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“Now these points of data make a beautiful line
And we’re out of beta

We’re releasing on time
So I’m GLaD I got burned

Think of all the things we learned
For the people who are still alive”

(GLaDOS, 2007)



RESUMO

Uma das fontes renováveis de energia com maior potencial é a irradiação solar, que
fornece uma quantidade significativa de energia. Devido à baixa densidade e grande
intermitência associados a esta fonte, a sua exploração envolve a utilização de con-
centradores, que possuem taxas de conversão que podem ser consideradas baixas
quando comparadas com outras fontes de energia. Esta baixa eficiência se reflete
nos custos de geração, sendo observado que em todas as técnicas de captação de
energia solar, este é muito superior aos custos possíveis com soluções tradicionais.
Neste contexto, o desenvolvimento de tecnologias para captação, armazenamento e
utilização da energia solar de forma eficiente é crucial para a viabilidade econômica
destes processos. Diferentemente das fontes de energias mais tradicionais, a fonte da
energia solar não pode ser manipulada diretamente, portanto, o estudo de técnicas
avançadas de controle, como o Controle Preditivo Baseado em Modelo (MPC) é inter-
essante para aumentar a viabilidade deste tipo de processo. Este trabalho visa estudar
técnicas de controle preditivo em sistemas termossolares com coletores fresnel, em
especial MPC híbrido e não linear. Estes controladores são utilizados em problemas
que envolvem todo o processo de geração de energia e as interações entre seus com-
ponentes, além de considerar o desfoque dos coletores utilizados para captar energia
solar. As propostas de controladores apresentadas são desenvolvidas objetivando um
custo computacional que permita a implementação em processos reais, além de pro-
mover alguma melhora em indicadores de produtividade do processo. É apresentada
uma modelagem ótica simplificada de um coletor Fresnel, possibilitando a compreen-
são de como as características óticas deste tipo de coletor afetam o processo. Além
disso, também é mostrado um estudo de possibilidades para o rastreamento do Sol
neste tipo de coletor, avaliando os possíveis ganhos que a manipulação individual de
cada espelho do coletor pode trazer para o processo. Também são avaliadas propostas
de controle preditivo que consideram como o desfoque proposto pelo controlador é
implementado. Potenciais erros ou incertezas provenientes da utilização do desfoque
como variável manipulada são investigados e, por fim, é proposta uma forma alterna-
tiva papa a implementação da estratégia, utilizando redes neuro-fuzzy. Os resultados
mostram que os controladores preditivos propostos são capazes de controlar o pro-
cesso evitando superaquecimento, mas para que esta operação possa ocorrer sem
introduzir incertezas consideráveis no controlador, a posição angular dos espelhos
deve apresentar valores de incerteza muito baixos. A proposta alternativa de imple-
mentação com neuro-fuzzy se mostrou superior quando comparada com a abordagem
baseada em otimização.

Palavras-chave: MPC Híbrido, desfoque, planta solar, neuro-fuzzy



ABSTRACT

One of the renewable energy sources with the greatest potential is solar irradiation,
which provides a significant amount of energy. Due to the low density and high inter-
mittency associated with this source, its exploitation involves the use of concentrators,
which have conversion rates that can be considered low when compared to other en-
ergy sources. This low efficiency is reflected in the generation costs, and it has been
observed that in all solar energy harvesting techniques, these are much higher than
the costs possible with traditional solutions. In this context, the development of tech-
nologies to capture, store and use solar energy efficiently is crucial for the economic
viability of these processes. Unlike more traditional energy sources, the source of solar
energy cannot be manipulated directly, so the study of advanced control techniques
such as Model Predictive Control (MPC) is interesting to increase the viability of this
type of process. This work aims to study predictive control techniques in thermosolar
systems with fresnel collectors, in particular hybrid and nonlinear MPC. These con-
trollers are used in problems involving the entire power generation process and the
interactions between its components, as well as considering the blur of the collectors
used to capture solar energy. The controller proposals presented are developed aiming
at a computational cost that allows implementation in real processes, besides promot-
ing some improvement in process productivity indicators. A simplified optical modeling
of a Fresnel collector is presented, allowing the understanding of how the optical char-
acteristics of this type of collector affect the process. In addition, a study of possibilities
for sun tracking on this type of collector is also shown, evaluating the possible gains
that individual manipulation of each collector mirror can bring to the process. Predic-
tive control proposals that consider how the proposed controller blur is implemented
are also evaluated. Potential errors or uncertainties arising from the use of blur as a
manipulated variable are investigated and, finally, an alternative way to implement the
strategy is proposed, using neuro-fuzzy networks. The results show that the proposed
predictive controllers are able to control the process avoiding overheating, but for this
operation to occur without introducing considerable uncertainties in the controller, the
angular position of the mirrors must present very low uncertainty values. The proposed
alternative implementation with neuro-fuzzy proved to be superior when compared to
the optimization-based approach.

