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While in the past technology has mostly been utilized to store information about
the structural configuration of proteins and molecules for research and medical
purposes, Artificial Intelligence is nowadays able to learn from the existing data
how to predict and model properties and interactions, revealing important
knowledge about complex biological processes, such as aging. Modern
technologies, moreover, can rely on a broader set of information, including
those derived from the next-generation sequencing (e.g., proteomics,
lipidomics, and other omics), to understand the interactions between human
body and the external environment. This is especially relevant as external factors
have been shown to have a key role in aging. As the field of computational systems
biology keeps improving and new biomarkers of aging are being developed,
artificial intelligence promises to become a major ally of aging research.
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1 Introduction

The process of aging is known to be dependent upon the interaction of different factors,
such as the genome content of an individual, lifestyle factors, environmental interaction, and
health facilities available to the individual (Newman and Murabito, 2013; Partridge et al.,
2018; Singh et al., 2019). Increased lifespan and age represent the exceptional survival,
maintenance of good health as compared to peers, delayed onsets of age-dependent diseases,
and extreme phenotype of individuals (Kaeberlein, 2018; Pignolo, 2019).

Previous works have emphasized how modern Artificial Intelligence (AI) is already
playing an important role in speeding up decision-making in medical sciences by means of
advanced machine learning (ML) algorithms. For example, it is revolutionizing the drug
discovery process, saving money and time (Kelemen et al., 2008), as it is already being used to
create the structure of new drugs depending on the specific structure of the target disease-
causing compound [see (Santus et al., 2021) for an overview]. In life sciences, the generation
of high-throughput data such as proteomics, genomics, chemoproteomics and phenomics

OPEN ACCESS

EDITED BY

Brenna Osborne,
University of Copenhagen, Denmark

REVIEWED BY

Mark A. McCormick,
University of New Mexico, United States
Guang Yang,
Imperial College London,
United Kingdom

*CORRESPONDENCE

Nicola Marino,
nicola.marino9@gmail.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Interventions in Aging,
a section of the journal
Frontiers in Aging

RECEIVED 29 September 2022
ACCEPTED 06 February 2023
PUBLISHED 01 March 2023

CITATION

Marino N, Putignano G, Cappilli S,
Chersoni E, Santuccione A, Calabrese G,
Bischof E, Vanhaelen Q, Zhavoronkov A,
Scarano B, Mazzotta AD and Santus E
(2023), Towards AI-driven longevity
research: An overview.
Front. Aging 4:1057204.
doi: 10.3389/fragi.2023.1057204

COPYRIGHT

© 2023 Marino, Putignano, Cappilli,
Chersoni, Santuccione, Calabrese,
Bischof, Vanhaelen, Zhavoronkov,
Scarano, Mazzotta and Santus. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Aging frontiersin.org01

TYPE Review
PUBLISHED 01 March 2023
DOI 10.3389/fragi.2023.1057204

https://www.frontiersin.org/articles/10.3389/fragi.2023.1057204/full
https://www.frontiersin.org/articles/10.3389/fragi.2023.1057204/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fragi.2023.1057204&domain=pdf&date_stamp=2023-03-01
mailto:nicola.marino9@gmail.com
mailto:nicola.marino9@gmail.com
https://doi.org/10.3389/fragi.2023.1057204
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/journals/aging#editorial-board
https://www.frontiersin.org/journals/aging#editorial-board
https://doi.org/10.3389/fragi.2023.1057204


combined with the recent development of AI technologies
(Alberghina and Westerhoff, 2007; Santus et al., 2021) and the
availability of increasingly powerful computational resources allow
the deployment of complex ML methods to preprocess massive
amounts of data, integrate different input modalities and identify
insightful correlations (Kulaga et al., 2021).

The increasing availability of biological data of all types has
contributed to greatly improve our understanding of the human
body and the systemic nature of biological systems in general. This
was accompanied by a conceptual change within biology with the
transition from a qualitative, reductionist, structural and most of the
time static description to a more systemic description in terms of
functional and dynamical properties (Barabási and Oltvai, 2004;
Bruggeman and Westerhoff, 2007; Liang et al., 2011). Now,
biological entities are more and more often described as dynamical
systems made of a multilayered hierarchy of sub-systems containing
large numbers of highly connected components.ML techniques are well
adapted to discover not only correlations but also causal relations
between data to identify key interactions and key regulators that must
be integrated into a model to uncover mechanisms that can explain the
emergence of specific biological functions. In the context of aging
research, there are several mechanisms; called hallmarks of aging (cf.
Figure 1), that have been identified as playing a central role in the onset
and propagation of aging. Understanding the causal relationships
taking place within biological systems is a prerequisite to build
dynamical, i.e., kinetic, models that can be used to simulate the
integral response of a biological system during its development, the
progression of a disease, or during pharmaceutical interventions.
Dynamic models have been designed, for example, to describe the

effects of inflammation, senescence, apoptosis, oxidative stress,
accumulation of mutations and DNA damages, cell cycle
deregulation, mitochondrial dysfunction, and telomere shortening
(Auley et al., 2017). Interestingly, many of these mechanisms have
been associated over timewith specific pathologies, called aging-related-
diseases (ARDs), which commonly appear when individuals get older.
For example, various types of cancers are identified as ARDs and their
origin is assumed to be connected to genomic instability and decreased
capacity for DNA repair, two characteristics of both cancer and aging
(Maslov and Vijg, 2009). Many of the mechanisms triggering ARDs
have been used to elaborate specific theories of aging, which propose to
explain the onset and propagation of aging from a set of molecular
mechanisms and leading functions associated with ARDs.

The surge in aging research and associated R&D investments
witnessed during the recent years should be put in perspective with
the continuous increase in human life expectancy observed over the
last decades which has significant long term social impacts and
economic consequences. One estimated that over 700 million people
were over 65 years old in 2019, a number that might double by 2050
(Prince et al., 2016). Hopefully, thanks to intense scientific research,
we are continuously improving our understanding of the
intertwined biological processes behind aging. This valuable
knowledge combined with the possibilities created by
technological developments can be used to develop novel
treatments which are much needed in societies where the rise in
human longevity is often accompanied with an increased burden of
chronic diseases and ARDs including cardiovascular diseases,
cancer, and neurodegenerative diseases such as Parkinson disease
(PD) and Alzheimer’s disease (AD) (Partridge et al., 2018). Beside

FIGURE 1
Summary of the hallmarks of aging. Primary hallmarks of aging, the primary causes of cellular damage, include genomic stability, epigenetic
alterations, loss of proteostasis, and telomere attrition. Antagonistic hallmarks (this refers to factors that originated from body responses to the damage
itself but end up exacerbating it) include mitochondrial dysfunction, deregulated sensing, and cellular senescence. Integrative hallmarks of aging (that
result from the cumulative action of the previous two groups and are the main determiners of the functional decline) include stem cell exhaustion
and altered intercellular communication. Each of these hallmarks has been the focus of intensive research to understand their involvement in the decline
of biological functions. ML/AI technologies are used to deepen our understanding of themany components that are involved. This knowledge can help to
improve not only our understanding of these mechanisms taken separately but also how the interplay between them unfolds.
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the fact that these ARDs result in reduced quality of life of the elderly
population, they also present a healthcare and socioeconomic
challenge. Many countries facing a continuously aging society
have already embraced this challenge by initiating ambitious
healthcare development programs and adaptation plans to be
able to cope with these unavoidable societal trends. In this
context, ML and AI combined with big data and other novel
technologies can be deployed to monitor disease patterns within
a population, develop adapted geriatric care systems, prioritize, and
optimize drug development and design appropriate public health
policies to foster healthy aging habits and improved lifestyle among
all segments of the populations (Fang et al., 2020).

