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Abstract
In this paper, we study a first extension of the theory of mild solutions for Hamilton–
Jacobi–Bellman (HJB) equations in Hilbert spaces to the case where the domain is not
the whole space. More precisely, we consider a half-space as domain, and a semilinear
HJB equation. Our main goal is to establish the existence and the uniqueness of
solutions to such HJB equations, which are continuously differentiable in the space
variable. We also provide an application of our results to an exit-time optimal control
problem, and we show that the corresponding value function is the unique solution
to a semilinear HJB equation, possessing sufficient regularity to express the optimal
control in feedback form. Finally, we give an illustrative example.
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1 Introduction

A typical and nontrivial feature of optimal control problems in real applications (both
in the deterministic case and in the stochastic case) is the fact that the state variable
must satisfy suitable constraints, i.e., to belong to a given subset D of its state space
H . In some settings, as in the case of state constrained problems (see, e.g., [1], Chapter
IV), one restricts the set of admissible control strategies and considers only those that
keep the state inside the given subset D. In some other settings, as in exit-time optimal
control problems (see, e.g., [8], Chapter 8), one does not operate such restriction but
terminates the control actions (and, thus, stops the optimization problem) once the
state goes out of D.

In both cases, standard arguments involving the dynamic programming principle
provide a Hamilton–Jacobi–Bellman (HJB) equation associated with the optimal con-
trol problem, which is a partial differential equation (PDE) in the domain D, satisfying
suitable boundary conditions. Such type of HJB equations has been studied in many
papers in the finite-dimensional case, finding theorems on existence and uniqueness
of viscosity solutions (see, e.g., [24, 25]) and, in some cases, results on their regularity
(see, e.g., [9], Section 9). In the infinite-dimensional case, the theory of existence and
uniqueness of viscosity solutions of HJB equations in domains has been studied as
well, both in the deterministic case (see, e.g., [18], Chapter 4) and in the stochastic
case (see, e.g., [16], Chapter 3).

However, in general, solutions to HJB equations in the viscosity sense are not reg-
ular enough to find the optimal strategies of a control problem. In other words, if one
wants to find optimal strategies it is fundamental to establish results on the regular-
ity of solutions to such HJB equations, showing that they are, at least, continuously
differentiable in the state variable. To the best of our knowledge, these results seem
to be completely missing in the literature in a stochastic framework, except for some
cases where explicit solutions can be found (see, e.g., [2–4, 10, 14, 16], Section 4.10
and [17]).

The aim of this paper is twofold: we want to establish, first, a result on the existence
and the uniqueness of regular solutions (i.e., continuously differentiable in the state
variable) of second-order infinite-dimensional semilinear HJB equations in domains;
then, we want to prove a verification theorem for the associated exit-time stochastic
optimal control problem, using the aforementioned existence and uniqueness result.
To do so, we extend to the case of domains the theory of mild solutions for second-
order semilinear HJB equations in Hilbert spaces (for a summary on this theory, see,
e.g., [16], Chapter 4). As a starting point for future research, in this paper we consider
the domain D to be a half-space.
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1.1 Methodology andMain Results

The starting point of our paper are global gradient estimates up to the boundary for
solutions to second-order linear PDEs in special half-spaces of Hilbert spaces, see
Priola [21] and Chapter 5 in Priola [19]. We also mention [23] for related finite-
dimensionalDirichlet problems.We point out that in general domains ofHilbert spaces
local regularity results are obtained in [13] and [26] (see also [11], Chapter 8). On the
other hand, global gradient estimates for Ornstein–Uhlenbeck Dirichlet semigroups
can fail even in a half space of R2 (see an example in [27]). Using suitable extension
operators from the half-space to the whole Hilbert space, we define a family of opera-
tors on the set of bounded measurable functions on the half-space. We show that this
family is a semigroup of contractions, which coincides with the semigroup defined
in [11], Chapter 8, providing the so-called generalized solution to these second-order
linear PDEs. We also prove some regularizing properties of this semigroup.

Next, we turn our attention to establishing existence and uniqueness of mild solu-
tions (i.e., solutions in integral form) of semilinear HJB equations in the half-space.
This result, given in Theorem 3.3, extends analogous ones provided in [16], Chapter
4, which were proved in the whole Hilbert space case.

As stated previously, we need more regular solutions to be able to find optimal
strategies. Thus, in Theorem 4.4 we show that mild solutions are indeed strong solu-
tions, in the sense they can be approximated by classical solutions. More precisely,
we rely on the concept of K-convergence, see Definition 4.1.

These results can be profitably applied to study a family of stochastic optimal
control problems with exit time, and they permit us to prove a verification theorem
(see Theorem 5.9). This is a sufficient condition of optimality, which allows us to
write the optimal control in feedback form, when a solution to the so-called closed-
loop equation (5.12) can be found.

1.2 Plan of the Paper

The plan of the paper is the following.

• Section2 contains some important preliminary material on second-order linear
PDEs, which are needed to prove our main results. It is divided in four subsections:

– Sect. 2.1, where we recall some basic notation used in this paper;
– Sect. 2.2, where we present some results on second-order linear PDEs in half-
spaces;

– Sect. 2.3, where we define some function spaces needed in the main results;
– Sect. 2.4, where we prove a regularization result for the semigroup associated
to linear PDEs in half-spaces.

• In Sect. 3, we establish our first main result, namely Theorem 3.3 on the existence
and uniqueness of mild solution for HJB equation (3.1).

• In Sect. 4, we prove our second main result, i.e., Theorem 4.4, which shows that
the mild solution of HJB equation (3.1) is also a K-strong solution, that is, it can
be approximated by classical solutions.
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• In Sect. 5, we establish our third main result, namely the Verification Theorem 5.9,
providing a sufficient condition of optimality for the optimal control problem (5.4).

2 Preliminaries

2.1 Notation and Basic Spaces

In this section, we collect the main notations and conventions used in this research
article.

Throughout the paper, the setN denotes the set of natural integersN := {1, 2, . . . },
and the symbol R denotes the set of real numbers, equipped with the usual Euclidean
norm |·|R. We set R+ := (0,+∞). The symbol 1A denotes the indicator function of
a set A.

If X , Y are two Banach spaces, the symbols Bb(X; Y ), Cb(X; Y ), UCb(X; Y ) indi-
cate the sets ofY -valued boundedBorelmeasurable, continuous, uniformly continuous
functions on X , respectively. In what follows, we will just write measurable instead of
Borel measurable. We denote by ‖·‖Bb(X;Y ) (resp., ‖·‖Cb(X;Y ), ‖·‖UCb(X;Y )) the usual
sup-norm, making Bb(X; Y ) (resp., Cb(X; Y ), UCb(X; Y )) Banach spaces. If Y = R,
we will simply write Bb(X), Cb(X), UCb(X). The symbol UC1

b(X) denotes the set
of all real-valued functions on X , that are uniformly continuous and bounded on X
together with their first-order Fréchet derivatives.

Throughout the paper, H is a real separable Hilbert space, with inner product 〈·, ·〉
and associated norm |·|. The symbol L(H) denotes the Banach space of all linear and
bounded operators from H into itself, endowed with the supremum norm ‖·‖L(H),
and L+(H) indicates the subset of L(H) consisting of all positive and self-adjoint
operators. L1(H) indicates the set of all trace class (or nuclear) operators from H
into itself and L+

1 (H) := L1(H) ∩ L+(H). If T ∈ L1(H), we define

Tr T :=
∑

k∈N
〈T ek, ek〉,

where {ek}k∈N is a complete orthonormal system for H . The symbolN (x, B) denotes
the Gaussian measure on H with mean x ∈ H and covariance operator B ∈ L+

1 (H).
The Gaussian measure on R with mean μ ∈ R and variance σ 2 ≥ 0 is indicated by
N1(μ, σ 2).

If f : [0,+∞) × H → R is a differentiable function, ft denotes the derivative
of f (t, x) with respect to t , and D f , D2 f denote the first- and second-order Fréchet
derivatives of f (t, x) with respect to x , respectively.

From this point onward, let {ȳ, ek}k≥2 be a fixed orthonormal basis of H . We
consider the open half-space of H generated by ȳ, namely,

H+ := {x ∈ H : 〈x, ȳ〉 > 0},

and we also define the sets
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H− := {x ∈ H : 〈x, ȳ〉 < 0},
∂ H+ := {x ∈ H : 〈x, ȳ〉 = 0}.

Wewill always identify any element x ∈ H with the sequence of Fourier coefficients
(xk)k∈N with respect to {ȳ, ek}k≥2, where x1 := 〈x, ȳ〉 and xk := 〈x, ek〉, for k ≥ 2.
It is important to recall that this identification defines an isometry between H and �2,
the Hilbert space of real-valued, square-summable sequences.

We will also consider the sub-space H ′ of H generated by the system {ek}k≥2. As
above, we identify any element x ′ ∈ H ′ with the sequence of Fourier coefficients
(x ′

k)k≥2, which will be still denoted by x ′. To be precise, we should identify x ′ with
the sequence (0, x ′

2, x ′
3, . . .) but, for the sake of brevity, we will omit the leading zero.

This notation allows us to identify any element x ∈ H with the pair (x1, x ′) ∈ R× H ′,
and hence, we will write (x1, x ′) in place of x whenever necessary. Notice, also, that
we have an isometry between ∂ H+ and H ′.

Finally, we introduce the function spaces B0(H+), C0(H+), UC0(H+) indicate,
respectively, the sets of boundedmeasurable, bounded continuous, bounded uniformly
continuous functions of H+ that vanish on ∂ H+. It is easy to prove that all these three
spaces, endowed with the supremum norm, are Banach spaces. Other spaces, such as
Bb(H+), can be defined similarly. We also recall that UCb(H+) = UCb(H+).

2.2 The Linear Problem on the Half Space

In this section, we will study the following equation on the closed half-space H+
⎧
⎨

⎩

vt (t, x) = 1
2Tr[QD2v(t, x)] + 〈A∗Dv(t, x), x〉, x ∈ H+, t > 0,

v(0, x) = φ(x), x ∈ H+,

v(t, x) = 0, x ∈ ∂ H+, t ≥ 0,
(2.1)

where Q ∈ L+
1 (H) is a positive, self-adjoint, trace class operator in H , A is a linear

operator on H (whose adjoint is denoted by A∗) and φ ∈ Bb(H+) is a given function.
We will work under the following hypothesis, that will stand from now on.

Hypothesis 2.1 (i) A : D(A) ⊂ H → H is the generator of a C0-semigroup
{et A}t≥0;

(ii) There exists α ∈ R such that Aȳ = α ȳ and A∗ ȳ = α ȳ;
(iii) There exists λ ∈ R+ such that Q ȳ = λȳ;
(iv) The semigroup {et A}t≥0 commutes with the operator Q;
(v) For all t > 0, the operator Qt defined below is of trace class

Qt :=
∫ t

0
es A Qes A∗

ds; (2.2)

(vi) There exists 0 < γ < 1 such that the operator
∫ t
0 s−γ es A Qes A∗

ds is of trace
class for any t > 0;

(vii) For all t > 0, Imet A ⊂ ImQ1/2
t .
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Remark 2.2 (i) It may be possible to weaken the assumptions on A and Q as in [20,
22].

