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A B S T R A C T

Nowadays, the capability to remotely monitor indoor and outdoor environments would allow to reduce energy
consumption and improve the overall management and users’ experience of network application systems. The
most known solutions adopting remote control are related to domotics (e.g., smart homes and industry 4.0
applications). An important stimulus for the development of such smart approaches is the growth of the Internet
of Things (IoT) technologies and the increasing investment in the development of green houses, buildings, and,
in general, heterogeneous environments. While the benefits for the humans and the environment are evident,
a pervasive adoption and distribution of remote monitoring solutions are hindered by the following issue:
modeling, designing, prototyping, and further developing the remote applications and underlying architecture
require a certain amount of time. Moreover, such systems must be often customized on the basis of the need
of the specific domain and involved entities. For such reasons, in this paper, we provide the experience made
in addressing some relevant indoor and outdoor case studies through IoT-targeted tools, technologies and
protocols, highlighting the advantages and disadvantages of the considered solutions as well as insights that
can be useful for future practitioners.
1. Introduction

Applications for indoor and outdoor remote monitoring are nowa-
days adopted in different domains, ranging from smart homes to smart
offices, agriculture and greenhouses, and for many scopes. Among
them, saving energy consumption and improving the overall manage-
ment, and users’ experience of remote monitoring systems, are the
most fundamental requirements. In fact, the capability to remotely
control, at any time, facilities and plants would allow handling the
involved resources better (e.g., energy, land, water and materials), also
minimizing possible local mismanagement and wastage.

Moreover, in order to reduce the negative influences of buildings
on the environment, green buildings, which are also known as sus-
tainable buildings, began to spread, aiming at creating a better indoor
environmental quality for occupants with less natural resources con-
sumption [1]. There are many different definitions of green building.
However, it is generally accepted as the planning, design, construc-
tion, and operations of buildings with the maximum conservation
of resources (e.g., energy, land, water and materials), environmental
protection, pollution reduction and providing people with healthy and
comfortable indoor space. The same considerations can be done about
smart agriculture and greenhouses applications, where the use of re-
sources must be optimized to promote the growth of plants without
wastage.
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Different technologies concur with the realization of remote moni-
toring applications, which are strictly related to the Internet of Things
(IoT) paradigm. They potentially include, in the same scenario, more
than one of the following technologies and communication protocols:
Wireless Sensor Networks (WSN), Wireless Multimedia Sensor Net-
works (WMSN), Near Field Communication (NFC), Radio-Frequency
IDentification (RFID), cameras, actuators, which represent the tech-
nologies; Message Queue Telemetry Transport (MQTT), ZigBee, Con-
strained Application Protocol (CoAP), 6LowPAN (IPv6 over Low-Power
Wireless Personal Area Networks), and so on [2], which represent the
communication protocols. The basic idea behind the IoT paradigm is
the possibility of acquiring heterogeneous kinds of information, both
scalar and multimedia data [3], from the environment where IoT
devices are placed in. Such devices embed both sensing and actuating
capabilities, making them ‘‘smart’’ and enabling them to interact with
the surrounding environment. Such features allow the IoT system to
share throughout the network and the Internet a huge amount of
information, which can be used to provide customized services to the
interested users in a remote manner [4].

To achieve such a goal, the numerous technologies and communi-
cation protocols mentioned above should, in many cases, cooperate,
in order to enable the realization of efficient IoT infrastructures and
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to regulate the information exchange process. Hence, issues related to
interoperability, scalability, security and privacy [5] naturally emerge,
thus compromising the rapid development of efficient solutions. In
fact, the time required for designing and prototyping could generally
prevent a pervasive diffusion of indoor and outdoor remote monitoring
applications. As a consequence, tools (like a simulator or a testing-
platform) for supporting the realization of such IoT infrastructures
from the design towards the development phase are needed, with the
following main goal: representing all the components acting within the
envisioned environment, so as to give an overview of the whole system
before real deployment.

In this direction, this paper proposes the use of different supporting
tools targeted to the IoT, providing representative cases studies of
indoor and outdoor monitoring applications, ranging from the applica-
tion logic to the physical devices. More in detail, existing technologies
and protocols will be used to develop four case studies, which will
be discussed taking into account advantages and disadvantages in the
design and performance evaluation of such solutions. The potentiality
of the proposed examples resides in the integration with different
technologies and protocols, which range from software to hardware
straightforwardly. Instead, simulators usually run within an environ-
ment far from real deployments; for example, the direct connection
with real devices or with software modules on a gateway are neither
supported nor integrated. The scope of this work is to demonstrate
how proper tools can be closer to reality just from the design phase.
Moreover, it is worth noting that many approaches and architectures
are often evaluated in a single application domain employing a single
technology or protocol [6]. At the same time, it is important to dispose
of tools that facilitate the simulation of different scenarios, enabling the
interoperation among different technologies/protocols, also accepting
data formats and information coming from existing data-sets, possibly
running a real-time environment. Only testing a partial representation
of the whole architecture is a limitation, since it does not allow to
thoroughly understand the implications and possible side effects of a
designed infrastructure before real deployment. In contrast, the possi-
bility of early (i.e., in a testing environment) analyzing and running the
entire system could save time before the final development and avoid
mistakes. To reach such a goal, this paper envisions the adoption of
Node-RED1 tool and OpenHAB2 platform. They are both used for the
implementation of the presented case studies, since they reveal to be
valid candidates for modeling IoT networks. As it will emerge from the
analysis, Node-RED is more intuitive and easier to set up with respect to
OpenHAB. Hence, the adoption of Node-RED facilitates the prototyping
of IoT systems by providing an integrated set of technologies and by
abstracting low-level details. Instead, the integration of OpenHAB with
sensors and front-end applications is more complex. A scope of this
work is to provide to the scientific community an overview and a
comparison of these available technologies in the prototyping of het-
erogeneous IoT applications, revealing advantages and disadvantages,
as well as some performance indices (i.e., latency, packet delivery ratio,
energy consumption, resources’ utilization). Moreover, this work pro-
vides a discussion about emerging network infrastructures, based on fog
computing, edge computing and mist computing concepts, in contrast
with the traditional cloud systems. Finally, security and privacy issues
will be analyzed.

The remainder of this paper is organized as follows. Section 2
investigates the actual state of the art about the tools and methods
used by the researchers for validating remote monitoring systems, thus
revealing our motivations. Section 3 presents the technologies and
tools adopted for investigating the case studies, which are detailed in
Section 4. Section 5 points out a discussion about the technologies,

1 Node-red, Flow-based programming for the internet of things. https://
odered.org/

2 Openhab, open-source automation software. https://www.openhab.org.
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communication protocols, and databases adopted for the case studies,
the related performance, in terms of latency, packet delivery ratio, CPU
load, and energy consumption, possible threats and security solutions.
Finally, Sections 6 and 7 end the paper, providing a discussion about
the conducted analysis and drawing some hints for future research.

2. Related works and motivations

The growth and diffusion of remote monitoring systems were fa-
vored by the availability of sensor devices, able to acquire, in real-time,
information from the surrounding environment and transmit them
throughout the network towards a sink point, which is usually in charge
of collecting and processing all the gathered data from a specific appli-
cation [7]. This is the basic behavior of a WSN, which represents one
of the enabling IoT technologies, together with actuators, NFC, RFID,
cooperating by means of heterogeneous and lightweight protocols, such
as MQTT, ZigBee, CoAP, 6LowPAN.

In this section, we aim to provide an overview of the most rele-
vant indoor and outdoor scenarios, which have been analyzed in the
literature. The selection process includes those papers which effectively
present a design and a deployment phase towards the realization and,
possibly, the evaluation of the investigated environment. In general, the
works available in literature try to validate and test the performance
of the proposed remote monitoring approaches by means of different
programming languages and tools and typically refer to particular
case studies, which aim to provide a concrete application context
(even if it is only simulated). Note that researchers often use data-
sets to operate with real data (even if not in real-time) during the
performance evaluation. A well-investigated field in remote controlling
is e-health [8,9], ranging from the monitoring of chronic diseases
to vital signs current status monitoring, and, finally, to the triage
prioritization of patients. The survey, presented in [10], points out
the evolutions of healthcare IoT systems, even if it does not focus on
adopted technologies, in terms of tools, protocols, sensors, or platforms
for realizing the discussed architectures and solutions. In this paper,
telehealth solutions will not be covered, since the literature already
offers a broad spectrum of examples. For such a reason, this work
will focus on approaches targeted to indoor and outdoor environments,
with particular attention to implications regarding the sustainability
of the solutions themselves. Such a feature can be granted thanks to
the technological means coupled with a clever internal logic, which
aims to control the running system’s overall energy and resources
consumption. An adequate allocation of resources (e.g., energy, land,
water and materials) surely prevents wastage and allows you to keep
under control the costs [1].