Aging research and its offspring, longevity research are two very
active and rapidly evolving fields. In the present contribution, we
propose to discuss a subset of studies which, in our opinion, should
provide interested readers and researchers with a broad overview of
how aging, when considered from a mechanistic perspective, can be
investigated from different viewpoints using classical computational
methods combined with ML/AI approaches, leveraging the
opportunities offered by the continuously growing sets of health
and biological data. There is a tremendous variety of questions and
topics of interest to be covered and a large diversity of research
methods deployed to investigate them. Scientific studies can
investigate biological mechanisms at a fundamental level to
clarify their links with the onset of ARDs. In several cases, the
authors use the newly acquired knowledge to develop aging clocks.
Other research works utilize the already established knowledge of
aging mechanisms and associated signaling pathways to identify
through computational means potential novel therapeutic targets. In
some cases, such analysis proposes a complete workflow with either
in vitro and/or in vivo validation to support the computational
findings. These studies are also sometimes complemented with
virtual screening experiments to identify compounds with
suitable drug-like properties which could constitute the basis of
novel therapies. Thus, to structure the discussion, we decided to
follow the taxonomy introduced in the classical work by (López-
Otín et al., 2013) and organized this article according to the three
main areas of intervention of AI technologies. An outline of the
article is as follows. Section 2 covers the primary hallmarks of aging,
that is, the primary causes of cellular damage, Section 3 focuses on
antagonistic hallmarks, namely, those factors that originated from
body responses to the damage itself but end up exacerbating it.
Section 4 discusses studies interested in the integrative hallmarks
which result from the cumulative action of the previous two groups
and are the main determiners of the functional decline. We discuss
several possible clinical applications in Section 5 and end up with a
conclusion in Section 6.

2 Primary hallmarks

2.1 Genomic instability

Genomic instability is the growing tendency of cells to
accumulate mutations both in nuclear and mitochondrial DNA,
and it is considered as one of the primary hallmarks of the aging
process (López-Otín et al., 2013; Laffon et al., 2021). The
micronucleus (MN) test and its evolution, the cytokinesis-block

micronucleus (CBMN) test, are the most used methodologies to
evaluate genomic instability and quantify DNA damage in different
tissues. Therefore, their results can be used as biomarkers of
genomic instability in aging (Laffon et al., 2021).

Such tests allow measuring the number of micronuclei in several
types of cells (Laffon et al., 2021; Wills et al., 2021). Micronuclei are
chromosome-derived structures, surrounded by a membrane, that
arise from fragments of acentric chromosomes or from entire
chromosomes that fail to bind to the mitotic spindle and to
segregate properly in the daughter cells (Fenech et al., 2016). The
frequency of micronuclei in peripheral lymphocytes has been shown
to increase by age groups, with a frequency ratio of 1 in children
(<10 years old) and a frequency over 2 in elder people (>70 years
old) (Bonassi et al., 2001).

However, a limitation of the CBMN test is that it requires users’
manual scoring whichmakes it time-consuming and subjective, with
very low specificity and a high number of false positives (Wills et al.,
2021). For these reasons in the last few years the CBMN test was
associated with imaging flow cytometry and deep learning (DL)
algorithms to automatize and accelerate the procedure (see
Figure 2). In (Wills et al., 2021), the authors developed an
automated image classification for the CBMN assay by training
and cross-validating the “DeepFlow” neural network with data
obtained in several laboratories that used different techniques for
sample preparation, cytometer calibration, and image acquisition.
They trained the system with tens of thousands of images from two
laboratories and then tested it with the images of a third one. The
“DeepFlow” neural network took less than 2 min to score thousands
of images with an accuracy of 98% in mononucleate cells, 82% in
mononucleate cells plus MN, 94% in binucleate cells, and 85% in
binucleate cells plus MN. Interestingly when evaluating the cases in
which the result of the software was different from the human-
scored one it was found out that the software was sometimes more
valid because it can classify the MN according to its area and to the
size of the nucleus of the relative cell. Thus, in this case, integrating
AI technology contributed to improve not only the average speed
but also the accuracy of the procedure.

A similar automated method was developed by combining
imaging flow cytometry with custom-designed software and AI to
score the micronuclei in a 3D skin-based model (Allemang et al.,
2021). The evaluation of reconstructed skin allows using cells that
are naturally more exposed to genotoxic substances, and AI makes it
a completely automatic method devoid of subjective scoring. By
further training these systems or similar ones, even without user
configuration, it will be possible to eliminate the variability of the
CBMN test and significantly reduce the associated costs. In this way,
the results of the CBMN test will be more accurate biomarkers of
genomic instability. Although, until now, this type of test has been
primarily used to evaluate genotoxicity, it would be possible to assess
aging in the same way and to estimate the biological age of a patient.

2.2 Epigenetic alterations

The term epigenomics refers to mechanisms regulating genome
activity independently of changes to DNA sequence (Felsenfeld,
2014). These mechanisms that induce reversible changes can be
classified into four categories: remodeling of chromatin
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conformation, DNA modifications such as DNA methylation,
histone post-translational modifications, and RNA-centered
mechanisms (including non-coding RNAs and microRNAs)
(Pagiatakis et al., 2021). Epigenetics is the main mechanism by
which environmental factors such as stress, physical activity, diet but
also alcohol consumption influence gene expression. Epigenetic
mechanisms can also be modulated by physiological and
pathological stimuli (Pagiatakis et al., 2021). Although epigenetic
modifications attracted interest for their involvement in aging and in
the onset of ARDs, they are also essential for development processes
such as tissue and organ formation.