(ii) Since the operator Qt , defined in (2.2), is self-adjoint and nonnegative for all
t > 0, point (v) of Hypothesis 2.1 implies that Qt ∈ L+

1 (H), for all t > 0.
(iii) As a consequence of the closed graph theorem, Hypothesis 2.1-(vii) implies that

the operator1 Q−1/2
t et A is bounded for all t > 0 (see, e.g., [16], (4.59)).

We will need also the following hypothesis.

Hypothesis 2.3 Let T > 0. There exists C = CT > 0 and δ ∈ (0, 1) such that

‖Q−1/2
t et A‖L(H) ≤ Ct−δ, t > 0.

It is useful to recall that in the case where the linear HJB (2.1) is formulated in the
whole space H , namely

{
vt (t, x) = 1

2Tr[QD2v(t, x)] + 〈A∗Dv(t, x), x〉, x ∈ H , t > 0,
v(0, x) = φ(x), x ∈ H ,

(2.3)

with φ ∈ Bb(H), the mild solution of (2.3) is v(t, x) = Ttφ(x), where {Tt }t≥0 is the
semigroup associated with a specific Ornstein–Uhlenbeck process X . More precisely,
considering a complete filtered probability space (
,F , (Ft )t≥0,P), supporting a Q-
Wiener process W = (W (t))t≥0 (for a precise definition see, e.g., [12], Definition 4.2),
X solves the SDE

{
dX(t) = AX(t) dt + dW (t), t > 0,

X(0) = x .
(2.4)

Under Hypothesis 2.1, SDE (2.4) admits a unique mild solution, denoted by
{X(t; x)}t≥0, to emphasize its dependence on the initial condition x ∈ H , given
by

X(t; x) := et Ax +
∫ t

0
e(t−s)A dW (s), t ≥ 0.

Thanks to Hypothesis 2.1-(vi), X has continuous trajectories (see, e.g., [16], Theo-
rem 1.152). Moreover, the semigroup {Tt }t≥0 has the explicit expression (cf. [16],
(4.50))

Tt f (x) := E[ f (X(t; x))] =
∫

H
f (y)N (et Ax, Qt )(dy), f ∈ Bb(H). (2.5)

In the literature (see, for instance, [11], Chapter 8), the generalized solution to (2.1)
is defined by:

v(t, x) = Mtφ(x) := E
[
φ(X(t; x))1{τ x >t}

]
, t ≥ 0, x ∈ H+, (2.6)

1 Q−1/2
t is the pseudoinverse of Q1/2

t . For a definition see, e.g., [16], Definition B.1.
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where

τ x := inf{t > 0 : X(t; x) ∈ H−}.

The purpose of this section is to show that it is possible to define a semigroup {Pt }t≥0
that allows us to provide the mild solution to (2.1). We will also show that {Pt }t≥0
coincides with {Mt }t≥0 (called restricted semigroup in [11], Chapter 8) on a suitable
space. Moreover, we will prove some regularizing properties. The idea (cf. [20–23])
is to define suitable extension operators, so that it is possible to exploit the semigroup
{Tt }t≥0, given in (2.5).

For any η ∈ Bb(H+) and x ∈ H (identified with (x1, x ′) ∈ R × H ′), we set

Eη(x) :=
{

η(x1, x ′), x1 ≥ 0,
−η(−x1, x ′), x1 < 0.

(2.7)

By abuse of notation, we can adopt the same symbol to denote the following extension
operator, defined for any η ∈ Bb(H+) and x ∈ H ,

Eη(x) :=
⎧
⎨

⎩

η(x1, x ′), x1 > 0,
0, x1 = 0,
−η(−x1, x ′), x1 < 0.

(2.8)

Clearly, Eη ∈ Bb(H), in both cases.
We need to define a suitable counterpart in H ′ of the semigroup {et A}t≥0. This can

be easily done thanks to the following lemma.

Lemma 2.4 For each t ≥ 0, the operator et A leaves ∂ H+ invariant.

Proof Fix t ≥ 0. By Hypothesis 2.1-(ii) ȳ is an eigenvector of A∗, with eigenvalue α.
Therefore, we get that, for all x ∈ ∂ H+,

〈et Ax, ȳ〉 = 〈x, et A∗
ȳ〉 = eαt 〈x, ȳ〉 = 0,

whence the claim.

Using the isometry between ∂ H+ and H ′, here denoted by γ : ∂ H+ → H ′, we can
define the family of operators S̃(t) : H ′ → H ′, given by

S̃(t)x ′ := γ
(
et A(0, x ′)

)
, x ′ ∈ H ′, t ≥ 0.

It is immediate to prove that each of the operators S̃(t), t ≥ 0, is linear and bounded.
We also have the following result, whose proof is omitted because it is a standard
consequence of the invariance property proved in Lemma 2.4.

Lemma 2.5 The family of operators {S̃(t)}t≥0 is a semigroup on H ′.
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Thanks toHypothesis 2.1-(iii), also the operator Q leaves ∂ H+ invariant. Therefore,
we can define the operator Q̃ := H ′ → H ′ as:

Q̃x ′ := γ
(
Q(0, x ′)

)
, x ′ ∈ H ′.

Finally, we define

Q̃t :=
∫ t

0
S̃(s)Q̃ S̃∗(s) ds, t > 0.

Thanks to the isometry γ and recalling that Q ∈ L+
1 (H), it is easy to show that also

Q̃ ∈ L+
1 (H). Moreover, considering in addition to Hypothesis 2.1-(vi), we have that

Q̃t ∈ L+
1 (H), for all t > 0.

Remark 2.6 By Hypothesis 2.1-(ii)-(iii), we get

Qt ȳ =
∫ t

0
es A Qes A∗

ȳ ds = g(t)ȳ, t > 0,

where

g(t) := λ

∫ t

0
e2αs ds = λ

2α
(e2αt − 1), t > 0.

We deduce that, for any x ∈ H , x = (x1, x ′), the Gaussian measureN (et Ax, Qt ) can
be split as follows:

N (et Ax, Qt ) = N1(e
αt x1, g(t)) ⊗ N (S̃(t)x ′, Q̃t ), t > 0,

where the Gaussian measure on H ′ is still denoted by N .

The following lemma provides some useful formulas (cf. [23] for the finite-
dimensional case).

Lemma 2.7 Let us define, for all t ≥ 0, θ ∈ R, and ξ ∈ R+,

G(t, θ, ξ) := 1√
2πg(t)

[
exp

{
− (θeαt − ξ)2

2g(t)

}
− exp

{
− (θeαt + ξ)2

2g(t)

}]
. (2.9)

Let {Tt }t≥0 be the semigroup given in (2.5). Then, for any η ∈ Bb(H+) and any x ∈ H,

Tt Eη(x) =
∫

H ′

[∫

R+
G(t, x1, ξ)η(ξ, y′) dξ

]
N (S̃(t)x ′, Q̃t )(dy′). (2.10)

123



718 Journal of Optimization Theory and Applications (2023) 198:710–744

Proof Let η ∈ Bb(H+) and x = (x1, x ′) ∈ H , where x1 ∈ R and x ′ ∈ H ′. Then,

Tt Eη(x) =
∫

H
Eη(y) N (et Ax, Qt )(dy)

=
∫

H+
η(y1, y′) N (et Ax, Qt )(dy) −

∫

H−
η(−y1, y′) N (et Ax, Qt )(dy)

=
∫

H ′

(∫ +∞

0
η(ξ, y′) N1(e

αt x1, g(t))(dξ)

)
N (S̃(t)x ′, Q̃t )(dy′)

−
∫

H ′

(∫ 0

−∞
η(−ξ, y′) N1(e

αt x1, g(t))(dξ)

)
N (S̃(t)x ′, Q̃t )(dy′)

=
∫

H ′

(∫ +∞

0
η(ξ, y′) N1(e

αt x1, g(t))(dξ)

)
N (S̃(t)x ′, Q̃t )(dy′)

−
∫

H ′

(∫ +∞

0
η(ξ, y′) N1(−eαt x1, g(t))(dξ)

)
N (S̃(t)x ′, Q̃t )(dy′)

=
∫

H ′

[∫

R+

1√
2πg(t)

[
exp

{
− (eαt x1 − ξ)2

2g(t)

}
− exp

{
− (eαt x1 + ξ)2

2g(t)

}]
η(ξ, y′) dξ

]
×

× N (S̃(t)x ′, Q̃t )(dy′). ��

We introduce, next, a family of operators on Bb(H+).

Definition 2.8 For any η ∈ Bb(H+) and any x ∈ H+, we define the family of operators
{Pt }t≥0 as

Ptη(x) := RTt Eη(x), t ≥ 0,

where R f is the restriction of f ∈ Bb(H) to H+.

Remark 2.9 Using the extension defined in (2.8), we immediately see that the family
{Pt }t≥0 is uniquely defined on functions η ∈ Bb(H+). To see this, it is enough to recall
that

N (et Ax, Qt )(∂ H+) = 0, t > 0, x ∈ H .

Note that for this reason, while in (2.8) we choose to extend η to be null on ∂ H+, one
can opt for an arbitrarily different measurable extension on the boundary of H+ and
still obtain a well-defined family {Pt }t≥0 on Bb(H+). It is also worth remembering
that, in any case, Ptη is a function defined on H+, for all t ≥ 0.

Proposition 2.10 The family of operators {Pt }t≥0 is a semigroup of contractions on
Bb(H+). Moreover,

(i) Pt (Bb(H+)) ⊂ UC0(H+) and Pt (Bb(H+)) ⊂ UC0(H+), for all t > 0.
(ii) For every f ∈ C0(H+) and x ∈ H+, the map t �→ Pt f (x), defined on [0,+∞)

with real values, is continuous.
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Proof We prove, first, the semigroup property for {Pt }t≥0. Applying the definition of
the restriction R, the fact that G, defined in (2.9), is an odd function in the second
argument, and using (2.10), we get that, for all η ∈ Bb(H+),

E RTt Eη(x) = Tt Eη(x), x ∈ H , t ≥ 0. (2.11)

From this equality, we obtain that, for all t, s ≥ 0,

Pt Psη = Pt (RTs Eη) = RTt E(RTs Eη) = RTt Ts Eη = RTt+s Eη = Pt+sη,

i.e., the semigroup property. The fact that {Pt }t≥0 is a semigroup of contractions
is easily deduced, as {Tt }t≥0 is also a semigroup of contractions, operator E is an
isometry, and ‖R f ‖Bb(H+) ≤ ‖ f ‖Bb(H), for all f ∈ Bb(H). Now we can prove the
other statements.

(i) Let f ∈ Bb(H+) (the proof in the case where f ∈ Bb(H+) is identical). Then,
recalling that E f ∈ Bb(H) and that Tt : Bb(H) → UCb(H), for all t > 0, we
get Pt f ∈ UCb(H+), for all t > 0. Now, consider z = (0, z′) ∈ ∂ H+. Then, by
Lemma 2.7, since G(t, 0, ξ) = 0, for all t ≥ 0 and all ξ ∈ R+, we get

Tt E f (z) =
∫

H ′

[∫

R+
G(t, 0, ξ) f (ξ, y′) dξ

]
N (S̃(t)z′, Q̃t )(dy′) = 0,

whence Pt f (z) = 0. Therefore, Pt f ∈ UC0(H+), for all t > 0.
(ii) If x ∈ H+, the continuity in t of Pt f (x) follows from the continuity of Tt f (x).