Keywords: Hybrid MPC, defocusing, solar plant, neuro-fuzzy



RESUMO EXPANDIDO

Uma das fontes renováveis de energia com maior potencial é a irradiação solar, que
fornece uma quantidade significativa de energia à superfície da Terra. Devido à baixa
densidade associados a esta fonte de energia, a sua exploração envolve a utilização
de concentradores da irradiância solar, associados em série e paralelo, formando
campos de coletores solares qu aquecem um fluido de trabalho. Devido ao ciclo diário
de variação da intensidade da irradiância solar, estas plantas são dimensionadas de
forma a captar múltiplas vezes a energia demandada, o que comumente gera situações
de superaquecimento, que devem ser evitadas. Para evitar este superaquecimento,
é possível reduzir o nível de concentração da energia solar nos coletores, em um
processo denominado desfoque. Este desfoque geralmente não é incorporado no
sistema de controle da planta, o que pode reduzir a eficiência global do processo tendo
em vista que sistemas de segurança tendem a ser conservadores.

Existem poucos trabalhos na literatura que exploram a incorporação do desfoque ativa-
mente no controle do campo solar, sendo que os trabalhos existentes não contemplam
como implementar este desfoque em coletores do tipo Fresnel. Este trabalho se dedica
a começar a preencher esta lacuna na literatura, fornecendo propostas de estruturas
de controle de campos solares com coletores Fresnel que incorporam o desfoque como
variável manipulada, e também analisando os impactos da introdução desta atuação
nas incertezas dos modelos utilizados no controle.

Para este fim, foram consideradas técnicas avançadas de controle, como o Controle
Preditivo Baseado em Modelo (MPC) que é muito utilizado em pesquisas visando
aumentar a viabilidade deste tipo de processo. Este trabalho visa estudar técnicas de
controle preditivo em sistemas termossolares com coletores fresnel, em especial MPC
híbrido e não linear. Estes controladores são utilizados em problemas que envolvem
todo o processo de geração de energia e as interações entre seus componentes,
além de considerar o desfoque dos coletores utilizados para captar energia solar. As
propostas de controladores apresentadas são desenvolvidas objetivando um custo
computacional que permita a implementação em processos reais, além de promover
melhoras em indicadores de produtividade do processo. Esta tese está dividida em
sete capítulos, sendo estes:

Uma introdução à motivação desta tese, bem como apresentação dos objetivos do
trabalho;

Uma revisão de aspectos relevantes da literatura pertentes aos estudos realizados
nesta tese, como modelagem de plantas termossolares, Controle Preditivo Baseado
em Modelo, modelos óticos de coletores fresnel e inteligência artificial;

O primeiro capítulo de contribuições, contendo um estudo comparativo entre duas
propostas de controladores já existentes na literatura com uma nova proposta de con-
trolador, que incorpora aspectos das duas anteriores. Os controladores são avaliados
em simulações de casos de operação do campo solar, onde se notou que cada uma



das três propostas de controle é capaz de controlar o processo estudado não havendo
uma proposta com desempenho claramente superior em todos os aspectos analisados;

O segundo capítulo de contribuições, no qual é apresentada uma modelagem ótica
simplificada de um coletor Fresnel, possibilitando a compreensão de como as car-
acterísticas óticas deste tipo de coletor afetam o processo. Além disso, também é
mostrado um estudo de possibilidades para o rastreamento do Sol neste tipo de co-
letor, avaliando os possíveis ganhos que a manipulação individual de cada espelho
do coletor pode trazer para o processo. O modelo ótico foi validado com dados de um
software de referência e com dados do fabricante do coletor modelado, apresentando
proximidade com os dados de referência. As estratégias de seguimento do Sol consid-
eradas apresentaram desempenho muito similar entre si, levando à conclusão de que
a estratégia de implementação mais simples é a mais adequada.

