F(un(x))
f (un(x))

− F(un(y))
f (un(y))

)
|x − y|4

dy dx

=
ˆ

R2

ˆ

R2

[∣∣∣∣1 − 1

s

(
1 − F(θ(x, y))f ′(θ(x, y))

f 2(θ(x, y))

)∣∣∣∣ 2
s + 1

s

(
1 − F(θ(x, y))f ′(θ(x, y))

f 2(θ(x, y))

)]
·

· |un(x) − un(y)| 2
s

|x − y|4 dx dy . (5.30)

Let

A :=
{
(x, y) ∈ R2 ×R2 | Ff ′

f 2 (θ(x, y)) > 1
}

and split R4 = A ∪ (R4 \A) and Z(un) = ZA(un) +ZR4\A(un) accordingly. On R4 \A we have

∣∣∣∣1 − 1

s

(
1 − F(θ(x, y))f ′(θ(x, y))

f 2(θ(x, y))

)∣∣∣∣ 2
s ≤ 1 − 1

s

(
1 − F(θ(x, y))f ′(θ(x, y))

f 2(θ(x, y))

)
,

and therefore

ZR4\A(un) ≤
ˆ

R4\A

|un(x) − un(y)| 2
s

|x − y|4 dx dy . (5.31)

On the other hand, invoking the estimate (5.25) with q = 2
s

and W = W(x, y) =
1
(

F(θ(x,y))f ′(θ(x,y))
2 − 1

)
> 0, we obtain
s f (θ(x,y))
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ZA(un) −
ˆ

A

|un(x) − un(y)| 2
s

|x − y|4 dx dy =
ˆ

A

(
(1 + W)

2
s − W − 1

) |un(x) − un(y)| 2
s

|x − y|4 dx dy

≤
2
s
!

2
s

− � 2
s
�
ˆ

A

W

1 − W

|un(x) − un(y)| 2
s

|x − y|4 dx dy .

Requiring

F(t)f ′(t)
f 2(t)

< 1 + s

2
for all t > 0 , (5.32)

one has ‖W‖∞ < 1
2 . Hence,

ZA(un) −
ˆ

A

|un(x) − un(y)| 2
s

|x − y|4 dx dy ≤ 2 2
s
!

2
s

− � 2
s
�‖W‖∞

ˆ

A

|un(x) − un(y)| 2
s

|x − y|4 dx dy . (5.33)

Finally, from (5.31), (5.33) and (5.17), we obtain

Z(un) − [un]
2
s

s, 2
s

≤ 2 2
s
!

2
s

− � 2
s
�‖W‖∞

ˆ

A

|un(x) − un(y)| 2
s

|x − y|4 dx dy

≤ 2 2
s
!

2
s

− � 2
s
�‖W‖∞

s

τ
.

We can now estimate the norm of vn. From (5.29) we get

‖vn‖ 2
s = Z(un) − [un]

2
s

s, 2
s

+
ˆ

R2

|G(un)| 2
s dx + 1

s

ˆ

R2

|un| 2
s
−2un

F(un)

f (un)
dx

+ 2

s
cα − ‖un‖

2
s
2
s

+ on(1)

≤ 2 2
s
!

2
s

− � 2
s
�‖W‖∞

s

τ
+
ˆ

R2

|un| 2
s

∣∣∣∣1 − F(un)

sf (un)un

∣∣∣∣ 2
s

dx + 1

s

ˆ

R2

|un| 2
s
−2 un

F(un)

f (un)
dx

+ 2

s
cα − ‖un‖

2
s
2
s

+ on(1)

≤ 2 2
s
!

2
s

− � 2
s
�‖W‖∞

s

τ
+
ˆ

R2

|un| 2
s

(
1 − F(un)

sf (un)un

)
dx + 1

s

ˆ

R2

|un| 2
s
−2un

F(un)

f (un)
dx

+ 2

s
cα − ‖un‖

2
s
2
s

+ on(1)

≤
2
s

2
s
!

2 − � 2�
s

τ

(∥∥∥∥Ff ′

f 2

∥∥∥∥ − 1

)
+ 1

2
+ on(1) ,
s s ∞
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having used Remark 2.3(ii) and the estimate of cα in Lemma 5.5. In order to prove the claim 
(5.27), we need to check that the constant on the right-hand side is strictly less than 1. This is 
equivalent to the following

∥∥∥∥Ff ′

f 2

∥∥∥∥∞
< 1 + 1

2

2
s

− � 2
s
�

2
s

2
s
!

