
Computers & Industrial Engineering 183 (2023) 109514

A
0
n

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Two is better than one? Order aggregation in a meal delivery scheduling
problem✩

Alessandro Agnetis a,∗, Matteo Cosmi b, Gaia Nicosia c, Andrea Pacifici d

a Universita’ degli Studi di Siena, Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, via Roma 56, 53100, Siena, Italy
b University of Luxembourg, Luxembourg Centre for Logistics and Supply Chain Management, 6, rue Richard Coudenhove-Kalergi, 1359, Luxembourg, Luxembourg
c Universita’ degli Studi Roma Tre, Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Via della Vasca Navale 79, 00146, Rome, Italy
d Universita’ degli Studi di Roma Tor Vergata, Dipartimento di Ingegneria Civile e Ingegneria Informatica, via del Politecnico 1, 00133, Rome, Italy

A R T I C L E I N F O

Keywords:
Scheduling
Complexity
Branch and bound
Last-mile meal delivery

A B S T R A C T

We address a single-machine scheduling problem motivated by a last-mile-delivery setting for a food company.
Customers place orders, each characterized by a delivery point (customer location) and an ideal delivery time.
An order is considered on time if it is delivered to the customer within a time window given by the ideal
delivery time ± 𝛿

2
, where 𝛿 is the same for all orders. A single courier (machine) is in charge of delivery to all

customers. Orders are either delivered individually, or two orders can be aggregated in a single courier trip.
All trips start and end at the restaurant, so no routing decisions are needed. The problem is to schedule courier
trips so that the number of late orders is minimum. We show that the problem with order aggregation is -
hard and propose a combinatorial branch and bound algorithm for its solution. The algorithm performance
is assessed through a computational study on instances derived by a real-life application and on randomly
generated instances. The behavior of the combinatorial algorithm is compared with that of the best ILP
formulation known for the problem. Through another set of computational experiments, we also show that
an appropriate choice of design parameters allows to apply the algorithm to a dynamic context, with orders
arriving over time.
1. Introduction

In this paper we address a scheduling problem called single-courier
meal delivery scheduling problem (MDSP) motivated by a food pick-up
and delivery application in Rome, Italy. A restaurant collects food
orders from the final customers. When issuing an order, the customers
specify their location and the ideal delivery time. Meals are delivered
by a single courier. The problem is to schedule the courier’s trips so
that the number of orders which are not delivered within their time
window is minimized. This is a sensible objective, since one can assume
that missed orders are outsourced to a third-party logistics operator
charging a fixed rate for each order. We assume that the restaurant is
non-bottleneck, i.e., meals are always ready when needed for delivery.

During each roundtrip, the courier can deliver a limited number of
orders. This is mainly due to the fact that the quality of food decreases
after a certain time from departure (Fikar & Braekers, 2022) or that,
to cope with the congested traffic of big cities, couriers usually move
around by bicycles or mopeds, which typically have very little space
on board (Allen et al., 2021).

✩ Acknowledgments: The authors wish to thank Ulrich Pferschy for suggesting an improvement in the complexity of Algorithm MTE.
∗ Corresponding author.
E-mail addresses: agnetis@diism.unisi.it (A. Agnetis), matteo.cosmi@uni.lu (M. Cosmi), gaia.nicosia@uniroma3.it (G. Nicosia), andrea.pacifici@uniroma2.it

(A. Pacifici).

Here we consider the situation in which a courier can carry one
or two orders, carefully modeling the implications of delivering two
orders in the same trip vs. a single order. Moreover, our scheme can
be easily adapted to forbid order pairs which are too far from each
other to maintain a good level of food quality (see Section 2.2). This
is a relevant difference from, e.g., parcel delivery which is carried out
through vans or small trucks and which does not involve perishable
goods, so that several locations can be visited during the same trip.
In the following, we let 𝑀𝐷𝑆𝑃𝑆 denote the problem in which all trips
carry a single order, and 𝑀𝐷𝑆𝑃𝐴 the problem in which up to two orders
can be aggregated in each trip. We note that in last-mile food delivery a
common assumption is that couriers deliver single orders (see Seghezzi
et al. (2021)), with no systematic consideration of possible aggregation
among the orders. This is a different setting from the meal delivery
routing problem introduced by Reyes et al. (2018) and Yildiz and
Savelsbergh (2019).

A relevant feature of our meal delivery problem is that each delivery
should take place in a time window of width 𝛿, centered around the
vailable online 6 August 2023
360-8352/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cie.2023.109514
Received 3 April 2023; Received in revised form 28 June 2023; Accepted 3 August
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

2023

https://www.elsevier.com/locate/caie
http://www.elsevier.com/locate/caie
mailto:agnetis@diism.unisi.it
mailto:matteo.cosmi@uni.lu
mailto:gaia.nicosia@uniroma3.it
mailto:andrea.pacifici@uniroma2.it
https://doi.org/10.1016/j.cie.2023.109514
https://doi.org/10.1016/j.cie.2023.109514
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2023.109514&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.
ideal delivery time specified by the customer. The value of 𝛿 is the same
for all orders, and it expresses service timeliness. The consequence (as
shown in detail in Section 2.1) is that, if we consider the problem in
which each trip delivers a single order (𝑀𝐷𝑆𝑃𝑆 ), our problem reduces
to a single-machine scheduling problem in which, denoting by 𝑟𝑗 , 𝑑𝑗
and 𝑝𝑗 release date, due date and processing time of a job 𝑗, it turns
out that, for all 𝑗, 𝑑𝑗 − 𝑟𝑗 − 𝑝𝑗 = 𝛿, i.e., all jobs have the same slack.

In this paper we consider the case in which the courier is allowed
to serve up to two different orders in a single trip, that we refer to
as order aggregation (problem 𝑀𝐷𝑆𝑃𝐴). The idea is that if we serve
two customers in a single trip, a certain amount of travel time can
be saved. However, two orders can be aggregated only if their time
windows and processing times fulfill certain conditions, as explained in
detail in Section 2.2 (Proposition 2). This additional feature results in a
substantially different scheduling model. Such a variant of the problem
has been introduced by Cosmi et al. (2019a), where different lower
bounds are compared. In Cosmi et al. (2019b), computational results
are presented concerning a number of integer optimization models for
the problem.

It is important to stress that in 𝑀𝐷𝑆𝑃𝐴 deliveries contain at most
two orders, and delivery-time requirements are stricter than in most of
the models on delivery problems addressed in the literature. Hence,
in 𝑀𝐷𝑆𝑃𝐴, scheduling decisions, rather than routing decisions, are
crucial.

The paper is organized as follows. In the next subsections we first
summarize the main literature results connected to our problem and
then list our main contributions. In Section 2 we begin by providing
a formal description of 𝑀𝐷𝑆𝑃𝑆 , along with the definition of the
main notation used in the paper (Section 2.1). Then, in Section 2.2
we introduce the concept of order aggregation and the corresponding
additional notation, give a formal definition of problem 𝑀𝐷𝑆𝑃𝐴 and,
in Section 2.3 characterize its complexity. In Section 3.1, we outline
the description of different lower bounds that are utilized in a branch
and bound algorithm, which is subsequently illustrated in Section 3.2.
Section 4 presents the results of an extensive computational campaign.
Finally, in Section 5 some conclusions are drawn.

1.1. Related literature

Numerous papers have addressed issues related to food delivery.
Below, we present a concise overview of the key findings relevant to
the addressed problems 𝑀𝐷𝑆𝑃𝑆 and 𝑀𝐷𝑆𝑃𝐴.

𝑀𝐷𝑆𝑃 is conceptually similar to the so-called same-day delivery
problem (𝑆𝐷𝐷𝑃 ). Also in this case, consumers place orders for the
same day, and the orders are fulfilled drawing items from a centralized
inventory. However, 𝑆𝐷𝐷𝑃 is stochastic and dynamic (see Ulmer
et al. (2020) and Klein and Steinhardt (2023)), that is, online orders
are not known a priori and are only revealed over time. 𝑆𝐷𝐷𝑃 is
indeed strongly related to the vehicle routing problem with release
dates (Archetti et al., 2015; Azi et al., 2012).

Among the most recent literature on 𝑆𝐷𝐷𝑃 , some works specifically
deal with deliveries performed by a single vehicle. In Ulmer et al.
(2019) the problem with a single vehicle and stochastic order arrival
is addressed. The vehicle is allowed to (preemptively) return to the
depot before delivering all loaded packages. To solve the problem, they
combine a dynamic programming-based approximation procedure to
select a subset of requests for delivery with a routing heuristic. Klapp
et al. (2018b) consider a problem with a single vehicle and orders
distributed on a line. The decision process is divided in epochs charac-
terized each by a set of known delivery requests and a set of potential
requests. At each epoch the goal is to decide whether or not to dispatch
the vehicle, loaded with known orders, so that expected operational
costs and penalties for unserved orders are minimized. In Klapp et al.
(2018a), the same authors assume a more general network topology
and provide a more realistic model of the same-day delivery operations
2

in a typical road network.
Reyes et al. (2018), Steever et al. (2019) and Ulmer et al. (2020)
consider a stochastic, dynamic food delivery problem. Hence, they
focus on developing policies, based on heuristic methods, to deal with
uncertainty and to decide whether to group orders, assign them to
couriers or postpone the decision. Recently, Bozanta et al. (2022)
and Chen et al. (2021) propose novel machine learning based algo-
rithms to deal with the problem of assigning orders to couriers. Liu
(2019) consider a futuristic food delivery problem in which drones
are used to perform delivery. Although the meal delivery problem was
introduced in Reyes et al. (2018) as a stochastic dynamic problem, also
its static and deterministic version has been widely studied. To solve
this version of the problem, both heuristic (Joshi et al., 2021; Teng
et al., 2021; Xue et al., 2021) and exact methods (Cosmi et al., 2019a,
2019b; Cosmi, Oriolo et al., 2019) have been proposed.

Albeit the literature on food delivery is relatively recent, authors
have already investigated a large number of different objective func-
tions. When orders have to be delivered as soon as possible, the
click-to-door and ready-to-door time are the most used objectives. On
the contrary, the number of performed deliveries and the (late) delivery
costs are widely used when orders are characterized by strict delivery
time windows.

Table 1 offers a comprehensive overview of the existing literature on
food delivery, adopting a similar approach to other papers, like Abbasi
et al. (2023). Each row of the table refers to a specific paper (whose
reference appears in Column 1). Since the literature addresses various
problems related to food delivery, these problems are classified based
on the characteristics outlined below. Columns 2 and 3 specify whether
single (S) or multiple (M) restaurants or couriers are involved. The
utilized order delivery policy (as soon as possible (ASAP) or within
predetermined time-windows (TW )) is reported in Column 4. The
possibility of order aggregation is reported in Column 5, while Column
6 illustrates the considered objective function, where CtD denotes the
click-to-door time, RtD the ready-to-door time, and ‘‘ * ’’ an objective
function obtained weighing 10 different objectives related to three
main features (safety, lateness and efficiency). Column 7 refers to
whether a static (St) or dynamic (D) version of the problem is con-
sidered. The (main) proposed solution approach is reported in Column
8, while, the proposed (or not) complexity analysis is in Column 9
(the entry ‘‘-hard’’ means that although a complexity analysis is not
proposed, the considered model is known to be -hard). Finally, the
last column reports on whether the computational tests are performed
on real-world data or not.

Based on Table 1, it is evident that our work stands out as the only
one that conducts a formal analysis of the complexity associated with
the considered food delivery problem. Furthermore, our study extends
and enhances the results previously obtained in Cosmi et al. (2019b).
Moreover, the findings presented in the table demonstrate that the
proposed exact method is applicable to a rolling-horizon optimization
approach, allowing to effectively address the dynamic version of the
problem.

As we will see in detail in the next section, 𝑀𝐷𝑆𝑃𝑆 can be seen
as a special case of the well known single machine scheduling problem
1|𝑟𝑗 |

∑

𝑈𝑗 , in which the difference 𝑑𝑗 − 𝑟𝑗 − 𝑝𝑗 is the same (equal to
𝛿) for all 𝑗. This quantity is known as slack or additive laxity (Böhm
et al., 2021). While problem 1|𝑟𝑗 |

∑

𝑈𝑗 is, in general, strongly -
hard (Garey & Johnson, 1979), a number of papers addressed the case
in which constraints exist on slack. For the case in which the slack must
not exceed a certain value 𝛿, Cieliebak et al. (2004) address the problem
of minimizing the number of machines necessary to complete all jobs on
time. The authors show that their problem can be solved in polynomial
time if 𝛿 ∈ {0, 1}. Otherwise, they propose a solution algorithm that
runs in 𝑂(𝑛(𝛿+1)𝐻𝐻 log𝐻), where 𝑛 and 𝐻 are the number of jobs and
the maximum number of overlapping job time windows, respectively.
A refined algorithm for the feasibility version of the same problem is
proposed in van Bevern et al. (2017). Its complexity is 𝑂(𝑛𝛿𝑚 log(𝛿𝑚)(𝛿+

𝑚(2𝛿+1)
1) + 𝑛 log 𝑛), where 𝑚 is the number of available machines. While



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

h
𝑚
t
i

o
e

Table 1
A summary of pertaining food delivery literature.