What emerges is the need for a tool (or a set of inter-operating
tools), which is able to represent the whole remote monitoring archi-
tecture closer as much as possible to the future working system, in
order to provide to designers and developers a complete view of the
final architecture and underlying logic, before its real deployment. As
emerging in [11], novel validation methods and experimental tools
are needed to study smart object networks in vivo, new software
platforms are required in order to operate smart objects efficiently, and
innovative networking paradigms and protocols are required in order
to interconnect smart objects. Conducting experiment-driven research
is fundamental to study software and protocol design for IoT use cases.
Experiments can be used to verify (or disprove) perceived insights
gained from theoretical models or simulations. Moreover, results from
such experiments can serve to generate valid input parameters for the
model or simulation-driven research. Besides implementing the exam-
ined approach itself, a software platform to operate the IoT devices,
frameworks or middleware software, and tools to schedule, execute,
control, and evaluate the experiments are necessary. Such a role has
been played by WSN’s simulators/emulators for many years [12], but,
with the advent of IoT, new systems must be adopted, due to the

heterogeneity of the involved devices and to the different services
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provided. Hence, the main goal of the work presented herein is to
adopt tools and methodologies able to represent and validate indoor
and outdoor IoT scenarios.

Table 1 summarizes the adopted technologies, the scope and the
limitations of related works concerning smart building applications,
which include smart homes and smart offices, smart manufacturing-
related systems (e.g., those related to industry 4.0), and outdoor sce-
narios. Concerning this last point, smart agriculture surely represents
the favorite example of application. A comprehensive overview of IoT
devices and sensors, network and communication protocols adopted in
the smart agriculture domain is provided in [13]; this paper surveys ap-
proaches (i.e., platforms, architectures, methods, models, frameworks,
or applications) in the realization of smart agriculture solutions from
2006 to 2019, pointing out their purpose, the adopted technologies,
and the open challenges. What emerges is that the existing solutions are
not built over high-level tools, like those proposed in this paper, but,
on the other side, they are mainly based on sensors and are targeted
to certain communication protocols. The absence of modularity in
the definition of such solutions does not guarantee high flexibility.
Especially, smart agriculture and, in general, environmental monitoring
scenarios, is moving from the traditional WSN-based architectures [14]
to new innovative ones, which are based on the dynamic IoT [15,16].
For such a reason, the design and prototyping environments must meet
the need for interoperability and flexibility required by the IoT.

As emerges from Table 1, some works tailored to indoor or outdoor
case studies provide prototypical implementation (i.e., [17–25] or use
real data sets to perform a preliminary evaluation of the proposed
architecture and mechanisms (i.e., [26]). Most of them do not of-
fer a quantitative investigation, but only the architecture/platform is
presented (i.e., [27–34]), possibly with a running example (i.e., [35–
40]). Often, the whole system is not tested, but only a part of it,
and such an aspect represents the main lack in the previous studies
and solutions. Such an issue arises because the adopted evaluation
methods cannot provide the required instruments to embrace all the
aspects and life cycles of the analyzed infrastructures. Note that it
is due to multiple communication protocols, hardware and software
technologies, which are difficult to put in action together in a single
test bench. As a consequence, researchers often conduct their analysis
only on the part of the envisioned architectures (usually the core of
the application) and omit other interacting parties, such as end-users,
data sources, brokers, trust authorities, ad so on. However, such parts’
response times and behavior may significantly impact the application’s
core performance. Hence, it is really important to try simulating the
behavior of all the components of the desired IoT system, in order to
understand the performance better and have a complete view of the
final solution. Another important reason to foster the availability of
integration systems is related to the amount of different technologies
and protocols acting into IoT environments. As pointed out in Table 1,
the cited works make use of: (i) MQTT, ZigBee, Bluetooth, and Modbus
as communication protocols; (ii) Node-RED, OpenHab and Ebbits as IoT
platforms; (iii) MongoDB and InfluxDB for the data storage; iv) Rasp-
berry Pi and Arduino as smart devices. The cooperation among such
different elements is a complex-prone task, mainly in the prototyping
phase of a new system. Finally, other limitations include the lack of
a performance evaluation of the envisioned solutions, maintainability
issues, complexity in the configuration and deployment, and incompat-
ibility with the resource-constrained IoT scenarios. Such issues emerge
from the column 𝐿𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 in Table 1. Hence, the differences among
the available solutions and this proposed work can be summarized as
follows:

• The case studies presented in this paper include both indoor and
outdoor application domains.

• With the adopted tools (i.e., Node-RED and OpenHAB) the ana-
lyzed applications are totally prototyped and tested (i.e., not only
3

a part of them is considered).
• Different technologies and communication protocols are inte-
grated.

• Performance evaluation is carried out for to infer about the
feasibility of the proposed solutions.

Trying to fill the emerged gaps, in Section 4, some relevant in-
door and outdoor scenarios are investigated and modeled by means
of emerging tools tailored to the IoT. Note that other researchers are
recently interested in such a topic. For example, the authors of [41,42]
present RapIoT along with Tiles, which represent a toolkit approach for
rapid prototyping of IoT applications. The project is still evolving to
allow end-users with no programming knowledge to adopt it. More in
detail, RapIoT supports the development of collaborative applications
by enabling the definition, implementation and manipulation of high-
level data type primitives, where an input primitive is a discrete
information sensed by an IoT device, while an output primitive is an
action that can be performed by the IoT device. Such primitives act as
loosely coupled interfaces among embedded devices and one or more
application logics. The role of primitives is twofold. On one side they
provide an event-driven approach to programming, on the other side
they facilitate collaboration among developers working on different IoT
layers by providing simple constructs to be used to describe the data
exchanged among embedded devices and applications. Furthermore
they allow non-experts to think in terms of high-level abstractions
without dealing with hardware complexities. RapIoT is event-driven
and it is built on top of Arduino platform and MQTT and CoAP proto-
cols. Its main limitations are that its architecture does not comprehend
any coded application logic embedded into IoT devices, and network
latency issues. RapIoT supports the Tiles toolkit, which provides further
functionalities to ease the utilization of RapIoT by non-expert users.
Note that Node-RED ideally requires the same expertise from users to
be used. Instead of primitives, Node-RED makes use of black boxes to
connect the network’s elements, functions, and real devices. Moreover,
it is already adopted by companies to pursue design goals for the
development of their systems, and the research community provides
more support consisting in documentation and online forums.

3. Technologies and tools

Before detailing the case studies of interest, the involved technolo-
gies and tools are introduced herein.

3.1. Node-RED

Node-RED is an open-source project developed by IBM over the
Node.js framework. It is a flow-based programming, web-based and
event-driven tool, which can be deployed on a physical smart device
(e.g., Raspberry Pi3 or Arduino platform4). Node-RED makes a large
set of nodes and flows available, mainly developed by the open-source
community. Some nodes can act as cloud points. Hence, the behavior
of the application to be designed/developed can be represented as
a network of black boxes, which communicate with each other and
regulate the flow of information within the envisioned system. The
visual representation is particularly user-friendly.

In three of the case studies presented in Section 4, Node-RED will
represent the core of the application logic. Besides Node-RED, several
other web-based platforms have emerged to ease the development of
interactive or near real-time IoT applications by providing a way to
connect things and services together and process the data they emit
using a data flow paradigm [44]. Among these, WoTKit Processor5 is

3 Node-RED and Raspberry Pi, https://nodered.org/docs/getting-started/
aspberrypi.

4 Node-RED and Arduino, https://nodered.org/docs/faq/interacting-with-
rduino.

5
 WoTKit Processor, https://wotkit.readthedocs.io/.

https://nodered.org/docs/getting-started/raspberrypi
https://nodered.org/docs/getting-started/raspberrypi
https://nodered.org/docs/faq/interacting-with-arduino
https://nodered.org/docs/faq/interacting-with-arduino
https://wotkit.readthedocs.io/
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Table 1
Previous studies and the research gap on indoor and outdoor scenarios.