The investigation of epigenetic mechanisms, epigenetic changes
and their relationships with aging must begin with the prediction of
epigenetic-relevant features such as epigenetic sites and genetic
alterations. Despite some successful applications of ML/AI for
epigenome mapping (Angermueller et al., 2017) and for the
identification of susceptible epimutation sites in the genome
(Haque et al., 2015), it should be emphasized that these essential
steps already present specific challenges. Indeed, experimental
protocols to study epigenetic mechanisms are typically expensive
to implement and to some extent ML/AI methods such as active
learning must be deployed to reduce the expense of generating
epigenetic data. Furthermore, analyzing epigenetic data can be
cumbersome because like other biological datasets, raw epigenetic
data are typically high dimensional, but the occurrences of interest,
i.e., epigenetic marks and epimutation sites, are difficult to find. For
instance, DNA methylation data usually contain a few differentially
methylated DNA regions (DMR) and many non-DMR sites,
although both are described with many DNA sequence and
genomic features (Holder et al., 2017). In fact, the number of
genomic features within epigenetic data is huge, and the selection
of the most relevant ones that could be used to locate epigenetic sites
requires specific approaches (see below for an example). In this
context, ML/AI techniques are necessary not only to identify the
regions of the genome where the epigenetic changes of interest could
occur and that are susceptible to epimutations, but also to preprocess
and carefully annotate epigenetic data prior to any analysis.
Workflows used to that end combine techniques for feature
generation and selection, and techniques to deal with the specific
characteristics of epigenetic data. Concretely, ML/AI is commonly
used to help define the most relevant genomic features. Moreover,

imbalanced class learning has proven to be useful to compensate for
the relatively low occurrence of relevant epigenetic events.

An example of how epigenetic marks can be selected and used
to characterize a disease state is shown in (Bahado-Singh et al.,
2022) where the authors determined whether epigenetic changes
occur in patients with Coarctation of the aorta (CoA) (see
Figure 3). CoA is a congenital heart defect that might have
epigenetic origins because prior studies showed that significant
methylation changes were found in the DNA of newborns with
CoA. Thus, the authors decided to use Cytosine nucleotide (CpG)
methylation changes in samples from patients with CoA and
healthy patients (obtained from Genome-wide DNA
methylation analysis of 24 newborn blood DNA with CoA cases
and 16 unaffected controls) to build several classifiers to
distinguish CoA samples from controls and identify epigenetic
patterns specific to CoA. Feature selection was carried out using
the probes with statistically significant methylation differences
combined with a sufficiently high methylation fold change in
CoA compared to controls. Multivariate approaches such as
principal component analysis (PCA) and partial least squares-
discriminant analysis (PLS-DA) confirmed the possibility to
accurately segregate or differentiate the CoA group from
controls based on CpG methylation levels. Different methods
were used to build the classifiers: random forest (RF), support
vector machine (SVM), linear discriminant analysis (LDA),
prediction analysis for microarrays (PAM), and generalized
linear model (GLM). Features with the highest predictive
powers for the various classifiers were characterized by highly
statistically significant methylation changes in several CpG loci in
CoA relative to controls. To interpret these results from a
biological viewpoint, further analysis was performed using
Ingenuity pathway analysis to link key features to disease
pathways associated with CoA. Furthermore, PCA and PLS-DA
also showed that using a limited number of “principal
components” (CpG markers) was enough to differentiate the
CoA from the unaffected control groups. Those findings pave
the way to the identification of novel epigenetic biomarkers
for CoA.

The integration of systems biology, big data science and AI/
ML can be a successful strategy to elucidate still largely unknown
epigenetic mechanisms involved in aging and in ARDs. Recently,

FIGURE 2
AI-based automated CBMN test to quantify genomic damages in tissues. Thousands of images from flow cytometry data were used to train a DL-
based image classifier. This allows an automated scoring of the evaluation of the number of micronuclei while reducing time overload and false positives.
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ML/AI has been successfully applied to analyze omics and clinical
data gathered in epigenetic studies (Oh et al., 2015; Ladd-Acosta
et al., 2016; Holder et al., 2017). These applications also included
the detection of DNA methylation characterizing specific
diseases and aging related pathologies (Crowgey et al., 2018).
Another study focused on the identification of correlations
among methylation marks and found that different
methylation profiles exist for different diseases as well as for
tissues of different types (Luedi et al., 2007). The findings
supporting that aging and the onset of ARDs are often
associated with specific and reproducible changes across DNA
methylation sites were exploited to develop a class of biomarkers
of aging usually known as epigenetic clocks. These clocks
function by integrating information about DNA methylation
sites known to be correlated with chronological age across
multiple tissue types and different populations. These
epigenetic clocks have been shown to be able to predict the
possible onset of ARDs such cardiovascular diseases and
different types of cancers (Bocklandt et al., 2011; Hannum
et al., 2013; Horvath, 2013; Weidner et al., 2014). Other recent
examples of epigenetic studies using ML/AI include the
classification of prostate cancer (Aref-Eshghi et al., 2018) and
heart disease (Dogan et al., 2018).

A point worth mentioning is that genetic and epigenetic
studies are still generally accomplished independently and as a
result, physiological relationships between genetics and
epigenetics in diseases remain poorly understood (Hamamoto
et al., 2019). Studies revealed that there is a degradation of
functional transcriptional networks correlated with an increase
in heterogeneity between the epigenome and the transcriptome
during aging (Hernando-Herraez et al., 2019). Epigenetic
alterations have also been shown to impact genome stability
and promote genetic sequence mutations (Skinner et al., 2015;
McCarrey et al., 2016). Thus, to improve our understanding of
genetic variations and epigenetic deregulations, multimodal
analyses of big omics data should be deployed using AI
platforms that allow integration between genetics and
epigenetics.

2.3 Telomere attrition

Telomeres are sequences of tens of kilobases formed by the
repetition of six nucleotides associated with protective proteins
located in the terminal regions of chromosomes. Telomeres have
two main functions: to prevent DNA repair and recombination
complexes from recognizing the linear ends of chromosomes as
broken ends, and to protect the gene content of chromosomes from
degradation due to the progressive shortening of DNA following
replication (Blackburn et al., 2015). In fact, the DNA replication
machinery fails to copy the final nucleotides of the chromosome
causing a shortening of the telomeres. In specific types of cells, the
telomerase, a reverse transcriptase, is active to prevent telomere
shortening and maintain their length (Hou et al., 2017). When the
telomere length reaches a certain threshold, known as Hayflick limit,
the cell cycle stops, and the cell becomes senescent (Liu et al., 2019).
Therefore, telomere shortening is associated with senescence and
aging (López-Otín et al., 2013). Numerous meta-analyses have been
conducted in recent years, especially to decipher the relationship
between telomeres and environmental factors: those are very useful
tools that allow increasing the samples used in statistical surveys but
suffer from deep methodological differences (Wang et al., 2018).

The results of the meta-analyses suggest that telomere
shortening is associated with increased mortality risk in the
general population. They also provide insights on the impact of
the environment on telomere shortening. For instance, several
studies show that the Mediterranean diet and the absence of
cigarette smoking are correlated with longer telomere length,
while the relationship with physical activity is not clearly
established (Arsenis et al., 2017; Astuti et al., 2017; Wang et al.,
2018; Canudas et al., 2020). In all the above-mentioned studies, the
authors suggested that larger-scale analysis and clinical trials would
be necessary to confirm these conclusions with greater certainty.