If x ∈ ∂ H+, it suffices to observe that Pt f (x) = 0, for all t ≥ 0, since f (x) = 0
and thanks to point (i). ��
We are now ready to show the following important result on semigroups {Pt }t≥0

and {Mt }t≥0.

Proposition 2.11 On Bb(H+), the identity Pt = Mt holds true for any t ≥ 0.

Proof First, we set a useful notation. For any x = (x1, x ′) ∈ H+, where x1 ∈ R+ and
x ′ ∈ H ′, we can write the solution X(t, x) to SDE (2.4) as

X(t, x) := (X1(t, x1), X ′(t, x ′)),

where X1(t, x1) is a stochastic process with values inR+ while X ′(t, x ′) is a stochastic
process with values in H ′. Therefore,

τ x = inf{t > 0 : X(t, x) ∈ H−} = inf{t > 0 : X1(t, x1) = 0} =: τ1.

Let f ∈ Bb(H+). Then, using the tower property, we get

Mt f (x) = E[ f (X(t, x))1{τ x >t}] = E[ f (X1(t, x1), X ′(t, x ′))1{τ x >t}]
= E

[
E

[
f (X1(t, x1), X ′(t, x ′))1{τ1>t} | X ′(t, x ′)

]]
.
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Noting that X1(t, x1) and X ′(t, x ′) are independent (see [12], Proposition 2.12), we
have

Mt f (x) = E

⎡

⎣
∫ ∞

0

⎛

⎝e− (eαt x1−ξ)2

2g(t) − e− (eαt x1+ξ)2

2g(t)

√
2πg(t)

⎞

⎠ f (ξ, y) dξ

∣∣∣∣ y = X ′(t, x ′)

⎤

⎦

=
∫

H ′

⎡

⎣
∫ ∞

0

⎛

⎝e− (eαt x1−ξ)2

2g(t) − e− (eαt x1+ξ)2

2g(t)

√
2πg(t)

⎞

⎠ f (ξ, y) dξ

⎤

⎦N (S̃(t)x ′, Q̃t )(dy)

= Pt f (x). ��

2.3 Some Useful Function Spaces

In this section, we introduce some further function spaces, which will be needed in
the sequel. Let T > 0 and set

B0([0, T ] × H+) := { f ∈ Bb([0, T ] × H+) s.t. f (t, x) = 0, ∀t ∈ [0, T ], x ∈ ∂ H+},
C0([0, T ] × H+) := { f ∈ Cb([0, T ] × H+) s.t. f (t, x) = 0, ∀t ∈ [0, T ], x ∈ ∂ H+}.

These are Banach spaces when endowed with the supremum norm and, clearly, the
latter is a subspace of the former.

Next, for δ ∈ (0, 1) as in Hypothesis 2.3, X denoting H , H+, or H+, and Y
indicating either H or R, define

Bb,δ((0, T ] × X ;Y) := { f : (0, T ] × X → Y measurable, s.t. f ∈ Bb([t, T ] × X ;Y)

∀t ∈ (0, T ) and {(t, x) �→ tδ f (t, x)} ∈ Bb((0, T ] × X ;Y)},
Cb,δ((0, T ] × X ;Y) := { f : (0, T ] × X → Y measurable, s.t. f ∈ Cb([t, T ] × X ;Y)

∀t ∈ (0, T ) and {(t, x) �→ tδ f (t, x)} ∈ Cb((0, T ] × X ;Y)}.

The latter is a subspace of the former space. If Y = R, we will simply denote them
by Bb,δ((0, T ] ×X ) and Cb,δ((0, T ] ×X ). We endow them with the following norm,
making them Banach spaces:

‖ f ‖Bb,δ
:= sup

(t,x)∈(0,T ]×X
tδ| f (t, x)|Y .

If f ∈ Cb,δ((0, T ] × X ;Y), we will write ‖ f ‖Cb,δ
. We also introduce

B0,1
b,δ([0, T ] × H+) := { f ∈ B0([0, T ] × H+) s.t. there exists D f ∈ Bb,δ((0, T ] × H+; H)},

C0,1
b,δ([0, T ] × H+) := { f ∈ C0([0, T ] × H+) s.t. there exists D f ∈ Cb,δ((0, T ] × H+; H)}.

Also in this case, the latter is a subspace of the former space. We endow them with
the norm:

‖ f ‖B0,1
b,δ

:= ‖ f ‖Bb([0,T ]×H+) + ‖D f ‖Bb,δ((0,T ]×H+;H).
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2.4 Regularization Property of Pt

In this section, we show the regularization property of the semigroup {Pt }t≥0, intro-
duced in Definition 2.8, and we provide some joint time-space regularity properties
of this semigroup that will be particularly useful in the next sections.

We recall that, under Hypotheses 2.1 and 2.3, the semigroup {Tt }t≥0 satisfies

‖DTt f ‖UCb(H) ≤ C

tδ
‖ f ‖Bb(H), f ∈ Bb(H), t ∈ (0, T ], (2.12)

for some positive constant C = CT independent of f (see, e.g., [11], Chapter 6).

Proposition 2.12 Let f ∈ Bb(H+). Then, Pt f ∈ UC1
b(H+) and there exists C > 0

independent of f such that

|DPt f (x)| ≤ C

tδ
‖ f ‖Bb(H+),

for all x ∈ H+ and all t ∈ (0, T ].

Proof Let f ∈ Bb(H+). Then, E f ∈ Bb(H) and using (2.12)

‖DTt E f ‖UCb(H) ≤ C

tδ
‖E f ‖Bb(H).

Recalling that Pt = RTt E , we have

‖DPt f ‖UCb(H+) ≤ ‖DTt E f ‖UCb(H) ≤ C

tδ
‖E f ‖Bb(H) ≤ C

tδ
‖ f ‖Bb(H+). ��

Proposition 2.13 Let T > 0 and define the sets

I0 := {(s, t) : 0 < s ≤ t ≤ T }, I1 := {(s, t) : 0 < s < t ≤ T }.

Suppose that Hypotheses 2.1 and 2.3 are satisfied, for some δ ∈ (0, 1). Then,

(i) For every η ∈ Bb(H+), the function η0P : [0, T ] × H+ → R, defined as

η0P (t, x) := Ptη(x), (t, x) ∈ [0, T ] × H+, (2.13)

belongs to Bb([0, T ] × H+) ∩ Cb((0, T ] × H+) and satisfies η0P (t, x) = 0, for
all (t, x) ∈ (0, T ] × ∂ H+.

(ii) For every ψ ∈ Bb,δ((0, T ] × H+), the function ψ̄0
P : I0 × H+ → R, defined as

ψ̄0
P (t, s, x) := Pt−s[ψ(s, ·)](x), (t, s, x) ∈ I0 × H+,
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is measurable and the function2 ψ0
P : [0, T ] × H+ → R, defined as

ψ0
P (t, x) :=

∫ t

0
Pt−s[ψ(s, ·)](x) ds, (t, x) ∈ [0, T ] × H+,

belongs to C0([0, T ] × H+).
(iii) For every η ∈ Bb(H+), the function η1P : (0, T ] × H+ → H, defined as

η1P (t, x) := DPt [η](x), (t, x) ∈ (0, T ] × H+,

belongs to Cb,δ((0, T ] × H+; H).
(iv) For every ψ ∈ Bb,δ((0, T ] × H+), the function ψ̄1

P : I1 × H+ → H, defined as

ψ̄1
P (t, s, x) := DPt−s[ψ(s, ·)](x), (t, s, x) ∈ I1 × H+,

is measurable and the function ψ1
P : (0, T ] × H+ → H, defined as

ψ1
P (t, x) :=

∫ t

0
DPt−s[ψ(s, ·)](x) ds, (t, x) ∈ (0, T ] × H+,

belongs to Cb,δ((0, T ] × H+; H).

Proof We recall, first, the definition of semigroup {Pt }t≥0. For any f ∈ Bb(H+),

Pt f (x) = RTt E f (x), x ∈ H+,

where E : Bb(H+) → Bb(H) is the extension operator defined in (2.7), R is the
restriction to the half-plane H+ and Tt is the semigroup defined in (2.5). Recall, also,
that Pt f ∈ UC0(H+), for all t > 0, by Proposition 2.10-(i).

To prove the properties listed above, we use the fact that semigroup {Tt }t≥0 verifies
the assumptions of Proposition 4.50 and Proposition 4.51 in [16].

(i) Take η ∈ Bb(H+) and consider its extension Eη ∈ Bb(H). Combining Proposi-
tion 4.50-(i) and Proposition 4.51-(i) of [16], we have that (t, x) �→ Tt Eη(x) ∈
Bb([0, T ] × H) ∩ Cb((0, T ] × H). Therefore, since η0P (t, x) = RTt Eη(x) =
Tt Eη(x), for all (t, x) ∈ [0, T ] × H+, we get that η0P ∈ Bb([0, T ] × H+) ∩
Cb((0, T ] × H+). Moreover, by Proposition 2.10-(i), we have that η0P (t, x) = 0,
for all 0 < t ≤ T and x ∈ ∂ H+.

(ii) Fix ψ ∈ Bb,δ((0, T ] × H+) and consider, for all t > 0, the extension Eψ(t, ·) ∈
Bb(H). Since

Eψ(t, x) =
{

ψ(t, x1, x ′), x1 ≥ 0,
−ψ(t,−x1, x ′), x1 < 0,

(t, x) = (t, x1, x ′) ∈ (0, T ] × H ,

(2.14)

2 Defined to be 0 for t = 0, by continuity.

123



Journal of Optimization Theory and Applications (2023) 198:710–744 723

we immediately deduce that (t, x) �→ Eψ(t, x) ∈ Bb((0, T ] × H). Therefore,
applying [16], Proposition 4.50-(ii), we get that the map

(t, s, x) �→ Tt−s[Eψ(s, ·)](x), (t, s, x) ∈ I0 × H ,

is measurable, and hence, noting that

ψ̄0
P (t, s, x) = RTt−s[Eψ(s, ·)](x) = Tt−s[Eψ(s, ·)](x), (t, s, x) ∈ I0 × H+,

we get that ψ̄0
P is measurable. Next, combining Proposition 4.50-(ii) and Propo-

sition 4.51-(ii) of [16], we have that the map (t, x) �→ ∫ t
0 Tt−s[Eψ(s, ·](x) ds

belongs to Bb([0, T ] × H) ∩ Cb((0, T ] × H), and hence, observing that

ψ0
P (t, x) =

∫ t

0
RTt−s[Eψ(s, ·](x) ds

=
∫ t

0
Tt−s[Eψ(s, ·](x) ds, (t, x) ∈ [0, T ] × H+,

we get that Bb([0, T ] × H+) ∩ Cb((0, T ] × H+). We are, thus, left to show that
ψ0

P (t, x) = 0, for all (t, x) ∈ [0, T ] × ∂ H+. This is obvious for t = 0. Fix t > 0
and note that, by Proposition 2.10-(i), Pt−s[ψ(s, ·)](x) = 0, for all 0 ≤ s < t
and all x ∈ ∂ H+. Therefore,

ψ0
P (t, x) =

∫ t

0
Pt−s[ψ(s, ·)](x) ds = 0, (t, x) ∈ [0, T ] × ∂ H+,

whence the claim.
(iii) Take η ∈ Bb(H+) and consider its extension Eη ∈ Bb(H). By [16], Propo-

sition 4.51-(iii), applied with G = I , U = H , and γG(t) = t−δ , we have
that (t, x) �→ DTt Eη(x) ∈ Cb,δ((0, T ] × H ; H). Therefore, since η1P (t, x) =
DRTt Eη(x) = DTt Eη(x), for all (t, x) ∈ (0, T ] × H+, we get the claim.