Work/year Technologies Scope Limitation

This work 2023 Raspberry Pi, Node-RED, OpenHab,
MongoDB, InfluxDB, MQTT, Ignition

Design and prototyping of indoor and outdoor
scenarios (smart agriculture, planting system,
smart office, domotics)

No large data-sets from real world scenarios
adopted in the performance evaluation

[35] 2022 XML formalism Development of a case of study about a
domotic IoT system application

No performance evaluation provided

[27] 2021 Raspberry Pi, OpenHab, relays modules Definition of an home automation platform No performance evaluation provided

[17] 2021 Arduino, Node-RED, InfluxDB, MQTT Real-time monitoring and controlling of internal
parameters for smart buildings

No performance evaluation provided, Node-RED
only used for connecting entities and not as
application logic

[37]–[36] 2020–2021 Smart home appliances, sensors, smart
plugs, gateways, machine learning

Controlling and monitoring of home
automation systems to detect behavioral
patterns

Lack of real and large scale testing experiments

[38]–[39] 2020 Smart home appliances, sensors, smart
plugs, gateways, ZigBee, machine
learning

Energy consumption monitoring and controlling
in a smart home

Implementation depends on the chosen devices
and mobile app

[18] 2020 Raspberry Pi, mobile app, Microsoft
Azure Cloud

Definition of a secure home automation system Lack of a middleware layer as an intermediate
in large-scale IoT environments, custom software
implementation

[40] 2020 OpenHab Definition of a smart home platform supporting
decentralized adaptive automation control

Only running example provided

[19] 2019 Raspberry Pi, Node.jsa, MQTT, Apache
web server

Monitoring of plants into the pots within a
smart planting system

Adoption of a pure Node.js framework, which
presents maintainability issues

[20] 2018 Arduino, Node-RED, MQTT, ZigBee Prototype of a smart home application No performance evaluation provided, complex
installation

[31] 2018 Node-RED, Modbus, MQTT Definition of a wireless industrial
communication system (industry 4.0 domain)

The target is limited to Industry 4.0 applications

[26] 2018 Raspberry Pi, Node.js for the custom
IoT middleware, MongoDBb

Monitoring of home appliances and security
policies enforcement, use of data-sets into a
smart home

Adoption of a pure Node.js framework, which
presents maintainability issues

[21] 2018 TLSensing platform, Raspberry Pi,
Node.js for the custom IoT middleware,
IP camera

Environmental monitoring and intrusion
detection in a smart building

Adoption of a pure Node.js framework for the
IoT middleware, which presents maintainability
issues

[32] 2018 Minimal hardware to keep the cost low Smart industrial automation and remote control
system (industry 4.0 domain)

No performance evaluation provided

[22] 2017 Raspberry Pi, Bluetooth Security policies enforcement in a smart home Complex installation

[15] 2017 WSN and cameras Monitoring temperature and humidity in a
smart agricultural field

The network is not suitable for the IoT

[30] 2016 Node.js, MongoDB Definition of a smart building network
architecture

Adoption of a pure Node.js framework, which
presents maintainability issues, no performance
evaluation provided

[28] 2016 Custom middleware Virtualization of supply chain, simulation and
decision support based on on-line operational
data (industry 4.0 domain)

Mainly customized solution

[29] 2016 ZigBee Smart home control system Implementation with a custom C# program

[23] 2016 Mica2 hardware, TinyOS Monitoring and controlling the micro-climate
factors of a greenhouse (smart agriculture
domain)

Implementation of the application logic with a
custom Java program

[24] 2015 Mobiusc Realization of an integrated semantic service
platform (ISSP) to support ontological models in
smart offices and IoT-based service domains in
general

The required ontology is difficult to configure

[25] 2013 Arduino, ZigBee, cloud services Measuring home conditions, monitoring home
appliances, controlling home access (smart
home domain)

Strict dependence to chosen technologies

[33] 2013 Ebbits IoT platformd Gathering real-time data (i.e., energy
consumption and water usage) along with the
manufacturing processes (industry 4.0 domain)

No performance evaluation provided

[34] 2012 ZigBee, NS2 simulator Smart home control system The simulator is not suitable for the IoT

[14] 2011 WSN Environmental monitoring in smart agriculture The network is not suitable for the IoT

[43] 2010 WSN, Binary Web Service (BWS),
TinyOS

Environmental monitoring and localization,
regulated by roles and authorizations (smart
building domain)

Low-level configuration of the network, limited
to sensors

a Node.JS. http://nodejs.org/.
b MongoDB. http://www.mongodb.org/.
c Mobius oneM2M, ‘‘oneM2M-compatible IoT service platform’’. http://wiki.onem2~m.org/index.php?title=Open_Source.
d FP7 ebbits project site, http://www.ebbits-project.eu.
4
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almost famous as Node-RED. We decided to use Node-RED tool in this
work since, unlike WoTKit Processor, which is server-based and does
not provide access to local sensors, it can be deployed on a smart
device, due to the lightweight nature of Node.js and the simplicity of
the execution engine. Such features allow Node-RED flows to execute
with good performance on devices such as the Raspberry Pi.

3.2. MQTT

MQTT6 is a publish–subscribe network broker-based messaging pro-
tocol. In the presence of constrained scenarios, usually including em-
bedded devices on non-TCP/IP networks, such as Zigbee, it is better to
adopt the MQTT-SN protocol,7 which is the MQTT for Sensor Networks.
MQTT is largely used in the IoT domains due to its robustness and
power-saving communication. One-to-many message distribution based
on 𝑡𝑜𝑝𝑖𝑐𝑠 is performed; another feature consists in the decoupling of
information of sources and consumers.

In all the four case studies presented in Section 4, MQTT protocol
plays a central role in message passing, due to its efficiency for the
investigated scenarios. The broker is implemented with Mosquitto,8 but
ther solutions are also available, such as HiveMQ.9 Mosquitto has been
hosen with respect to other solutions because it is totally open-source
nd very easy to use.

.3. InfluxDB and MongoDB

InfluxDB10 and MongoDB11 are databases belonging to the NoSQL
amily. InfluxDB has been specifically developed for managing time-
eries data, thus making it an ideal choice for periodically logging
ensor information. MongoDB is cross-platform and document-oriented.
t makes use of JSON-like documents stored in collections, the data
tructure can change over time, and the document model is mapped
o objects in the application code. Both InfluxDB and MongoDB will
e adopted in the case studies presented in Section 4, since their
ata structure perfectly fits the need of heterogeneity dictated by IoT
nvironments.

.4. OpenHAB

Open Home Automation Bus (OpenHAB) is an open-source project
ome application platform used to run smart homes. It natively sup-
orts many devices and allows the user to further extend its capabilities
y installing modules and plugins. Moreover, OpenHAB allows to write
ustom logical rules, which can be triggered using deployed sensors
nd perform user-defined actions (e.g., turn on lights at a given time
r when a motion sensor is activated). OpenHAB will only be adopted
n the case study related to domotics, due to its intrinsic features, as
escribed here.

.5. Ignition

Ignition12 is a commercial, server-based cross-platform software,
upporting a modular structure so that its deployment can be tailored
or every specific requirement. Ignition includes a Human Machine
nterface/Supervisory Control And Data Acquisition (HMI/SCADA), which
an be built, in a customized way, depending on the intended purpose.

6 MQTT OASIS standard, https://www.oasis-open.org/committees/tc_
ome.php?wg_abbrev=mqtt.

7 MQTT-SN OASIS standard, https://www.oasis-open.org/committees/
ownload.php/66091/MQTT-SN_spec_v1.2.pdf.

8 Mosquitto, open-source MQTT v3.1/v3.1.1 broker. http://mosquitto.org.
9 HiveMQ MQTT broker. https://www.hivemq.com.

10 InfluxDB, time-series platform. https://www.influxdata.com/.
11 MongoDB. http://www.mongodb.org/.
12
5

Ignition software. https://inductiveautomation.com.
Ignition makes use of different kinds of tags: (i) OPC Tags use the Open
Process Connectivity (OPC) standard to communicate and read/write
values directly to the Programmable Logic Controller (PLC); (ii)Memory
Tags hold and store information; (iii) Expression Tags are driven by a
user-defined expression, such as a mathematical operation, a logical
operation, and so on; (iv) Query Tags pool their value from an SQL
statement; (v) Reference Tags refer to other tags to fetch their value.
Ignition, and the next Grafana tool, will be coupled with OpenHAB
to create a simple yet real domotics system with the support of real
devices, as presented in Section 4.