O terceiro capítulo de contribuições, onde mais uma proposta de controle preditivo
que considera o desfoque como variável manipulada, mas desta vez utilizando um
controlador preditivo baseado apenas em um modelo não-linear. Este controlador pro-
posto foi comparado com um dos controladores já presentes na literatura e apresentou
desempenho em geral superior, apesar de também ter custo computacional mais ele-
vado. Neste capítulo também foram realizadas análises de sensibilidade na estratégia
de desfoque proposta, de forma a compreender como incertezas na configuração do
coletor poderiam impactar a capacidade do controle de implementar um certo valor
de desfoque. Esta análise conclui que para que o controle utilizando desfoque em
coletores fresnel possa ocorrer sem introduzir incertezas consideráveis no modelo, a
posição angular dos espelhos deve apresentar valores de incerteza muito baixos;

O quarto e último capítulo de contribuições apresenta uma nova proposta de cálculo do
desfoque, agora utilizando inteligência artificial, e mais especificamente redes Neuro-
Fuzzy, para realizar o cálculo do desfoque com maior velocidade e precisão. Após
treinamento com dados obtidos de um software de referencia para modelagem ótica
de coletores solares, a nova proposta se mostrou superior quando comparada com
a abordagem baseada em otimização tanto na qualidade dos resultados quanto na
velocidade de cálculo;

No último capítulo desta tese, é apresentado um resumo dos resultados obtidos, bem
como são apresentadas oportunidades para pesquisas futuras a partir dos trabalhos
realizados.
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1 INTRODUCTION

The growing demand for energy is a consequence of human development from
both an economic and social point of view since the increase in industrialization and
the demand for various services lead to growth in the consumption of various en-
ergy sources. In its latest annual report on energy and carbon dioxide emissions (IEA,
2019a), the International Energy Association (IEA) states that between 2017 and 2018,
global energy demand grew by 2.3%, with natural gas accounting for 45% of the growth
in energy consumption. The trend of constantly growing energy demands is evident
when looking at the historical values presented by International Energy Agency (IEA),
shown in Figure 1.

Figure 1 – Historical world energy demand, broken down by source and measured in
Mtoe 1 .

Source: IEA (2019b).

Studies on the greenhouse effect and the factors contributing to its intensifica-
tion have become necessary, which motivated the United Nations (UN) to create the
Intergovernmental Panel on Climate Change (IPCC). This organization is dedicated to
providing assessments of the scientific basis of climate change, its impacts, and options
for adaptation and mitigation. One of the most important products of the IPCC is the
Assessment Report (AR), which presents a compilation of scientific knowledge on the
topic and predictions for greenhouse gas emissions scenarios and estimates of the
scale of emissions reductions that must be achieved. One of the most important find-
ings of the IPCC Fifth Assessment Report (IPCC, 2021), the most recent report, is the
approximately linear relationship between the increase in global average temperature
1 Tonne oil equivalent.
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and the amount of CO2, as can be seen in Figure 2. This relationship allows the IPCC
to set limits on gas emissions from targets for global temperature increase.

Figure 2 – Growth of the Earth’s average surface temperature as a function of the
cumulative amount of carbon dioxide emissions under various scenarios.

Source: IPCC (2021).

Currently, the most relevant instrument of the UN to define targets for global
warming is the Paris Agreement (UN, 2015), in which the goal was set to keep the
global average temperature increase below 2°C as of 2022, preferably below 1.5°C.
The scenarios for greenhouse gas emissions made in the AR6 (IPCC, 2021) point out
that a large reduction in the emissions of these gases is necessary for it to be feasible
to achieve the target in a feasible way, which is not materializing. In this context, there
is worldwide interest in the development of clean technologies and renewable sources,
considering that these contribute very little to the increase in emissions of CO2, either
because they are inserted in carbon capture cycles, such as biomass, or because they
do not involve the burning of fuel, such as hydroelectric, wind and solar energies.