(iv) Arguing as in the proof of point (ii), the claim follows applying Proposition
4.50-(iv) and Proposition 4.51-(iv) of [16], with G = I , U = H , γG(t) =
η(t) = t−δ . ��

Remark 2.14 Using the extension defined in (2.8), it is immediate to show that the same
results of Proposition 2.13 hold if one considers functions η ∈ Bb(H+) in points (i)
and (iii) and functions ψ ∈ Bb,δ((0, T ] × H+) in points (ii) and (iv), respectively.

Remark 2.15 Recall that the semigroup {Pt }t≥0 is uniquely defined on Bb(H+) (see
Remark 2.14). Therefore, a consequence of Proposition 2.13-(i) is that, if η ∈ Bb(H+),
then the functionη0P appearing in (2.13) belongs toB0([0, T ]×H+)∩Cb((0, T ]×H+).
Moreover, if η ∈ C0(H+), then η0P ∈ C0([0, T ] × H+).
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3 Mild Solutions of HJB Equations

The purpose of this section is to establish the existence and the uniqueness of the mild
solution (see Definition 3.2) to the following HJB equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt (t, x) = 1

2
Tr[QD2v(t, x)] + 〈A∗Dv(t, x), x〉

+ F(t, x, v(t, x),Dv(t, x)), x ∈ H+, t ∈ (0, T ],
v(0, x) = φ(x), x ∈ H+,

v(t, x) = 0, x ∈ ∂ H+, t ∈ [0, T ],

(3.1)

where T > 0 is a given time horizon (which will be fixed from now on), F and φ are
given measurable functions. We introduce the following assumption.

Hypothesis 3.1 The measurable functions F : [0, T ] × H+ × R × H → R and
φ : H+ → R verify, for given constants L, L ′ > 0, the following:

(i) For any t ∈ [0, T ], x ∈ H+, y1, y2 ∈ R, and z1, z2 ∈ H, it results

|F(t, x, y1, z1) − F(t, x, y2, z2)|R ≤ L(|y1 − y2|R + |z1 − z2|).

(ii) For any t ∈ [0, T ], x ∈ H+, y ∈ R, and z ∈ H, we have

|F(t, x, y, z)|R ≤ L ′(1 + |y|R + |z|).

(iii) φ ∈ Bb(H+).

Definition 3.2 Afunctionu : [0, T ]×H+ → R is amild solution toHJBequation (3.1)
if

(i) There exists η ∈ (0, 1) such that u ∈ B0,1
b,η([0, T ] × H+).

(ii) For all t ∈ [0, T ] and all x ∈ H+, the following equality holds

u(t, x) = Ptφ(x) +
∫ t

0
Pt−s[F(s, ·, u(s, ·),Du(s, ·)](x) ds. (3.2)

The following theorem establishes existence and uniqueness of the mild solution
to (3.1), in the sense of Definition 3.2.

Theorem 3.3 Let δ ∈ (0, 1) be such that Hypotheses 2.1, 2.3 and 3.1 are satisfied.
Then, Eq. (3.1) has a mild solution u ∈ B0,1

b,δ([0, T ] × H+), which is unique in this

space. Moreover, u is continuous in (0, T ]× H+ and Du is continuous in (0, T ]× H+.
Finally, if φ ∈ Cb(H+), u is also continuous in [0, T ] × H+.

Proof We use the contraction mapping principle on a suitable space to establish the
claim.We consider the spaceB := B0([0, T ]×H+)×Bb,δ((0, T ]×H+; H) endowed
with the product norm given by the sum of the norms of the factor spaces. To ease
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notations, we will denote the norm of B0([0, T ] × H+) (which is the sup-norm) by
‖ · ‖B0 .

Let us define the operator ϒ = (ϒ1, ϒ2) as

ϒ1[u, v](t, x) := Ptφ(x) +
∫ t

0
Pt−s[F(s, ·, u(s, ·), v(s, ·))](x) ds,

(t, x) ∈ [0, T ] × H+;
ϒ2[u, v](t, x) := DPtφ(x) +

∫ t

0
DPt−s[F(s, ·, u(s, ·), v(s, ·))](x) ds,

(t, x) ∈ (0, T ] × H+.

To begin with, we need to ensure that the ϒ is well defined as a map from B into
itself. Let (u, v) ∈ B and consider, first, the function ϒ1[u, v]. This is the sum of two
functions belonging to B0([0, T ]× H+). Indeed, on the one hand, by Proposition 2.13-
(i) and Remark 2.15, Ptφ(x) ∈ B0([0, T ] × H+). On the other hand, we readily see
that the function

ψ(s, x) := F(s, x, u(s, x), v(s, x)), (s, x) ∈ (0, T ] × H+, (3.3)

is Borel measurable on (0, T ] × H+, that (s, x) �→ sδψ(s, x) is bounded on (0, T ] ×
H+, and that, for all (s, x) ∈ (0, T ] × H+,

|F(s, x, u(s, x), v(s, x))|R ≤ L ′(1 + |u(s, x)|R + |v(s, x)|)
≤ L ′(1 + ‖u‖Bb + s−δ‖v‖Bb,δ

). (3.4)

This implies that ψ ∈ Bb,δ((0, T ] × H+), and hence, by Proposition 2.13-(ii), the
map

(t, x) �→
∫ t

0
Pt−s[ψ(s, ·)](x) ds =

∫ t

0
Pt−s[F(s, ·, u(s, ·), v(s, ·))](x) ds

is measurable and belongs to B0([0, T ] × H+).
Next, considering the function ϒ2[u, v] we see that the first term belongs to

Bb,δ((0, T ] × H+; H), thanks to Proposition 2.12, and that the second term is mea-
surable, as a consequence of Proposition 2.13-(iv) (use the sameψ above to apply this
result). We are left to prove that this latter term belongs to Bb,δ((0, T ] × H+; H), a
fact that is justified by the following estimate, holding for all (t, x) ∈ (0, T ] × H+,
where we use once more Proposition 2.12 and (3.4):

tδ
∣∣∣∣
∫ t

0
DPt−s[F(s, ·, u(s, ·), v(s, ·))](x) ds

∣∣∣∣
R

≤ L ′Ctδ
∫ t

0
(t − s)−δ(1 + ‖u‖Bb + s−δ‖v‖Bb,δ

) ds

123



726 Journal of Optimization Theory and Applications (2023) 198:710–744

≤ L ′C(1 + ‖u‖Bb )t
δ

∫ t

0
(t − s)−δds + L ′Ctδ‖v‖Bb,δ

∫ t

0
s−δ(t − s)−δds

≤ L ′C
1 − δ

(1 + ‖u‖Bb )T + L ′C �(1 − δ)2

�(2 − 2δ)
‖v‖Bb,δ

T 1−δ < +∞,

where � is the gamma function.
We proceed, next, to show thatϒ is a contraction onB. To this end, it is convenient

to use an equivalent norm onB, given by the sum of the equivalent norms ‖·‖β,Bb and
‖·‖β,Bb,δ

on B0([0, T ] × H+) and on Bb,δ((0, T ] × H+; H), respectively, defined by:

‖ f ‖β,B0 := sup
(t,x)∈[0,T ]×H+

e−βt | f (t, x)|R,

‖ f ‖β,Bb,δ
:= sup

(t,x)∈(0,T ]×H+
e−βt tδ| f (t, x)|,

where β > 0 is a constant to be fixed later in the proof.
We want, now, to find a suitable β > 0 such that the map ϒ = (ϒ1, ϒ2) is a

contraction on (B, ‖·‖β,B0 + ‖·‖β,Bb,δ
). We start with an estimate on ϒ1. Taking any

(u1, v1), (u2, v2) ∈ B and using that {Pt }t≥0 is a semigroup of contractions (cf.
Proposition 2.10) and Hypothesis 3.1-(i), we have that, for all (t, x) ∈ [0, T ] × H+,

|ϒ1[u1, v1](t, x) − ϒ1[u2, v2](t, x)|R
=
∣∣∣∣
∫ t

0
Pt−s[F(s, ·, u1(s, ·), v1(s, ·)) − F(s, ·, u2(s, ·), v2(s, ·))](x) ds

∣∣∣∣
R

≤
∫ t

0
‖F(s, ·, u1(s, ·), v1(s, ·)) − F(s, ·, u2(s, ·), v2(s, ·))‖Bb(H+) ds

≤ L
∫ t

0
(‖u1(s, ·) − u2(s, ·)‖B0 + s−δ‖v1(s, ·) − v2(s, ·)‖Bb,δ

) ds.

Now, multiplying and dividing by eβs in the integrals appearing in the last line, we get

|ϒ1[u1, v1](t, x) − ϒ1[u2, v2](t, x)|R
≤ L

∫ t

0

(
eβs‖u1 − u2‖β,B0 + s−δeβs‖v1 − v2‖β,Bb,δ

)
ds

≤ L(‖u1 − u2‖β,B0 + ‖v1 − v2‖β,Bb,δ
)

[(∫ t

0
eβs ds

)
∨
(∫ t

0
s−δeβs ds

)]
.

Clearly |ϒ1[u1, v1](t, x) − ϒ1[u2, v2](t, x)|R = 0 on [0, T ] × ∂ H+, therefore,

‖ϒ1[u1, v1] − ϒ1[u2, v2]‖β,B0 = sup
t∈[0,T ]

{
e−βt‖ϒ1[u1, v1](t, ·) − ϒ1[u2, v2](t, ·)‖B0

}

≤ LC1(β)
[‖u1 − u2‖β,B0 + ‖v1 − v2‖β,Bb,δ

]
,
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where

C1(β) := sup
t∈[0,T ]

{
e−βt

[(∫ t

0
eβs ds

)
∨
(∫ t

0
s−δeβs ds

)]}

= sup
t∈[0,T ]

{(
1 − e−βt

β

)
∨
(∫ t

0
s−δe−β(t−s) ds

)}

≤ 1

β
∨ sup

t∈[0,T ]

∫ t

0
s−δe−β(t−s) ds.

An immediate application of [16], Proposition 4.21-(iv) entails that C1(β) → 0, as
β → +∞.