Reference Num. Num. Order Order Objective Static/ Sol. Complexity Real
Rest. couriers delivery Aggr. function dynamic approach analysis data

Reyes et al. (2018) M M ASAP ✓ CtD, RtD D Heuristic ✗ ✓

Yildiz and Savelsbergh (2019) M M ASAP ✓ CtD, RtD St ILP ✗ ✓

Liu (2019) M M ASAP ✓ * St,D ILP ✗ ✗

Heuristic
Steever et al. (2019) M M ASAP ✗ Earliness St,D MILP ✗ ✗

PtD, RtD Heuristic
Cosmi, Oriolo et al. (2019) S,M S,M TW ✗ Number of ontime St Dynamic ✗ ✗

deliveries Programming
Cosmi et al. (2019a) S S TW ✓ Num of deliveries St Lower bound ✗ ✓

Cosmi et al. (2019b) S S TW ✓ Num of deliveries St ILP ✗ ✓

Liao et al. (2020) M M TW ✓ Customer Satisf. St Heuristic ✗ ✗

emissions
Ulmer et al. (2020) M M ASAP ✓ Sum of tardiness D Heuristic ✗ ✗

Chen et al. (2021) M M ASAP ✗ Avg disp cost D Heuristic ✗ ✓

Teng et al. (2021) M M TW ✓ Tot delivery cost St Heuristic -hard ✓

Xue et al. (2021) M M ASAP ✓ Tot cost St ILP ✗ ✓

scheduling time Heuristic
Joshi et al. (2021) M S,M ASAP ✓ Sum of tardiness St Heuristic ✓ ✓

Bozanta et al. (2022) M S,M ASAP ✗ Total reward D Heuristic ✗ ✗

Cosmi et al. (2022) M M TW ✗ Weighted delays St,D ILP ✗ ✓

This work S S TW ✓ Num of deliveries St,D Lower bound ✓ ✓

B&B
Table 2
Literature related to scheduling problem 𝑃 |𝑟𝑗 |

∑

𝑈𝑗 with fixed additive laxity.

Reference Machines Job aggregation Objective Complexity Solution approach

Cieliebak et al. (2004) 𝑚 ✗ Feasibility 𝑂
(

𝑛(𝛿 + 1)𝐻 ⋅𝐻𝑙𝑜𝑔(𝐻)
)

Dynamic programming

van Bevern et al. (2017) 𝑚 ✗ Feasibility 𝑂
(

𝑛(𝛿 + 1)(2𝛿+1) ⋅ (2𝛿 + 1) ⋅ 𝑙𝑜𝑔(2𝛿 + 1)
)

Dynamic programming

Cosmi, Oriolo et al. (2019) 𝑚 ✗
∑

𝑈𝑗 𝑂
(

𝑛𝑚 ⋅ (𝛿 + 2)2𝑚(𝛿+1)
)

Dynamic programming

Böhm et al. (2021) 1 ✗
∑

𝑤𝑗 (1 − 𝑈𝑗 ) 𝑂
(

𝑛3 ⋅
∑

𝑤𝑗 ⋅ 𝑙𝑜𝑔(𝑛
∑

𝑤𝑗 )
)

Dynamic programming

This work 1 ✓
∑

𝑈𝑗 -Hard Branch & Bound
it is shown in Cieliebak et al. (2004) that this problem is already -
ard when 𝛿 = 2 for arbitrary 𝑚, it is tractable for fixed parameter
+ 𝛿 (van Bevern et al., 2017). Cosmi, Oriolo et al. (2019) show that

he optimization version of the same problem with 𝑚 = 1 can be solved
n 𝑂(𝑛(𝛿 + 2)2(𝛿+1) + 𝑛 log 𝑛).

When 𝑚 = 1 and (4) holds, which is the case of our 𝑀𝐷𝑆𝑃 without
rder aggregation, Böhm et al. (2021) proposed an algorithm that
xactly solves this problem in 𝑂(𝑛3 ⋅

∑

𝑤𝑗 ⋅ 𝑙𝑜𝑔(𝑛
∑

𝑤𝑗 )). So, 𝑀𝐷𝑆𝑃𝑆 is
indeed polynomially solvable. We will see in this paper that this is not
the case when order aggregation is allowed, that is when we consider
problem 𝑀𝐷𝑆𝑃𝐴.

The above results on problems connected to 1|𝑟𝑗 |
∑

𝑈𝑗 with fixed
additive laxity or fixed slack are summarized in Table 2, where each
row of the table refers to a specific reference reported in the first
column. The second column of the table indicates the number of
considered (identical and parallel) machines, while in Column 3 is
reported whether the possibility of aggregating jobs or not has been
considered. Column 4 contains the addressed objective, while Column
5 illustrates the computational complexity of the problem (where 𝐻 is
the maximum number of overlapping time-windows, 𝑛 is the number
of jobs, 𝑚 the number of machines, and 𝛿 the additive laxity). Finally,
the last column, lists the adopted solution algorithm.

1.2. Our contribution

In this work we consider a model for scheduling single- or dual-
order deliveries arising in a food pick-up and delivery application
in Rome, Italy. In our study, we undertake a rigorous analysis to
determine the complexity of the food delivery problem under investiga-
tion. Through this analysis, we establish that the problem, specifically
when order aggregation is involved, falls into the class of -hard
3

problems. To solve the problem at hand, we first introduce novel and
advanced lower bounds to provide tight estimates. Subsequently, we
develop a combinatorial branch and bound algorithm, which uses the
proposed lower bounds to efficiently explore the solution space and
identify optimal or near-optimal solutions. To evaluate the performance
of the solution algorithm, we conduct a computational study using
instances derived from the considered real-life application, as well as
randomly generated instances. Additionally, we compare the behavior
of the combinatorial algorithm with the best-known Integer Linear
Programming formulation for the problem. Furthermore, we conduct
additional computational experiments to show that by appropriately
selecting design parameters, the algorithm can be applied to a dynamic
context where orders arrive over time.

2. Problem definition, notation and complexity

2.1. Problem 𝑀𝐷𝑆𝑃𝑆

In this section we introduce notation and establish some properties
of our problem in which, during each courier trip, a single order is
delivered, so in this case there is a one-to-one correspondence between
orders and courier’s trips.

A set of orders 𝐽 = {1,… , 𝑛} is given. (Since each order corresponds
to a customer, we indifferently use the terms order and customer.)
For each order 𝑗 ∈ 𝐽 , an ideal delivery time 𝑑𝑗 and a restaurant-to-
destination travel time 𝑡𝑗 are specified. The trip corresponding to order
𝑗 consists in the courier leaving the restaurant, reaching customer 𝑗,
and heading back to the restaurant.

The delivery time of an order 𝑗 equals the courier start time at the
restaurant plus the travel time between the restaurant and destination

𝑗. An order is considered on time if it is delivered in an interval



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

c
t
c
t

𝑑

s
t
h

a

t
M
t

h
p
n
b
a
c

r
r
r
𝑖
t
a

𝑝

t

𝑑

d

E
a

r
d
(
t
d
t
t
𝑟
a
t

a
o
b
d
d
b
M
s
w
(
w

P
a

𝛿

P
t
h
𝑑

t

𝜏

𝑟

of 𝛿 minutes centered around the ideal delivery time chosen by the
customer. As long as the courier is traveling, she/he is not available
for processing any other order until the courier is back again to the
restaurant. So, in 𝑀𝐷𝑆𝑃𝑆 we may view the orders as jobs and the
ourier as a processing resource, and each job 𝑗 ∈ 𝐽 is associated with
he following data. The due date 𝑑𝑗 is the latest possible time for the
ourier to be back at the restaurant after delivering order 𝑗 on time to
he customer, i.e.,

𝑗 = 𝑑𝑗 +
1
2
𝛿 + 𝑡𝑗 . (1)

The release date 𝑟𝑗 is the earliest possible time for the courier to start
from the restaurant and deliver order 𝑗 on time to the customer, i.e.,

𝑟𝑗 = 𝑑𝑗 −
1
2
𝛿 − 𝑡𝑗 (2)

The processing time 𝑝𝑗 equals the amount of time the courier is busy
with order 𝑗, i.e., the total roundtrip time

𝑝𝑗 = 2𝑡𝑗 . (3)

(We implicitly assume that loading/unloading times are included in
travel times.)

In this framework, an order 𝑗 is on time if and only if the corre-
sponding job starts (i.e., the courier picks up the food at the restaurant)
not before 𝑟𝑗 and completes (i.e., the courier returns to the restau-
rant) not later than 𝑑𝑗 . An order which is not on time is tardy . As a
consequence of the above definitions, one has:

𝑑𝑗 = 𝑟𝑗 + 𝑝𝑗 + 𝛿 (4)

which makes our scheduling problem a special case of problem 1|𝑟𝑗 |
∑

𝑈𝑗 , in which due dates and release dates are interdependent, namely,
while due dates and processing times may vary, the difference 𝑑𝑗−𝑟𝑗−𝑝𝑗
is the same (equal to 𝛿) for all 𝑗.

2.2. Problem 𝑀𝐷𝑆𝑃𝐴

In this section, we consider 𝑀𝐷𝑆𝑃𝐴, i.e., the problem in which
a courier may pick up either a single order or a pair of orders to
be delivered in a single trip. In the latter case, the deliveries to the
two customers are sequentially performed in the same trip from the
restaurant to the two different locations and back. In the following we
refer to such a composite trip as a twin. When performing a twin, we
uppose that after the first delivery, the courier immediately proceeds
o deliver the second order, i.e., we assume that the following condition
olds.
No-wait assumption: While performing a twin, the courier is not

llowed to introduce idle time between the two deliveries.
This assumption comes from the application scenario motivating

his study, as it prevents decays in the quality of the delivered food.
oreover, one typically wants that the courier spends traveling only

he time strictly necessary to reach the customers.
Clearly, a courier may deliver two orders 𝑖 and 𝑗 in a single trip (and

ence, orders 𝑖 and 𝑗 are allowed to be in the same twin) only if it is
ossible to meet the corresponding delivery-time constraints under the
o-wait assumption. In this case, the twin composed by order 𝑖 followed
y order 𝑗 (hereafter, for notation simplicity, indicated by 𝑖𝑗) is called
feasible twin. In the following, we let 𝑡𝑖𝑗 denote the travel time from

ustomer 𝑖 to customer 𝑗.
Similar to 𝑀𝐷𝑆𝑃𝑆 , taking into account travel times from/to the

estaurant and between two customers, we can define processing times,
elease dates, and due dates for each twin 𝑖𝑗. The processing time 𝑝𝑖𝑗
epresents the total amount of time the courier is busy with the twin
𝑗. Due to the no-wait assumption, 𝑗 is reached 𝑡𝑖 + 𝑡𝑖𝑗 time units after
he courier starts from the restaurant, while the same courier is back
fter 𝑝𝑖𝑗 time units, where

def
= 𝑡 + 𝑡 + 𝑡 . (5)
4

𝑖𝑗 𝑖 𝑖𝑗 𝑗
Recalling that 𝑑𝑘 − 𝛿∕2 is the earliest time at which customer 𝑘 can
be reached, the release date 𝑟𝑖𝑗 of the twin 𝑖𝑗 is the earliest possible time
for the courier to start from the restaurant and deliver both orders 𝑖 and
𝑗 on time, i.e.,

𝑟𝑖𝑗
def
= max

{

𝑑𝑖 −
𝛿
2
− 𝑡𝑖, 𝑑𝑗 −

𝛿
2
− (𝑡𝑖 + 𝑡𝑖𝑗 )

}

. (6)

Since 𝑑𝑘+𝛿∕2 is the latest time at which customer 𝑘 can be reached,
the due date 𝑑𝑖𝑗 of the twin 𝑖𝑗 is the latest possible time for the courier
to be back to the restaurant after delivering both the orders 𝑖 and 𝑗 on
ime, i.e.,

𝑖𝑗
def
= min

{

𝑑𝑖 +
𝛿
2
+ 𝑡𝑖𝑗 + 𝑡𝑗 , 𝑑𝑗 +

𝛿
2
+ 𝑡𝑗

}

. (7)

Hence, a pair of customer orders 𝑖 and 𝑗 may constitute a feasible
twin if a courier starting not before 𝑟𝑖𝑗 is able to deliver the two orders
and return back to the restaurant within the due date 𝑑𝑖𝑗 . An example
escribing the above discussion is hereafter.

xample 1. In Fig. 1 an example of the two possible alternatives for
courier that has to serve two customer orders 𝑖 and 𝑗 is illustrated.

In particular, if the courier delivers a single order 𝑖 (or 𝑗) with ideal
delivery times 𝑑𝑖 = 7 (𝑑𝑗 = 10), he/she starts at time 𝑠𝑖 (𝑠𝑗) from the
estaurant 𝑅 and gets back to 𝑅 at time 𝐶𝑖 (𝐶𝑗). Here, 𝛿 = 2 and, using
efinitions (2), (3), and (4), we have 𝑟𝑖 = 1, 𝑝𝑖 = 10, and 𝑑𝑖 = 13
respectively 𝑟𝑗 = 0, 𝑝𝑗 = 18, and 𝑑𝑗 = 20). Note that, clearly, in
his case it is impossible for the courier to serve both 𝑖 and 𝑗 with two
istinct consecutive trips. Alternatively, the courier may aggregate the
wo orders: so doing, he/she starts at time 𝑠 from 𝑅 and then gets back
o 𝑅 at time 𝐶. Using definitions (5), (6), and (7), we have 𝑝𝑖𝑗 = 18,
𝑖𝑗 = max{1, 0} = 1, and 𝑑𝑖𝑗 = min{21, 20} = 20. In this example, from (8)
nd (9), the slack 𝛿𝑖𝑗 = 𝛿 − |𝜏𝑖𝑗 | = 2 − |1| = 1 is nonnegative and hence
he twin is feasible.

For a twin 𝑖𝑗 to be feasible, the ideal delivery dates 𝑑𝑖 and 𝑑𝑗 , as well
s the travel distance 𝑡𝑖𝑗 , must satisfy certain conditions. If the locations
f 𝑖 and 𝑗 are far from each other, then the ideal delivery times must
e such that the courier has enough time to visit both of them, i.e., the
ifference 𝑡𝑖𝑗−(𝑑𝑗−𝑑𝑖) must not exceed the slack 𝛿. Similarly, if the ideal
elivery times 𝑑𝑖 and 𝑑𝑗 are relatively close to each other, 𝑡𝑖𝑗 must not
e too large, as the courier would not be on time to move from 𝑖 to 𝑗.
oreover, if 𝑑𝑗 −𝑑𝑖 is large, the locations of 𝑖 and 𝑗 cannot be too close,

ince this would force the courier to wait, which is forbidden by the no-
ait assumption. The following proposition, introduced in Cosmi et al.