One of the renewable energy sources with the most significant potential for
exploitation is solar irradiation, which provides a large amount of energy, even when
considering attenuation effects promoted by the atmosphere and clouds (TIAN; ZHAO,
2013). Due to the low density and intermittency associated with this energy source, its
exploitation involves the use of concentrators, which have conversion rates between
8 and 30%, which can be considered low compared to other energy sources. This
low efficiency is reflected in the energy generation costs, and it has been observed
that in all the solar energy harvesting techniques this is much higher than the costs
possible with traditional solutions (MACEDO, 2003). In this context, the development of
technologies to capture, store and use solar energy in an efficient manner is crucial for
the economic viability of these processes (ZHANG et al., 2013). Reports such as Solar
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Payback (2018) and Weiss et al. (2017) present data on the use of thermosolar energy
in Brazil and in several countries worldwide, showing the potential for expansion of the
use of this type of energy in Brazil, both by the level of incident irradiation in the country
and by the demands of the industrial and residential sectors.

There are several initiatives that invest in ways to enable the application of solar
energy in the energy matrix, such as the Solar and Wind Energy Resource Acessment
(SWERA) project, a United Nations program that conducted studies on solar incidence
throughout the Brazilian territory, which resulted in the preparation of the Brazilian Solar
Energy Atlas (PEREIRA et al., 2017) that enables planning and research of future
thermosolar plants in the national territory.

Solar thermal fields present many important characteristics that must be consid-
ered in order to safely operate. Constraints such as the upper limit of the operational
temperatures of the heat transfer fluid or the maximal flow possible with the avaliable
pumps challenge the control structures of these plants, which must also deal with
considerable enviromental disturbances, such as clouds. Unlike the more traditional
energy sources (fossil fuels, hydroelectric), the solar energy source cannot be directly
manipulated, which hinders the availability and economic viability of its use (CAMA-
CHO; SAMAD, et al., 2011). These limitations motivate the study of advanced control
techniques, such as Model Predictive Control (MPC), to increase the viability of this
type of process. This type of controller can natively deal with operational constraints,
operation objectives, and multivariable processes, as is the case of solar plants. Three
variations of MPC are widely studied nowadays and have great potential for applicability
in thermosolar power generation processes are the Hybrid, Distributed, and Stochastic
Predictive Control.

The term MPC does not refer to a specific control strategy, but to a set of al-
gorithms based on prediction and optimization. In these methods, at each controller
iteration, the future behavior of the process is predicted from a mathematical model,
measurements, and control actions provided by an optimizer. Figure 3 contains a repre-
sentation of the prediction at one instant. It can be seen in the figure that the proposed
actions generate, for example, a predicted behavior that decreases the distance be-
tween the value predicted by the model and a reference trajectory. At the end of the
iteration calculation, the first control action calculated at the horizon is applied to the
process, new measurements are taken, and a new iteration of the controller is started.

Figure 4 presents a general representation of the relationships between the
process, model, and optimizer in MPC.

This structure with model and optimizer allows great flexibility of formulations to
be used in the controllers, which can be observed given the numerous versions of MPC
in the literature. It is possible to include feedforward action when considering the effect
of measured perturbations, future reference trajectories, band controls among others
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Figure 3 – Representation of the predictions and control actions calculated in the MPC
prediction horizon.

Source: Adapted from Camacho and Bordons (2002).

Figure 4 – Block diagram representing the main elements of the MPC.

Source: The author.

(CAMPOS et al., 2013).
One of the most important elements of the MPC is the optimizer, which proposes

control actions in an iterative process in an attempt to achieve an objective and respect
constraints. The objectives and constraints are mathematical expressions established
in the controller design phase and can take several forms. In the objectives, quadratic
functions are commonly used to penalize the error in the reference tracking, resulting in
Quadratic Programming (QP) problems, but elaborate formulations such as Economic
Model Predictive Control (EMPC) (RAWLINGS et al., 2012; FONTES et al., 2022)
use complex objectives that associate economic and control performance terms. More
complex formulations can result in optimization problems of classes such as Mixed-
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Integer Quadratic Programming (MIQP) (AXEHILL; HANSSON, 2005; BEMPORAD;
NAIK, 2018) or even Nonlinear Programming (NLP) (BIEGLER, 2021).