3.6. Grafana

Grafana13 is an open-source web-based tool for data visualization
nd analysis. It allows to model custom dashboards, based on the
equired use cases and supports different data sources, like InfluxDB,
icrosoft SQL Server, PostgresSQL, AWS CloudWatch, etc. Also, it

llows the development and installation of custom modules/plugins
hich can expand its capabilities.

. Case studies and prototyping

In this section, four case studies will be designed and their proto-
ypical implementation will be detailed, concerning the technologies
nd tools described in Section 3. Such case studies concern: a smart
griculture scenario, a hydroponic planting system, a smart office, and
cross-domain domotics example.

.1. Smart agriculture

In the considered smart agriculture scenario, the goal is to create a
ystem capable of managing an outdoor cultivated field and a green-
ouse. The greenhouse is divided into four different areas, so that the
ser can have the opportunity to choose a species of plant to be placed
n each area; moreover, the same plant can be placed in different areas,
ut each area can only contain a maximum of one plant. Through
he adoption of specific sensors, the system is able to autonomously
ake care of the different plants’ needs, considering the information
eported in a proper database. Note that the system also guarantees to
aintain ideal conditions about temperature and humidity, also in case

f plants’ diseases, by means of proper pesticides. More specifically, the
ensors on the cultivated field measure the following parameters: soil
emperature and soil humidity. Instead, the following parameters are
onitored inside the greenhouse: air temperature, air humidity, soil

emperature in each area, soil humidity in each area, leaf wetness (in
he range [1:15], such a parameter indicates the presence of humidity
nd, therefore, of diseases on the surface of the leaves), and light.

A control application, written in Java programming language, sim-
lates and keeps track of the behavior of the just mentioned sensors.
hen, values from the sensors are requested and transmitted using
TTP methods (i.e., 𝐺𝐸𝑇 , 𝑃𝑂𝑆𝑇 , 𝑃𝑈𝑇 , 𝐷𝐸𝐿𝐸𝑇𝐸) for RESTful ser-

vices over the TCP/IP stack. The logic of the application is structured
in rules, which are managed and implemented inside the Node-RED
tool:

• If, in the cultivated field, the soil temperature exceeds 25 ◦C or
the humidity is lower than 30%, the irrigation system is activated.

• If, inside the greenhouse, the air temperature exceeds 27 ◦C or
the air humidity is higher than 65% the fan is activated, where
the fan has three different speeds.

• If the leaf wetness sensor detects a data greater than 9, pesticides
are activated in the greenhouse’ area.

13 Grafana, interactive visualization tool. https://grafana.com.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf
http://mosquitto.org
https://www.hivemq.com
https://www.influxdata.com/
http://www.mongodb.org/
https://inductiveautomation.com
https://grafana.com
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Fig. 1. Smart agriculture - greenhouse’s flow, temperature.
Fig. 2. Smart agriculture - vegetable garden’s flow.
• If temperature or humidity do not fall within the thresholds set
for the chosen plant (such values are gathered from the system’s
database), irrigation is activated in the concerned greenhouse’s
area.

• If the light level inside the greenhouse is low, the lights are
switched on to illuminate the plants.

• If rain is expected in the next few hours, the irrigation system
is not activated; note that such information is gathered from a
specific component, named OpenWeatherMap, made available by
Node-RED.

• Proper alarms are sent in case of very low temperatures or freez-
ing rain, to an email configurable by the user. An email will also
be sent to the user at the beginning of the harvesting time for
each plant inserted in the greenhouse.

Note that, for the transmission of alert messages, the system uses
the MQTT protocol to notify all the brokers. The hierarchy of MQTT
topics is includes: greenhouse/alarm/frost and

greenhouse/alarm/freezingrain. In this way, a broker listening on the
greenhouse/alarm topic is able to receive both the alarms.

The flows implementing the rules mentioned above are defined in
Node-RED, as follows:

• A flow for the management of the greenhouse: Fig. 1 repre-
sents the temperature management. Note that temperature is the
more complex metric considered by the rules. In fact, the flow
shows that two parameters (i.e., temperature and humidity) are
taken into account to decide if activate or not the fan inside the
greenhouse.

• A flow for the management of the vegetable garden: Fig. 2 con-
tains the flows to manage the irrigation system and is based on the
information obtained by both the weather forecast and the data
collected by the sensors, as shown in Fig. 1. Note that, the system
takes into consideration the forecast for the next 5 days. An alarm
is triggered in case of frost or freezing rain. The alarm system
is managed in an encrypted way via MQTT notifications. Such
notifications generate an email to be sent to the administrators
of the greenhouse, in order to take some actions to preserve
vegetables against harmful atmospheric agents.

• A flow for the management of the web pages: it implements
the services offered through 𝑃𝑂𝑆𝑇 and 𝐺𝐸𝑇 requests to change
6

Fig. 3. Smart agriculture - dashboard.

the settings regarding the whole system (e.g., location, email,
greenhouse’s areas configuration).

• A flow for the management of the dashboard: it consists of
four tabs that contain the flows for creating the four sections
included in the dashboard which are related to weather, moni-
toring, plants, and logs, as shown in Fig. 3 for the part related
to the monitoring dashboard. Such a dashboard can be used by
an administrator to monitor the data collected by the sensors,
display the weather forecast for the current day and the next
five days, access the system logs (i.e., the events that occurred
in the system), and insert new plants species in the system.
Moreover, the state of each greenhouse’s area can be monitored
and controlled from another dashboard shown in Fig. 4.

MongoDB is adopted for the management of the data collected and
generated by the system; among the collected data, we have: (i) the
temperatures and humidity detected by the sensors, along with place
(i.e., greenhouse or cultivated field), area, date, and time; (ii) all the
information, such as name, description, harvesting period, humidity,
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Fig. 4. Smart agriculture - dashboard related to a greenhouse’s area.

Fig. 5. Hydroponic planting system - plantation structure.

temperature and image’s URL, of the available plants. The stored
information could be useful to generate statistics over the time, in order
to plan future strategies to better manage the vegetables inside the
greenhouse or into the cultivated field.

4.2. Hydroponic planting system

Hydroponics is a method of growing a plant without soil, where the
root of the plant is directly exposed to a water fertilized solution [45].
Root takes all the needed nutrients directly from water, so the impor-
tance of keeping water suitable for the crops’ growing is fundamental.
Such a system aims to innovate intensive farming, by reducing water
consumption and allowing, with a lamp, to stack the crop vertically.
Hydroponics’ harvest is allocated at the top of a pipe with a hole, which
allows the root to reach the water. Water continuously flows inside the
pipe and drops into another bigger tank that works as water storage;
some pumps have to push water through the pipe in order to let the
roots take what they need.

The environment of a hydroponic plantation is summarized in Fig. 5
and can be divided into three subsets, which are divided by scope, as
follows:

• Plantation subsystem, composed by a tank, works as a reserve of
fertilized water that is sent to several pipes; on the top, this pipe
has a series of holes that allow the roots of the plant to reach
the water and absorb all needed nutrients. The water reaches the
pipe by means of a pump (𝑊𝑃 ) that connects the tank to the pipe;
each pipe has its own pump, and, at the end of the pipe, there is
another smaller pipe that allows the water to return into the tank
slowly. A 𝑊𝑃 is also inside the water tank since its goal is to
keep the water reserve always above a certain threshold for all
the connected pipes. An air pump (𝐴𝑃 ) keeps the water with the
proper oxygen saturation and a fertilizer dispenser (𝐹𝐷) drops
the nutrients the plant needs into the water itself.