We provide, next, an estimate on ϒ2. Considering any (u1, v1), (u2, v2) ∈ B
and using Proposition 2.12 and Hypothesis 3.1-(i), we have that, for all (t, x) ∈
[0, T ] × H+,

|ϒ2[u1, v1](t, x) − ϒ2[u2, v2](t, x)|R
=
∣∣∣∣
∫ t

0
DPt−s[F(s, ·, u1(s, ·), v1(s, ·)) − F(s, ·, u2(s, ·), v2(s, ·))](x) ds

∣∣∣∣
R

≤ C
∫ t

0
(t − s)−δ‖F(s, ·, u1(s, ·), v1(s, ·)) − F(s, ·, u2(s, ·), v2(s, ·))‖Bb(H+) ds

≤ LC
∫ t

0
(t − s)−δ(‖u1(s, ·) − u2(s, ·)‖B0 + s−δ‖v1(s, ·) − v2(s, ·)‖Bb,δ

) ds.

Now, multiplying and dividing by eβs in the integrals appearing in the last line, we get

|ϒ2[u1, v1](t, x) − ϒ2[u2, v2](t, x)|R
≤ LC

∫ t

0
(t − s)−δ

(
eβs‖u1 − u2‖β,B0 + s−δeβs‖v1 − v2‖β,Bb,δ

)
ds

≤ LC(‖u1 − u2‖β,B0 + ‖v1 − v2‖β,Bb,δ
)

×
[(∫ t

0
(t − s)−δeβs ds

)
∨
(∫ t

0
(t − s)−δs−δeβs ds

)]
.

Therefore,

‖ϒ2[u1, v1] − ϒ2[u2, v2]‖β,Bb,δ

= sup
t∈[0,T ]

{
e−βt tδ‖ϒ2[u1, v1](t, ·) − ϒ2[u2, v2](t, ·)‖Bb

}

≤ C2(β)LC
[‖u1 − u2‖β,B0 + ‖v1 − v2‖β,Bb,δ

]
,

where

C2(β) := sup
t∈(0,T ]

{(
tδ
∫ t

0
(t − s)−δe−β(t−s) ds

)
∨
(

tδ
∫ t

0
(t − s)−δs−δe−β(t−s) ds

)}
.
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Applying [16], Proposition 4.21-(iv) and (v), we get that C2(β) → 0, as β → +∞.
By the reasoning above, there exists β0 > 0 such that for β > β0 we have

‖ϒ1[u1, v1] − ϒ1[u2, v2]‖β,B0 + ‖ϒ2[u1, v1] − ϒ2[u2, v2]‖β,Bb,δ

≤ 1

2

[‖u1 − u2‖β,B0 + ‖v1 − v2‖β,Bb,δ

]
,

which entails that ϒ is a contraction and, therefore, that it has a unique fixed point.
The first component of ϒ provides the unique mild solution of (3.1). Indeed, by

Proposition 2.12 and Proposition 2.13, we get that, for every (u, v) ∈ B, the function
ϒ1[u, v] is Fréchet differentiable and 〈ϒ2[u, v](t, x), h〉 = 〈Dϒ1[u, v](t, x), h〉, for
any (t, x) ∈ (0, T ]× H+ and any h ∈ H . Therefore, denoting by (ū, v̄) ∈ B the fixed
point of ϒ , which satisfies ϒ[ū, v̄] = (ū, v̄), we immediately obtain the following
facts: v̄(t, x) = Dū(t, x), for all (t, x) ∈ (0, T ]× H+; ū belongs to B0([0, T ]× H+);
ū is Fréchet differentiable, with Dū ∈ Bb,δ((0, T ] × H+; H), which implies that
ū ∈ B0,1

b,δ([0, T ] × H+); ū verifies (3.2). Hence, by Definition 3.2, ū is a mild solution
to (3.1).

Furthermore, uniqueness easily follows noting that any other solution u∗ ∈
B0,1

b,δ([0, T ] × H+) must be equal to the first component of the fixed point of ϒ in
B, i.e., it must hold that u∗ = ū.

The continuity of the solution and of its derivative follows exactly with the same
argument of [16], Theorem 4.149-(ii), exploiting the definition of semigroup {Pt }t≥0
and that semigroup {Tt }t≥0 has a regularizing effect for t > 0.

To deduce the last assertion, we proceed as follows. Let (t, x), (t0, x0) ∈ [0, T ] ×
H+ and assume, without loss of generality, that t0 < t . Then, recalling (3.3), we have
that

|u(t, x) − u(t0, x0)| ≤ |Ptφ(x) − Pt0φ(x)| + |Pt0φ(x) − Pt0φ(x0)| +
∫ t

t0
|Pt−sψ(s, x)| ds

+
∫ t0

0
|Pt−sψ(s, x) − Pt0−sψ(s, x)| ds +

∫ t0

0
|Pt0−sψ(s, x) − Pt0−sψ(s, x0)| ds.

The result follows from the continuity of φ and of semigroup {Pt }t≥0 with respect to t ,
fromProposition 2.10, and from an application of the dominated convergence theorem.

4 Strong Solutions of HJB Equations

In applications to optimal control, it is useful to know that mild solutions to an
HJB equation can be approximated by regular solutions, where by regular we mean
smooth enough to apply the Itô or the Dynkin formulas. Solutions constructed by this
approximating procedure are called strong solutions (see Definition 4.3 for a precise
statement).

The idea is to approximate mild solutions to (3.1) with classical solutions in
UC2

b(H). However, it is well known that UC2
b(H) is not dense in UCb(H), when

dim(H) = +∞ (since unit balls are not compact in this case). As a consequence, we
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cannot hope for uniform convergence and we need to resort to a different concept of
convergence.

We follow the approach of [16], Section 4.5 and introduceK-convergence (cf. [16],
Definition B.56 and Definition 4.131).

Definition 4.1 Let X denote H , H+, or H+. A sequence ( fn)n∈N ⊂ Bb(X ) is said to
be K-convergent to f ∈ Bb(X ), and we will write f = K − limn→∞ fn , if:

(i) supn∈N‖ fn‖Bb(X ) < ∞;
(ii) limn→∞ supx∈K | fn(x) − f (x)| = 0, for any compact set K ⊂ X .

Similarly, a sequence ( fn)n∈N ⊂ Bb([0, T ] × X ) is said to be K-convergent to
f ∈ Bb([0, T ] × X ) and we will write f = K − limn→∞ fn , if:

(i) supn∈N‖ fn‖Bb([0,T ]×X ) < ∞;
(ii) limn→∞ sup(t,x)∈[0,T ]×K | fn(t, x) − f (t, x)| = 0, for any compact set K ⊂ X .

Finally, for δ ∈ (0, 1), we say that a sequence { fn}n∈N ⊂ Bb,δ((0, T ] × X ) K-
converges to f ∈ Bb,δ((0, T ]×X ), andwewrite f = K−limn→∞ fn in Bb,δ((0, T ]×
X ), if:

(i) supn∈N‖ fn‖Bb,δ((0,T ]×X ) < +∞;
(ii) limn→∞ sup(t,x)∈I0×K tδ| fn(t, x)− f (t, x)| = 0, for all compact sets I0 ⊂ (0, T ]

and K ⊂ X .

To give the definition of classical solution, we need to introduce the space

UC2,A
b (H+) := { f ∈ UC2

b(H+) : A∗D f ∈ UCb(H+; H), D2 f ∈ UCb(H+;L1(H))}.

In this space, we introduce the norm

‖ f ‖UC2,A
b (H+)

:= ‖ f ‖UCb(H+) + ‖D f ‖UCb(H+;H) + ‖A∗D f ‖UCb(H+;H)

+ sup
x∈H+

‖D2 f (x)‖L1(H).

Definition 4.2 Let g be a given Borel measurable function. A function u : [0, T ] ×
H+ → R is a classical solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt (t, x) = 1

2
Tr[QD2v(t, x)] + 〈x, A∗Dv(t, x)〉

+ F(t, x, v(t, x),Dv(t, x)) + g(t, x), x ∈ H+, t ∈ (0, T ],
v(0, x) = φ(x), x ∈ H+,

v(t, x) = 0, x ∈ ∂ H+, t ∈ [0, T ],

(4.1)

if:

(i) u(·, x) ∈ C1([0, T ]), for all x ∈ H+;
(ii) u(t, ·) ∈ UC2,A

b (H+), for any t ∈ [0, T ], and supt∈[0,T ]‖u(t, ·)‖UC2,A
b (H+)

<

+∞;
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(iii) u ∈ C0([0, T ] × H+);
(iv) Du, A∗Du ∈ Cb([0, T ] × H+; H) and D2u ∈ Cb([0, T ] × H+;L1(H));
(v) u satisfies (4.1) for all (t, x) ∈ [0, T ] × H+.

We are now ready to introduce the concept of strong solution mentioned at the
beginning of this section. Recall that the aim is to show that mild solutions to (3.1)
can be approximated, in the sense ofK-convergence, by classical solutions. Solutions
to (3.1) constructed by this approximating procedure are called K-strong solutions.

Definition 4.3 We say that a function u : [0, T ] × H+ → R is a K-strong solution
to (3.1) if:

(i) There exists η ∈ (0, 1) such that u ∈ B0,1
b,η([0, T ] × H+);

(ii) There exist three sequences {un}n∈N ⊂ C0([0, T ] × H+), {φn}n∈N ⊂
UC2,A

b (H+) ∩ C0(H+), and {gn}n∈N ⊂ Bb,δ((0, T ] × H+) such that:

(a) For every n ∈ N, un is a classical solution (in the sense of Definition 4.2) to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt (t, x) = 1

2
Tr[QD2v(t, x)] + 〈x, A∗Dv(t, x)〉

+ F(t, x, v(t, x),Dv(t, x)) + gn(t, x), x ∈ H+, t ∈ (0, T ],
v(0, x) = φn(x), x ∈ H+,

v(t, x) = 0, x ∈ ∂ H+, t ∈ [0, T ];

(4.2)

(b) It holds

⎧
⎪⎪⎨

⎪⎪⎩

K−limn→∞φn = φ, in Bb(H+),

K−limn→∞gn = 0, in Bb,δ((0, T ] × H+),

K−limn→∞un = u, in Bb([0, T ] × H+),

K−limn→∞Dun = Du, in Bb,δ((0, T ] × H+; H).

Theorem 4.4 Let δ ∈ (0, 1) be such that Hypotheses 2.1, 2.3 and 3.1 are satisfied. Let
u be the mild solution to (3.1) and define

f (t, x) := F(t, x, u(t, x),Du(t, x)), (t, x) ∈ (0, T ] × H+. (4.3)

Suppose that φ ∈ Cb(H+) and that f is continuous on (0, T ] × H+.
Then, the function u is a K-strong solution to (3.1), which is unique among all

solutions in B0,1
b,δ([0, T ] × H+).

Proof We note, first, that u is continuous both in [0, T ] × H+ and in (0, T ] × H+,
thanks to Theorem 3.3, and that f is bounded, thanks to Hypothesis 3.1-(ii).

To prove the theorem, we need to provide the sequence {un}n∈N of classical solu-
tions to (4.2) that approximate the mild solution u to (3.1). To do so, we construct
approximating sequences { fn}n∈N and {φn}n∈N for f and φ, respectively.