τ

s
. (5.34)

Defining now

μ(s, τ ) := min

{
s

2
,

1

2

2
s

− � 2
s
�

2
s

2
s
!

τ

s

}
, (5.35)

assumption (f3) guarantees that both conditions (5.32) and (5.34) are satisfied.
Next we aim at estimating the L1 norm of a suitable power of (F (un))n by using (5.27). By 

(f4), for any ε > 0 there exists tε > 0 such that

F(t)

f (t)
≤ ε(t − tε) + F (tε)

f (tε)
for all t ≥ tε .

Hence, by (f3) one has

vn = G(un) =
(

1 − ε

s

)
(un − tε) + tε − 1

s

F (tε)

f (tε)
≥

(
1 − ε

s

)
(un − tε) , (5.36)

which implies that for all x ∈ R2

un(x) ≤ tε + vn(x)

1 − ε̄
, (5.37)

where ε̄ := ε
s
. Hence, by (f1)-(f2) we have that for any given ε > 0, there exists Cε such that

ˆ

R2

F(un)
κ dx ≤

ˆ

|un|<tε

F (un)
κ dx +

ˆ

|un|≥tε

F (un)
κ dx

≤ Cε ‖un‖ 2
s
κ + Cε

ˆ

|un|≥tε


2,s

(
α∗κ

(
tε + vn

1 − ε̄

) 2
2−s

)
dx .

(5.38)

Moreover,


2,s

(
α∗κ

(
tε + vn

1 − ε̄

) 2
2−s

)
≤ Cε
2,s

(
α∗κ(1 + ε̄)

(
vn

1 − ε̄

) 2
2−s

)
.

In view of (5.36) and Remark 2.3(ii), vn ≥ τ tε if un ≥ tε , and then it follows from (5.38) that

s
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ˆ

R2

F(un)
κ dx ≤ Cε‖un‖ 2

s
κ + Cε

ˆ

|un|≥tε


2,s

(
α∗κ(1 + ε̄)

(
vn

1 − ε̄

) 2
2−s

)
dx . (5.39)

Since ‖vn‖ 2
s ≤ γs,τ + σ < 1 for n large enough and σ > 0 small enough by (5.27), the following 

holds

κ(1 + ε̄)

(1 − ε̄)
2

2−s

‖vn‖ 2
2−s ≤ κ(1 + ε̄)

(1 − ε̄)
2

2−s

(
γs,τ + σ

)
< 1 (5.40)

for ε > 0 small enough and κ ∈ [
1, 1

γs,τ

)
. As a consequence, from (5.39) we obtain

ˆ

R2

F(un)
κ dx ≤ C

for some C independent of n and α. Similarly, one can also prove that

ˆ

R2

f (un)un dx ≤ C

for some C independent of n and α. �
Now we are in the position to prove the existence of a nontrivial critical point for the approx-

imating functional Iα , for α sufficiently small.

Proposition 5.10. Assume that (f1)–(f5) hold. For all α ∈ (0, 1) sufficiently small there exists a 

positive uα ∈ W
s, 2

s
r (R2) such that I ′

α(uα) = 0.

Proof. By Lemma 5.2 and Remark 5.7, for all α ∈ (0, 1) there exists a nonnegative Cerami 

sequence (uα
n)n ⊂ W

s, 2
s

r (R2) of Iα at level cα , which is bounded in Ws, 2
s (R2) by Lemma 5.6. 

Hence there exists a nonnegative uα ∈ W
s, 2

s
r (R2) such that, up to a subsequence,

uα
n ⇀ uα in Ws, 2

s (R2),

uα
n → uα a.e. in R2,

uα
n → uα in Lp(R2), for all p ∈ ( 2

s
,+∞)

,

(5.41)

as n → +∞. Note that the compactness in the Lebesgue spaces is retrieved because we are 
restricting to the space of radially symmetric functions in Ws, 2

s (R2), see Lemma 2.4. By the 
definition of (uα

n)n one has

‖uα
n‖2 + 1

2πα

ˆ

2

F(uα
n)dx

ˆ

2

f (uα
n)uα

n dx = 2cα + 1

2πα

ˆ

2

(
1

|x|α ∗ F(uα
n)

)
f (uα

n)uα
n dx+on(1) .
R R R
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Lemmas 5.6 and 5.8 yield C > 0 independent of n and α such that