Currently, the leukocyte telomere length is used as a biomarker
for healthy aging, despite the fact that there are many inconsistent
and contradictory data relating to its effectiveness (Hartmann et al.,
2021; Vaiserman and Krasnienkov, 2021). In fact, as previously
mentioned, there are environmental factors that contribute to the

FIGURE 3
Blood samples were utilized to identify epigenetic changes that allow distinguishing healthy controls from patients with coarctation of the aorta
(CoA). Cytosine nucleotide (CpG) methylation changes obtained fromGenome-wide DNAmethylation analysis were selected asmean features. Only the
probes with statistically significant methylation differences combined with a sufficiently high methylation fold change were kept as features and
Multivariate approaches such as principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to confirm
that these features could accurately distinguish the CoA samples from the controls. 5 classifiers were built and trained using these features. Features with
the highest predictive capabilities are potential novel biomarkers candidates for CoA.
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telomere shortening and it has been shown that the length of the
telomeres fluctuates by 2%–4% monthly (Galkin et al., 2020).
Therefore, without adequately accounting for most of the
variables involved in the shortening of telomeres and in the
oscillation of their length, it remains difficult to use this measure
as a reliable biomarker.

Bioinformatics and deep mining approaches can be useful for
better understanding the biological interactions of telomeres and
telomerase. For example, (Hou et al., 2017), analyzed numerous
databases with multiple bioinformatics approaches to map the
interactions of telomerase reverse transcriptase (TERT, one of the
two main components of telomerase) with other proteins and its
function in different biological pathways. With similar
bioinformatics approaches it will be possible, thanks to data
already available, to obtain new information on the enzymes
involved in the shortening of telomeres. A better understanding
of the phenomenon of telomere attrition will make possible using
this parameter as a reliable aging biomarker although recent articles
and reviews have suggested that telomere attrition could just be used
inside a panel together with other aging factors to improve the
efficacy in the assessment of biological age (Galkin et al., 2020;
Vaiserman and Krasnienkov, 2021).

2.4 Loss of proteostasis

Protein homeostasis, or proteostasis, refers to the balance
that must be maintained between the newly folded proteins and
the degradation of the superfluous, older proteins with the aim
to prevent protein misfolding and accumulation of protein
aggregates. Proteostasis is regulated through a complex
network comprising molecular chaperones, proteolytic
machinery, and their regulators (Hipp et al., 2019). The EU-
funded project PROTEOSTASIS (Cell-type-specific
modulation of protein homeostasis in health and disease)
has investigated the proteostasis mechanisms and found that
the identity and concentration of chaperones and proteostatic
machinery are highly cell-type specific. Further investigation of
the capacity of proteostasis in different tissues under various
physiological and stress conditions shows that there is a strong

decline in folding capacity in the transition to adulthood,
followed by the loss of protein solubility and the
accumulation of aggregates (when they exceed the
physiological concentration). These results led to the
conclusion that proteostasis dysregulation is the main cause
of age-related protein misfolding diseases. From a broader
perspective, it is important to develop methodologies to
consider all the proteins, their different interactions, and the
ways they change their expression through aging.

To obtain a better picture of which proteins intervene in the
repair and maintenance mechanisms such as autophagy for instance
which is well-known for being affected as individuals age, the
authors of a recent study (Kerepesi et al., 2018) used ML
methods to build classification models using multiple protein
features to identify new aging-related proteins that have a
particularly prominent role in repair and maintenance
mechanisms (see Figure 4). Data used for this study included the
set of aging-related genes available in GenAge, a manually curated
database made of 305 aging-related genes. The corresponding
proteins were used as instances of the aging-related class. All
other human proteins in Swiss-Prot, were used as the instances
of the non-aging-related class. Multiple features were extracted from
the data. In total 21,000 protein features were extracted from
different databases. This included co-expression and protein-
protein interaction features such as the number of aging-related
neighbors and several other topological properties of the protein-
protein interaction networks associated with the selected proteins.
Three ML methods (XGBoost, logistic regression (LR), and SVM)
were deployed to build classifiers that could distinguish aging-
related proteins from the non-aging-related ones. In the second
part of the study, the trained models were utilized to predict new
aging-related proteins. The score associated with the proteins by the
classifiers gives an insight on the role of a protein in the aging
process. To identify the most important aging-related features of
human aging-related proteins, XGBoost feature selection
capabilities were used to identify the top 36 protein features. A
reduced and more easily interpretable model based on these
36 features was designed and demonstrated high prediction
performance. It was used to select a list of the twenty new most
relevant aging-related proteins. This study showed how the most

FIGURE 4
To identify novel aging-related proteins, the full set of human proteins was extracted from the Swiss-Prot database. Already known aging related
proteins listed on the GenAge database were used as instances of the aging-related class. UniProt, GeneOntology and GeneFriends databases were used
to extract 21,000 protein characteristics that were subsequently used as features to train 3 classifiers to identify proteins likely to be associated with aging.
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relevant protein features can provide an insight into the regulation of
the aging process.

Proteins found within human plasma are another unvaluable
source of information to be used to characterize and quantify the
onset and propagation of aging. Intensive research has been
undertaken to systematically identify proteins whose expression
shows strong patterns of changes with age and that could
constitute a reliable proteomic signature of the phenomenon.
Proteins found in plasma are attractive for this endeavor because
they affect phenotypes and are directly involved in the dynamics of
signaling pathways regulating many of the physiological
manifestations of aging. From this viewpoint, proteomic
signatures are even more advantageous than epigenetic signatures
for instance because the effects of molecular changes such a DNA
methylations and other epigenetic changes are not always very well
understood. In Tanaka et al. (2018), the authors measured a total of
1301 proteins in plasma in a cohort of 240 healthy individuals aged
from 22 to 93 years old with the goal to identify proteins associated
with chronological age while avoiding as much as possible the effect
of clinically detectable diseases. After multiple adjustments for body
mass index and serum creatinine for instance, they assembled a list
of 210 age associated proteins. The association of these age-related
proteins with several clinical characteristics was analyzed and the
authors analyzed how proteome can predict chronological age by
designing a proteomic signature of age using an elastic net regression
model. Several predictors were built using different subsets of age
associated proteins ranging from 76 predictor proteins to only one
protein. This first study was later expended by considering a second
population sample of almost one thousand participants in the Italy-
based InCHIANTI study (https://www.nia.nih.gov/inchianti-study)
(Tanaka et al., 2020). The purpose of this second analysis made on a
much larger and diverse cohort was to confirm the age-associated
proteins reported in the first study, and to uncover their relationship
with ARDs. The authors used a two-sample Mendelian
Randomization method to study the causal relationship between
age-related proteins with ARDs. Interestingly, for some age-related
proteins, DNA methylation was shown to partially explain the
observed age associations. Another study that showed how
proteins that significantly change their expression level with age
are also often proteins that directly impact longevity and the onset of
ARDs was presented in (Lehallier et al., 2020) where the authors
measured the q-value and age coefficient of 529 previously identified
aging plasma proteins (103 of which have a HAGR listing). The
proteins were analyzed in a plasma proteomic dataset derived from
4263 individuals, using an online software tool. The authors found
that approximately 95% of them significantly (q < 0.05) changed
their expression level with age. They performed ML modeling and
fitted a LASSO linear regression on a plasma proteomic dataset
derived from 3301 individuals, finding an ultra-predictive aging
clock composed of 491 protein entries. The latter was used to
demonstrate, for example, that aerobic exercise trained
individuals are predicted to be younger than their actual
biological age, compared with physically sedentary subjects.
Moreover, they unveiled a multitude of novel aging clocks that
are made up of a smaller set of proteins (Lehallier et al., 2020). This
has the obvious effect of reducing the costs, making the prediction of
patient age logistically simpler and therefore easier to implement on
a larger scale.