• Sensor subsystem, composed by a series of sensors and actuators
attached to the plantation subsystem and communicating with
the control subsystem using MQTT protocol; those sensors can be
divided into two sets: (i) the former enables the measurement of
the water (𝑊𝑆) in each pipe, the water (𝑊𝑆) in the tank, the
oxygen saturation (𝐴𝑆) and the level of nutrients contained in the
7

water (𝐹𝑆) inside the tank; the latter enables the remote control
of the pumps (𝑊𝑃 , 𝐴𝑃 ) and the dispenser (𝐹𝐷). Essentially,
the sensor subsystem includes both telemetric sensors (which are
divided into water, oxygen and fertilizer sensors) and actuators
coupled to 𝑊𝑃 , 𝐴𝑃 , and 𝐹𝐷, respectively, in order to switch
on/off the pumps or drop the fertilizer into the water.

• Control subsystem, composed of technologies and applications that
enable the control and the interaction with the plantation entities.
More in detail: (i) an MQTT broker manages the message from
and to the remote sensors; (ii) a MongoDB database stores the
measure of remote sensors and the current configuration of the
plantation; (iii) a web page allows the visualization of data gath-
ered by sensors and the management of configuration settings.
Hence, the status of the system is available both in real time and
into the storage, for future analysis.

The MQTT protocol plays a fundamental role in such a case study,
since the whole system’s behavior is regulated by MQTT message
passing. In fact, MQTT is used by sensors to publish their values
and by the control subsystem for managing the actuators keeping the
system always in the right status. The adoption of MQTT for message
exchanges lightens the whole system’s communication infrastructure
and enables a very easy management of information thanks to the
use of precise topics. The topic structure is as follows: /target/target’s
id/scope/element/field, where:

• target identifies if the value is referred to a tank or a pipe
component.

• target’s id is a progressive number to identify pipes and tanks.
• scope, which identifies three kinds of information: (i) status, if

the node indicates the value published by sensors; (ii) config, if
the node indicates the configuration value of the sensors; (iii)
machine, if the node identifies the actuator; hence, publishing
under this node permits the control of all pumps and dispensers.

• element which represents the target/source of a message; accord-
ing to its scope, this node can be used for different purposes, as
described above, while the node name can be: (i) water, if in ‘‘sta-
tus’’ publishes the water level, or in ‘‘machine’’ is used to control
the pump; (ii) air, if in ‘‘status’’ publishes the oxygen saturation,
or in ‘‘machine’’ is used to control the pump; (iii) fertilizer, if in
‘‘status’’ publishes the fertilizer level, or in ‘‘machine’’ is used to
control the dispenser.

• field, which is only available under config scope, since it contains
different values used to change the configuration of the planting
system. In particular, it allows to set values related to: (i) the
water level of pipes or tanks; (ii) the oxygen saturation of tanks;
(iii) the fertilizer.

The control subsystem, implemented in Node-RED, is subscribed
to all topics so that, according to the settings previously defined,
it can activate the devices, shown in Fig. 5, through the connected
actuators. The main flows related to the described scenarios refer to
water pump’s and tank’s management. Fig. 6 represents the water
pump’s management (task’s management is very similar). Here, we can
see the publish and subscribe operations happening throughout the
whole application, as motivated above. Moreover, a fundamental Node-
RED block, named report-by-exception (RBE), guarantee that the node
blocks unless the incoming value changes. Hence, the system avoids to
send multiple times the same information, thus saving bandwidth and
reducing network delays.

Such a case study includes both initialization and normal running
phases. The initialization depends on the types of crops included in the
hydroponic planting system and can be made throughout a proper web
interface, which is depicted in Fig. 7. Then, once the plantation ends the
initialization, users can monitor its status using the web page, shown
in Fig. 8 concerning the tank’s status (similar one are available for
the pumps). If some values are not compliant, the user can investigate
about the motivations and fix the issue, for example by changing the

setting values of single devices or the fertilizer thresholds.
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Fig. 6. Hydroponic planting system - water pump’s management flow.
Fig. 7. Hydroponic planting system - settings’ web interface.

4.3. Smart office

A smart office should be able to automatically and remotely manage
components, such as windows, doors, lights, heaters, air conditioning,
and intrusion alarms, in response to the current state of the envi-
ronment itself (e.g., time of the day, presence of people, weather).
The envisioned system should give the users the capability to set
up their office based on real situations, for example configuring the
windows’ number. Hence, proper sensors will be in charge of mea-
suring the presence of people, the temperature, and the air quality;
while other ones will act as actuators to change the status of the
door/windows (i.e., open/close), of the lights/heaters/air conditioning
(i.e., switch on/switch off), and of the intrusion alarm (i.e., acti-
vated/disabled). Fig. 9 shows the interface related to the Java simu-
lator, which represents all the components and current settings of the
smart office.

Based on user configurations, the system behaves in one way rather
than another. For example, if the user inserts zero as windows’ number,
and if the air quality exceeds a certain threshold, then the system will
open the door; while, if there is at least one window (and the weather
it is different from ‘‘rain’’), the system will open the window/windows.
If the user selects the time slot ‘‘6 p.m. to 6 a.m.’’, and the presence
sensor discovers someone in the office, then the system will turn on
the intrusion alarm; otherwise, the simulator will turn on the light. In
order to put in act such rules and, in general, the overall functionalities
related to the smart office, the application logic is performed by five
Node-RED flows:

• The weather flow (Fig. 10) is used to retrieve the current weather
and save it along with the current external temperature on Mon-
goDB for further generating a pie chart (Fig. 11) in the dashboard
that represents the occurrences of some weather conditions dur-
ing the monitored period. Such information is gathered from
OpenWeatherMap block (as shown in the figure), which is made
8

Fig. 8. Hydroponic planting system - tanks’ monitoring web interface.

available by Node-RED and makes use of an online service to pro-
vide the required data. Moreover, checking the current weather
and external temperature is also useful to properly set the status
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Fig. 9. Smart office - control simulator.

Fig. 10. Smart office - weather flow.

Fig. 11. Smart office - weather conditions.

of heaters, air conditioning, windows and door (e.g., if it rains
outside, the windows are not opened).

• The light flow (Fig. 13) is used to verify the presence or absence
of someone inside the office and, depending on the time of day,
determine whether to turn the light on or off or to trigger the
intrusion alarm. Both alarms and logs are managed by means of
MQTT communications and topics. This represents a very simple
and light way to propagate control information about the system,
since subscribers, which will receive the notifications, can actuate
proper countermeasures and analysis about the condition of the
smart office. Note that both alarms and logs are encrypted in
order to prevent possible confidentiality or integrity attacks.

• The temperature flow controls the temperature and the air condi-
tioning/heating status, considering different thresholds and the
time of the day, whose status is notified via MQTT broker by
means of dedicated topics (i.e., smartoffice/alarm/temperature and
smartoffice/log/temperature).

• The air quality flow (Fig. 14) controls the air quality value so that:
9

Fig. 12. Smart office - power consumption.

– If air quality <= 100 the system notifies through MQTT
broker on the topic smartoffice/log/airquality an encrypted
message saying that the air quality is suitable and the system
closes both door and windows.

– If air quality > 100 the system notifies via MQTT broker on
the topic smartoffice/alarm/airquality an encrypted message
saying that the air is not clean; then, it checks the current
weather and, if it is raining, it opens the door and closes the
windows; otherwise it opens both door and windows.

• The dashboard flow provides the functionalities to realize and
run the dashboards related to: (i) the current notified alarms; (ii)
the web form to remotely turn on or off lights, air conditioning,
heating and set the status of the intrusion alarm; (iii) the power
consumption, which is empirically calculated on the basis of
hourly energy consumption of each sensor/actuator, as shown in
Fig. 12.

It is worth remarking that the historical data (i.e., related to the
energy consumption, logs, and so on), stored in proper MongoDB
collections, can also be used to further analyze the energy consumption
of the smart office and, in general, of a whole smart building, during
the time to improve the management and save energy, thus reducing
costs.

4.4. Domotics

The previously described case studies, i.e., smart agriculture, hy-
droponic plating system, smart office, are mainly focused on the ap-
plication logic, which is implemented in the Node-RED tool; while the
behavior of real sensors is delegated to simulators (e.g., Java programs
or MQTT external devices). Certainly, this is the best approach to follow
if designers/developers are primarily interested in understanding and
prototyping the behavior of a complex system; while the hardware
will be considered later. Instead, in the case study about domotics,
presented herein, the focus is just on real devices. A RaspberryPi and
some sensors are directly connected to software applications and tools,
able to change their status. Adding such a scenario, related to the
domotics domain, gives a complete overview of prototyping methods.