ˆ

R2

(
1

|x|α ∗ F(uα
n)

)
f (uα

n(x))uα
n(x)dx ≤ C . (5.42)

Next we claim that for any ϕ ∈ C∞
0 (R2)

ˆ

R2

(
1

|x|α ∗ F(uα
n)

)
f (uα

n(x))ϕ(x)dx →
ˆ

R2

(
1

|x|α ∗ F(uα)

)
f (uα(x))ϕ(x)dx , (5.43)

as n → ∞. Indeed, first by Lemma 5.8, for x ∈ R2 one has

ˆ

R2

F(uα
n(y))

|x − y|α dy ≤
ˆ

|x−y|≤1

F(uα
n(y))

|x − y|α dy +
ˆ

|x−y|>1

F(uα
n(y))

|x − y|α dy

≤
( ˆ

|x−y|≤1

dy

|x − y| 3
2

) 2α
3
(ˆ

R2

F(uα
n(y))

3
3−2α dy

) 3−2α
3 +

ˆ

R2

F(uα
n(y))dy ≤ C , (5.44)

provided α > 0 is small enough. Hence, in order to have (5.43), it is sufficient to apply [22, 
Lemma 2.1] to the sequence

g(x,uα
n(x)) :=

ˆ

R2

1

|x − y|α F (uα
n(y))dy f (uα

n(x))

restricted to any bounded domain �. Indeed, g(·, uα
n) ∈ L1(�) by (5.44) and (f2). Similarly, we 

can also prove

f (uα
n) → f (uα) in L1

loc(R
2) . (5.45)

Moreover, by (5.26), (5.37), (5.27), and using the mean value theorem, we deduce

ˆ

R2

|F(uα
n) − F(uα)|dx =

ˆ

R2

|f (uα + τn(x)(uα
n − uα))(uα

n − uα)|dx

≤ ε

ˆ

R2

(|uα
n | + |uα|) 2

s
−1|uα

n − uα|dx

+ Cε

ˆ

R2


2,s

(
α∗

(
uα + τn(x)(uα

n − uα)
) 2

2−s
)|(uα

n + uα)(uα
n − uα)|dx

≤ ε
(
‖uα

n‖ 2 + ‖uα‖ 2

)
‖uα

n − uα‖ 2

s s s
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+ Cε

( ˆ

{uα
n>uα}


2,s

(
α∗|uα

n | 2
2−s

)|(uα
n + uα)(uα

n − uα)|dx

+
ˆ

{uα
n≤uα}


2,s

(
α∗|uα| 2

2−s
)|(uα

n + uα)(uα
n − uα)|dx

)
(5.46)

≤ Cε + Cε

( ˆ

{uα
n>uα}


2,s

(
α∗

∣∣∣tε + vn

1 − ε̄

∣∣∣ 2
2−s )|(uα

n + uα)(uα
n − uα)|dx

≤ Cε + C‖uα
n‖θ ′η

⎛⎜⎝ˆ

R2


2,s

(
α∗θ ′η′

∣∣∣tε + vn

1 − ε̄

∣∣∣ 2
2−s

)⎞⎟⎠
1

θ ′η′ (ˆ

R2

|uα
n − uα|θ dx

) 1
θ

≤ Cε + Cε

(ˆ

R2

|uα
n − uα|θ dx

) 1
θ = Cε + on(1) ,

where τn(x) ∈ (0, 1), ε̄ = ε
s
, and for ε small enough. Note that in the second-to-last inequality 

we have used Hölder’s inequality with θ > 2
s

and θ ′η > 2
s
. Similarly, we can also infer

ˆ

R2

|f (uα
n)(uα

n − uα)|dx → 0, as n → ∞ . (5.47)

Consequently, combining (5.41), (5.46), (5.43) and (5.45) we get I ′
α(uα) = 0. Finally, we need 

to show that uα is not trivial, by proving that Iα(uα) �= 0. First, (5.44) and (5.47) imply

∣∣∣∣ˆ
R2

[(
1

|x|α ∗ F(uα
n)

)
f (uα

n(x)) −
(

1

|x|α ∗ F(uα)

)
f (uα(x))

]
(uα

n(x) − uα(x))dx

∣∣∣∣
≤

∣∣∣∣ˆ
R2

[(
1

|x|α ∗ F(uα
n)

)
−

(
1

|x|α ∗ F(uα)

)]
f (uα

n(x))(uα
n(x) − uα(x))dx

∣∣∣∣
+

∣∣∣∣ˆ
R2

(
1

|x|α ∗ F(uα)

)[
f (uα

n(x)) − f (uα(x))
]
(uα

n(x) − uα(x))dx

∣∣∣∣
= on(1) .