3 Antagonistic hallmarks

3.1 Mitochondrial dysfunctions

Mitochondria are dynamic structures well-known for primarily
acting as cellular energy generators by producing adenosine
triphosphate (ATP) either through mitochondrial oxidative
phosphorylation or through anaerobic glycolysis, a second ATP
production route in which nicotinamide adenine dinucleotide
(NAD+), a small molecule that regulates many biological processes,
plays an important role (Aman et al., 2019). Mitochondrial homeostasis
and maintenance are unsurprisingly considered as key to health and
paramount for healthy aging. Mitochondrial homeostasis and quality
are strongly regulated by mitochondrial-autophagy, termed mitophagy,
the biological process responsible for the elimination of defective
mitochondria. Mitophagy was shown to be important in neurons
for the maintenance of neuronal function and to prevent neuronal
cell death and pathogenic brain ageing, which are partially caused by an
impairment of mitophagy and subsequent accumulating dysfunctional
mitochondria. Mitochondrial dysfunction has been recognized for a
long time as an antagonistic hallmark of ageing and is an important
component of the age-related cellular processes that contribute to the
onset of ARDs. For instance, mutations of nuclear- or mitochondria-
encoded mitochondrial proteins are known to trigger mitochondrial
disorders (Scheibye-Knudsen et al., 2015), while mitochondria-
mediated ATP deprivation and oxidative stress are associated to the
pathogenesis of cancer and neurodegenerative diseases such as AD and
PD. As impairment of mitophagy is common to many age-related
neurodegenerative pathologies such as Alzheimer’s disease, ML and AI
approaches have been deployed to identify mitophagy modulators that
could be used to design novel strategies to improve removal of
dysfunctional mitochondria (Xie et al., 2022). In Xie et al. (2022),
the authors carried out a computational screening of a large library of
natural compounds using both supervised and unsupervised ML
approaches to identify new mitophagy-inducing compounds. The
workflow utilized vector representations of molecular structures,
pharmacophore fingerprinting and conformer fingerprinting to
identify two potent mitophagy inducers (Kaempferol and
Rhapontigenin) whose activity was tested in vivo in nematode and
rodent models of AD. Other strategies proposed to focus on the NAD+
mitophagy axis. Indeed, the molecular mechanisms of the NAD +
mitophagy axis are globally well understood and there is an
accumulation of evidence that suggest a correlation between the
onset of AD with the depletion of NAD + levels that impacts
mitochondrial biogenesis and the clearance of damaged
mitochondria. Therapeutic strategies to boost NAD + levels are thus
considered as promising treatments against AD and neurodegenerative
diseases in general. AI/ML technologies are going to play an important
role in this endeavor in areas such as compound screening, lead
compound discovery, drug target identification and biomarker
development (Aman et al., 2019; Ruixue, et al., 2021).

3.2 Deregulated Nutrient Sensing

The highly conserved mechanistic target of rapamycin signaling
pathway (mTOR) is the main nutrient sensor and works as a key
controller of cellular metabolism and cell organization. mTOR

Frontiers in Aging frontiersin.org07

Marino et al. 10.3389/fragi.2023.1057204

https://www.nia.nih.gov/inchianti-study
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2023.1057204


complexes (TORC1 and TORC2) have multiple interactions with
various intracellular molecules, mainly the Insulin Growth Factor
(IGF) and AMP-activated protein kinase (AMPK) contributing to
coordinate a plethora of cellular processes including gene
transcription, translation, autophagy, as well as cell metabolism
(Bjedov and Rallis, 2020). mTOR activation is critically involved
in the autophagy process, a degradation system that mediates the
breakdown of major macromolecules (lipids, polysaccharides, and
proteins). This process is constantly active and permits to maintain
the physiological activity of cells and their survival also in states of
metabolic imbalance. Its deregulation strongly contributes to
biological effects occurring in aging and chronic diseases of
elderly (Lamming and Bar-Peled, 2019; Bjedov and Rallis, 2020).
Interventional strategies (genetic, pharmacological, and behavioral)
are known to act via decreasing mTOR activity, suggesting that its
hyperactivation supports the age-related functional failure
(Lamming and Bar-Peled, 2019). As a definite dietary
intervention that effectively increases healthy lifespan has not
been delineated so far, caloric restriction (CR) regimen and
alternative nutritional strategies have been reported as valuable
strategies to promote healthy aging in animal models, also
suggesting a similar effect in humans (Flanagan et al., 2020).
Several drugs and other compounds have been shown to act as
CR mimetics with various mechanisms, being directly or indirectly
associated with mTOR-mediated autophagy regulation (Chung and
Chung, 2019; Stead et al., 2019).

Bioinformatics combined with ML algorithms is commonly
used to investigate the relationships between autophagy/apoptosis
and aging. The consensus supports the role of numerous proteins
and genes as predictors of aging-relatedness (Kurz et al., 2008;
Kerber et al., 2009). For instance, using supervised ML systems,
the gene AKT1 (associated with apoptosis) was revealed as being
age-related with high probability (Xu et al., 2002). In addition,
experiments on mice revealed that if a cellular protein has an
influence on CDK1 (involved in apoptosis), then it is probably
linked to aging-process (Xu et al., 2012; Fabris and Freitas, 2016). An
autophagy flux sensor, named red-green-blue-LC3 (RGB-LC3) was
developed to detect the different footsteps of autophagy progression
and the deregulation of this process at different levels (Kim et al.,
2020). In addition, different computational methods have been
applied for the mathematical modeling of the core regulatory
machine of autophagy (Sarmah et al., 2021). The integration of
different data types can widen our knowledge of the molecular
mechanisms governing autophagy. This could be helpful in the
context of the development of targeted therapies (Sarmah et al.,
2021).