The idea is to build a system using the Ignition software SCADA
solution to control its real devices. The list of devices includes: (i) a
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Fig. 13. Smart office - light flow.
Fig. 14. Smart office - air quality flow.
Fig. 15. Domotics - fan’s connection schema.

RaspberryPi Zero W14 with an attached computer fan; (ii) three Xiaomi
room temperature and humidity sensors; (iii) two Xiaomi smart plugs.
Also, different host systems are involved: (i) Virtualbox to host the
SCADA system; (ii) home NAS to host the MQTT broker (deployed
using 𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑡𝑜); (iii) Cloud VPS to host historical database and data
visualization UI.

14 https://www.raspberrypi.org/products/raspberry-pi-zero-w/.
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The RaspberryPi Zero W behaves like an IoT-enabled PLC. PLC
devices are equipped with sensors (to gather information) and actuators
(to perform actions). In this case, CPU temperature information feeds
the sensor’s data. Instead, concerning the actuator, an external fan is
used and controlled through the GPIO pins using Pulse Width Modu-
lation (PWM). PWM is a method used to control devices that require
power or electricity. It essentially makes use of a digital signal, which
is periodically turned on or off to modulate the connected device. In
particular, PWM controls the fans motor; the larger the time frame
between pulses is, the slower the motor turns. The envisioned scheme is
shown in Fig. 15. The RaspberryPi communication is managed through
the usage of MQTT, where:

• Sensor’s information is published to the topic rpi/cpu/temperature.
• Actuator’s information is fetched by subscribing to the topic
rpi/fan/speed.

All the required logic is written using Python and executed at boot
time by means of a crontab task.

OpenHAB, presented in Section 3 and hosted on the home NAS,
is used to bridge the connection among the proprietary Xiaomi smart
home sensors. The adopted modules are: (i) Xiaomi Smart Home Bind-
ing,15 which is used to communicate with the sensor gateway; (ii)
MQTT Binding,16 which is used to connect to an MQTT broker. Config-
uration for the Xiaomi binding is done through the OpenHAB web GUI,
by providing the gateway IP and private API key, as shown in Fig. 16.
By using the web GUI, it is possible to automatically search and add

15 https://www.openhab.org/addons/bindings/mihome/.
16 https://www.openhab.org/addons/bindings/mqtt/.

https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.openhab.org/addons/bindings/mihome/
https://www.openhab.org/addons/bindings/mqtt/
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Fig. 16. Domotics - OpenHAB Xiaomi binding configuration.

Fig. 17. Domotics - fan’s profile flowchart.

all detected/connected sensors creating for each dedicated item, which
can be referenced for rule’s definition. The MQTT binding is configured
by adding a proper things file in the OpenHAB configuration folder,
thus allowing it to be referenced for MQTT communication. The next
step is defining the logical rules to follow for publishing sensor data
over MQTT. These are defined by adding rules’ file into the OpenHAB
configuration folder. As defined before, the rule triggers every detected
state change on the observed sensor by publishing its new value to the
related topic.

The system’s core is the Ignition SCADA, the software in charge
of reading and managing all attached devices, connecting via MQTT
protocol. Ignition leans on a Microsoft SQL Server database, which
is used as a local buffer to periodically store and change the status
of sensors’ information in case the connection towards the historical
server is lost, but also to manage data migration towards the historical
database, which is hosted on an external VPS server. The database
structure is straightforward, since it includes only logs about room sen-
sors and light status. Instead, the topics’ structure includes information
about: the Raspberry Pi CPU temperature (i.e., rpi/cpu/temperature);
the fan speed (i.e., rpi/fan/rpm); the room’s temperature and humidity
sensors (i.e., home/room_n/temperature and home/room_n/humidity); the
light state (i.e., home/light_n/state). A memory tag is added to hold the
current desired fan speed, in the range [0:100]. This tag implements
a python script, which triggers a value update, checks if the new
value is valid and publishes it to the dedicated topic rpi/fan/speed. To
automatically manage the fan, two support memory tags are needed: (i)
a Boolean, to toggle on or off the automatic fan profile; (ii) a float, to
set the desired target CPU temperature. Also, a script is applied to the
CPU temperature tag, which triggers each new read value, comparing
it to the desired temperature and deciding if it is necessary to turn the
fan on or off. To avoid continuously switching the fan state, due to the
temperature fluctuations around the threshold value, the fan is turned
off once a temperature 2 ◦C lower than the target one is reached. A
scheme of the just described behavior is sketched in Fig. 17.
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Fig. 18. Domotics - Vision HMI. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Furthermore, a web GUI visualizes and controls the connected de-
vices; it is developed using Vision, which is a UI building tool, provided
by Ignition, and it is able to build a local HMI, as shown in Fig. 18.
Vision is composed of four parts:

• MQTT broker status, where the right LED indicates if the broker
is currently available (green) or not (red).

• Room temperature and humidity, which indicate, for each room,
the last detected information; while also displaying a chart with
the trend of the last hours. The chart toggles between temperature
and humidity by pressing the appropriate current value.

• Light status, which shows the current light state and the last
timestamp it toggled.

• RaspberryPi fan control, which displays a gauge with the current
CPU temperature. This is divided into three color-coded areas: (i)
𝑔𝑟𝑒𝑒𝑛 as desired temperature; (ii) 𝑦𝑒𝑙𝑙𝑜𝑤 means ‘‘above target’’;
(iii) 𝑟𝑒𝑑 as over temperature. The user can interact with the
spinner being able to change the desired temperature. Also, it
is possible to override the automatic fan controller with the
appropriate switch and, then, use the slider to set the fan speed
manually.

As just anticipated, the historical database is hosted on an external
VPS server, and it is paired with a data visualization tool, named
Grafana (see Section 3), that allows you to visualize the gathered (and
stored) data in various user’s defined charts. The database used for this
task is InfluxDB (see Section 3) for two main reasons: (i) it is specifically
designed to manage time-based information; (ii) it is officially sup-
ported by the Grafana suite. For security reasons, two separate accounts
have been defined on the historical database: (i) read/write, for the
migration task; (ii) read-only, for the Grafana connection. As stated in
Section 3, InfluxDB defines two types of data: tags and fields. For this
specific use case, the 𝑟𝑜𝑜𝑚𝐼𝐷 and 𝑙𝑖𝑔ℎ𝑡𝐼𝐷 were added as tags, since
they are mainly used in the 𝑊𝐻𝐸𝑅𝐸 statement to filter data; while
the other information is stored into fields. Two measurements are used:
one for rooms and one for lights.

An overview of the envisioned domotics system is provided in
Fig. 19, which resembles all the components described for such a use
case. A demo video is available at https://youtu.be/-5Gg5I0B3Ak.

5. Discussion

Early design and prototyping are fundamental to speed up the
development process, and a framework, as Node-RED, represents a
viable solution in this direction, due to the features that emerged in
the discussion of the case studies in Section 4. Hence, to achieve such

https://youtu.be/-5Gg5I0B3Ak
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Fig. 19. Domotics - system architecture.
Fig. 20. Latency: whiskers-box diagram for smart agriculture, hydroponic planting
systems, and smart office.

a goal, proper tools must be adopted. With this respect, promising solu-
tions are pointed out in this paper, ranging from high-level modeling,
by means of the Node-RED tool, to a low one, adopting Ignition SCADA
software and OpenHAB. Nevertheless, all the presented case studies
could have been implemented with one or the other, since they are
both valid candidates for modeling IoT applications and infrastructures.
Surely, Node-RED is more intuitive and easier to set up with respect
to Ignition SCADA software and the related tools (i.e., OpenHAB,
Grafana). Such a comparison reveals to be useful to conclude that the
adoption of Node-RED facilitates the prototyping of IoT systems by
providing an integrated set of technologies and by abstracting low-level
details and communication protocols. Instead, the integration among
Ignition SCADA, OpenHAB, Grafana, and Xiaomi sensors has been
more complex. InfluxDB is natively designed to manage time-based
information; while MongoDB is more document-oriented. Table 2 sums
up the technologies, communication protocols, and database adopted
in the investigated case studies.