This, together with (5.46) and (5.47), implies that

on(1) = (I ′
α(uα

n) − I ′
α(uα))(uα

n − uα)

≥ C‖uα
n − uα‖ 2

s + 1

α

[ˆ
2

F(uα
n)dx

ˆ

2

f (uα
n)uα

n dx −
ˆ

2

F(uα)dx

ˆ

2

f (uα)uα dx

]

R R R R
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+ 1

α

∣∣∣∣ˆ
R2

[(
1

|x|α ∗ F(uα
n)

)
f (uα

n(x))

−
(

1

|x|α ∗ F(uα)

)
f (uα(x))

]
(uα

n(x) − uα(x))dx

∣∣∣∣
= C‖uα

n − uα‖ 2
s + on(1) .

Note that we used the monotonicity of the (s, 2
s
)-Laplacian, which relies on the well-known 

inequality

(|a|p−2a − |b|p−2b)(a − b) ≥ Cp|a − b|p,

which holds for all p ≥ 2 and a, b ∈ RN , see e.g. [40]. As a consequence, uα
n → uα in W

s, 2
s

r (R2)

as n → +∞, and therefore I (uα) = cα �= 0, which implies that uα �= 0. Hence, using the strong 
maximum principle for the p-fractional Laplacian [19, Theorem 1.4] we eventually obtain that 
uα > 0 in R2. �

So far, we have proved that there exists ᾱ ∈ (0, 1) such that, for all α ∈ (0, ᾱ), the approxi-

mating functional Iα has a positive critical point in W
s, 2

s
r (R2). The last step consists in showing 

that actually the sequence (uα)α converges, up to a subsequence, to a nontrivial critical point of 
the original functional I .

Thanks to the a-priori bound (5.17), which is independent of α, we have that (uα)α is uni-

formly bounded in Ws, 2
s (R2) for α ∈ (0, ᾱ) with

‖uα‖ 2
s <

s

τ
. (5.48)

Hence, up to a subsequence, there exists u0 ∈ W
s, 2

s
r (R2) such that

uα ⇀ u0 in Ws, 2
s (R2),

uα → u0 a.e. in R2,

uα → u0 in Lp(R2), for all p ∈ ( 2
s
,+∞)

,

(5.49)

as α → 0+ by Lemma 2.4.
Let us first prove some regularity results for uα . The strategy is similar to the one employed 

in Section 3 and thus here we just highlight the differences.

Lemma 5.11. For any ω ∈ [
1, 1

γs,τ

)
there exist ᾱ ∈ (0, 1) and a constant C > 0, independent of 

α, such that

ˆ

|x−y|≤1

F(uα(y))

|x − y| 4(ω−1)
3ω

dy ≤ C ,

and
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ˆ

|x−y|≤1

F(uα(y))

|x − y| 4(ω−1)
3ω

dy → 0 as |x| → +∞ , (5.50)

uniformly for α ∈ (0, ᾱ).

Proof. Let us define vα := G(uα), as in Lemma 5.8. Using a similar argument, we deduce that 
supα∈(0,ᾱ) ‖vα‖ < 1, and that for all ω ∈ [

1, 1
γs,τ

)
there exists C > 0 independent of α such that

ˆ

R2

F(uα)ω dx < C .

Hence, by Hölder’s inequality,

ˆ

{|x−y|≤1}

F(uα(y))

|x − y| 4(ω−1)
3ω

dy ≤
( ˆ

{|x−y|≤1}

dy

|x − y| 4
3

) ω−1
ω

( ˆ

{|x−y|≤1}
F(uα)ω dy

) 1
ω ≤ C , (5.51)

where C is independent of α. Moreover, again as in Lemma 5.8, for any ε > 0 there exists tε > 0
such that

uα(x) ≤ tε + vα(x)

1 − ε̄
for any x ∈R2, (5.52)

with ε̄ := ε
s
, which implies that there exists Cε > 0 such that

u
2

2−s
α ≤ Cεt

2
2−s
ε + (1 + ε̄)

2
2−s

v
2

2−s
α

(1 − ε̄)
2

2−s

.