3.3 Cellular senescence

Cellular senescence is defined as a condition in which a cell can
no longer proliferate. The accumulation of senescent cells is one of
the most important processes in aging (Silva-Álvarez et al., 2019).
Senescent cells are in the G1 phase of the cell cycle, and even if they
are not responsive to external stimuli, they are metabolically active
and can modify gene expression. Senescent cells can be found in
various tissues affected by various diseases (osteoarthritis,
pulmonary fibrosis, atherosclerosis, Alzheimer’s disease, liver

fibrosis and cancer) and play an important role in tumor genesis,
as demonstrated in mice that undergo senescence (Krizhanovsky
et al., 2008; Naylor et al., 2013). Senescent cells are known to have a
unique morphology that can be easily identified, and cell
morphology images obtained by phase-contrast microscopy
contain numerous biological data such as cellular identity and
status that can be used as input for a morphology-based
identification system that could be utilized to distinguish
senescent cells from others. In this context, endothelial cells have
attracted interest because they serve many functions in
homoeostasis and are involved in the pathology of age-related
diseases through cellular senescence. Recent studies (Kusumoto
et al., 2018) have proposed to use convolutional neural networks
(CNN) to identify endothelial cells derived from pluripotent stem
cells, using phase-contrast microscopy images. This CNN system
was later adapted by the same research team to identify senescent
cells (Kusumoto et al., 2021). In this study, the images to be used as
input data were obtained by inducing cellular senescence in human
umbilical vein endothelial cells with hydrogen peroxide (H2O2) and
camptothecin (CPT). 50 × 50 pixels of input datasets were prepared
at the single-cell resolution level from phase-contrast images
acquired under each condition. The final number of pictures was
92,242 for H2O2-induced senescence, 41,207 for H2O2 control,
134,097 for CPT-induced senescence, and 64,535 for CPT control.
The images were then analyzed in a network to predict them as
senescence or control. The predictions were compared with
predetermined answers, and weights were optimized to train the
CNN. The non-linear prediction of the CNN provides a binary
output, meaning that the CNN classified cells as senescent or control
(cf. Figure 5). These results were shown to be superior to the ones
obtained with three other ML methods (SVM, RF, and LR). In that
case, the features needed to generate the inputs were extracted using
Histograms of Oriented Gradients, a commonly used feature
descriptor (Dalal and Triggs, 2005).

The possibility to properly characterize and identify senescent
cells is an important step toward the development of therapeutics
that can be used to remove them from host tissues. The most well-
known of these compounds are called “senolytics”, a new family of
natural compounds such as Dasatinib and Quercetin, that could be
useful to neutralize senescent cells (Song et al., 2020). Several
companies have started the development of novel therapeutic
drugs in this area with AI, using different algorithms for the so-
called Life Extending Medicine (Dolgin, 2020). The company
Dorian Therapeutics developed a new class of therapeutics that
can rejuvenate cells and tissues: the “senoblockers”. They focused on
the function of Usp16 that contrasts the self-renewal and senescence
pathways, switching the entire genetic program of the cells into a
more useful expression profile. In human tissues, overexpression of
Usp16 reduces the expansion of normal fibroblasts and post-natal
neural progenitors, while downregulation of Usp16 partially rescues
the proliferation defects of fibroblasts and expands the stem cell
compartment in blood, mammary epithelial tissue, and brain.
Usp16 is known to have an important role in the accelerated
aging observed in people with Down’s Syndrome (Adorno et al.,
2013). Another company, Rubedo Life Sciences, is developing a
novel method using small molecules to selectively target and clear
senescent cells from aged or pathological tissues using the platform
ALEMBIC. Their new class of senolytic prodrugs promises
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capabilities such as targeting selectively and safely specific senescent
cell types in multiple tissues to treat age-related diseases in geriatric
people (Doan et al., 2020).

It will interesting to see how these different techniques will be
combined into an end-to-end biomarker development, target
identification, drug discovery and real-world evidence pipeline
that may help accelerate and improve pharmaceutical research
(Zhavoronkov et al., 2019a).

4 Integrative hallmarks

4.1 Stem cell exhaustion

The regenerative capabilities of the tissues depend on the pool
of stem cells, known to be able to differentiate into different
predefined cell types. The newly differentiated cells play an
important role for tissue and organ maintenance. It is known
that these pools of stem cells tend to decrease over time and finding
ways to replenish exhausted stem cell pools within tissues is a
major axis of stem cell research and regenerative medicine. Stem
cell exhaustion is thus intrinsically associated with aging. The
decline of the regenerative potential of the tissues is a multifactorial
process impacted by the accumulation of DNA damages (Rossi
et al., 2007), telomere shortening (Flores and Blasco, 2010) and
excessive proliferation of progenitor cells (Rera et al., 2011). There
are three ways, ML/AI technologies may play a major role in this
context. Firstly, AI/ML can be deployed to help to elucidate
unknowns surrounding the mechanisms behind stem cell fate
decision and cellular specialization. Secondly, the capabilities of
ML/AI to handle classification tasks where multiple features and
non-linear relationships between them must be considered can be
highly beneficial for stem cell classification. Thirdly, ML/AI
technologies can be used for the design of new systems for
cellular engineering in the context of the development of novel
stem cell therapies.

4.1.1 Stem cell fate decision and cellular
specialization

Depending on their self-renewal and differentiation
(specialization) capabilities, stem cells are classified into different
categories. The most famous are probably pluripotent stem cells,
such as embryonic stem cells (ESCs), which can give rise to every cell
type in the formed body, but not the placenta and umbilical cord
(Labusca and Mashayekhi, 2019). Studies demonstrated that adult
skin tissues contain cell populations with pluripotent characteristics
(Chunmeng and Tianmin, 2004). On the other hand, multipotent
stem cells, for example, can develop into more than one cell type but
are more limited than pluripotent stem cells. Multipotent stem cells
from hair follicle and non-follicular skin for instance are found to
have the differentiation capacity to generate multiple cell lineages.
Other examples of multipotent stem cells are adult stem cells and
cord blood stem cells. Sobhani et al. (2017). Observations show that
pluripotency (or multipotency) state maintenance which is critical
for tissue regenerative abilities is a function of the external
environment of the stem cells. A dynamical balance between
environmental factors and cellular signals help to preserve the
tissue regenerative capacity of stem cells. Stem cell differentiation
into a specific cell lineage is often induced by an alteration of this
dynamical balance by external perturbations which activate or
inhibit biological pathways. This impacts the transduction signals
received by transcription factors (TFs) which form highly connected
gene regulatory networks (GRNs) within the nucleus (Thomson
et al., 2011; Tantin, 2013) and ultimately act as master regulators of
the stem cell fate decision (Iglesias-Bartolome and Gutkind, 2011;
Tsai and Hung, 2012). Thus, a realistic description of how stem cell
fate decision operates should consider not only the GRNs localized
inside the nucleus but also the network of signaling pathways located
and operating inside the cytoplasmic compartment which transmit
signals received from the stem cell environment.

The fact that stem cell fate decision can effectively be controlled
through activation or inhibition of TFs was demonstrated in
(Takahashi and Yamanaka, 2006) where the authors used AI

FIGURE 5
To identify senescent cells, this study relied on the fact that senescent cells elicit a very specific morphology to generate a set of features using cell
morphology images obtained by phase-contrast microscopy. The set of 50 × 50 pixels images were used to train a CNN as a classifier that could
distinguish senescent cells from healthy cells with a greater accuracy than classical ML methods (SVM, RF, and LR).
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algorithms to identify key regulators of stem cell fate decision.
Thanks to the discovery of key regulatory TFs, they were the first
to generate Induced Pluripotent Stem Cells (iPSCs). Another study
by Dunn and others used computational modeling to elucidate the
dynamics of the GRNs controlling the fate of self-renewing mouse
Embryonic Stem Cells (ESCs) (Dunn et al., 2019). They were able to
show that a common deterministic gene regulation program might
be sufficient to govern the maintenance and induction of naïve
pluripotency.