2019b), formally establishes these conditions in a unified way. Here
e report a novel proof for this result.

roposition 2. Given two orders 𝑖, 𝑗 ∈ 𝐽 × 𝐽 , the twin 𝑖𝑗 is feasible if
nd only if:

𝑖𝑗
def
= 𝛿 − |𝑡𝑖𝑗 − 𝑑𝑗 + 𝑑𝑖 + 1∕2(𝑝𝑗 − 𝑝𝑖)| ≥ 0 (8)

roof. Recall that, for any order 𝑗 ∈ 𝐽 , the processing time 𝑝𝑗 is
wice the travel time 𝑡𝑗 from the restaurant to customer 𝑗 and that (4)
olds. In (6), we notice that, by (2), the first term in the max expression
�̂�−

𝛿
2−𝑡𝑖 equals 𝑟𝑖. Since 𝑑𝑗−

𝛿
2 = 𝑟𝑗+𝑡𝑗 , the second term can be rewritten

as 𝑟𝑗 +
1
2 (𝑝𝑗 − 𝑝𝑖) − 𝑡𝑖𝑗 .

Similarly, the second term of the min function in (7), by (1), is equal
to 𝑑𝑗 . The first term, since 𝑑𝑖 +

𝛿
2 = 𝑑𝑖 − 𝑡𝑖, is equal to 𝑑𝑖 +

1
2 (𝑝𝑗 −𝑝𝑖)+ 𝑡𝑖𝑗 .

Now, let 𝜏𝑖𝑗
def
= 𝑡𝑖𝑗 − (𝑑𝑗 − 𝑑𝑖) +

1
2 (𝑝𝑗 − 𝑝𝑖). Due to (1), it is immediate

o verify that the following expression holds:

𝑖𝑗 ≥ 0 ⇔ 𝑡𝑖𝑗 ≥ 𝑑𝑗 − 𝑑𝑖. (9)

As a consequence, we can rewrite (6) and (7) as:

𝑖𝑗 =

{

𝑟𝑖 if 𝜏𝑖𝑗 ≥ 0;
1 (10)
𝑟𝑗 + 2 (𝑝𝑗 − 𝑝𝑖) − 𝑡𝑖𝑗 otherwise.



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.
Fig. 1. Alternative courier trips.
𝑑𝑖𝑗 =

{

𝑑𝑗 if 𝜏𝑖𝑗 ≥ 0;
𝑑𝑖 +

1
2 (𝑝𝑗 − 𝑝𝑖) + 𝑡𝑖𝑗 otherwise. (11)

The above relations show that, if the travel time between the two
customers is larger than the difference between their ideal delivery
times, then the release date (resp. due date) of the twin is equal to the
release date of the first order 𝑖 (resp. the due date of the second order
𝑗). Otherwise, the other terms of expressions (10) and (11) dominate.

Clearly, in order for twin 𝑖𝑗 to be feasible, one must have:

𝑟𝑖𝑗 + 𝑡𝑖 + 𝑡𝑖𝑗 + 𝑡𝑗 ≤ 𝑑𝑖𝑗 . (12)

If 𝜏𝑖𝑗 ≥ 0, recalling that 𝑟𝑖 = 𝑑𝑖 − 𝑝𝑖 − 𝛿, this condition can be rewritten
as 𝛿 − 𝜏𝑖𝑗 ≥ 0. Viceversa, if 𝜏𝑖𝑗 ≤ 0, with some algebra, one can show
that the same condition is equivalent to 𝛿 + 𝜏𝑖𝑗 ≥ 0. In conclusion, (8)
can be written as

𝛿𝑖𝑗=𝛿 − |𝜏𝑖𝑗 | ≥ 0 (13)

i.e., 𝑖𝑗 is a feasible twin if and only if 𝛿𝑖𝑗 ≥ 0. □

Note that, similar to 𝛿 for a standard (single) trip, 𝛿𝑖𝑗 plays the role
of a slack time for a feasible twin. In fact, it is easy to see that for any
twin 𝑖𝑗, it holds

𝑑𝑖𝑗 = 𝑟𝑖𝑗 + 𝑝𝑖𝑗 + 𝛿𝑖𝑗 . (14)

However, note that 𝛿𝑖𝑗 ≤ 𝛿 and in general it depends on the pair (𝑖, 𝑗)
of orders forming the twin.

We denote the set of feasible twins by

𝐷 = {𝑖𝑗 ∶ (𝑖, 𝑗) ∈ 𝐽 × 𝐽 , 𝛿𝑖𝑗 ≥ 0}. (15)

We note here that our model can be easily generalized if one wants to
restrict the set of feasible twins. In particular, one may argue that even
if 𝑖 and 𝑗 are such that 𝛿𝑖𝑗 ≥ 0, the two locations may be too far apart
to guarantee the quality of food when it reaches 𝑗. This only requires
to define 𝐷 as {𝑖𝑗 ∶ (𝑖, 𝑗) ∈ 𝐽 × 𝐽 , 𝛿𝑖𝑗 ≥ 0, 𝑡𝑖𝑗 ≤ 𝑇𝑚𝑎𝑥}, where 𝑇max is
the maximum travel time allowed between two orders. For simplicity
of exposition, we will not consider 𝑇max in the following.

For notational convenience, in 𝐷 we also include the special symbol
𝑗𝑗 (for any 𝑗 ∈ 𝐽 ) to represent a single order 𝑗 (not aggregated to
another order) as a twin. Clearly, 𝑗𝑗 ∈ 𝐷 for all 𝑗 ∈ 𝐽 , since, from
(8), 𝛿𝑗𝑗 = 𝛿. Note that 𝜏𝑗𝑗 = 0 and hence 𝑟𝑗𝑗 = 𝑟𝑗 and 𝑑𝑗𝑗 = 𝑑𝑗 . Hence,
from now on we do not distinguish between trips containing one or two
orders, regarding all trips as twins.

Naturally extending the concept of on-time order, we say that a twin
𝑖𝑗 ∈ 𝐷 is on time if both its component orders are so. Note that it is
not necessary to consider twins in which one order is on time and the
other one is late. In fact, if a schedule 𝜎 exists in which there is a twin
𝑖𝑗 with 𝑖 on time and 𝑗 late, then consider another schedule �̄� identical
to 𝜎 except that 𝑖 and 𝑗 are split into two single orders. Then only 𝑖 is on
time and 𝑓 (�̄�) ≤ 𝑓 (𝜎) since in �̄� the courier is back to restaurant earlier
than in 𝜎. Notice that the feasibility condition (8) is only necessary for
a twin 𝑖𝑗 to be on time. Indeed, 𝑖𝑗 is on time if and only if its starting
time 𝑠𝑖𝑗 belongs to the interval [𝑟𝑖𝑗 , 𝑟𝑖𝑗+𝛿𝑖𝑗 ]. We can now formally define
the problem addressed in the remainder of the paper.
5

Problem 𝑀𝐷𝑆𝑃𝐴

Given: 𝑛 customer orders 𝐽 = {1, 2,… , 𝑛}, the ideal delivery times
𝑑𝑗 , 𝑗 = 1,… , 𝑛, the travel times 𝑡𝑗 between the restaurant and
customer 𝑗, 𝑗 = 1,… , 𝑛, the travel times 𝑡𝑖𝑗 between customers 𝑖
and 𝑗, 𝑖, 𝑗 = 1,… , 𝑛 (𝑡𝑗𝑗 = 0), a slack value 𝛿 > 0;

Find: a set of twins  such that each order belongs to exactly one
twin 𝑖𝑗 of  , and a starting time 𝑠𝑖𝑗 for each of these twins so that
the number of on-time orders is maximized.

Note that the solution of 𝑀𝐷𝑆𝑃𝐴 includes the possibility to schedule
single-order trips (through twins 𝑗𝑗, for 𝑗 ∈ 𝐽 ).

2.3. Complexity of 𝑀𝐷𝑆𝑃𝐴

While problem 𝑀𝐷𝑆𝑃𝑆 is solvable in polynomial time (see Sec-
tion 1.1 and Table 2), hereafter we show that 𝑀𝐷𝑆𝑃𝐴 is difficult. We
make use of a reduction from the well-known (binary) -complete
decision problem:

Partition: Given 𝑞 integers 𝑎1, 𝑎2,… , 𝑎𝑞 , is there a subset 𝑆 ⊂
{1,… , 𝑞} such that ∑𝑖∈𝑆 𝑎𝑖 =

1
2
∑𝑞

𝑖=1 𝑎𝑖?

Observation 3. Note that Partition remains -complete even if all the
𝑎𝑖 are even numbers. In fact, given any instance of Partition, if we double
all integers we obtain another instance which is a YES-instance if and only
if the original instance is a YES-instance.

Theorem 4. Problem 𝑀𝐷𝑆𝑃𝐴 is -hard.

Proof. Consider an instance 𝐼 of Partition with 𝑞 integers 𝑎1, 𝑎2,… , 𝑎𝑞 .
In view of Observation 3 above, we assume that all values 𝑎𝑖 are
even. Let 𝑊 =

∑𝑞
𝑖=1 𝑎𝑖. We can build a corresponding instance 𝐼 ′ of

𝑀𝐷𝑆𝑃𝐴 as follows.
In 𝐼 ′ there are 𝑛 = 2(𝑞+2) orders forming set 𝐽 = 𝑁∪𝑁 ′ in which 𝑁

and 𝑁 ′ are two disjoint sets each with (𝑞 + 2) orders. In particular, for
each integer 𝑖 of the Partition instance 𝐼 , we define a pair of identical
partner orders 𝑖 ∈ 𝑁 and 𝑖′ ∈ 𝑁 ′ with 𝑝𝑖 = 𝑝𝑖′ = 𝑎𝑖, 𝑟𝑖 = 𝑟𝑖′ = 𝑊 − 𝑎𝑖 and
𝑑𝑖 = 𝑑𝑖′ = 2𝑊 +1, 𝑖, 𝑖′ = 1,… , 𝑞. Note that because of (3), the values 𝑝𝑖
must be even, and this is ensured by the initial assumption on values
𝑎𝑖. We refer to these 2𝑞 orders as item-orders.

Moreover, there are two more pairs of partner orders. Namely, there
is a pair of partner short orders (𝑞 + 1) ∈ 𝑁 and (𝑞 + 1)′ ∈ 𝑁 ′, and a
pair of partner long orders (𝑞 + 2) ∈ 𝑁 and (𝑞 + 2)′ ∈ 𝑁 ′. All the data
are reported in Table 3.

Clearly, in 𝐼 ′ we have 𝛿 = 𝑊 +1. In addition, the travel time between
two partner orders 𝑖, 𝑖′ is set to zero, 𝑖, 𝑖′ = 1,… , 𝑞 + 2. For any other
pair of orders, the travel time is set to the maximum possible value that
meets the triangle inequality. Hence, we have the following values for
the travel times

𝑡𝑗𝑖 = 𝑡𝑖𝑗 =

{

0 ∀𝑖 ∈ 𝑁, 𝑗 = 𝑖′ ∈ 𝑁 ′;
1

2 (𝑝𝑖 + 𝑝𝑗 ) otherwise.



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

w
c
a

w
a
𝜎

t
b
o
t
w
s
h


i

(
o
u
1
t

d
i

a
𝑃
t

3

a
i
𝐼
i
t

o
t

i
l
i
o
e
t

𝐼

i
𝐼
i
r

T
e

P
o
e

o

e

Table 3
Data of instance 𝐼 ′.

Order Processing time Release date Due date

𝑖, 𝑖′ = 1,… , 𝑞 𝑝𝑖 = 𝑝𝑖′ = 𝑎𝑖 𝑟𝑖 = 𝑟𝑖′ = 𝑊 − 𝑎𝑖 𝑑𝑖 = 𝑑𝑖′ = 2𝑊 + 1

(𝑞 + 1) 𝑝(𝑞+1) = 1 𝑟(𝑞+1) =
𝑊
2
− 1 𝑑(𝑞+1) =

3
2
𝑊 + 1

(𝑞 + 1)′ 𝑝(𝑞+1)′ = 1 𝑟(𝑞+1)′ =
3
2
𝑊 𝑑(𝑞+1)′ =

5
2
𝑊 + 2

(𝑞 + 2) 𝑝(𝑞+2) = 𝑊 𝑟(𝑞+2) = 0 𝑑(𝑞+2) = 2𝑊 + 1

(𝑞 + 2)′ 𝑝(𝑞+2)′ = 𝑊 𝑟(𝑞+2)′ = 𝑊 𝑑(𝑞+2)′ = 3𝑊 + 1

which imply that the (feasible) twin processing times in 𝐼 ′ are, from
(3) and (5),

𝑝𝑗𝑖 = 𝑝𝑖𝑗 =
{

𝑝𝑖 (= 𝑝𝑗 ) ∀𝑖 ∈ 𝑁, 𝑗 = 𝑖′ ∈ 𝑁 ′;
𝑝𝑖 + 𝑝𝑗 otherwise.

It is easy to verify that any pair of orders (𝑖, 𝑗) ∈ 𝐽 × 𝐽 forms a feasible
twin (unless 𝑖 = (𝑞 + 2)′ and 𝑗 is an item-order with 𝑝𝑗 > 1.)

We next show that there is a schedule 𝜎 of 𝑀𝐷𝑆𝑃𝐴 in which no
order is tardy if and only if the instance of Partition is a yes-instance.

Let us consider a solution of 𝑀𝐷𝑆𝑃𝐴 with no tardy orders. We next
show that an early completion of all the orders implies that:

1. Orders (𝑞 + 2) and (𝑞 + 2)′ do not form a twin.
2. Any order 𝑖 ∈ 𝑁 ⧵ (𝑞 + 2) necessarily forms a twin with its

partner order 𝑖′ ∈ 𝑁 ′ ⧵ (𝑞 + 2)′ and, symmetrically, any order
𝑖′ ∈ 𝑁 ′ ⧵ (𝑞 + 2)′ necessarily forms a twin with its partner order
𝑖 ∈ 𝑁 ⧵ (𝑞 + 2).

To prove the first statement, consider first a schedule 𝜎 in which orders
(𝑞 + 2) and (𝑞 + 2)′ are in a twin. Such a twin must be processed
between times 𝑊 and 2𝑊 + 1. Consequently, all the 2𝑞 item-orders
must complete not later than 𝑊 + 1 but, recalling the release and due
dates of the item-orders, this is impossible for 𝑞 > 2. Hence, (𝑞 +2) and
(𝑞 + 2)′ must form a twin.