Therefore, in order to show (5.50), we can combine (5.51) and (5.52) and get

ˆ

|x−y|≤1

F(uα(y))

|x − y| 4(ω−1)
3ω

dy

≤ Cε

( ˆ

|x−y|≤1

|uα| 2
s
ω + |uα| 2

s
ω
2,s

(
α∗ω(1 + ε̄)

2
2−s

v
2

2−s
α

(1 − ε̄)
2

2−s

)
dy

) 1
ω

≤ Cε

( ˆ

B1(x)

|uα| 2
s
ωdy + ( ˆ

B1(x)

|uα| 2
s
ωζ dy

) 1
ζ

(ˆ

R2


2,s

(
α∗ωζ ′(1 + ε̄)

2
2−s

v
2

2−s
α

(1 − ε̄)
2

2−s

)
dy

) 1
ζ ′ ) 1

ω

≤ Cε

( ˆ

B1(x)

|uα| 2
s
ωdy + Cε

( ˆ

B1(x)

|uα| 2
s
ωζ dy

) 1
ζ

) 1
ω

,

where ζ ′ = ζ
ζ−1 , and in the last inequality we choose ωζ ′ sufficiently close to 1 and we take ad-

vantage of the fact that ‖vα‖ < 1. Thanks to (5.49) we obtain (5.50) and conclude the proof. �
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Lemma 5.12. Let α ∈ (0, ᾱ) and uα ∈ Ws, 2
s (R2) be a weak solution of (5.2), then there exists 

C > 0 independent of α such that ‖uα‖∞ ≤ C. Furthermore, uα ∈ Cν
loc(R

2) for some ν ∈ (0, 1)

and there exists R > 0 such that for |x| ≥ R,

|uα(x)| ≤ C

1 + |x| 7s
2(2−s)

for some C > 0 uniformly for α ∈ (0, 4(ω−1)
3ω

).

Proof. Since uα is a nonnegative function, by (5.2) and Lemma 5.1 we obtain

(−�)s2
s

uα + |uα| 2
s
−2uα ≤

⎛⎜⎝ ˆ

|x−y|≤1

|x − y|−α − 1

α
F(uα(y))dy

⎞⎟⎠f (uα(x))

≤
ˆ

|x−y|≤1

F(uα(y))dy

|x − y| 4(ω−1)
3ω

f (uα(x))

(5.53)

weakly in Ws, 2
s (R2). For any L > 0 and γ > 1 consider the functions ψ and � defined in (3.2). 

The proof follows the same line as in Lemma 3.2. Taking ψ(uα) = uαu
2
s
(γ−1)

L,α as a test function 
in (5.53), we obtain

[�(uα)]
2
s

s, 2
s

≤
ˆ

R2

ˆ

R2

|uα(x) − uα(y)| 2
s
−2(uα(x) − uα(y))[uα(x)u

2(γ−1)
s

L,α (x) − uα(y)u
2(γ−1)

s

L,α (y)]
|x − y|4 dy dx

≤
¨

|x−y|≤1

F(uα(y))dy

|x − y| 4(ω−1)
3ω

f (uα(x))uαu
2
s
(γ−1)

L,α dx −
ˆ

R2

|uα| 2
s u

2
s
(γ−1)

L,α dx . (5.54)

By (f1)-(f2), for any ε > 0, there exists Cε > 0 such that

f (uα) ≤ ε|uα| 2
s
−1 + Cε|uα| 2

s
−1
2,s (α∗|uα| 2

2−s ).

So, for ε > 0 sufficiently small, using Young’s inequality, Proposition 2.1, Lemma 5.11, and 
(5.54), we get

[�(uα)]
2
s

s, 2
s

≤ (Cε − 1)‖uαu
γ−1
L,α ‖

2
s
2
s

+ Cε‖uαu
γ−1
L,α ‖

2
s
2p
s

, (5.55)

where p is sufficiently large. Noting that all the constants are independent of α, we can follow 
the argument of Lemma 3.2 and obtain ‖uα‖∞ ≤ C, with C independent of α. Finally, the decay 
estimate and Hölder’s regularity can be obtained following step by step the proofs of Lemmas 3.4
and 3.6, paying only attention to the fact that Gα substitutes the logarithmic Riesz kernel. �
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We are finally in a position to prove Theorem 1.6, namely the existence of a weak solution of 
(Chs). Next we prove that the sequence of solutions (uα)α for the approximated problems (5.2)

has a nontrivial accumulation point u0 ∈ Ws, 2
s (R2) satisfying I ′(u0) = 0.