Looking at the involved elements shown in Table 2, we can conclude
that the use of such technologies requires programming knowledge
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and experience in IoT, network protocols and databases by the end-
users. Regarding such an aspect, we asked a group of 52 master’s
students, who attended a lab at our university, to code and prototype
simple IoT scenarios through Node-RED. After this experience, we
conducted an analysis about the usability perceived by the students
about the adopted tool. They noted that the mechanism based on
flows is straightforward to adopt; in this way, the information flow
is clear. Then, inside the flows, users are free to add the desired
code to regulate the system’s behavior. A further important feature
emerged about Node-RED is that you can easily find online documen-
tation with examples, in case you need assistance to solve an issue.
Table 3 shows the percentages obtained from the consultation with the
students concerning the just discussed aspects. Certainly, being able
to manage more complex functionalities requires more in-depth study
of the tool, which, in this paper, has been adopted for the first three
case studies (i.e., smart agriculture, hydroponic planting systems, smart
office). A virtual machine containing the code and the structure of
such scenarios is available at the Bitbucket repository available here:
https://bitbucket.org/alessandrarizzardi/.

Except in the case of the domotics scenario, the others, in fact, have
been preliminarily assessed by installing the corresponding Node-RED
application on a Raspberry Pi 3 B equipped with 1 GB of RAM. An
ASUS laptop, equipped with 32 GB of RAM, 11th Generation Intel(R)
Core(TM) i7 processor and Windows 11 Pro as operating system, is
used to emulate the behavior of the sensors (i.e., by means of the Java
programs, mentioned in Sections 4.1–4.2–4.3). Such simulated devices
basically generate random (but close to reality) data, as presented in
the corresponding Sections 4.1–4.2–4.3, and send them to the Node-
RED application as if they came from different nodes. Note that also
real data sets could be integrated and used as sources for testing the
analyzed scenarios, as well as real-time data incoming from connected
physical devices (as the domotics case study) or obtained from web
services. The laptop and Raspberry Pi communicate via a WiFi network.
The simulation duration is set to 24 h and the packet rate is set to 10
and 20 packets per second. Such rates have been chosen to stress the
network load and to have an idea of how the system could scale, hence
one rate doubles the other. Figs. 20 and 21 show, respectively: (i) the
end-to-end latency of data from their generation to their availability
on the visualization dashboard; (ii) the packet delivery ratio (PDR),
which measures the percentage of sent packets correctly received by
Node-RED. Note that such metrics are indices of the reliability of the
network. In fact, we can note that, in all scenarios, latency remains
in an optimal range, which is between 6 ms and 15 ms on average.
Also, PDR is above 94% on average, thus ensuring the correct reception

https://bitbucket.org/alessandrarizzardi/
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Table 2
Technologies, communication protocols and database adopted for the case studies.

Case study Involved technologies Communication protocols Database

Smart agriculture Node-RED, simulated sensors HTTP, MQTT MongoDB
Hydroponic planting system Node-RED, simulated sensors MQTT MongoDB
Smart office Node-RED, simulated sensors HTTP, MQTT MongoDB
Domotics Xiaomi room temperature/humidity sensors

Ignition SCADA, RaspberryPi Zero W20,
Xiaomi smart plugs, OpenHAB, Grafana

MQTT InfluxDB
Table 3
Outcomes of the students’ consultation.

Question Do not agree Partially agree Totally agree

Node-RED is easy to use? 0% 14% 86%
Is the information flow clear? 0% 0% 100%
Code customization is possible? 0% 14% 86%
Is online documentation available? 0% 0% 100%

Fig. 21. PDR: whiskers-box diagram for smart agriculture, hydroponic planting
systems, and smart office.

of packets inside the application. Instead, Fig. 22 represents the mean
CPU load on the Raspberry Pi, which does not exceed the 30% in
all case studies. More specifically, in the scenarios with a rate of 10
packets per second, the CPU load remains in the range 19%–25,5% on
average, while in the scenarios with a rate of 20 packets per second,
the CPU load is, on average, in the range 22,5%–28,5%. Concerning
energy consumption (Fig. 23), we installed a dedicated module, named
Power Monitor,17 which regularly feeds the node that simulates the
incoming data from sources with a real number as payload representing
the average consumption in Watts since the last message. Hence, we
calculate the consumption each time Node-RED receives a packet. We
approximately consider the transmission consumption equal to 1,4 Watt
and initial energy of 100 J [46]. The obtained results demonstrate
the potentiality of the envisaged solutions, which should be further
evaluated, in the next future, in large-scale scenarios in order to infer
their scalability. Note that Raspberry Pi has been selected to run the
IoT platform, leveraging a lightweight approach for performing the
network tasks. In a wider environment, a distributed approach must
be pursued, where the IoT platform is split into more ‘smart’ devices,

17 Node-RED Power Monitor, https://flows.nodered.org/node/node-red-
contrib-power-monitor.
13
Fig. 22. CPU load: whiskers-box diagram for smart agriculture, hydroponic planting
systems, and smart office.

Fig. 23. Energy consumption: whiskers-box diagram for smart agriculture, hydroponic
planting systems, and smart office.

in order to better manage the resources, for example following the fog
computing principles [47].

Concerning such a point, it is interesting to discuss about the kind of
network architecture to be adopted in smart scenarios. More traditional
ones are those based on cloud-IoT systems, where information from
the IoT devices is directly transmitted to the cloud data center; such

https://flows.nodered.org/node/node-red-contrib-power-monitor
https://flows.nodered.org/node/node-red-contrib-power-monitor
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a solution inevitably creates a bottleneck in environments, which need
to process a huge amount of data, possibly also in real-time. To cope
with such an issue, other approaches were raised, as follows [48]:

• Fog computing: essentially, it is the extension of the cloud to
the edge of the network; more in detail, fog computing allows
decentralized computing by processing data at the fog nodes
(i.e., gateways, routers, and cloud services), instead of centraliz-
ing the processing task in the cloud data center. Such an approach
can be of great utility to smart cities and, in general, where many
devices use real-time data to perform various tasks. Hence, fog
computing can be used for multiple business applications that
require instant data processing [49]. However, business leaders
must analyze the pros and cons of fog computing in their specific
situations before adopting this network infrastructure. In partic-
ular, the pros concern reduced costs of storage and computing,
low latency, and reduced bandwidth requirement compared to
cloud computing; additionally, confidential data can be secured
as it can be stored at the fog node. Moreover, fog computing
can process larger volumes of data than edge computing, since it
can process real-time requests. Cons include that fog computing
depends on multiple links for transferring data from the physical
asset chain to the digital layer, representing potential network
failure points [50].

• Edge computing: it can be used for processing data directly on
IoT devices, without relying on the cloud or fog, guaranteeing
to process data in near real-time, and reducing the overhead at
the centralized cloud. Edge computing can be used in connected
buildings to perform simple tasks, like turning on the heater or
lights near real-time [51]. Also, it can simplify predictive main-
tenance in organizations by sending instant alerts about possible
failures. Pros include the possibility, for IoT devices, to determine
which data needs to be stored locally and which data needs to
be sent to the cloud for analysis; hence, sensitive data can be
discretely stored at its source. Instead, the cons include that:
(i) edge computing is less scalable compared to fog computing;
(ii) edge computing supports little interoperability, which might
make IoT devices incompatible with certain cloud services and
operating systems; (iii) edge computing does not support resource
pooling.

• Mist computing: it is adopted at the extreme edge of a network,
which consists of micro-controllers and sensors. Hence, mist com-
puting can harvest resources with the help of computation and
communication capabilities available on the sensors, thus en-
abling local decision-making processes; as a consequence, micro-
controllers and microcomputers are used to transfer data to fog
computing nodes and, eventually, to the cloud. Mist computing
can be effectively applied when devices only serve a singular pur-
pose. Pros include: (i) conserving bandwidth and battery power,
since only essential data is transferred to the gateway, server, or
router; (ii) adopting access control mechanisms that can ensure
data privacy at a local level. Cons include that microcomputers
and sensors used in the infrastructure of mist computing can only
be used for lightweight data processing and a narrow range of
tasks, such as sending a location or performing a continuous in-
terpretation of data collected from the environment [52]. Hence,
such devices can be used for limited applications.