To prove the second statement, suppose that a twin 𝑖𝑗 exists in 𝜎 in
hich 𝑖 and 𝑗 are not partner orders and 𝑖 is not a long order. In this

ase, 𝑝𝑖𝑗 = 𝑝𝑖+𝑝𝑗 . In the total processing time 𝑝(𝜎) of the orders in 𝜎, 𝑝𝑖
nd 𝑝𝑗 appear twice. In fact, the partner orders of 𝑖 and 𝑗 respectively

may form a twin with some other order or be processed as singletons.
In both cases, their duration is added to 𝑝(𝜎). Then one would have:

𝑝(𝜎) ≥ 2𝑝(𝑞+2)+𝑝(𝑞+1)+
∑

𝓁=1,…,𝑞
𝑝𝓁+𝑝𝑖+𝑝𝑗 = 2𝑊 +1+𝑊 +𝑝𝑖+𝑝𝑗 > 3𝑊 +1

hich implies that there must be at least one order which is delivered
fter its due date, contradicting the hypothesis that no order is tardy in
.

As a consequence of the previous facts, in any schedule with no
ardy orders, the long orders (𝑞 + 2) and (𝑞 + 2)′ are processed at the
eginning and at the end of the schedule respectively, while the short
rders (𝑞 + 1) and (𝑞 + 1)′ form a twin that is necessarily processed in
he interval [ 32𝑊 , 32𝑊 + 1]. The remaining item-orders form 𝑞 twins
ith their respective partner order, and the processing times of each

uch twin equals the size of a Partition item. Moreover, those twins
ave only two disjoint intervals left for processing: 1 = [𝑊 , 32𝑊 ] and
2 = [ 32𝑊 + 1, 2𝑊 + 1]. The resulting structure is illustrated in Fig. 2.

Since the width of 1 and 2 is 𝑊
2 , it is clear that a schedule with

no tardy orders exists for instance 𝐼 ′ if and only if 𝐼 is a YES-instance
of Partition. □

3. Methodologies

In this section we present our solution approach to 𝑀𝐷𝑆𝑃𝐴, based
on an ad-hoc branch and bound, whose performance falls back on the
quality of lower bounds provided during the enumeration procedure.
In the next sections, we give details about how these bounds can be
efficiently computed.
6

a

3.1. Lower bounds

In Cosmi et al. (2019a), combinatorial lower bounds are presented
that outperform those provided by the Gurobi solver in 91% of the
cases, and they are computed much faster. Below we present a com-
binatorial lower bound which improves upon those contained in Cosmi
et al. (2019a).

Given an instance of 𝑀𝐷𝑆𝑃𝐴, the idea is to define an auxiliary
single-machine scheduling problem 𝑃𝑎𝑢𝑥 such that its optimal solution
can be found efficiently and its value is a lower bound on the optimal
value of 𝑀𝐷𝑆𝑃𝐴. There is a one-to-one correspondence between orders
n 𝑀𝐷𝑆𝑃𝐴 and jobs in 𝑃𝑎𝑢𝑥, therefore we use 𝑗 to denote the job in 𝑃𝑎𝑢𝑥

corresponding to order 𝑗 in 𝑀𝐷𝑆𝑃𝐴. In particular, 𝑃𝑎𝑢𝑥 is an instance
of the scheduling problem 1|𝑟𝑗 |

∑

𝑈𝑗 in which release and due dates are
agreeable, i.e., for any two jobs 𝑖 and 𝑗 such that 𝑟𝑖 < 𝑟𝑗 , then 𝑑𝑖 ≤ 𝑑𝑗 .
For simplicity, we use the term agreeable either referred to a set of jobs
r to the corresponding intervals.) This problem can be solved in 𝑂(𝑛2)
sing the well known Kise–Ibaraki–Mine algorithm (KIM, Kise et al.,
978), which generalizes the classical Moore’s algorithm for 1 ∥

∑

𝑈𝑗
o the problem with agreeable release and due dates.

In the following, we describe how the auxiliary instance 𝑃𝑎𝑢𝑥 is
efined. Recall that there is a job in 𝑃𝑎𝑢𝑥 for each order in the original
nstance of 𝑀𝐷𝑆𝑃𝐴 and viceversa.

Given an instance of 𝑀𝐷𝑆𝑃𝐴, we first illustrate how release dates
nd due dates are defined for the jobs in the corresponding instance of
𝑎𝑢𝑥, and then we give two possible definitions of the jobs processing
imes.

.1.1. Definition of time windows in 𝑃𝑎𝑢𝑥
We next illustrate how to compute release dates and due dates in

n instance of 𝑃𝑎𝑢𝑥. In what follows, we let 𝐼𝑗 = [𝑟𝑗 , 𝑑𝑗 ] denote the
nterval (time window) of order 𝑗 in problem 𝑀𝐷𝑆𝑃𝐴. We say that
𝑗 is properly contained in 𝐼𝑖 if 𝑟𝑖 < 𝑟𝑗 and 𝑑𝑖 > 𝑑𝑗 . Note that a set of
ntervals is agreeable if and only if there are no two intervals 𝐼𝑖, 𝐼𝑗 such
hat one is properly contained in the other.

In the instance of the auxiliary scheduling problem 𝑃𝑎𝑢𝑥, for each
rder 𝑗 in 𝑀𝐷𝑆𝑃𝐴, we want to define a new interval 𝐼 ′𝑗 = [𝑟′𝑗 , 𝑑

′
𝑗 ] such

hat 𝐼𝑗 ⊆ 𝐼 ′𝑗 and the intervals 𝐼 ′𝑗 , 𝑗 = 1,… , 𝑛, are agreeable.
The idea is to obtain the intervals 𝐼 ′𝑗 by enlarging the original

ntervals [𝑟𝑗 , 𝑑𝑗 ]. This can be done in many different ways. In particular,
et us call enlargement the amount by which each interval 𝐼𝑗 = [𝑟𝑗 , 𝑑𝑗 ]
s stretched. In order to preserve as far as possible the structure of the
riginal intervals, it seems reasonable to determine the minimum total
nlargement yielding an agreeable set of intervals. We next show how
his can be attained.

For each job 𝑗 ∈ 𝐽 , let

�̃� =
⋃

𝑖∶𝐼𝑖⊃𝐼𝑗

𝐼𝑖 (16)

.e., 𝐼𝑗 = [𝑟𝑗 , 𝑑𝑗 ] is the union of all the intervals that strictly contain
𝑗 . Algorithm 1 computes the values of 𝑟′𝑗 and 𝑑′𝑗 . The idea is that each
nterval 𝐼𝑗 is modified by either extending it leftwards (up to 𝑟𝑗) or
ightwards (up to 𝑑𝑗).

heorem 5. The intervals returned by Algorithm 1 are agreeable and total
nlargement is minimum.

roof. We first show that the intervals resulting from the application
f the algorithm are agreeable. Consider any 𝑖, and suppose that we
nlarge the interval 𝐼𝑖 by setting the left endpoint of the interval to
𝑟𝑖. Now, the interval 𝐼 ′𝑖 = [𝑟𝑖, 𝑑𝑖] is no more properly contained in any
ther interval.

We next observe that, as a consequence of the enlargement of 𝐼𝑖,
ven if 𝐼 ′𝑖 is used instead of 𝐼𝑖 in (16), no interval 𝐼𝑗 is affected, for

′
ny 𝑗 ≠ 𝑖. In fact, for this to happen, one should have that 𝐼𝑗 ⊂ 𝐼𝑖



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

i

v
c
c
w

Fig. 2. Illustration of a schedule corresponding to a YES-instance of Partition with five items. Dotted rectangles indicate the orders windows [𝑟𝑖 , 𝑑𝑖].
𝑄
r

𝑖
d

𝑝

Algorithm 1 Minimum Total Enlargement (MTE) Algorithm
1: Input: Intervals [𝑟𝑗 , 𝑑𝑗 ] ⊂ R for all orders 𝑗 ∈ 𝐽
2: for 𝑗 ∈ 𝐽 do
3: 𝐼𝑗 = [𝑟𝑗 , 𝑑𝑗 ] =

⋃

𝑖∶𝐼𝑖⊃𝐼𝑗 𝐼𝑖
4: if 𝑟𝑗 − 𝑟𝑗 < 𝑑𝑗 − 𝑑𝑗 then
5: 𝑟′𝑗 ∶= 𝑟𝑗 ; 𝑑′𝑗 = 𝑑𝑗 ;
6: else
7: 𝑟′𝑗 = 𝑟𝑗 ; 𝑑′𝑗 ∶= 𝑑𝑗 ;
8: end if
9: end for

10: Return intervals 𝐼 ′𝑗 = [𝑟′𝑗 , 𝑑
′
𝑗 ] ⊂ R for all orders 𝑗 ∈ 𝐽

and 𝑟𝑖 < 𝑟𝑗 , since otherwise no change in 𝐼𝑗 occurs. But this is not
possible: In fact, since 𝐼𝑗 ⊂ 𝐼 ′𝑖 , then one would have 𝐼𝑗 ⊇ 𝐼 ′𝑖 which
in turn implies 𝑟𝑖 ≥ 𝑟𝑗 . Similar considerations hold if we enlarge the
interval 𝐼𝑖 by setting the right endpoint of the interval to 𝑑𝑖.

Finally, observe that total extension is minimum, since each interval
𝐼𝑖 is extended by the minimum amount such that the extended interval
𝐼 ′𝑖 is no more properly contained in any other interval. □

3.1.2. Complexity of Algorithm 1
A straightforward computation of the intervals 𝐼𝑗 requires time

𝑂(𝑛2). A more careful implementation that may improve the com-
plexity of the above procedure is sketched hereafter. For every job 𝑗,
consider the set

𝑄𝑗 = {𝑖 ∈ 𝐽 ∶ 𝑑𝑖 > 𝑑𝑗 ∧ 𝑟𝑖 < 𝑟𝑗}.

(Recall that if 𝑑𝑖 = 𝑑𝑗 ∨ 𝑟𝑖 = 𝑟𝑗 then 𝑖 and 𝑗 are agreeable.) Clearly,
f 𝑄𝑗 = ∅, there is no need to consider enlargements for 𝑗, otherwise
𝑟𝑗 = min𝑖∈𝑄𝑗

{𝑟𝑖} and 𝑑𝑗 = max𝑖∈𝑄𝑗
{𝑑𝑖}. In order to determine such

alues, we sort the jobs in non-decreasing order of release dates and
ompute the set 𝐽 of jobs ℎ ∈ 𝐽 whose intervals are not strictly
ontained in any other interval, that is, no other job 𝓁 ∈ 𝐽 exists
ith 𝑟𝓁 < 𝑟ℎ and 𝑑𝓁 > 𝑑ℎ, i.e., 𝑄ℎ = ∅. 𝐽 can be found in 𝑂(𝑛 log 𝑛)

time by simply sweeping through the ordered set of jobs. Note that
𝐽 = {ℎ(1), ℎ(2),… , ℎ(𝑞)} with 𝑟ℎ(𝓁) ≤ 𝑟ℎ(𝓁+1) and 𝑑ℎ(𝓁) ≤ 𝑑ℎ(𝓁+1), 𝓁 =
7

1,… , 𝑞 − 1. t
For all 𝑗 = 1,… , 𝑛 we compute the minimum enlargements 𝑑𝑗 and
𝑟𝑗 as follows:

Let 𝑑0 = −∞. If 𝑑𝑗 ≥ 𝑑𝑗−1 then, since 𝑟𝑗 ≥ 𝑟𝑗−1, jobs 𝑗 and 𝑗 − 1 are
agreeable and we just let 𝑑𝑗 ∶= 𝑑𝑗 . On the other hand, if 𝑑𝑗 < 𝑑𝑗−1, an
enlargement is needed and 𝑑𝑗 ∶= 𝑑𝑗−1.

As for the leftward enlargement 𝑟𝑗 , we have to determine the job in
𝑗 (the set of jobs whose intervals strictly contain 𝐼𝑗) with minimum

elease date. Then 𝑟𝑗 = min{𝑟𝑖 ∶ 𝑑𝑖 > 𝑑𝑗 , 𝑖 ∈ 𝐽}. This, in turn,
corresponds to searching for the job ℎ ∈ 𝐽 with minimum due date
larger than 𝑑𝑗 , which can be done in 𝑂(log 𝑛) time through a binary
search. Then 𝑟𝑗 = 𝑟ℎ (as job ℎ has the minimum release date among
those with due date greater than 𝑑𝑗 .) The overall computational cost is
𝑂(𝑛 log 𝑛) and this is the complexity of Algorithm 1.

3.1.3. Definition of processing times in 𝑃𝑎𝑢𝑥
We next show how to define the processing times of the auxiliary

instance 𝑃𝑎𝑢𝑥 of 1|𝑟𝑗 |
∑

𝑈𝑗 with the new set of agreeable intervals 𝐼 ′𝑗 , so
that the value of the optimal solution is a lower bound on the optimal
value of 𝑀𝐷𝑆𝑃𝐴.

In order to have a lower bound on the original instance of 𝑀𝐷𝑆𝑃𝐴,
the processing time 𝑝′𝑗 in 𝑃𝑎𝑢𝑥 must be defined in such a way that its
value is not larger than the contribution of order 𝑗 to the makespan of
on-time orders in any solution of the instance of 𝑀𝐷𝑆𝑃𝐴, regardless of
whether order 𝑗 forms a twin with some other order, or it is delivered
in a single trip. To this purpose, we consider two different ways of
defining job processing times 𝑝′𝑗 in the auxiliary instance 𝑃𝑎𝑢𝑥.