Proof of Theorem 1.6. Let us divide the proof into two steps.

Step 1. We show that u0 ∈ W
s, 2

s
r (R2) satisfies I ′(u0) = 0.

For any ϕ ∈ C∞
0 (R2), we have

I ′
α(uα)ϕ =

ˆ

R2

ˆ

R2

|uα(x) − uα(y)| 2
s
−2(uα(x) − uα(y))(ϕ(x) − ϕ(y))

|x − y|4 dy dx

+
ˆ

R2

|uα| 2
s
−2uαϕ dx − 1

2π

ˆ

R2

ˆ

R2

|x − y|−α − 1

α
F(uα(y))dyf (uα(x))ϕ dx . (5.56)

The first two terms are easy to handle thanks to the convergence in (5.49). Thus we focus on the 
third term and let us split R2 = {|x − y| ≤ 1} ∪ {|x − y| > 1}. On the one hand, let ω ∈ (

1, 1
γs,τ

)
be fixed, then by Lemmas 5.1 and 5.12, together with the continuity of f , for all x, y ∈ R2 such 
that |x − y| ≤ 1 we get

∣∣∣∣ |x − y|−α − 1

α
F(uα(y))f (uα(x))ϕ(x)

∣∣∣∣ ≤ Cω

|x − y| 4(ω−1)
3ω

F (uα(y))f (uα(x))|ϕ(x)|

≤ C

|x − y| 4(ω−1)
3ω

|ϕ(x)|
(5.57)

for α <
4(ω−1)

3ω
, which is readily integrable in {(x, y) ∈R2 | |x − y| ≤ 1}. Thus, recalling (5.49), 

the Lebesgue dominated convergence theorem implies

¨

|x−y|≤1

|x − y|−α − 1

α
F(uα(y))dyf (uα(x))ϕ(x)dx

→
¨

|x−y|≤1

ln
1

|x − y| F(u0(y))dyf (u0(x))ϕ(x)dx

(5.58)

as α → 0+. On the other hand, when |x − y| ≥ 1, there exists τ = τ(|x − y|) ∈ (0, 1) such that

0 ≥ Gα(x − y) = |x − y|−α − 1

α
= −|x − y|−τα ln |x − y| , (5.59)

applying the mean value theorem to the function hb(α) = b−α with b = |x − y|. Since ϕ has a 
compact support, it follows from Lemma 5.12, (f1), and the monotonicity of F , that
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∣∣∣∣ |x − y|−α − 1

α
F(uα(y))f (uα(x))ϕ(x)

∣∣∣∣
= |x − y|−τα ln |x − y|F(uα(y))f (uα(x))|ϕ(x)|
≤ (|x| + |y|)F (uα(y))f (uα(x))|ϕ(x)|
≤ (1 + |y|) C

1 + |y| 7
2−s

|ϕ(x)|

≤ C

1 + |y| 5
2

|ϕ(x)|

(5.60)

which is readily integrable on {(x, y) ∈ R2 | |x − y| ≥ 1}. Hence, again by the Lebesgue domi-
nated convergence theorem, this implies

¨

|x−y|≥1

|x − y|−α − 1

α
F(uα(y))dyf (uα(x))ϕ(x)dx

→ −
¨

|x−y|≥1

ln |x − y|F(u0(y))dyf (u0(x))ϕ(x)dx .

(5.61)

Finally, we need to prove the finiteness of

ˆ

R2

ˆ

R2

ln |x − y|F(u0(y))dyF(u0(x))dx .

By Fatou’s lemma, we have∣∣∣∣ˆ
R2

ˆ

R2

ln |x − y|F(u0(y))dy F(u0(x))dx

∣∣∣∣
≤ lim inf

α→0

( ¨

|x−y|≤1

Gα(x − y)F (uα(y))dy F(uα(x))dx

−
¨

|x−y|≥1

Gα(x − y)F (uα(y))dy F(uα(x))dx

)
.