Since then, the field of cellular specialization, which studies stem
cell differentiation continued to study the molecular basis of stem
cell fate decision as much behind the mechanisms of differentiation
remain to be clarified. Regarding the role played by GRNs in stem
cell fate decision, a recent study (Gheorghe et al., 2019) showed how
to develop the ChIP-eat model, combining computational TF
binding models and chromatin immunoprecipitation followed by
sequencing (ChIP-seq) to automatically predict direct TF-DNA
interactions. Other studies focused on developing a
comprehensive evaluation of state-of-the-art algorithms for
inferring GRNs from single-cell gene expression data. In (Pratapa
et al., 2020), the authors developed BEELINE to use synthetic
networks with predictable cellular trajectories and curated
Boolean models to evaluate GRN inference algorithms’ accuracy.

From a therapeutic perspective, understanding stem cell
decision and specialization would open the doors to tremendous
long-term opportunities. An important area of research aims at
developing methods to predict the behavior or function of cells
produced using methods from synthetic biology. Those cells do not
mimic in vivo identity but are able to perform specific functions, as
cell fate reprogramming is often performed by constant
overexpression of specific TFs. However, this process can be
unreliable and inefficient. Therefore, approaches based on
mathematical analysis and computational methods are expected
to be the way to go for the future developments of the discipline (Del
Vecchio et al., 2017). For example, in Stumpf et al. (2017) the
authors propose to study cell fate using a framework where stem cell
differentiation is modeled as a non-Markov stochastic process.
Another example is presented in Jones et al. (2020), where the
authors generated an experimental lineage tracing dataset with
34,557 human cells continuously traced over 15 generations. In
this case, the CRISPR/Cas9-based gene editing approach Jiang and
Doudna, (2017) combined with AI can be highly effective.

4.1.2 Stem cell classification
AI systems are used to identify and analyze genes involved in

stem cell differentiation and specialization (Haque et al., 2017). An
example of such system is the GCTx-TFome, which was used to
discover 240 previously unreported TFs involved in ESC
differentiation. This system operates by performing large
computational screening of the human transcriptome (Ng et al.,
2021). CNN is another example of deep learning architecture which
was originally a very popular tool in computer vision, given its
efficiency in modeling two-dimensional data (LeCun et al., 1999).
The development of CNN enables the automation of the cell type
identification from phase-contrast microscope images without
molecular labeling. The objective is to develop a program that
can judge medical conditions as accurately as a physician
(Kusumoto and Yuasa, 2019). As discussed above, CNN has been

used to create an automated method to identify endothelial cells
derived from iPSCs without the need for immunostaining or lineage
tracing (Kusumoto et al., 2018).

Another approach to identify stem cells is based on scRNA-seq
data. AI can be used to identify stem cells from scRNA-seq data to
search for peculiarities of stem cells in the query data. RNA
sequencing (RNA-seq) is a genomic approach for the detection
and quantitative analysis of messenger RNA molecules in a
biological sample and is useful for studying cellular responses
(Haque et al., 2017). More recently, (Gulati et al., 2020),
developed CytoTRACE, a computational framework based on the
simple observation of transcriptional diversity, the number of genes
expressed in a cell, and obtained promising results for the prediction
of cellular differentiation states from scRNA-seq data.

4.1.3 Cellular engineering
The goal of cellular engineering is to design new therapeutics for

patients leveraging the knowledge of the mechanisms behind stem
cell fate decision and cellular specialization. In this context, AI is
used to evaluate the quality of the engineered cells and to suggest
improvements. One example is CellNet (Cahan et al., 2021), a
network biology platform that assesses the fidelity of cellular
engineering more accurately than any other existing methodology
and generates hypotheses for improving cell derivations.

AI can be used to understand the molecular state of a cell in a
tissue or within a population, which usually varies stochastically in
response to its environment. In many situations, it may be difficult
to quantify or even identify the different costs and benefits of a
particular response for a cell, particularly for cells in multicellular
organisms (Perkins and Swain, 2009). Trajectory inference (TI) is
the computational task of determining the position of single cells on
temporally regulated biological processes. This method can allow,
for example, to study linear tracing with higher accuracy and fidelity.
This method is relatively new, and much work will be done to
develop it and make it more effective. When designing a system for
TI, one needs to consider different indicators such as accuracy,
usability, and stability (Saelens et al., 2019). All these features can
offer the possibility to define new therapeutics to decrease stem cell
exhaustion and allow to tailor the therapy to the specific needs of the
patients.

4.2 Altered intercellular communication

The coordination of biological processes and activities between
the different cells of an organism occur through the extracellular
environment and is a necessary condition for the maintenance of
homeostasis within any pluricellular organisms. In this context, cell-
cell interactions (CCIs) across the various cell types and tissues are
regulated through different types of molecules, including ions,
metabolites, integrins, receptors, junction and structural proteins
as well as ligands and other secreted proteins located in the
extracellular matrix (Armingol et al., 2021). These molecules
intervene to regulate CCIs in different ways with some like cell
adhesion proteins supporting structural CCIs while other factors
such as hormones, growth factors, chemokines, cytokines and
neurotransmitters act as ligands to mediate cell–cell
communication (Armingol et al., 2021).
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Aging is associated with alterations of CCI characterized by a
deregulation of endocrine, neuroendocrine, or neuronal signaling, a
decrease of immunosurveillance as well as an alteration of the
composition of peri- and -extracellular environment. Alterations
of the CCI also appear with the emergence of senescent cells which
utilize three means of intercellular communication known as
classical, emerging, and non-classical (Fafián-Labora and
O’Loghlen, 2020). The “senescence-associated secretory
phenotype” (SASP) is considered as the classical mean of CCI of
senescent cells and can result in both beneficial and detrimental
effects according to the trigger factors and the context present when
senescence is induced. In general, senescence reactivates the
expression of multiple pro-inflammatory genes in many different
cell types with a profound alteration of SASP composition enriched
in pro-inflammatory cytokines and soluble factors such as IL-6, IL-8,
membrane cofactor proteins and macrophage inflammatory. Such
molecules tend to promote proliferation, angiogenesis, and
inflammation, both in autocrine and paracrine manners (Lopes-
Paciencia et al., 2019).