1. Flat processing times. We set the duration of job 𝑗 equal to

𝑝′𝑗 = 𝑡𝑗 + min
{

𝑡𝑗 ,min
𝑘

{1
2
𝑡𝑗𝑘

}}

. (17)

2. Order-based processing times. We renumber all jobs in 𝑃𝑎𝑢𝑥 so that
< 𝑗 if 𝑑′𝑖 < 𝑑′𝑗 or 𝑑′𝑖 = 𝑑′𝑗 and 𝑟′𝑖 < 𝑟′𝑗 . Then the processing times 𝑝′𝑗 are
efined as follows:

′
𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑗 𝑗 = 1
min{𝑝𝑗 , min

ℎ<𝑗∶
(ℎ,𝑗)∈𝐷

{𝑝ℎ𝑗 − 𝑝′ℎ}, min
ℎ<𝑗∶

(𝑗,ℎ)∈𝐷

{𝑝𝑗ℎ − 𝑝′ℎ}} 𝑗 > 1. (18)

Hereafter, we show that – for both definitions of processing times –

he optimal solution value of 𝑃𝑎𝑢𝑥 always provides a lower bound for



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

3

T
𝑀
𝜎

P
t
𝑡
𝑀
s

3

G
t

𝑝

I

L
j

A
(
i

𝑀𝐷𝑆𝑃𝐴.

.1.4. First lower bound: 𝑃𝑎𝑢𝑥 with flat processing times
First consider flat processing times as in (17).

heorem 6. Each feasible schedule 𝜎 of value 𝑧 for the original problem
𝐷𝑆𝑃𝐴 defines a sequence of jobs which corresponds to a feasible schedule

′ of value 𝑧′ for problem 𝑃𝑎𝑢𝑥 with flat processing times, and 𝑧′ ≤ 𝑧.

roof. From (17), it is easy to observe that 𝑝′𝑗 ≤ 𝑝𝑗 . Moreover, for any
win 𝑖𝑗 in a feasible schedule of problem 𝑀𝐷𝑆𝑃𝐴, one has 𝑝′𝑖 + 𝑝′𝑗 ≤
𝑖 + 𝑡𝑗 + 𝑡𝑖𝑗 = 𝑝𝑖𝑗 . Then, given any sequence 𝜎 of orders, solution of
𝐷𝑆𝑃𝐴 with 𝑧 tardy orders, if we sequence the jobs in 𝑃𝑎𝑢𝑥 in the

ame order as in 𝜎, we get a schedule with 𝑧′ ≤ 𝑧 tardy jobs. □

.1.5. Second lower bound: 𝑃𝑎𝑢𝑥 with order-based processing times
Consider now 𝑃𝑎𝑢𝑥 with order-based processing times as in (18).

iven an order 𝑗, we use the notation 𝑚(𝑗) to indicate the order such
hat:

𝑗,𝑚(𝑗) = min{min{𝑝𝑖𝑗 ∶ 𝑖𝑗 ∈ 𝐷},min{𝑝𝑗𝑖 ∶ 𝑗𝑖 ∈ 𝐷}, 𝑖 ≠ 𝑗}.

f order 𝑗 is not in any feasible twin, then 𝑚(𝑗) is undefined and 𝑝′𝑗 = 𝑝𝑗 .

emma 7. In problem 𝑃𝑎𝑢𝑥 with order-based processing times, for each
ob 𝑗, the following inequalities hold: (𝑖) 𝑝′𝑗 ≤ 𝑝𝑗 and (𝑖𝑖) 𝑝′𝑗 +𝑝′𝑚(𝑗) ≤ 𝑝𝑗,𝑚(𝑗).

Proof. From (18), it easily follows that 𝑝′𝑗 ≤ 𝑝𝑗 .
We next show that (𝑖𝑖) holds. For each job 𝑗, either 𝑚(𝑗) = ℎ < 𝑗 or

𝑚(𝑗) = 𝑙 > 𝑗. We consider these two cases separately.

Case 1 𝑚(𝑗) = ℎ < 𝑗.
From (18), we have that 𝑝′𝑗 ≤ 𝑝ℎ𝑗 − 𝑝′ℎ. Hence 𝑝′𝑗 + 𝑝′ℎ ≤ 𝑝ℎ𝑗 .

Case 2 𝑚(𝑗) = 𝑙 > 𝑗

2.1 If 𝑚(𝑗) = 𝑙 > 𝑗 and 𝑝′𝑙 is attained in correspondence to a
certain index 𝑗, then Eq. (18) gives:

𝑝′𝑙 = min{𝑝𝑙 , 𝑝𝑗𝑙 − 𝑝′𝑗 , 𝑝𝑙𝑗 − 𝑝′𝑗}.

Hence, 𝑝′𝑙 ≤ 𝑝𝑗𝑙 − 𝑝′𝑗 , so again 𝑝𝑗𝑙 ≥ 𝑝′𝑙 + 𝑝′𝑗 .

2.2 If 𝑚(𝑗) = 𝑙 > 𝑗 and 𝑝′𝑙 is attained in correspondence to a
certain index 𝑘 ≠ 𝑗, then Eq. (18) gives:

𝑝′𝑙 = min{𝑝𝑙 , 𝑝𝑘𝑙 − 𝑝′𝑘, 𝑝𝑙𝑘 − 𝑝′𝑘}.

Hence, 𝑝′𝑙 ≤ 𝑝𝑘𝑙 − 𝑝′𝑘 ≤ 𝑝𝑗𝑙 − 𝑝′𝑗 , so again 𝑝𝑗𝑙 ≥ 𝑝′𝑙 + 𝑝′𝑗 .
This completes the proof. □

Theorem 8. Each feasible schedule 𝜎 of value 𝑧 for the original problem
𝑀𝐷𝑆𝑃𝐴 defines a sequence of jobs which corresponds to a feasible schedule
𝜎′ of value 𝑧′ for problem 𝑃𝑎𝑢𝑥 with order-based processing times, and
𝑧′ ≤ 𝑧.

Proof. Given a feasible schedule 𝜎 for 𝑀𝐷𝑆𝑃𝐴, we consider a schedule
𝜎′ for 𝑃𝑎𝑢𝑥 where:

• jobs are sequenced as the customers in 𝜎;
• the processing time of job 𝑗 ∈ 𝐽 is given by 𝑝′𝑗 defined in (18);
• if job 𝑗 corresponds to either a single order or to the first order

in a twin in 𝜎, then we let 𝑠′𝑗 = 𝑠𝑗 ; if 𝑗 is the second order of the
twin 𝑖𝑗 in 𝜎, then 𝑠′𝑗 = max{𝑠′𝑖 + 𝑝′𝑖 , 𝑟

′
𝑗}.

Clearly, 𝜎′ is always a feasible schedule for 𝑃𝑎𝑢𝑥, since 𝑠′𝑗 ≥ 𝑟′𝑗≥ 𝑟𝑗 .
Given a feasible schedule 𝜎 for 𝑀𝐷𝑆𝑃𝐴, we next show that the

corresponding schedule 𝜎′ for 𝑃𝑎𝑢𝑥 has a number of tardy jobs which
does not exceed the number of tardy orders in 𝜎. To this aim, we
separately consider the two cases of single-order trips and twins. Recall
that the values 𝑑′𝑗 are obtained using the mte Algorithm, hence 𝑑′𝑗 ≥ 𝑑𝑗
8

for each job 𝑗 ∈ 𝐽 . T
1. Single-order trips. Consider a job 𝑗 corresponding to an order 𝑗
which is served in a single-order trip and it is on time in 𝜎. Then,
in 𝜎′, job 𝑗 completes at 𝐶 ′

𝑗 = 𝑠′𝑗 +𝑝′𝑗 = 𝑠𝑗 +𝑝′𝑗 ≤ 𝑠𝑗 +𝑝𝑗 ≤ 𝑑𝑗 ≤ 𝑑′𝑗 ,
hence 𝑗 is on time also in 𝜎′.

2. Twins. Let us consider a twin 𝑖𝑗 which is on time in 𝜎, corre-
sponding to the two consecutively scheduled jobs 𝑖 and 𝑗 in 𝜎′.
We consider separately the two jobs:

(a) First Job. The first job 𝑖 starts at 𝑠′𝑖 = 𝑠𝑖 and it ends at
𝐶 ′
𝑖 = 𝑠𝑖 + 𝑝′𝑖 ≤ 𝑠𝑖 + 𝑝𝑖 ≤ 𝑑𝑖 ≤ 𝑑′𝑖 , hence 𝑖 is on time in 𝜎′.

(b) Second Job. In 𝜎′, job 𝑗 starts either at its release time
𝑟′𝑗 ≤ 𝑟𝑗 or when the job 𝑖 ends at 𝐶 ′

𝑖 . In the first case,
since obviously 𝑟𝑗 + 𝑝𝑗 ≤ 𝑑𝑗 , and since 𝑟′𝑗 ≤ 𝑟𝑗 , 𝑝′𝑗 ≤ 𝑝𝑗
and 𝑑′𝑗 ≥ 𝑑𝑗 , one has 𝑟′𝑗 + 𝑝′𝑗 ≤ 𝑟𝑗 + 𝑝𝑗 ≤ 𝑑𝑗 ≤ 𝑑′𝑗 . In the
latter case, 𝐶 ′

𝑗 = 𝑠𝑖 + 𝑝′𝑖 + 𝑝′𝑗 . From Lemma 7, we have
𝑝′𝑖 ≤ 𝑝𝑖,𝑚(𝑖) − 𝑝′𝑚(𝑖) ≤ 𝑝𝑖𝑗 − 𝑝′𝑗 and hence 𝑝′𝑖 + 𝑝′𝑗 ≤ 𝑝𝑖𝑗 , so
that 𝐶 ′

𝑗 ≤ 𝑠𝑖 + 𝑝𝑖𝑗 . Since the twin is on time in 𝜎, one has
𝑠𝑖 + 𝑝𝑖𝑗 ≤ 𝑑𝑗 and, in conclusion, 𝐶 ′

𝑗 ≤ 𝑑′𝑗 , i.e., also in this
case job 𝑗 is on time in 𝜎′.

Since each job 𝑗 which is on time in 𝜎 for 𝑀𝐷𝑆𝑃𝐴 corresponds to a
job on time in 𝜎′ for 𝑃𝑎𝑢𝑥, we have that 𝑧′ ≤ 𝑧. This completes the
proof. □

The following example illustrates the above procedure for comput-
ing a lower bound through the definition of a suitable instance of
𝑃𝑎𝑢𝑥.

Example 9. We refer to an instance with 𝑛 = 5 orders, namely
1, 2, 3, 4, 5. Beside those corresponding to single orders, the feasible
twins are ‘‘12’’ , ‘‘14’’ , ‘‘21’’ , ‘‘35’’ , ‘‘41’’ , ‘‘53’’. Their processing
times, release times, and due dates – obtained from Eqs. (5), (6), and
(7) – are as follows:

{𝑝𝑖𝑗} =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

10 15 − 30 −
15 10 − − −
− − 10 − 25
30 − − 16 −
− − 25 − 14

⎞

⎟

⎟

⎟

⎟

⎟

⎠

{𝑟𝑖𝑗} =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 − 0 −
1 1 − − −
− − 1 − 1
0 − − 0 −
− − 3 − 3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

{𝑑𝑖𝑗} =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

40 41 − 50 −
40 41 − − −
− − 47 − 47
40 − − 50 −
− − 47 − 47

⎞

⎟

⎟

⎟

⎟

⎟

⎠

ccording to MTE Algorithm 1 and Eq. (18) we compute release times
𝑟′𝑗), due dates (𝑑′𝑗) and order-based processing times (𝑝′𝑗) of the jobs
n the instance of 𝑃𝑎𝑢𝑥:

Job 𝑗 1 2 3 4 5
𝑟′𝑗 0 0 0 0 3
𝑑′𝑗 40 41 47 50 50
𝑝′𝑗 10 5 16 15 9

We solve 𝑃𝑎𝑢𝑥 using Kise–Ibaraki–Mine algorithm (Kise et al., 1978)
obtaining the following schedule: 𝜎′ = ⟨1, 2, 4, 5⟩ which provides a
lower bound equal to 1 (job 3 is late). Note that there is a feasible
(and optimal) schedule for the original instance of the problem 𝜎 =
⟨‘‘12’’,‘‘35’’⟩ in which job 4 is late.

3.2. A combinatorial branch and bound

Here we describe the combinatorial branch and bound (B&B) we
have developed to solve 𝑀𝐷𝑆𝑃𝐴.

B&B works as follows. We adopt a 𝑛-ary branching, which is stan-
dard for sequencing problems (see Pinedo (2012)): In the enumeration
tree, each node 𝑙 is associated to a partial sequence 𝜎𝑙 of, say, 𝑛(𝑙) jobs.

he root node corresponds to an empty sequence. So, at node 𝑙 there



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

b

𝑛
p
t
𝑙

b

F
2
t
p

a
T
i
i

L
i
a
n
T
p
c
s

c
t
A
t

t
c
i

1
1
1
1
1
1

1
1

1
1

s

𝑙
i
A
U
s
b

i

o

a

is a set 𝐽𝑙 of 𝑛 − 𝑛(𝑙) jobs whose position in the sequence has not yet
een determined. For each unscheduled job 𝑗 ∈ 𝐽𝑙 we consider a child

node: Each of these nodes is associated to a partial sequence ⟨𝜎𝑙 , 𝑗⟩ with
(𝑙) + 1 jobs in which 𝑗 is appended to 𝜎𝑙, i.e., 𝑗 is the last job in the
artial sequence. Moreover, the last job 𝑗 may either be a single-order
rip or form a twin with the second-last order. Summarizing, each node
of the enumeration tree is characterized by:

• a set 𝑆𝑙 of on-time scheduled orders;
• a schedule 𝜎𝑙 of the orders in 𝑆𝑙 (called partial schedule), specify-

ing single-order trips and twins;
• a set 𝑇𝑙 of tardy orders;
• the set of unscheduled orders 𝐽𝑙 = 𝐽 ⧵ (𝑆𝑙 ∪ 𝑇𝑙).

At each node 𝑙 of the enumeration tree, children are generated by
appending an order to the partial schedule 𝜎𝑙, forming either a single-
order trip or a twin with the currently last order. More in detail, let 𝑘
e the last scheduled order in 𝜎𝑙. Consider two cases.

(i) 𝑘 is scheduled in a single-order trip. In this case, each child node
is obtained by appending to 𝜎𝑙 an order ℎ scheduled either as a
single-order trip or as the second order of the twin 𝑘ℎ.