(5.62)

Using Lemma 5.1 with ν = 4(ω−1)
3ω

, Lemma 5.8 with κ = 1, and Lemma 5.11, we have

¨

|x−y|≤1

Gα(x − y)F (uα(y))dy F(uα(x))dx

≤ C

ˆ

2

F(uα(x))

⎛⎜⎝ ˆ
F(uα(y))

|x − y| 4(ω−1)
3ω

dy

⎞⎟⎠ dx ≤ C

(5.63)
R |x−y|≤1
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uniformly for α ∈ (
0, 4(ω−1)

3ω

)
. So, by Remark 5.3 and (5.63) we deduce

− 1

4π

¨

|x−y|≥1

Gα(x − y)F (uα(y))dy F(uα(x))dx

≤ Iα(uα) + 1

4π

¨

|x−y|≤1

Gα(x − y)F (uα(y))dy F(uα(x))dx − s

2
‖uα‖ 2

s ≤ C

(5.64)

uniformly for α sufficiently small. Combining (5.62)-(5.64), we have∣∣∣∣ˆ
R2

ˆ

R2

ln |x − y|F(u0(y))dy F(u0(x))dx

∣∣∣∣ < +∞ . (5.65)

Based on (5.58), (5.61) and (5.65), by taking the limit as α → 0+ in (5.56), we have I ′(u0) = 0

with I (u0) < +∞, that is, u0 ∈ W
s, 2

s
r (R2) solves equation (Chs).

Step 2. To conclude the proof, we need to show that u0 �= 0 and that uα → u0 in Ws, 2
s (R2). 

Assume on the contrary that uα ⇀ 0 in Ws, 2
s (R2), and so uα → 0 in Lt(R2) for t ∈ ( 2

s
, +∞). 

Similarly to (5.47), we obtain 
´
R2 f (uα)uα dx = oα(1). Hence, by Lemma 5.1 and Lemma 5.11, 

we have

0 = I ′
α(uα)uα = ‖uα‖ 2

s − 1

2π

ˆ

R2

ˆ

R2

Gα(x − y)F (uα(y))f (uα(x))uα(x)dx dy

≥ ‖uα‖ 2
s − 1

2π

¨

{|x−y|≤1}
Gα(x − y)F (uα(y))f (uα(x))uα(x)dx dy

≥ ‖uα‖ 2
s − 1

2π

¨

{|x−y|≤1}

1

|x − y| 4(ω−1)
ω

F (uα(y))f (uα(x))uα(x)dx dy

≥ ‖uα‖ 2
s − C

ˆ

R2

f (uα(x))uα(x)dx

= ‖uα‖ 2
s + oα(1) ,

which yields uα → 0 in Ws, 2
s (R2) as α → 0+. Then, using Remark 5.3 and (5.59), we have

a ≤ cα + oα(1) = Iα(uα)

= s

2
‖uα‖ 2

s − 1

4π

ˆ

R2

ˆ

R2

Gα(x − y)F (uα(y))F (uα(x))dx dy

≤ − 1

4π

¨
Gα(x − y)F (uα(y))F (uα(x))dx dy + oα(1)
{|x−y|≥1}
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= − 1

4π

¨

{|x−y|≥1}
|x − y|−τ(x,y)α ln |x − y|F(uα(y))F (uα(x))dx dy + oα(1)

≤ 1

4π

ˆ

R2

ˆ

R2

ln |x − y|F(uα(y))F (uα(x))dx dy + oα(1)

≤ ‖F(uα)‖1

2π

ˆ

R2

|x|F(uα(x))dx + oα(1)

≤ C

(
R

ˆ

|x|≤R

F(uα(x))dx +
ˆ

|x|≥R

|x|F(uα(x))dx

)
+ oα(1)

≤ C

( ˆ

|x|≤R

|uα| 2
s dx +

ˆ

|x|≥R

C|x|
1 + |x| 7

2−s

dx

)
+ oα(1)

= oα(1) ,

which yields a contradiction. Note that in the last inequality we have used Remark 2.3(i) with 
(5.48) to estimate the first term, and (f1) together with the monotonicity of F and the decay 
given by Lemma 5.12, to estimate the second term. Finally, similarly to (5.58) and (5.61), by 
Lemma 5.12 and the Lebesgue dominated convergence theorem, we have

ˆ

R2

ˆ

R2

|x − y|−α − 1

α
F(uα(y))f (uα(x))uα(x)dx dy

→ −
ˆ

R2

ˆ

R2

ln |x − y|F(u0(y))f (u0(x))u0(x)dx dy ,

(5.66)

from which we conclude that uα → u0 in Ws, 2
s (R2) as α → 0+. �
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