Let us fix an orthonormal basis E ⊂ D(A∗) of H (this can always be done, as
D(A∗) is dense). Since ȳ ∈ D(A∗), we can choose E so that ȳ ∈ E . We denote by w j ,
j ≥ 2, the other elements of E . Recall that we can identify any element x ∈ H with
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the sequence of Fourier coefficients (xk)k∈N with respect to the orthonormal basis E .
Let us denote, for each n ∈ N, the orthogonal projection Pn onto Span{ȳ, w2, . . . , wn}
(clearly, P1 denotes the projection onto Span{ȳ}) and let us define the maps�n : H →
R

n and Qn : Rn → H as

�n x := (x1, . . . , xn), Qn(x1, . . . , xn) := x1 ȳ +
n∑

j=2

x jw j .

Note that Pn = Qn ◦ �n . Let us also consider, for each n ∈ N, a family of C∞
symmetric mollifiers ηn

k : Rn → R, k ∈ N, with support in the ball centered at the
origin with radius 1

k .
We approximate φ, first. Since the behavior of φ on ∂ H+ is not known, we do not

directly define regularizing convolutions for φ, but rather for some approximations of
this function. First, we extend φ to be equal to 0 for all x ∈ ∂ H+. Then we define, for
each h ∈ N, the functions

φ̃h(x) = φ̃h(x1, x ′) := φ(x1, x ′)χ 1
h
(x1), x ∈ H+,

where, for any ε > 0, χε ∈ C∞(R) is a function taking values in [0, 1], such that
χε(z) = 0, if z ≤ ε, and χε(z) = 1, if z ≥ 2ε. We define, for all x ∈ H and for each
h ∈ N, the following regularizing convolutions of the functions E φ̃h , where E is the
extension operator introduced in (2.7),

ψn
k,h(x) :=

∫

Rn
E φ̃h(Qnz)ηn

k (�n x − z) dz =
∫

Rn
E φ̃h(Pn x − Qnz)ηn

k (z) dz.

We immediately obtain that, for all k, h, n ∈ N,

‖ψn
k,h‖Bb(H) ≤ ‖E φ̃h‖Bb(H) ≤ ‖φ‖Bb(H+) < +∞. (4.4)

Moreover, we can easily show that ψn
k,h vanishes on ∂ H+. Indeed, for all x ∈ ∂ H+

and recalling that we chose the mollifiers to be symmetric, we have that

ψn
k,h(x) =

∫

Rn
E φ̃h(Pn x − Qnz)ηn

k (z) dz

=
∫

Rn−1

∫

R

E φ̃h

( n∑

j=2

(x j − z j )w j − z1 ȳ

)
ηn

k (z1, . . . , zn) dz1 · · · dzn

=
∫

Rn−1

∫ 0

−∞
φ̃h (−z1, x2 − z2, . . . , xn − zn) ηn

k (z1, . . . , zn) dz1 · · · dzn

−
∫

Rn−1

∫ +∞

0
φ̃h (z1, x2 − z2, . . . , xn − zn) ηn

k (z1, . . . , zn) dz1 · · · dzn

=
∫

Rn−1

∫ +∞

0
φ̃h (z1, x2 − z2, . . . , xn − zn) ηn

k (z1, . . . , zn) dz1 · · · dzn
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−
∫

Rn−1

∫ +∞

0
φ̃h (z1, x2 − z2, . . . , xn − zn) ηn

k (z1, . . . , zn) dz1 · · · dzn = 0.

(4.5)

Let us define, for all h, n ∈ N, the functions ξh,n(x) := E φ̃h(Pn x). Clearly, ψn
k,h

and ξh,n can be also seen as functions depending on n real variables. Therefore, by
standard facts on convolutions (see, e.g., [15]), we have that, for all k, h, n ∈ N,
ψn

k,h ∈ C∞(Rn) and that, for any h, n ∈ N, the sequence {ψn
k,h}k∈N converges to ξh,n

uniformly on compact subsets of Rn . Next, for each h, n ∈ N, we take k(h, n) ∈ N

such that

sup
x∈H|x |≤n

|ψn
k(h,n),h(x) − ξh,n(x)| ≤ 1

n

and we set ψh,n := ψn
k(h,n),h . We have that, for any compact set K ⊂ H+, any h ∈ N,

and any n ≥ supx∈K |x |,

sup
x∈K

|ψh,n(x) − E φ̃h(x)| ≤ sup
x∈K

|ψh,n(x) − ξh,n(x)| + sup
x∈K

|ξh,n(x) − E φ̃h(x)|

≤ 1

n
+ sup

x∈K
|ξh,n(x) − φ̃h(x)|,

where we used the fact that E φ̃h(x) = φ̃h(x), for all x ∈ H+. From this estimate,
observing that the set {Pn x : x ∈ K , n ∈ N} ⊂ H is relatively compact (cf. [16],
Lemma B.77) and using the continuity of φ̃h and (4.4), we get that, for each h ∈ N,

K−limn→∞ψh,n = φ̃h, in Bb(H+).

Finally, taking the diagonal sequence

φn(x) := ψn,n(x), x ∈ H+, n ∈ N,

we easily have that

K−limn→∞φn = φ, in Bb(H+),

and, applying (4.5), we get that φn ∈ C0(H+), for all n ∈ N.
We now turn our attention to the approximation of f , which may not belong to

C0((0, T ] × H+), due to the singularity at t = 0 and the fact that the behavior of f
on ∂ H+ is not known. For this reason, also in this case we define, first, regularizing
convolutions for some approximations of f . First, we extend f to be equal to 0 for
all (t, x) ∈ (0, T ] × ∂ H+. We start approximating f in space, by defining, for each
h ∈ N, the functions

fh(t, x) = fh(t, x1, x ′) := f (t, x1, x ′)χ 1
h
(x1), (t, x) ∈ (0, T ] × H+.
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Next, we approximate in time by defining, first, the following extensions, for each
h ∈ N and x ∈ H+,

f h(t, x) :=
{

fh(t, x), if 0 < t ≤ T ,

fh(T , x), if t > T ,

and then by introducing, for each h ∈ N, the approximations

f̃h(t, x) := χ 1
h
(t) f h(t, x), (t, x) ∈ R × H+.

Note that, for each h ∈ N, fh is continuous on (0, T ]× H+ and vanishes on ∂ H+, and
hence, f̃h ∈ C0(R× H+). This entails that E f̃h ∈ Cb(R× H) (where E f̃h is defined
as in (2.14)), which allows us to define, for each h ∈ N, a sequence { fh,n}n∈N such
that

K−limn→∞ fh,n = E f̃h, in Bb(R × H).

Such a sequence can be constructed proceeding in a similar way as in the first part
of this proof, by choosing for each n a suitable family of C∞ mollifiers (see also the
proof of [16], Lemma B.78). In particular, this sequence can be chosen so that

sup
(t,x)∈R×H
|t |+|x |≤n

| fh,n(t, x) − E f̃h(t, Pn x)| ≤ 1

n
. (4.6)

We consider, next, the diagonal sequence { fn,n}n∈N. Using again the fact Eφ = φ

on H+, we have that, for any compact subsets I0 ⊂ (0, T ], K ⊂ H+, and any
n ≥ sup(t,x)∈I0×K {t + |x |},

sup
(t,x)∈I0×K

tδ| fn,n(t, x) − f (t, x)|

≤ sup
(t,x)∈I0×K

tδ| fn,n(t, x) − E f̃n(t, x)| + sup
(t,x)∈I0×K

tδ|E f̃n(t, x) − f (t, x)|

= sup
(t,x)∈I0×K

tδ| fn,n(t, x) − f̃n(t, x)| + sup
(t,x)∈I0×K

tδ| f̃n(t, x) − f (t, x)|. (4.7)

Observe that, by construction, the sequence { f̃n}n∈NK-converges to f onBb,δ((0, T ]×
H+). Indeed, thanks to the definition of fh , f̃h converges to f uniformly on compact
subsets of (0, T ]×H+, as h → +∞. Therefore, the last term in the second line of (4.7)
converges to 0. To deal with the first term, instead, we note that, if n is large enough,
then f̃n(t, x) = f (t, x), for all (t, x) ∈ I0 × K . Therefore, applying also (4.6), we
have that
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sup
(t,x)∈I0×K

tδ| fn,n(t, x) − f̃n(t, x)|

≤ sup
(t,x)∈I0×K

tδ| fn,n(t, x) − f̃n(t, Pn x)| + sup
(t,x)∈I0×K

tδ| f̃n(t, Pn x) − f̃n(t, x)|

≤ supt∈I0 tδ

n
+ sup

(t,x)∈I0×K
tδ| f̃n(t, Pn x) − f (t, x)|

and, thus, noting that the set {(t, Pn x) : t ∈ I0, x ∈ K , n ∈ N} ⊂ R× H is relatively
compact (cf. [16], Lemma B.77) and using the continuity of f , we get that

K−limn→∞ fn,n = f , in Bb,δ((0, T ] × H+).

From now on, let us simply denote the diagonal sequence { fn,n}n∈N by { fn}n∈N.
Let us define, next, the approximating sequence {un}n∈N as follows:

un(t, x) := Ptφn(x) +
∫ t

0
Pt−s[ fn(s, ·)](x) ds, (t, x) ∈ [0, T ] × H+.

We note, first, that un(0, x) = φn(x), for all x ∈ H+, and that, as a consequence of
Proposition 2.13 (i)-(ii) (see also Remark 2.15), un ∈ C0([0, T ] × H+), and hence,
point (iii) of Definition 4.2 is verified. Arguing as in the proof of [16], Theorem 4.135,
we deduce that, for each n ∈ N, φn ∈ UC2,A

b (H+) and that, for each t ∈ (0, T ],
fn(t, ·) ∈ UC2,A

b (H+). Therefore, by [16], Proposition B.91, we deduce that points (ii)
and (iv) of Definition 4.2 are satisfied.

Next, following the same reasoning of Step 2 of the proof of [16], Theorem 4.135,
we get that also points (i) and (v) of Definition 4.2 are verified, by choosing gn(t, x) :=
F(t, x, un(t, x),Dun(t, x)) − fn(t, x). Hence, un is a classical solution to (4.2), for
all n ∈ N.

We are left to check the convergences of the three sequences {un}n∈N, {φn}n∈N,
{gn}n∈N and that u is the unique K-strong solution to (3.1). This can be done exactly
in the same way as in Step 3 of the proof of [16], Theorem 4.135.

5 Application to a Control Problemwith Exit Time

In this section, we discuss an exit-time optimal control problem. In particular, we
study the associated HJB equation and we provide a verification theorem and a result
concerning optimal feedback controls.

Fix T > 0, a real separable Hilbert space �, and a complete and separable metric
space U , representing the control space.

Weconsider afixed completefilteredprobability space (
,F ,F := (Fs)s∈[0,T ],P),
where filtration F satisfies the usual assumptions, supporting a cylindrical Wiener
process W = (W (s))s∈[0,T ] on �. We introduce also the following set of admissible
controls

Uad := {u : [0, T ] × 
 → U s.t. u = (u(s))s∈[0,T ] is F-progressively measurable}.
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For any fixed t ∈ [0, T ) and any u ∈ Uad , we consider the SDE

{
dX(s) = [AX(s) + b(s, X(s), u(s))] ds + √

Q dW (s), s ∈ [t, T ],
X(t) = x ∈ H .