(ii) 𝑘 is the second order of a twin 𝑖𝑘. In this case, each child node is
obtained by appending an order scheduled as a single-order trip.

or example, in Fig. 3, node 5 of the enumeration tree is a child of node
and corresponds to a partial schedule consisting of two single-order

rips, namely 𝜎5 = ⟨𝑏, 𝑐⟩. The sibling node 6 corresponds instead to a
artial schedule with one twin 𝜎6 = ⟨𝑏𝑐⟩.

Consider a partial schedule 𝜎𝑙, in which 𝑘 is the last scheduled order,
nd consider an order ℎ ∈ 𝐽𝑙 such that, when appended to 𝜎𝑙, ℎ is tardy.
hen, ℎ will be inserted in the set 𝑇𝑞 for all nodes 𝑞 of the subtree rooted

n 𝑙. When branching from node 𝑙, its children nodes are built taking
nto account some dominance rules:

• In case (𝑖) above, for each ℎ ∈ 𝐽𝑙, a child node is generated
appending to 𝜎𝑙 the order ℎ only if the following conditions are
met :

– ∄𝑗 ∈ 𝐽𝑙 ∶ max{𝑟𝑗 , 𝑠𝑘 + 𝑝𝑘} + 𝑝𝑗 ≤ 𝑟ℎ
– ∄𝑗 ∈ 𝐽𝑙 ∶ max{𝑟𝑘𝑗 , 𝑠𝑘} + 𝑝𝑘𝑗 ≤ 𝑟ℎ
– if ℎ is scheduled as a single-order trip, 𝑠𝑘 + 𝑝𝑘 + 𝑝ℎ ≤ 𝑑ℎ
– if ℎ is scheduled as the second order of the twin 𝑘ℎ ∈ 𝐷,
max{𝑠𝑘, 𝑟𝑘ℎ} + 𝑝𝑘ℎ ≤ 𝑑𝑘ℎ.

• In case (𝑖𝑖) above, i.e., when 𝜎𝑙 ends with the twin 𝑖𝑘 having
starting time 𝑠𝑖𝑘, for each order ℎ ∈ 𝐽𝑙, a child node is generated
appending to 𝜎𝑙 the order ℎ only if the following condition is met:

– ∄𝑗 ∈ 𝐽𝑙 ∶ max{𝑠𝑖𝑘 + 𝑝𝑖𝑘, 𝑟𝑗} + 𝑝𝑗 ≤ 𝑟ℎ.

ower Bounds. At each node 𝑙 of the enumeration tree, a lower bound
s computed solving 𝑃𝑎𝑢𝑥 with flat and order-based processing times,
nd then selecting the largest among them. If such lower bound is
ot smaller than the incumbent best solution, the node is fathomed.
he lower bound with order-based processing times is computed ap-
lying Algorithm 2. The lower bound with flat processing times is
omputed through the same algorithm, except that lines 12–16 are
imply replaced by the application of (17).

The procedure to compute the lower bound is slightly different in
ases (𝑖) and (𝑖𝑖) above. In case (𝑖𝑖), the partial schedule 𝜎𝑙 ends with a
win 𝑖𝑘, and we let 𝑡∗ be the completion time of the twin 𝑖𝑘. In this case,
lgorithm 2 is applied to the set 𝐽𝑙 of unscheduled orders, considering

hat no trip can start before 𝑡∗.
On the other hand, if case (𝑖) holds, i.e., 𝜎𝑙 ends with the single-order

rip 𝑘, then Algorithm 2 is applied to the set 𝐽𝑙∪{𝑘}, and we let 𝑡∗ be the
ompletion time of the order that immediately precedes 𝑘 in 𝜎𝑙, which
s the first available starting time for the other trips in this case. This is
9

Algorithm 2 Twin Lower Bound
1: Input: Partial schedule 𝜎𝑙
2: if the last job 𝑘 in 𝜎𝑙 is a single order-trip then
3: 𝐽𝑙 = 𝐽𝑙 ∪ {𝑘}
4: 𝑡∗ ∶= completion time of the order that immediately precedes 𝑘

in 𝜎𝑙,
5: else
6: 𝐽𝑙 = 𝐽𝑙
7: 𝑡∗ ∶= completion time of 𝜎𝑙
8: end if

/∗ Build problem 𝑃𝑎𝑢𝑥 at 𝑙: ∗/
9: Use mte Algorithm on the job set 𝐽𝑙 to compute release times

and due dates
0: Build edd sequence of jobs in 𝐽𝑙 and rename jobs according to it
1: for 𝑗 ∈ 𝐽𝑙 do
2: if 𝑗 = 1 then
3: 𝑝′𝑗 = 𝑝𝑗
4: else 𝑗 ≠ 1
5: 𝑝′𝑗 = min{𝑝𝑗 ,min ℎ<𝑗∶

(ℎ,𝑗)∈𝐷
{𝑝ℎ𝑗 − 𝑝′ℎ},min ℎ<𝑗∶

(𝑗,ℎ)∈𝐷
{𝑝𝑗ℎ − 𝑝′ℎ}}

6: end if
7: end for

/∗ Solve 𝑃𝑎𝑢𝑥: ∗/
8: Run KIM algorithm (Kise et al., 1978) from time 𝑡∗

9: Return the minimum number 𝑧𝑙 of late orders computed for
problem 𝑃𝑎𝑢𝑥 at node 𝑙

due to the fact that 𝑘 can still be the first order in a twin 𝑘𝑖 with 𝑖 ∈ 𝐽𝑙,
o it has to be reconsidered when computing the lower bound.

The set of orders that Algorithm 2 should consider, depending on
, is referred to as 𝐽𝑙 and the first available time for those orders is
ndicated by 𝑡∗. In both cases, if we let 𝑧𝑙 be the value obtained applying
lgorithm 2, the lower bound at node 𝑙 is |𝑇𝑙| + 𝑧𝑙.
pper bounds. Before children are generated from a node 𝑙, in order to

peed up the algorithm, a heuristic is run to compute a suitable upper
ound and possibly update the incumbent solution.

In this heuristic, single-order trips and twins are considered. The
dea is to sequence the unscheduled orders (𝐽𝑙) by iteratively computing

a weight for each order or twin and selecting as the next order or twin
the one having minimum weight.

Let 𝑡∗ be the current makespan, i.e., the completion time of the last
rder 𝑘 in 𝜎𝑙. Let 𝐶𝑗 denote the completion time of job 𝑗 ∈ 𝐽𝑙 if it is

scheduled immediately after 𝑘 in a single-order trip, and 𝐶𝑗 ≤ 𝑑𝑗 . In this
case, we let 𝑤𝑗 = 𝐶𝑗 − 𝑡∗. If 𝑗 is appended to 𝑘 to form the twin 𝑘𝑗 ∈ 𝐷,
completing at 𝐶𝑘𝑗 ≤ 𝑑𝑘𝑗 , we let 𝑤𝑘𝑗 = 𝐶𝑘𝑗 − 𝑡∗. Finally, if a twin 𝑖𝑗 is
ppended to 𝑘, completing at 𝐶𝑖𝑗 ≤ 𝑑𝑖𝑗 , we let 𝑤𝑖𝑗 =

𝐶𝑖𝑗−𝑡∗

2 . In all cases,
if the completion time of the single-order trip or twin exceeds the due
date, we assume that the weight is +∞. Once a new single-order trip
or twin is added to the partial schedule, it is considered as the new last
trip, 𝑡∗ is recomputed and the algorithm iterates until the last available
order is scheduled. Note that orders/twins having a large release time
may receive a large weight even if they are short and their due date is
smaller compared to other longer orders.

The branch and bound tree is explored using a depth-first strategy.
Among the sibling nodes of a given node, the node having the lowest
lower bound is selected. In case of a tie, the node 𝑙 is selected in which
the difference between due date and completion time of the last order
of 𝜎𝑙 is smallest.

For the sake of clarity, the following example is provided in order
to give an idea of our ad-hoc branching procedure.

Example 10. We refer to an instance with 𝑛 = 4 orders, namely
𝑎, 𝑏, 𝑐, 𝑑. Feasible twins are 𝑎𝑏, 𝑎𝑐, 𝑏𝑎, 𝑏𝑐, 𝑐𝑏 (while twins 𝑐𝑎 and 𝑗𝑑, 𝑑𝑗
with 𝑗 = 𝑎, 𝑏, 𝑐, are not feasible). The branch and bound tree is shown



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

i
v
t
(
C
t
s
g
𝑑

i
𝑈
6
a
h
h
𝜎

4

c
a

s
p
p
e
T

Fig. 3. An example of the enumeration tree of the branch and bound procedure.
w

n Fig. 3. Beside each node 𝑙, we report the partial schedule 𝜎𝑙 and the
alue computed for the lower 𝐿𝐵𝑙 and, possibly upper 𝑈𝐵𝑙 bounds. At
he root node, a lower bound 𝐿𝐵root = 1 and an upper bound 𝑈𝐵root = 2
which is therefore the incumbent solution schedule) are computed.
hildren 1, 2, and 3 of the root node are generated and correspond
o scheduling orders 𝑎, 𝑏, and 𝑐, respectively, at the beginning of the
chedule. The child node relative to the partial schedule ⟨𝑑⟩ is not
enerated due to the dominance rule (order 𝑏 can be delivered before
is released). Concurrently, lower bounds at each node are computed.

A depth-first strategy is applied and node 2 is explored first since
t has the lowest lower bound (together with node 3). An upper bound
𝐵2 = 2 is computed. Nodes 4, 5, 6, and 7 are then generated: Node
shows a lowest lower bound 𝐿𝐵6 = 1. Now, node 6 is explored

nd its child node 8 is generated and, in turn, explored: Here, the
euristic computes a new incumbent solution with value 𝑈𝐵8 = 1 and
ence, nodes 1, 3, 4, 5, and 7 are fathomed. The corresponding schedule
∗ = ⟨𝑏𝑐, 𝑑, 𝑎⟩ (in which order 𝑎 is late) is an optimal schedule.

. Computational experiments

In this section we present the results of a large computational
ampaign including three distinct experimental settings. (Instances are
vailable from the authors upon request.)

1. (Real-life offline scenario.) The first experimental setting consists
of real data from a case study, in which all orders have been
already accepted, and deliveries must be scheduled. As orders
have been accepted by some rough-cut capacity planner, this
scenario typically results in a relatively small number of tardy
deliveries.

2. (High-demand offline scenario.) The second setting consists in ran-
domly generated instances in which the distribution of ideal
delivery times is close to that of real-life instances, but the number
of orders has been increased. Also in this scenario, orders have
already been accepted. The purpose of this experiment is to test
our solution algorithms in a more stressed scenario than the
previous scenario.

3. (Real-life online scenario.) This setting is based on the real data of
scenario 1, and it is the closest to real-life operations. Customer
orders are supposed to arrive over time, and the overall schedule
is updated at regular intervals in a rolling horizon fashion.

We have addressed all the instances of both real-life and random
cenarios using the combinatorial branch and bound (B&B) algorithm
resented in Section 3.2 and an ILP formulation for the problem. In
articular, we used the ILP formulation which turned out to be the most
ffective among a set of possible formulations in Cosmi et al. (2019b).
he formulation is reported in Appendix.

Our experiments were aimed at investigating (𝑖) the benefits of
order aggregation with respect to having single-order deliveries, (𝑖𝑖)
10
the computational efficiency of the two solution methods and (𝑖𝑖𝑖) the
effectiveness of our approach in practice. In particular, we investigate
(𝑖) in Scenario 1, (𝑖𝑖) in Scenarios 1 and 2, and (𝑖𝑖𝑖) in Scenario 3.

All tests were performed on a computer equipped with an Intel Xeon
E5-2643v3 3.40 GHz CPU and 32 GB RAM. B&B was implemented
using Julia (Bezanson et al., 2017.) The ILP model is built using
JuMP (Dunning et al., 2017) and it is solved using Gurobi 9.0 (Gurobi
Optimization, 2018) in its multithread version. The time limit is set to
one hour, for both B&B and Gurobi.

4.1. Real-life offline scenario

The first experimental scenario consists of 478 instances derived
from data provided by an Italian food delivery operator. In each
instance, the number of orders 𝑛 varies from 5 to 31 orders. The time
horizon is roughly a courier shift, i.e., 4 h, and corresponds, in all
instances, to the busiest hours of the day, namely the hours spanning
either lunch time or dinner time. Instances refer to nine different
restaurants and a number of different days, therefore they may vary
in physical location of the customers and distribution of ideal delivery
times. The distributions of ideal delivery times around lunch time and
dinner time are shown in Fig. 4(a) and (b) respectively.

In Table 4, for each 𝑛 between 5 and 31, the number of instances
ith 𝑛 orders is reported.

The delivery time window of each order 𝑖 is centered around the
ideal delivery time 𝑑𝑖, and the slack is 𝛿 = 30 min. This corresponds
to assuming that a delivery is acceptable as long as its earliness or
tardiness with respect to 𝑑𝑖 does not exceed 15 min, which corresponds
to a commonly accepted level of service in food delivery.

While the analysis of the effectiveness of our solution approach
is presented in Section 4.1.2, we next comment on the values of the
number of late order with and without order aggregation.

4.1.1. Benefits of order aggregation
Aggregating two orders in the same delivery represents an op-

portunity for increasing the productivity of the couriers with respect
to single-order deliveries. It is therefore interesting to evaluate the
improvement, in terms of late deliveries, that can be achieved by order
aggregation. For each of the instances of the real-life scenario solved to
optimality, we compared the number of late orders with and without
the possibility of order aggregation. (The problem with single-order
deliveries has been solved using an ILP formulation similar to the one
in Appendix.) The results are summarized in Fig. 5, in which, for each
value of 𝑛, the average number of late deliveries is displayed with and
without order aggregation.

From Fig. 5 we observe that order aggregation consistently results in
a lower number of late deliveries, typically saving 1 or 2 late deliveries
for medium-size instances. A detailed comparison of the results show



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.
Fig. 4. Distribution of ideal delivery times in real-life instances.
Fig. 5. Average number of late deliveries in real-life instances when order aggregation is allowed (dashed line) and when it is not (solid line).
that in 212 out of 476 optimally solved instances, order aggregation
reduces the number of late deliveries (compared to the single-order
setting). If we compare the total number of late deliveries (across all
the 476 instances) with and without order aggregation, it turns out that
with order aggregation, such a total number of late deliveries is 47.91%
smaller.