Recent results were obtained on the role of extracellular vesicles
as novel SASP components as well as non-cellular metabolites and
ions. The new emerging picture supports the hypothesis that a
simultaneous combination of all these components may contribute
to the deleterious effects associated with senescence (Lopes-
Paciencia et al., 2019; Fafián-Labora and O’Loghlen, 2020). One
of the major changes which takes place with aging is a chronic and
systemic, low-grade dysfunctional inflammation, known as
inflammaging, where most of the inflammatory factors involved
are also part of the SASP. Thus, the SASP is a primary mediator of
the detrimental effects of senescent cells, contributing to the
development of a state of chronic, low-grade inflammation which
is characterized by high levels of circulating cytokines and increased
immune infiltration associated with an increased risk of diseases
with age (Lopes-Paciencia et al., 2019). Strategies to eliminate
senescent cells and/or to modulate SASP have been investigated
with the hope that such approaches could bring therapeutic benefits
(see also Section 3.3). One of the main focuses of this research is the
development of a new class of drugs referred to as senotherapeutics.
This class of drugs consists of two members: senolytics and
senomorphics. While senolytics are small molecules that can
selectively kill senescent cells through apoptosis, senomorphics
drugs have the capacity to at block SASP thus reducing the
senescent burden of the cells.

The promising capabilities of senotherapeutics to improve
health and contribute to the substantial extension of healthy
lifespan have already been reported, even if the results currently
available showing the effects of these drugs were obtained from
preclinical animal studies, which raise legitimate concerns about a
potential underestimation of the side effects resulting from a long-
term use and chronic administrations. Regarding senomorphics
agents, the molecular identification of SASP factors with a
detailed characterization of the different pathways responsible for
the expected outcomes may enable future interventions in different
tissues (Lagoumtzi and Niki, 2021). In a recent study, a drug-
screening system for cellular senescence using a pre-trained CNN
identified four compounds (terreic acid, PD-98059, daidzein, and Y-
27632 2HCl) with the potential capability to repress senescence
in vitro (Kumari and Jat, 2021). Through the analysis of

transcriptome data, these compounds showed a) anti-
inflammatory effects via the suppression of NF-KB signaling, a
pathway that plays a central role in inflammation and b) the
appearance of SASP, indicating that these compounds could be
strong candidates for the design of new treatments against ARDs
(Kusumoto et al., 2021).

Finally, many efforts have been undertaken to develop
guidelines on stem cell applications because the field is still in its
infancy. For instance, in (Cahan et al., 2021) the authors described
four major applications of stem cell biology (cell typing, lineage
tracing, trajectory inference, and regulatory networks) with a
detailed overview of the future challenges to be addressed in the
near future.

5 Longevity medicine: Translating and
applying the hallmarks of aging into the
practice

Despite the currently well-established scientific and
technological foundations for clinically guided longevity
medicine, there is still a large gap between the geroscience and
AI-based tools. This translational bridge is challenging, since this
new burgeoning medical discipline is of a distinct character, shaped
by multi- (virtually all disciplines of the clinical medicine, including
genetics, radiology and pathology, etc.) and interdisciplinarity (AI,
computational science, gerontology, gerosciences, engineering, etc.),
with strong roots in internal medicine dealing with the complexity of
co and multimorbidity (Bischof et al., 2022). Longevity medicine has
not yet been officially defined by a central medical body, but expert
recommendations suggested that longevity medicine is an AI-driven
precision medicine, guided by biological age determination with
deep aging clocks (Zhavoronkov et al., 2019a). The formal definition
might be further enriched by the core goal of longevity medicine,
which is to establish and restore the biological age of an individual at
each specific point of time to the biological age of the optimal
individual performance (Bischof et al., 2022). Longitudinally and
cumulatively, this leads to mitigation and ideally also elimination of
risks of age-related and overall morbidity. Therefore, the main focus
of longevity medicine is to prolong the life lived in good health, both
physically and mentally, ergo: extension of the healthy lifespan and
not solely the health span (simple prevention) or solely the lifespan
(reactive medicine/sickcare) (Bischof et al., 2022).

The release, in 2018, of the first deep aging clocks was a crucial
milestone for longevity medicine because it provided clinicians with
a wide range of new possibilities to vigilantly track the progress of a
patient’s/individual’s biological age, based on various modalities,
e.g., hematological tests, methylation, metabolomic, microbiome,
etc. (Zhavoronkov et al., 2019b). Since the progress has been
tremendously rapid, most medical professionals are not exposed
to the foundations of longevity medicine, nor to its latest fueling
scientific and AI sources. Educational resources adapted to clinicians
are scarce, with solely one Center for Medical Education offering an
accredited course of Longevity Medicine for Physicians (Bischof
et al., 2021). However, the autodidactic efforts are increasing,
therefore academic programs started to implement healthy aging
in the educational curriculum to equip healthcare professionals with
the necessary understanding of aging research. Soon, the Healthy
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Longevity Medicine Society (https://hlms.co/) will coordinate the
development of recommendations and guidelines that will allow to
credibly validate and further establish biomarkers of aging, while
also educating medical clinicians on how to implement the
knowledge in their work with the patients.

6 Conclusion

In the last few years, we have witnessed many AI-enabled
technological and biological companies initiating collaborations
to use a variety of algorithms to identify lifestyle characteristics
that influence how individual age as well as to develop drugs and
therapeutic medicine to counteract the deleterious effects of aging
and ARDs (Dolgin, 2020). Moreover, AI technologies also hold great
promises to study the molecular state of tissues, organs, or cells in
response to physical or chemical change in the environment.

When applying ML/AI in the field of aging research, one
should keep in mind one major characteristics of this
phenomenon which is that, rather than being a localized event,
aging is an intrinsically systematic process. The systemic
characteristic of aging is well illustrated by the hallmarks
discussed herein which despite being of different nature are also
highly mechanistically intertwined. The systemic nature of aging
can be seen as the result of the hierarchical organization of living
systems (Han et al., 2004; Buescher et al., 2012; Nicolas et al.,
2012). The human body in particular is a multi-level complex
system consisting of billions of independent cells which form
different types of tissues, organs and regulatory systems.
Dysfunctions affecting even a restricted number of biological
processes within some of the cells of one or several organs will
often propagate to all parts of the body (Vanhaelen, 2015;
Vanhaelen, 2018). The network theory of aging was specifically
designed to overcome the reductive nature of the first individual
dynamical models usually focusing on a restricted set of hallmark-
related phenomena. The main purpose of the network theory of
aging was to integrate different mechanisms of aging into a
common framework to better understand the systemic
consequences of their continuous mutual interactions (Kowald
and Kirkwood, 1994; Kowald and Kirkwood, 1996; Franceschi
et al., 2000; Slijepcevic, 2008). In this context, modern ML/AI can
provide valuable modeling tools to investigate how all aging
mechanisms work together, and to shape the global aging pattern.

In this overview, we have shown a variety of approaches from
the technology and biology field, which can help in the development

of biological markers, in the identification of new targets in the cells,
in making the drug discovery process more efficient, and in
therapeutics aimed at increasing the age expectation. The field of
investigation is relatively young, and the early results have already
shown the enormous application potential of the new technologies.
Therefore, it is not difficult to foresee AI as an essential component
for future life and health science research and for the pharmaceutical
industry towards new discoveries that could guarantee a healthier
and longer life for everyone (Zhavoronkov et al., 2019a;
Zhavoronkov et al., 2021).
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