(5.1)

The following assumption will stand from now on.

Hypothesis 5.1 (i) A and Q satisfy Hypotheses 2.1 and 2.3, for some δ ∈ (0, 1);
(ii) b ∈ Bb([0, T ] × H × U ; H), is continuous in (t, x) uniformly with respect to u,

and satisfies

sup
s,u∈[0,T ]×U

|b(s, x1, u) − b(s, x2, u)| ≤ Lb|x1 − x2|, ∀x1, x2 ∈ H . (5.2)

Under these assumptions (see, e.g., [16], Theorem1.152), for any t ∈ [0, T ), x ∈ H ,
and u ∈ Uad , SDE (5.1) admits a unique mild solution X = (X(s; t, x,u))s∈[t,T ] (in
the sense of [16], Definition 1.119) in the class of processes

H2(t, T ; H) := {Y : [t, T ] × 
 → H progr. meas., s.t. sup
s∈[t,T ]

E|Y (s)|2 < +∞}.

Moreover, X has continuous trajectories and verifies, for some constant C > 0,

E

[
sup

s∈[t,T ]
|X(s)|2

]
≤ C(1 + |x |2).

In what follows, we will denote this solution by (X(s))s∈[t,T ], when no confusion
can arise.

The aim of the optimal control problem is to drive the dynamics of the state process
X , by choosing a control u ∈ Uad to minimize the cost functional J : [0, T ] × H+ ×
Uad → R defined, for all t ∈ [0, T ], x ∈ H+, u ∈ Uad , as

J (t, x,u) := E

[∫ T ∧τ

t
�(s, X(s; t, x,u), u(s)) ds + 1T <τφ(X(T ; t, x,u))

]
,

(5.3)

where τ := inf{s ≥ t : X(s; t, x,u) ∈ H−}.
The following assumption will be in force in the remainder of the paper.

Hypothesis 5.2 (i) The running cost function � : [0, T ]×H+×U → R is measurable
and bounded on [0, T ]×H+×U. Moreover, it is continuous in (t, x) ∈ [0, T ]×H+,
uniformly with respect to u ∈ U.

(ii) φ ∈ Cb(H+).

The value function of the optimal control problem is:

V (t, x) = inf
u∈Uad

J (t, x,u), (t, x) ∈ [0, T ] × H+. (5.4)
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Remark 5.3 Clearly, τ is an F-stopping time and depends on t , x , and the control u.
However, we will omit this dependence to ease notations.

We can associate to the exit-time optimal control problem introduced above an HJB
equation, that the value function V is expected to satisfy.

To start, let us introduce the current value Hamiltonian

FCV (t, x, p, u) := 〈p, b(t, x, u)〉 + �(t, x, u),

(t, x, p, u) ∈ [0, T ] × H+ × H × U , (5.5)

and the Hamiltonian

F(t, x, p) := inf
u∈U

FCV (t, x, p, u), (t, x, p) ∈ [0, T ] × H+ × H . (5.6)

The HJB equation associated with the optimal control problem (5.4) is:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt (t, x) + 1

2
Tr[QD2v(t, x)] + 〈A∗Dv(t, x), x〉

+ F(t, x,Dv(t, x)) = 0, x ∈ H+, t ∈ [0, T ),

v(T , x) = φ(x), x ∈ H+,

v(t, x) = 0, x ∈ ∂ H+, t ∈ [0, T ].

(5.7)

Remark 5.4 Note that, while Eq. (3.1) corresponds to an initial value problem, here
Eq. (5.7) is associated with a terminal value problem, which is a more natural formu-
lation for an optimal control problem. It is clear that all the results in Sects. 3 and 4 can
still be applied, simply by reversing time. To be more precise, we give the following
definition.

Definition 5.5 A function v : [0, T ] × H+ → R is a mild solution (resp. K-strong
solution) to the HJB equation (5.7) if the function z(t, x) := v(T − t, x), (t, x) ∈
[0, T ] × H+, is a mild solution (resp. K-strong solution) to (3.1) in the sense of
Definition 3.2 (resp. Definition 4.3).

We want now to verify that the HJB equation (5.7) has a unique mild andK-strong
solution. To do so, we need to check that the Hamiltonian F verifies appropriate
assumptions.

Proposition 5.6 Under Hypothesis 5.2-(i), the Hamiltonian F is a measurable function
and satisfies Hypothesis 3.1-(i)-(ii). Moreover, F is continuous on [0, T ] × H+ × H.

Proof Since FCV is clearly a measurable function and U is separable, it follows that
F is a measurable function, too.

To check Hypothesis 3.1-(i), let (t, x) ∈ [0, T ] × H+ and p1, p2 ∈ H . Then,

|F(t, x, p1) − F(t, x, p2)| ≤ sup
u∈U

{〈b(t, x, u), p1 − p2〉} ≤ |b|∞|p1 − p2|.
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Finally, to check Hypothesis 3.1-(ii), let (t, x) ∈ [0, T ] × H+ and p ∈ H . Then,

|F(t, x, p)| ≤ |b|∞|p| + |�|∞.

To establish the continuity of F consider (t, x, p) ∈ [0, T ] × H+ × H and a
sequence (tn, xn, pn) → (t, x, p). Then,

|F(tn, xn, pn) − F(t, x, p)| ≤ ‖b‖∞|pn − p|+
+ sup

u∈U
{|〈b(tn, xn, u), p〉 − 〈b(t, x, u), p〉 + �(tn, xn, u) − �(t, x, u)|},

and hence the left-hand side tends to 0, since b and � are continuous in (t, x), uniformly
with respect to u ∈ U .

Theorem 5.7 Equation (5.7) has a unique mild and K-strong solution in the sense of
Definition 5.5.

Proof First of all, we observe that, thanks to Assumption 5.2-(ii), the terminal cost φ
satisfies 3.1-(iii).Moreover, by Proposition 5.6, theHamiltonian F satisfies 3.1-(i)-(ii).
Finally, Q and A verify Hypotheses 2.1 and 2.3, thanks to Hypothesis 5.1.

Therefore, we can apply Theorem 3.3 and conclude that Eq. (5.7) has a unique mild
solution in the sense of Definition 5.5.

Finally, since φ ∈ Cb(H+) by Hypothesis 5.2-(ii) and F is continuous on [0, T ] ×
H+ × H thanks to Proposition 5.6, we can apply Theorem 4.4 to deduce that Eq. (5.7)
has a unique K-strong solution in the sense of Definition 5.5.

Our next aim is to establish a verification theorem. To do so, we need to show that
the following fundamental identity holds.

Lemma 5.8 Suppose that Hypotheses 5.1 and 5.2 hold. Let v be the unique mild and
K-strong solution to (5.7). Then, for every t ∈ [0, T ], x ∈ H+, and u ∈ Uad , it holds
that

v(t, x) = J (t, x,u)

−E

∫ T ∧τ

t
[FCV (s, X(s),Dv(s, X(s), u(s))) − F (s, X(s),Dv(s, X(s)))] ds,

(5.8)

where X = (X(s; t, x,u))s∈[t,T ] is the mild solution to (5.1).

Proof Let z(t, x) := v(T − t, x), (t, x) ∈ [0, T ] × H+, so that, according to Defini-
tion 5.5, z ∈ B0,1

b,δ([0, T ] × H+) is the unique K-strong solution to (3.1), in the sense
of Definition 4.3.

Therefore, there exist three sequences {zn}n∈N ⊂ Cb([0, T ] × H+), {φn}n∈N ⊂
UC2,A

b (H+), and {gn}n∈N ⊂ Bb,δ((0, T ] × H+), such that, for every n ∈ N, zn is a
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classical solution to (4.2), in the sense of Definition 4.2. Moreover, we have that

⎧
⎪⎪⎨

⎪⎪⎩

K−limn→∞φn = φ, in Bb(H+),

K−limn→∞gn = 0, in Bb,δ((0, T ] × H+),

K−limn→∞zn = z, in Bb([0, T ] × H+),

K−limn→∞Dzn = Dz, in Bb,δ((0, T ] × H+; H).

It is clear that (5.8) holds for any t ∈ [0, T ], whenever x ∈ ∂ H+. Indeed, in this
case τ = t , P-a.s., and both the left- and the right-hand sides of (5.8) are equal to 0.
Therefore, we can restrict our attention to the case where (t, x) ∈ [0, T ] × H+.

We show, first, that (5.8) holds for the functions vn(t, x) := zn(T − t, x), (t, x) ∈
[0, T ] × H+. It is clear that, for all n ∈ N, vn and zn enjoy the same regularity
properties, as listed in Definition 4.2, and that vn satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tvn(t, x) + 1

2
Tr[QD2vn(t, x)] + 〈x, A∗Dvn(t, x)〉

+ F(t, x, vn(t, x),Dvn(t, x)) + gn(t, x) = 0, x ∈ H+, t ∈ [0, T ),

vn(T , x) = φn(x), x ∈ H+,

vn(t, x) = 0, x ∈ ∂ H+, t ∈ [0, T ],

where ∂t denotes the time derivative. It is also clear that

{K−limn→∞vn = v, in Bb([0, T ] × H+),

K−limn→∞Dvn = Dv, in Bb,δ([0, T ) × H+; H),

where3

Bb,δ([0, T ) × H+; H)

:= { f : [0, T ) × H+ → H , s.t. f (T − ·, ·) ∈ Bb,δ((0, T ] × H+; H)}.

Thanks to these facts and to Hypothesis 5.1, we can apply the Dynkin formula
of [16], Equation (1.109) to the process (vn(s, X(s)))s∈[t,T ]. For ε > 0, let us define
the stopping time τε := (τ − ε) ∨ t . Then,

E[vn(T ∧ τε, X(T ∧ τε))] = vn(t, x)

+ E

∫ T ∧τε

t

[
∂tvn(s, X(s)) + 〈X(s), A∗Dvn(s, X(s))〉 + 〈Dvn(s, X(s)), b(s, X(s), u(s))〉] ds

+ E

∫ T ∧τε

t

1

2
Tr[QD2vn(s, X(s))] ds

= E

∫ T ∧τε

t
〈Dvn(s, X(s)), b(s, X(s), u(s))〉 ds

− E

∫ T ∧τε

t

[
F(s, X(s),Dvn(s, X(s))) + gn(s, X(s))

]
ds. (5.9)

3 For more details on this function space, see ([16], Definition 4.24).
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Clearly, on {T < τε} we have that T ∧ τε = T , whence X(T ∧ τε) = X(T ) ∈ H+,
and vn(T ∧ τε, X(T ∧ τε)) = vn(T , X(T )) = φ(X(T )).

Therefore, we have, P-a.s.,

E[vn(T ∧ τε, X(T ∧ τε))] = E[1T <τε vn(T ∧ τε, X(T ∧ τε))] + E[1T ≥τε vn(τε, X(τε))]
= E[1T <τεφn(X(T ))] + E[1T ≥τε vn(τε, X(τε))].