In general, the best architecture to be adopted depends on the ap-
lication requirements, as emerged from the above discussion. To this
nd, some experiments could be conducted, as presented in [53], where
hree alternative deployment models of IoT applications (i.e., edge,
oT+cloud, fog) are compared in the realization of a bonsai greenhouse
ompany. In this work, we could envision adopting mist computing
or the hydroponic planting system, the smart office, and the domotics
cenario; while an edge computing-based architecture could be the best
14

hoice for the smart agriculture environment.
Table 4
Analysis of case studies’ features.

Case study Sustainability Heterogeneous
communication
technologies

Security&Privacy

Smart agriculture yes yes partly
Hydroponic planting system no yes partly
Smart office yes yes partly
Domotics no yes no

Concerning pivotal aspects, such as sustainability, adoption and
integration of heterogeneous communication technologies, security and
privacy, Table 4 points out if they are considered or not, or if they
are only partially addressed in the investigated case studies. We note
that smart agriculture and smart office scenarios embrace the sustain-
ability requirement more naturally due to the need to save energy
and reduce costs, given the environment’s situation at various periods.
Heterogeneous communication technologies cooperate in all scenarios,
since data are gathered from sources and shared with final users, who
obviously adopt different devices. Finally, security and privacy require-
ments are only partly considered, since information is transmitted in an
encrypted way, in almost any scenario, but no access control policies or
authorization mechanisms have been integrated. The following threats
could affect the presented indoor and outdoor scenarios:

• Integrity violation and eavesdropping: the content of trans-
mitted data could be accessed or modified by malicious entities;
to cope with such an issue, encryption mechanisms along with
end-to-end verification systems must be integrated into the sys-
tem; moreover, key management schemes must be envisioned to
proper handle encryption and decryption tasks.

• Unauthorized access: access control refers to the permissions
in the usage of resources, assigned to different actors within the
IoT network; in the presented scenarios access control policies
should be defined in order to regulate the permissions to process
and share the data transmitted within the network. Furthermore,
mechanisms for the identification of involved entities should also
be put into action, by means of credentials of certificates provided
by certified and trusted authorities.

• Privacy violation: information transmitted in such scenarios
could be sensitive (e.g., personal information related to people’s
movements, habits, and interactions with other people) and, as
a consequence, should be protected and possibly anonymized
against malicious parties. Note that sensitive data should be
separated from identification ones, in order to strongly reduce
the inference process.

Possible integration concerning security will be proposed in Sec-
tion 7. To summarize, the following advantages, emerged from this
work, can be pointed out:

• Application’s logic and underlying simulated or emulated hard-
ware are separated, by distinguishing data producers’ functional-
ities from the IoT system’s core.

• Interactions between the application’s front-end and back-end can
be effectively glued together in a prototype, enabling a faster
evaluation of their correct/incorrect behavior.

• Different tools, software or web-based platform, database engines,
and programming languages can be combined and tested in a
single simulation environment. Also, real devices (e.g., Raspberry
Pi, Arduino) can be integrated.

• Tools natively provide or can integrate options for generating
well-structured dashboards, charts, gauges, and so on, which help
in monitoring and visualizing the output of the analyzed scenario.
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A last fundamental aspect should be considered: the maintenance
and continuous improvement of the presented IoT systems, while en-
suring their availability, is complex, but ever more essential, as also
emerged from the limitations pointed out in Table 1. The issues arise
from the need to adapt frequently and rapidly to new requests. More
in detail, increasing competition and rapidly changing market needs
require, from nowadays companies’, flexibility and fast time to market
of their products [54]. To cope with the emerges challenge, 𝐷𝑒𝑣𝑂𝑝𝑠
ractice [55] could be adopted. It is an approach that facilitates the
ollaboration among the IT teams and accelerates/improves the cycles
f maintenance of running systems, in order to detect and solve issues
efore end-users are impacted. 𝐷𝑒𝑣𝑂𝑝𝑠 culture, to be effective, must

be coupled with: (i) the 𝑎𝑔𝑖𝑙𝑒 concept, which consists in removing
rocess barriers empowering individuals, producing working software
apidly, collaborating closely with customers, and promptly respond-
ng to changes; (ii) CI/CD (Continuous Integration/Continuous Delivery),
hich is a software engineering practice where members of a team

ntegrate and deploy (after build and test) their work with increasing
requency. However, CI/CD (Continuous Integration/Continuous Delivery)
pproach is not an easy task and is even more complex in the IoT
ontext, due to the fact that IoT systems are an integration of: (i) a
ardware infrastructure, usually including a set of connected physical
evices, such as servers, physical objects, sensors, actuators, etc., and
ommunication networks; (ii) a software infrastructure (i.e., the IoT
latform or framework) that supports the development, deployment,
nd execution of end-to-end IoT applications; (iii) a set of end-user
pplications running over the infrastructure. In order to efficiently
dopt such an approach, the only solution is to improve the automation
ools capabilities and verifiation processes. In such a direction, proper
rocedures should be added, for example, to the Node-RED execution
lows, in order to periodically provide feedbacks about the system’s
ehavior. Such a goal must be pursued before starting the prototyp-
ng phase. In this way, the applications under development can be
onstantly monitored and updates should happen in a safe mode.

. Conclusions

The analysis carried out in this paper was motivated by the lack, in
iterature, of case studies and operative examples of indoor and outdoor
ystems, able to embrace both the logic application (intended as an
oT management middle layer), the involved protocols and devices,
long with considerations on performance. In such a direction, the
ain contribution of the proposed work consists of designing and
rototyping four different scenarios related to smart agriculture, hydro-
onic planting system, smart office and domotics. Both the approaches
i.e., Node-RED and Ignition SCADA with OpenHAB), employed for
heir realization, have provided a complete view of the IoT application
ase studies, allowing to analyze and simulate them, considering all
f them the involved entities and messages’ passing. Different tech-
ologies, protocols and languages, such as Java, JSON, Node.js, MQTT,
TTP, MongoDB, InfluxDB have been integrated without worrying
bout interoperability issues, thanks to the capabilities of the adopted
ools. In that sense, such approaches represent viable solutions for
erforming preliminary tests on heterogeneous IoT scenarios. In fact,
rrors or malfunctions in the application’s logic or in the devices’
nteractions can be promptly revealed and corrected before deploying.
ence, the support provided by the proposed tools could help avoid
asting time in deployment attempts.

. Future research directions

Three critical aspects still deserve attention: scalability,
ecurity&privacy, power consumption evaluation. In fact, the case
tudies, presented in this paper, do not give a clear idea about the
ossible scalability of the envisioned environments. Such a kind of
15

nalysis could be carried out, as an open research activity, by defining
e-usable modules and components to be integrated (and replicated) in
more complex system, following edge and mist computing approach,

s pointed out in Section 5. Instead, security&privacy requirements can
e achieved at various levels:

• MQTT protocol’s level: proper credentials are needed to authen-
ticate nodes/users to the broker; moreover, the whole MQTT
communication exchange can be kept secure by means of the
framework proposed in [56] .

• At database’s level: proper credentials are needed to perform
the authentication towards the database [57]; a set of roles and
associated permissions can be defined on the basis of the specific
case study.

• At devices’ level: the devices directly manages encrypted mes-
sages, which are sent to the broker and, then, only decrypted by
legitimate users; in this direction, many security protocols already
exists targeted to IoT devices [58].

• At the IoT core platform’s level: complex security and privacy
policy enforcement mechanisms could be integrated within the
core application itself [59].

In such a direction, a notable recent work [60] proposes a declar-
tive framework, consisting of a Prolog prototype, named Solomon.

It allows specifying policies for mediating contrasting (user and/or
global) goals and actuator settings in smart environments. In this sense,
the framework is totally cross-domain and it works as a service through
Logic Programming-as-a-Service (LPaaS). We will consider two aspects
of such an approach in our work: (i) the customized management of
policies to perform clever access control to resources/facilities; (ii)
the possibility to deploy the platform either to cloud or edge servers,
thus improving scalability. Furthermore, blockchain technology will
be also considered to manage access control among the involved IoT
entities [61].

Finally, concerning the assessment of power consumption, further
experiments will be conducted by means of real sensors, connected to
the Node-RED framework, instead of the current virtually simulated
ones.
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