4.1.2. Comparison between the efficiency of the solution approaches
In this section we analyze the computational behavior of the branch

and bound approach in the real-life scenario, and compare it to the ILP
formulation in Appendix.

The results are reported in Table 4. The 478 instances are grouped
for different values of 𝑛. For each row, columns 3–6 report figures over
all the instances having a certain value of 𝑛, namely: the number of
instances for which B&B succeeded to find the optimal solution within
the time limit (column 3), the number of instances for which the ILP
solver found the optimal solution within the time limit (column 4), the
average CPU time of B&B (column 5) and of the ILP solver (column 6)
on the instances that were optimally solved within the time limit by
the respective algorithm. The second last row reports the total number
of unsolved instances, and the average CPU times on solved instances
with the two methods respectively. The last row only considers the 445
instances that have been solved to optimality by both methods.

B&B solves to optimality all the instances with up to 30 orders
within 1 h of CPU, while ILP leaves 33 instances unsolved. B&B
performs better also in terms of average running time. If we consider
only the 445 instances optimally solved by both methods, the average
running time for B&B is 5.99 s, hence on the average B&B is 8 times
faster than Gurobi on these instances.
11
4.2. High-demand scenario

In this section we report the computational results concerning a
set of instances which are generated by suitably modifying and scal-
ing real-life instances. The purpose of this experiment is to evaluate
the performance of the two solution approaches in a realistic, busier
scenario characterized by a larger number of orders, which therefore
results in larger problems. In particular:

• Restaurant locations are obtained by slightly perturbing their
original positions (this has been done in order to conceal the
identity of the restaurants.)

• The number 𝑛 of orders is chosen in {15, 25, 35, 45}.
• Customer ideal delivery times are generated using two different

distributions, namely Gaussian and Uniform, with parameters
adapted from the real distributions in Fig. 4(a) and (b). More pre-
cisely, the Gaussian distribution has the same mean and variance
of the real distributions, while the Uniform distribution has the
same mean value and spans from 11.30 to 15.30 for lunchtime
and from 18.30 to 22.30 for dinnertime.

In conclusion, we have 8 different experimental settings, each set-
ting being characterized by a value for 𝑛 and delivery time distribution
either Gaussian or Uniform.

For each setting, 90 instances have been generated. For each in-
stance, the orders are generated in points which are uniformly scattered
throughout a region defined as the smallest rectangle including all
the orders from the restaurants. The location of the orders determines



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

T

Table 4
Results of B&B vs. ILP for real-life instances.
𝑛 # Inst B&B ILP B&B ILP

solved solved CPU s CPU s

5 1 1 1 0.60 0.01
7 2 2 2 0.61 0.03
9 2 2 2 0.00 0.07
10 113 113 113 0.14 0.14
11 91 91 91 0.36 0.19
12 63 63 63 0.37 0.48
13 42 42 42 0.23 0.76
14 27 27 27 3.87 8.80
15 25 25 25 2.49 11.18
16 15 15 14 1.36 3.41a

17 20 20 20 23.90 124.32
18 18 18 16 39.06 82.13a

19 12 12 11 13.46 307.38a

20 12 12 8 92.76 326.89a

21 5 5 2 6.30 908.44a

22 8 8 5 8.07 490.32a

23 3 3 2 291.02 2743.12a

24 2 2 0 483.53 –
25 2 2 0 390.77 –
26 4 4 1 612.17 1590.40a

27 5 5 0 669.20 –
29 2 2 0 73.57 –
30 2 2 0 437.56 –
31 2 0 0 – –
Overall 478 476 445 25.76 49.00

Solved by both 445 5.99 49.00

aCPU time refers to solved instances only.

the processing times 𝑝𝑗 and travel times 𝑡𝑖𝑗 . The results are shown in
ables 5–8.

A few comments are in order.

• On the whole, the combinatorial branch and bound algorithm
has a superior performance with respect to the ILP. In particular,
almost all the instances up to 25 orders are solved to optimality by
B&B within the time limit, while the ILP solver runs into trouble
for more than 15 orders and even for 𝑛 = 15 in the Gaussian
scenario. Comparing the CPU times on the instances for which
both methods found the optimal solution, B&B turns out to be
almost two orders of magnitude faster than ILP.

• In terms of CPU time, the performance of B&B is not significantly
different on these instances with respect to real-life instances. On
the contrary, even for the instances with 𝑛 = 15 solved to opti-
mality, the ILP solver requires significantly more time (322.95 s
for Uniform instances, 876.1 s for Gaussian instances) than in the
real-life instances (11.18 s). In other words, B&B appears more
suitable to deal with congested instances than the ILP.

• Tables 7 and 8 allow a comparison between B&B and ILP also
including the instances which were not solved to optimality. In
these tables, 𝛥 denotes the average percentage difference between
the values of the best found solution by the two methods, 𝑈𝐵𝐼𝐿𝑃
and 𝑈𝐵𝐵&𝐵 respectively. The tables distinguish the instances for
which neither method was able to certify optimality (Unsolved
instances) and the instances for which only B&B certified opti-
mality. For instances unsolved by both methods, we report the
number of instances for which, respectively, B&B found a better
solution (𝛥 > 0), the two best found solutions have the same
value (𝛥 = 0), and the ILP incumbent was better (𝛥 < 0). For
the instances for which B&B certified optimality, we report the
number of instances for which 𝛥 > 0, the number of instances for
which 𝛥 = 0 and finally for which 𝛥 = 0 and the ILP was able to
certify optimality. On the whole, we observe that only in 49 (out
of 720) instances did ILP find a better solution than B&B, while in
221 instances the solution found by B&B (either certified optimal
12

or not) was strictly better than the incumbent of the ILP solver
Table 5
Results of B&B for Gaussian instances.
𝑛 # Inst B&B ILP B&B B&B ILP

solved solved gap (%)b CPU s CPU s

15 90 90 40 – 2.85 876.10a

25 90 88 0 48.33 188.51a –
35 90 50 0 31.15 1054.33a –
45 90 1 0 31.27 979.59a –
Overall 360 229 40 31.50 308.04a 876.10a

Solved by both 40 21.92 876.10

aCPU time refers to solved instances only.
bThe B&B gaps refer to unsolved instances only.

Table 6
Results of B&B for Uniform instances.
𝑛 # Inst B&B ILP B&B B&B ILP

solved solved gap (%)b CPU s CPU s

15 90 90 90 – 4.40 322.95
25 90 89 2 38.46 358.51a 1365.37a

35 90 14 0 32.07 1985.94a –
45 90 0 0 31.93 – –
Overall 360 193 92 32.03 311.43a 345.61a

Solved by both 92 8.18 345.61

aCPU time refers to solved instances only.
bThe B&B gaps refer to unsolved instances only.

Table 7
Comparison between best found solutions: Gaussian instances (𝛥 = 𝑈𝐵𝐼𝐿𝑃 − 𝑈𝐵𝐵&𝐵).
𝑛 Unsolved instances Instances solved by B&B

𝛥 > 0 𝛥 = 0 𝛥 < 0 𝛥 > 0 𝛥 = 0 𝛥 = 0: OPT

% # # % # % # # #

15 – – – – – – – 50 40
25 – – 2 – – 7.41 17 71 –
35 6.60 19 16 −4.28 5 5.39 29 21 –
45 4.63 42 42 −5.50 5 – – 1 –
Overall 5.24 61 60 −4.89 10 6.14 46 143 40

Table 8
Comparison between best found solutions: Uniform instances (𝛥 = 𝑈𝐵𝐼𝐿𝑃 − 𝑈𝐵𝐵&𝐵).
𝑛 Unsolved instances Instances solved by B&B

𝛥 > 0 𝛥 = 0 𝛥 < 0 𝛥 > 0 𝛥 = 0 𝛥 = 0: OPT

% # # % # % # # #

15 – – – – – – – – 90
25 – – – −8.33 1 7.81 30 57 2
35 6.12 31 30 −6.74 15 6.14 11 3 –
45 4.90 42 25 −4.46 23 – – – –
Overall 5.42 73 55 −5.43 39 7.49 41 60 92

when the time limit was reached. We also notice that for 𝑛 = 15
the ILP indeed always found the optimal solution, even if it was
not always able to certify it, but as 𝑛 grows the superiority of B&B
is increasingly apparent, even in unsolved instances.

4.3. Real-life online scenario

Here we report the computational results for the third scenario.
Besides the order information in Scenario 1, here we also consider the
time at which each order has been placed.

The scheduler operates by solving subsequent instances of the prob-
lem, at certain decision times. At each decision time, the set of orders
considered includes all orders received and not yet delivered. After a
solution is computed for the current set of orders, it is implemented up
to the next decision time. If a decision time occurs at time 𝑡, the next
decision time occurs the first time the courier returns to the restaurant

after time 𝑡 + 𝑇 . The choice of 𝑇 is an important parameter. If 𝑇 is



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

m
w

o
l
r

Table 9
Average number of late orders in the 478 real-life instances for various values of 𝑇 .
𝑇 5 10 15 20 25 30

# 2.16 2.12 2.05 2.03 2.08 2.16

too small, at each decision point the set of released orders considered
by the algorithm can be too small, possibly missing many optimization
opportunities. On the other hand, if we wait too long to run the next
instance of the problem (i.e., if 𝑇 is too large), the orders’ time windows

ay become too tight, and there may be no time to schedule an order
hich might have been accommodated earlier.

The average number of late orders (i.e., orders that will have to be
utsourced, as discussed in Section 1) throughout the whole set of real-
ife instances when solved offline is 0.85. In our experiments, we have
un the online scenario employing the values 𝑇 = 5, 10, 15, 20, 25, 30.

The results of these experiments are reported in Table 9. Each row
shows the average value of the number of late orders on the whole
set of 478 real-life instances.

The best value for 𝑇 is 𝑇 = 20, yielding an average of 2.03 late
orders. Hence, the fact that orders are not all known at the beginning
but rather arrive over time results in an average of 1.18 extra orders
which have to be outsourced at each shift. Thanks to the limited
number of jobs considered at each run, the solution algorithm at each
decision time requires few seconds, hence making the approach viable
in practice.

5. Conclusions

In this paper we addressed a single-restaurant, single-courier last-
mile-delivery scheduling problem in which the objective is the maxi-
mization of on-time deliveries. To improve the quality of the solutions
we consider the possibility of aggregating two orders, so that a single
courier can deliver either one or two meals in the same trip.

Our experiments show that order aggregation allows to improve the
quality of service, significantly decreasing the number of late deliveries
(on a sample of real-life data). Moreover, the relatively short compu-
tation times for small-sized instances suggest that the model can also
be usefully employed in a dynamic setting, i.e., a set of new incoming
orders may trigger the solution of a new instance in which the newly
released orders are added to the orders not yet delivered.

The proposed branch and bound algorithm outperforms the best ILP
model presented in Cosmi et al. (2019b) both in terms of effectiveness
and efficiency: Within the time limit of one hour, B&B solves instances
with up to 45 orders which is about twice the size of the largest
instances solved by the ILP within the same time limit. Concerning the
instanced solved by both methods, B&B is from 10 to 40 times faster
than the ILP solver.

Future research may address overcoming some possible limitations
of the current model. This includes the following issues: (𝑖) 𝑀𝐷𝑆𝑃𝐴 is
a deterministic model, while some aspects of the problem (e.g., travel
times and/or waiting times at the restaurant) might be addressed by
a robust optimization or stochastic model (Bozanta et al., 2022; Liu,
2019; Teng et al., 2021). In this respect, our model would present
similarities to flexible maintenance scheduling problems as, for in-
stance, in Aloulou and Della Croce (2008), Detti et al. (2019). (𝑖𝑖) In
a more general setting, the same courier may be shared by multiple
restaurants. This would bring the problem closer to a multi-agent
scheduling problem where different agents (the restaurants) compete
for the usage of a single machine (the courier, see e.g. Agnetis et al.
(2013, 2015) and Nicosia et al. (2018)). (𝑖𝑖𝑖) Another issue concerns the
no-wait assumption (see Section 2.2), which might not hold in general.
For instance, some limited slack time between two deliveries in the
same trip may be allowed, or the twin is considered feasible if the
second order is delivered within a certain time from the departure from
13

the restaurant.
Finally, from the viewpoint of problem analysis, we point out that
the complexity of 𝑀𝐷𝑆𝑃𝐴 is still open as for strong -hardness.
Moreover, a branch and price ad-hoc algorithm may be pursued us-
ing either a time-indexed formulation or a packing formulation (see,
e.g., Agnetis et al. (2009)).

CRediT authorship contribution statement

Alessandro Agnetis: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing –
original draft, Writing – review & editing, Visualization, Supervision.
Matteo Cosmi: Conceptualization, Methodology, Software, Validation,
Formal analysis, Investigation, Data curation, Writing – original draft,
Writing – review & editing, Visualization, Supervision. Gaia Nicosia:
Conceptualization, Methodology, Software, Validation, Formal analy-
sis, Investigation, Data curation, Writing – original draft, Writing –
review & editing, Visualization, Supervision. Andrea Pacifici: Con-
ceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Data curation, Writing – original draft, Writing – review
& editing, Visualization, Supervision.

Data availability

Data will be made available on request.

Appendix. ILP model for 𝑴𝑫𝑺𝑷𝑨

In this section we report the ILP model used to benchmark the
branch and bound algorithm. This formulation has been presented
in Cosmi et al. (2019b) along with three other integer programs for
𝑀𝐷𝑆𝑃𝐴, and it was shown to be the most effective among the four
ILPs.

In the objective function, we count the number of late orders by
using indicator variables 𝑦𝑖𝑗 ∈ {0, 1} representing whether a twin 𝑖𝑗 is
late (𝑦𝑖𝑗 = 1) or not (𝑦𝑖𝑗 = 0). We account for the fact that a late twin
order 𝑖𝑗 is assumed to be equivalent to both 𝑖 and 𝑗 late by setting, for
each 𝑖𝑗 ∈ 𝐷, a parameter 𝑤𝑖𝑗 = 2 if 𝑖 ≠ 𝑗, i.e., if 𝑖𝑗 is a twin order, and
𝑤𝑖𝑗 = 1 if 𝑖 = 𝑗.