Taking into account this equality, adding J (t, x,u) on both sides of (5.9), and rear-
ranging the terms, we get

vn(t, x) = J (t, x,u) + E[1T <τε {φn(X(T )) − φ(X(T ))}] + E

∫ T ∧τε

t
gn(s, X(s)) ds

− E

∫ T ∧τε

t

[
FCV (s, X(s),Dvn(s, X(s)), u(s)) − F(s, X(s),Dvn(s, X(s)))

]
ds

+ E[1T ≥τε vn(τε, X(τε))].

Using the K-convergences previously recalled and the dominated convergence theo-
rem, we can take the limit as n → +∞ in the last equality to get

v(t, x) = J (t, x,u) + E[1T ≥τε v(τε, X(τε))].

− E

∫ T ∧τε

t

[
FCV (s, X(s),Dv(s, X(s)), u(s)) − F(s, X(s),Dv(s, X(s)))

]
ds.

To conclude, it suffices to observe that τε → τ , P-a.s., as ε → 0, and that X(τ ) ∈
∂ H+, and henceE[1T ≥τ v(τ, X(τ ))] = 0. Therefore, using themonotone convergence
theorem and the dominated convergence theorem, we get the claim taking the limit as
ε → 0 in the last equality.

We can now state a verification theorem. Its proof is standard and a straightforward
consequence of Lemma 5.8; therefore, we omit it (for more details, see, e.g., [16],
Theorem 2.36).

Theorem 5.9 Suppose that Hypotheses 5.1 and 5.2 hold. Let v be the mild andK-strong
solution of (5.7). Then,

v(t, x) ≤ V (t, x), ∀ (t, x) ∈ [0, T ] × H+.

Suppose, moreover, that u∗ ∈ Uad is such that, for fixed (t, x) ∈ [0, T ] × H+, the
pair (X∗,u∗), where X∗ := (X(s; t, x,u∗))s∈[t,T ], verifies

u∗(s) ∈ argmin
u∈U

FCV (s, X∗(s),Dv(s, X∗(s)), u), (5.10)

for almost every s ∈ [t, T ] and P-a.s. Then, the pair (X∗,u∗) is optimal at (t, x) and
v(t, x) = V (t, x).
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We conclude our paper with a final result concerning optimal feedback controls,
which is a corollary of Theorem 5.9.

Let v be the unique mild and K-strong solution to (5.7), and let us define the
set-valued function

�(t, x) := argmin
u∈U

FCV (t, x,Dv(t, x), u), (t, x) ∈ (0, T ) × H+. (5.11)

Function � is the feedback map for our optimal control problem, and the associated
closed-loop equation is the stochastic differential inclusion

{
dX(s) ∈ [AX(s) + b(s, X(s),�(s, X(s)))] ds + √

Q dW (s), s ∈ [t, T ],
X(t) = x ∈ H .

Here is our final result. Its proof is omitted, since it is a direct consequence of
Theorem 5.9 (for more details, see, e.g., [16], Corollary 2.38).

Corollary 5.10 Fix (t, x) ∈ [0, T ) × H+, and let v be the unique mild and K-strong
solution to (5.7). Suppose that Hypotheses 5.1 and 5.2 hold and assume that, on
[t, T ) × H+, the feedback map �, defined in (5.11), admits a measurable selection
φt : [t, T ) × H+ → U such that the closed-loop equation

{
dX(s) = [AX(s) + b(s, X(s), φt (s, X(s)))] ds + √

Q dW (s), s ∈ [t, T ],
X(t) = x,

(5.12)

has a mild solution (in the sense of [16], Definition 1.119), denoted by Xφt :=
(Xφt (s; t, x))s∈[t,T ]. Define alsouφt := (uφt (s))s∈[t,T ], where uφt (s) = φt (s, Xφt (s)).

If uφt ∈ Uad , then the pair (uφt , Xφt ) is optimal at (t, x) and v(t, x) = V (t, x).
Moreover, if �(t, x) is always a singleton4 and the mild solution of (5.12) is unique,
then uφt is the unique optimal control.

Example 5.11 We consider here a simplified version of the spatial economic growth
problem of [6] in a stochastic and finite-time horizon setting (see also [5], [7], and
[17]). We provide this example as a motivation for our paper and for future research
in exit-time optimal control problems and optimal control problems with state space
constraints, as explained in the Introduction. Indeed, as we will see in a moment, our
example is related to both kind of dynamic optimization problems, and it is formulated
in a slightly more general setting than the one of Sect. 5. This will give us the chance
to point out possible future developments of our research. In the following, we denote
by S1 the unit circle, and we set H := L2(S1), that is, we consider H to be the set of
square-integrable functions on S1.

We present, first, a finite-time horizon version of the model studied in [6], which
is formulated in a deterministic setting. In this paper, the state variable is the capital
stock k(t, ξ) and the control variable, which is assumed to be non-negative, is the

4 This happens, e.g., when b is linear and � is quadratic and strictly convex.
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consumption flow c(t, ξ); both variables depend on time t ∈ [0, T ], where T > 0
is a fixed time horizon, and on the spatial position ξ ∈ S1. Given suitable bounded
measurable data A : S1 → R+, k0 : S1 → R+, and t ∈ [0, T ], we consider the state
equation

⎧
⎨

⎩
dk(s, ξ) =

[
∂2

∂ξ2
k(s, ξ) + A(ξ)k(s, ξ) − c(s, ξ)

]
ds, (s, ξ) ∈ (t, T ] × S1,

k(t, ξ) = k0(ξ), ξ ∈ S1.
(5.13)

We call kt,k0,c the unique solution to such state equation.We require the state to satisfy
the constraint k(s, ·) ∈ H+, for all s ∈ [t, T ], where

H+ :=
{

k ∈ L2(S1) :
∫ 2π

0
k(ξ)ȳ(ξ) dξ > 0

}
, (5.14)

and ȳ is a strictly positive eigenvector (unique up to a multiplication by a scalar,
as explained in [7], Section 4) associated with the operator L : D(L) ⊆ L2(S1) →
L2(S1), defined as

[Lk](ξ) = ∂2

∂ξ2
k(ξ) + A(ξ)k(ξ), x ∈ S1.

The objective functional to be maximized in this finite-time horizon setting is:

J0(t, k0; c) :=
∫ T

t

∫ 2π

0
U0(s, kt,k0,c(s, ξ), c(s, ξ)) ds, t ∈ [0, T ],

where U0 : [0, T ] × R × R+ → R is a suitable running gain function and controls c
are chosen in the set

AD
ad (t, k0) := {c ∈ L1((t, T ];L2(S1; [0,+∞))) : kt,k0,c(s, ·) ∈ H+, for a.a. s ∈ (t, T ]},

where the dependence of this set on (t, k0) ∈ [0, T ] × H+, is due to the fact that the
solution to (5.13) depends on this pair.

If we assume that U0(s, k, c) ≥ 0 everywhere and that U0(s, k, 0) = 0 for all
s ∈ [0, T ], k ∈ R, then the state constrained problem above is equivalent to an exit-
time problem from the half-plane H+ defined in (5.14). To see this equivalence, let us
define the objective functional associated with the exit-time problem:

J (t, k0; c) :=
∫ T ∧τ

t
U0(s, k(s, ξ), c(s, ξ)) ds, t ∈ [0, T ],

where controls c are chosen in the set L1
loc

(
(t, T ];L2(S1; [0,+∞))

)
and

τ := inf{s ∈ (t, T ] s.t. k(s, ·) ∈ ∂ H+}.

Let us fix t ∈ [0, T ] and k0 ∈ H+. On the one hand, if c ∈ AD
ad(t, k0), then a fortiori

c is admissible for the exit-time problem and τ > T . Therefore, the functionals J0
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and J coincide for all c ∈ AD
ad(t, k0), and hence, the value of the state-constrained

optimal control problem is not greater than the value of the exit-time problem. On the
other hand, let us consider an arbitrary control c ∈ L1

loc

(
(t, T ];L2(S1; [0,+∞))

)
and

the constant control equal to zero, denoted by 0, which verifies 0 ∈ AD
ad(t, k0). Let τ

be the first time at which the solution to (5.13) with control c reaches the boundary of
H+ and let c̄ be the following control, for s ∈ (t, T ],

c̄(s) :=
{

c(s), if s < τ ∧ T ,

0, if s ≥ τ ∧ T .

Then, c̄ ∈ AD
ad(t, k0), and it is also admissible for the exit-time problem. Using the

assumptions on U0, we can immediately show that the functionals J0 and J coincide
with this control and hence that the value of the exit-time problem is not greater
than the value of the constrained optimal control problem. Thus, the two optimization
problems are equivalent.

The exit-time optimal control problem can be formulated in an infinite-dimensional
stochastic setting as follows. We call the state variable X(s) := k(s, ·) and the con-
trol variable u(s) := c(s, ·). We consider a cylindrical Wiener process W , as in the
beginning of this section, Q ∈ L+

1 (H), and we suppose that X satisfies

{
dX(s) = [L X(s) − u(s)]ds + √

Q dW (s), s ∈ [t, T ],
X(t) = x ∈ L2(S1).

(5.15)

Equation (5.15) is precisely of the form given in (5.1). We preferred to denote by L
(instead of A) the operator associated with the linear part of this SDE to maintain the
standard notation of datum A in (5.13), which is related to the economic interpretation
of this model (see, e.g., [6] for more details). It is possible to verify that L generates a
C0-semigroup and that it is self-adjoint, so that Hypoteses 2.1-(i)-(ii) are verified. We
also suppose that Q verifies all other points of Hypothesis 2.1. The possibly nonlinear
term b appearing in the drift of SDE (5.15) is simply given by b(s, x, u) = −u. The
set of admissible controls is, for given M > 0,

AS
ad (t, x) :=

{
u ∈ L1((t, T ] × 
;L2(S1; [0,+∞))) : u is progressively measurable,

u(s, ω)(ξ) ≤ M for all (s, ξ, ω) ∈ [t, T ] × S1 × 
,

Xt,x,u(s) ∈ H+, for a.a. s ∈ (t, T ], P-a.s.
}
.

Note that we choose bounded controls so that Hypothesis 5.1-(ii) is verified.
Next, we consider the functional

J1(t, x; u) := E

[∫ T ∧τ

t
�(s, X(s), u(s)) ds

]
, (5.16)

where τ is the first exit time from the half plane H+ defined in (5.14) and, for any
s ∈ [0, T ], k : S1 → R, c : S1 → R+ (provided that the integral below is well-
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defined),

�(s, k, c) :=
∫ 2π

0
U0(s, k(ξ), c(ξ)) dξ.

We assume that U0 is such that Hypothesis 5.2-(i) is verified. Hence, under the above
setting our main results (in particular Theorems 3.3, 4.4, Theorem 5.9) apply.

We conclude our example with an important note. We must be clear on the fact that
the original problemstudied in the economic literature (see, e.g., [6] and [17]) considers
an infinite time horizon setting, unbounded controls and functions U0 representing
utility functions of the Constant Elasticity of Substitution-type, i.e.,

U0(c) = c1−σ

1 − σ
, with σ > 1.

Although it seems possible to extend our result to an infinite time horizon setting and
to the case of unbounded controls, dealing with utility functionsU0 of such type seems
quite difficult at the moment. All such extensions will be the subject of future research.
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