We define the following decision variables:

• 𝑠𝑖 ∈ R+, representing the starting time of order 𝑖;
• 𝑥𝑖𝑗 ∈ {0, 1}, encoding whether order 𝑖 precedes order 𝑗;
• 𝛽𝑖𝑗 ∈ {0, 1}, indicating whether orders 𝑖 and 𝑗 are scheduled as a

twin order 𝑖𝑗.

The formulation is illustrated below.

min
∑

𝑖𝑗∈𝐷
𝑤𝑖𝑗𝑦𝑖𝑗 (19)

𝑠.𝑡. 𝑠𝑖 ≥
∑

𝑖𝑗∈𝐷
𝑟𝑖𝑗𝛽𝑖𝑗 𝑖 ∈ 𝐽 (20)

𝑠𝑗 ≥ 𝑐𝑖 −𝑀(𝛽𝑖𝑗 − 𝑥𝑖𝑗 + 1) 𝑖, 𝑗 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗 (21)

𝑠𝑖 ≥ 𝑐𝑗 −𝑀(𝛽𝑖𝑗 + 𝑥𝑖𝑗 ) 𝑖, 𝑗 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗 (22)

𝑠𝑗 ≥ 𝑠𝑖 −𝑀(1 − 𝛽𝑖𝑗 ) 𝑖𝑗 ∈ 𝐷 (23)

𝑠𝑖 + 𝑝𝑖𝑗 ≤ 𝑑𝑖𝑗 +𝑀(𝑦𝑖𝑗 + 1 − 𝛽𝑖,𝑗 ) 𝑖𝑗 ∈ 𝐷 (24)

𝑠𝑗 + 𝑝𝑖𝑗 ≤ 𝑑𝑖𝑗 +𝑀(𝑦𝑖𝑗 + 1 − 𝛽𝑖,𝑗 ) 𝑖𝑗 ∈ 𝐷 (25)

𝑐𝑗 = 𝑠𝑗 +
∑

𝑖∶𝑖𝑗∈𝐷
𝑝𝑖𝑗𝛽𝑖𝑗 𝑗 ∈ 𝐽 (26)

𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1 𝑖𝑗 ∶ 𝑖 ≠ 𝑗 ∈ 𝐷 (27)

𝑥𝑗ℎ ≥ 𝑥𝑖ℎ −𝑀(1 − 𝛽𝑖𝑗 )
𝑖𝑗 ∈ 𝐷

ℎ ∈ 𝐽 ∶ ℎ ≠ 𝑖, 𝑗
(28)

∑

𝛽𝑖𝑗 ≤ 1 𝑖 ∈ 𝐽 (29)

𝑗∶𝑖𝑗∈𝐷



Computers & Industrial Engineering 183 (2023) 109514A. Agnetis et al.

K

K

K

K

L

L

N

P

R

S

S

T

U

U

v

X

Y

∑

𝑖∶𝑖𝑗∈𝐷
𝛽𝑖𝑗 ≤ 1 𝑗 ∈ 𝐽 (30)

∑

𝑗∶𝑖𝑗∈𝐷
𝛽𝑖𝑗 +

∑

ℎ∶ℎ𝑖∈𝐷,ℎ≠𝑖
𝛽ℎ𝑖 = 1 𝑖 ∈ 𝐽 (31)

𝑠𝑖, 𝑐𝑖 ∈ R+ 𝑖 ∈ 𝐽 (32)

𝛽𝑖𝑗 , 𝑥𝑖𝑗 , 𝑦𝑖𝑗 ∈ {0, 1} 𝑖𝑗 ∈ 𝐷 (33)

Constraints (29)–(31) impose that each order 𝑖 must always be
associated and hence scheduled within a twin order (including order
(𝑖, 𝑖)). Constraints (20) force each order 𝑖 to always start after the release
time of the twin order it is associated to. Constraints (21)–(22) are
standard disjunctive constraints imposing precedences between each
pair of orders 𝑖 and 𝑗 not belonging to the same twin order. These
constraints do not hold if 𝑖 is scheduled as single order, whereas,
in the latter case, constraint (23) holds. Each single order has to be
completed before its twin order delivery time otherwise the twin order
is considered late (24)–(25). Constraints (27) impose that if 𝑖 precedes
𝑗 then it is not possible that 𝑗 precedes 𝑖. Constraint (28) sets that if 𝑖
and 𝑗 are scheduled in the twin order 𝑖𝑗 then if 𝑖 precedes ℎ also 𝑗 has
to precede ℎ.

References

Abbasi, S., Daneshmand-Mehr, M., & Ghane Kanafi, A. (2023). Green closed-loop supply
chain network design during the coronavirus (COVID-19) pandemic: a case study in
the Iranian automotive industry. Environmental Modeling & Assessment, 28, 69–103.

Agnetis, A., Alfieri, A., & Nicosia, G. (2009). Single-machine scheduling problems with
generalized preemption. INFORMS Journal on Computing, 21(1), 1–12.

Agnetis, A., Nicosia, G., Pacifici, A., & Pferschy, U. (2013). Two agents competing for
a shared machine. In P. Perny, M. Pirlot, & A. Tsoukiàs (Eds.), Algorithmic decision
theory (pp. 1–14). Berlin, Heidelberg: Springer Berlin Heidelberg.

Agnetis, A., Nicosia, G., Pacifici, A., & Pferschy, U. (2015). Scheduling two agent task
chains with a central selection mechanism. Journal of Scheduling, 18(3), 243–261.

Allen, J., Piecyk, M., Cherrett, T., Juhari, M. N., McLeod, F., Piotrowska, M., Bates, O.,
Bektas, T., Cheliotis, K., Friday, A., & Wise, S. (2021). Understanding the transport
and CO2 impacts of on-demand meal deliveries: A London case study. Cities, 108,
Article 102973.

Aloulou, M. A., & Della Croce, F. (2008). Complexity of single machine scheduling
problems under scenario based uncertainty. Operations Research Letters, 36(3),
338–342.

Archetti, C., Feillet, D., & Speranza, M. G. (2015). Complexity of routing problems with
release dates. European Journal of Operational Research, 247(3), 797–803.

Azi, N., Gendreau, M., & Potvin, J.-Y. (2012). A dynamic vehicle routing problem with
multiple delivery routes. Annals of Operations Research, 199(1), 103–112.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98.

Böhm, M., Megow, N., & Schlöter, J. (2021). Throughput scheduling with equal additive
laxity. In T. Calamoneri, & F. Corò (Eds.), Algorithms and complexity (pp. 130–143).
Springer International Publishing.

Bozanta, A., Cevik, M., Kavaklioglu, C., Kavuk, E. M., Tosun, A., Sonuc, S. B.,
Duranel, A., & Basar, A. (2022). Courier routing and assignment for food delivery
service using reinforcement learning. Computers & Industrial Engineering, 164, Article
107871.

Chen, J.-f., Wang, L., Wang, S., Wang, X., & Ren, H. (2021). An effective matching
algorithm with adaptive tie-breaking strategy for online food delivery problem. In
Complex & intelligent systems (pp. 1–22). Springer.
14
Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., & Widmayer, P. (2004). Scheduling
with release times and deadlines on a minimum number of machines. In J.-J. Levy,
E. W. Mayr, & J. C. Mitchell (Eds.), Exploring new frontiers of theoretical informatics
(pp. 209–222). Boston, MA: Springer US.

Cosmi, M., Nicosia, G., & Pacifici, A. (2019a). Lower bounds for a meal pickup-and-
delivery scheduling problem. In Proceedings of the 17th cologne-twente workshop on
graphs and combinatorial optimization, ctw, vol. 2019 (pp. 33–36).

Cosmi, M., Nicosia, G., & Pacifici, A. (2019b). Scheduling for last-mile meal-delivery
processes. IFACPapersOnLine, 52, 511–516.

Cosmi, M., Oriolo, G., Piccialli, V., & Ventura, P. (2019). Single courier single restaurant
meal delivery (without routing). Operations Research Letters, 47(6), 537–541.

Cosmi, M., Oriolo, G., Piccialli, V., & Ventura, P. (2022). Assigning orders to couriers in
meal delivery via integer programming. Optimization-Online.

Detti, P., Nicosia, G., Pacifici, A., & Zabalo Manrique de Lara, G. (2019). Robust single
machine scheduling with a flexible maintenance activity. Computers & Operations
Research, 107, 19–31.

Dunning, I., Huchette, J., & Lubin, M. (2017). Jump: A modeling language for
mathematical optimization. SIAM Review, 59(2), 295–320.

Fikar, C., & Braekers, K. (2022). Bi-objective optimization of e-grocery deliveries
considering food quality losses. Computers & Industrial Engineering, 163, Article
107848.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory
of np completeness. W. H. Freeman.

Gurobi Optimization, LLC (2018). Gurobi optimizer reference manual.
Joshi, M., Singh, A., Ranu, S., Bagchi, A., Karia, P., & Kala, P. (2021). Batching

and matching for food de- livery in dynamic road networks. In 2021 IEEE 37th
international conference on data engineering (ICDE) (pp. 2099–2104). Los Alamitos,
CA, USA: IEEE Computer Society.

ise, H., Ibaraki, T., & Mine, H. (1978). A solvable case of the one-machine scheduling
problem with ready and due times. Operations Research, 26(1), 121–126.

lapp, M. A., Erera, A. L., & Toriello, A. (2018a). The dynamic dispatch waves problem
for same-day delivery. European Journal of Operational Research, 271(2), 519–534.

lapp, M. A., Erera, A. L., & Toriello, A. (2018b). The one-dimensional dynamic
dispatch waves problem. Transportation Science, 52(2), 402–415.

lein, V., & Steinhardt, C. (2023). Dynamic demand management and online tour
planning for same-day delivery. European Journal of Operational Research, 307(2),
860–886.

iao, Wenzhu, Zhang, Liuyang, & Wei, Zhenzhen (2020). Multi-objective green meal
delivery routing problem based on a two-stage solution strat- egy. Journal of Cleaner
Production, [ISSN: 0959-6526] 258, Article 120627.

iu, Y. (2019). An optimization-driven dynamic vehicle routing algorithm for on-
demand meal delivery using drones. Computers & Operations Research, 111,
1–20.

icosia, G., Pacifici, A., & Pferschy, U. (2018). Competitive multi-agent scheduling with
an iterative selection rule. 4OR, 16(1), 15–29.

inedo, M. L. (2012). Scheduling : Theory, algorithms, and systems. New York, NY:
Springer.

eyes, D., Erera, A., Savelsbergh, M., Sahasrabudhe, S., & O’Neil, R. (2018). The meal
delivery routing problem. Optimization-Online.

eghezzi, A., Winkenbach, M., & Mangiaracina, R. (2021). On-demand food delivery:
a systematic literature review. International Journal of Logistics Management, 32(4),
1334–1355.

teever, Zachary, Karwan, Mark, & Murray, Chase (2019). Dynamic courier routing for
a food delivery service. Computers & Operations Research, [ISSN: 0305-0548] 107,
173–188.

eng, R., Hong-bo, X., Kang-ning, J., Tian-yu, L., Ling, W., & Li-ning, X. (2021).
Optimisation of takeaway delivery routes considering the mutual satisfactions of
merchants and customers. Computers & Industrial Engineering, 162, Article 107728.

lmer, M. W., Goodson, J. C., Mattfeld, D. C., & Thomas, B. W. (2020). On modeling
stochastic dynamic vehicle routing problems. EURO Journal on Transportation and
Logistics, 9(2), Article 100008.

lmer, M. W., Thomas, B. W., & Mattfeld, D. C. (2019). Preemptive depot returns
for dynamic same-day delivery. EURO Journal on Transportation and Logistics, 8(4),
327–361.

an Bevern, R., Niedermeier, R., & Suchý, O. (2017). A parameterized complexity
view on nonpreemptively scheduling interval-constrained jobs: few machines, small
looseness, and small slack. Journal of Scheduling, 20(3), 255–265.

ue, Guiqin, Wang, Zheng, & Wang, Guan (2021). Optimization of rider scheduling for
a food delivery service in O2O business. Journal of Advanced Transportation, 2021.

ildiz, B., & Savelsbergh, M. (2019). Provably high-quality solutions for the meal
delivery routing problem. Transportation Science, 53(5), 1372–1388.

http://refhub.elsevier.com/S0360-8352(23)00538-7/sb1
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb1
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb1
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb1
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb1
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb2
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb2
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb2
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb3
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb3
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb3
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb3
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb3
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb4
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb4
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb4
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb6
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb6
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb6
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb6
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb6
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb7
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb7
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb7
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb9
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb9
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb9
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb15
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb15
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb15
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb16
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb16
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb16
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb17
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb17
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb17
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb19
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb19
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb19
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb21
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb21
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb21
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb22
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb24
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb24
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb24
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb25
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb25
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb25
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb26
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb26
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb26
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb27
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb27
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb27
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb27
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb27
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb30
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb30
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb30
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb31
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb31
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb31
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb32
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb32
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb32
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb33
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb33
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb33
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb33
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb33
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb35
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb35
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb35
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb35
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb35
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb39
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb39
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb39
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb40
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb40
http://refhub.elsevier.com/S0360-8352(23)00538-7/sb40

	Two is better than one? Order aggregation in a meal delivery scheduling problem
	Introduction
	Related Literature
	Our Contribution

	Problem definition, notation and complexity
	Problem MDSPS
	Problem MDSPA
	Complexity of MDSPA 

	Methodologies
	Lower bounds
	Definition of time windows in Paux
	Complexity of Algorithm 1
	Definition of processing times in Paux
	First lower bound: Paux with flat processing times  
	Second lower bound: Paux with order-based processing times  

	A combinatorial branch and bound

	Computational Experiments 
	Real-life offline scenario
	Benefits of order aggregation
	Comparison between the efficiency of the solution approaches

	High-demand scenario
	Real-life online scenario

	Conclusions
	CRediT authorship contribution statement
	Data availability
	Appendix. ILP model for MDSPA
	References