In Hybrid MPC, both continuous and binary/logical variables are used in the
process model and in the controller formulation (VILJOEN et al., 2020; YANG et al.,
2022), allowing decisions such as deactivating or activating parts of a process, which
is desirable, for example, when partial shading occurs in a solar field and you want to
avoid thermal energy loss to the environment. The optimization problems to be solved
by MPC can be very complex, especially in large-scale systems.

Heliothermal Plant Control

To enable the operation of heliothermal plants, there are two main controls: sun
tracking and control of thermal variables (CAMACHO; GALLEGO, 2015). Figure 5
presents an illustration of a structure that uses these two types of control of a solar field.
The local PID controls in the figure are charged with locally controlling the positions
of the mirrors or collectors. These controllers receive the references from the forward
control so that the system’s power generation achieves its objectives. Thus, the control
of thermal variables is performed in a layer above that of the mechanical systems for
focusing and tracking the sun. This tracking consists of positioning the moving parts of
the collector so as to maximize the amount of irradiation incident on the absorber. In flat
or parabolic cylinder collectors, the best possible position is where the solar irradiation
falls perpendicular to the plane of the collector, while fresnel collectors or plants with a
central tower require individual adjustment of several mirrors to allow concentration of
the solar energy (CAMACHO; BERENGUEL; GALLEGO, 2014).

Figure 5 – Hierarchy of control systems in a heliothermal plant.

Source: The author.

In the literature, there are several works about the control of thermal variables
of solar plants, being a review on control strategies applied to direct steam generation
plants found in Aurousseau et al. (2016). The work of Pintaldi et al. (2019) uses predic-
tive control for solar cooling plants, considering thermal energy storage systems. The
control of the solar field to avoid thermal fluid overheating, considering collector defo-
cusing, is investigated by some recent works. Sánchez et al. (2018) presents a novel
control strategy for overheating prevention of the HTF by defocusing the collectors on a
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commercial 50 MW parabolic trough plant model by means of a Gain Scheduling MPC.
It models how the defocusing is implemented by offsetting the solar tracking angle of
the Parabolic Trough Collector (PTC) by some known correlation between the collector
inclination and the solar concentration ratio. (ARAÚJO ELIAS et al., 2019) presented
an ON/OFF defocus strategy as well as a partial defocusing control strategy taking
into account intermediate focusing positions and using hybrid PNMPC controllers. Both
approaches were applied on a model of the ACUREX parabolic collectors based solar
field (located at the Solar Platform of Almería, Spain), but replacing the optical efficiency
terms considering the use of fresnel collectors. The work of Alhaj and Al-Ghamdi (2018)
also proposes a control strategy with defocusing, aiming at reducing energy expenditure
with the pumping of the thermal fluid.

Most of the existing works that propose proportional defocusing of collectors do
not specify how this strategy can be implemented, which may be impossible depending
on the actuators or collector type. In the case of fresnel collectors, to the best of the
author’s knowledge, there are no works that consider how the implementation of the
defocusing will occur. The present work intends to address both aspects of the control
of the thermal variables of the solar field and the tracking of the sun and defocusing
of collectors, analyzing how proportional defocusing can be implemented in fresnel
collectors and the challenges of introducing this manipulated variable in the control
structure.

1.1 GENERAL OBJECTIVE

To develop and to analyze control solutions that increase the efficiency of solar
thermal energy collecting systems through Model Predictive Controllers and defocusing
strategies of fresnel collectors.

1.2 SPECIFIC OBJECTIVES

• To develop a simplified optical model of a fresnel collector to study sun blurring
and tracking techniques;

• To investigate control techniques for solar fields acting simultaneously on the flow
and focus of collectors;

• To develop formulations without using mixed integer programming in controllers
acting with collector defocus;

• To analyze the performance of the proposed solutions with others already existing
in the literature;
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• To analyze the possible challenges presented by the use of defocusing as a
manipulated variable.

DOCUMENT STRUCTURE

This thesis is divided as follows: Chapter 2 presents a review of the literature
on control in renewable power generation processes and predictive control. Chapter 3
presents the first contribution of this thesis, with a hybrid predictive control formulation
for control of solar thermal fields, which was published in the article Brandão, Costa
Mendes, Elias, et al. (2019) and presented at Solar World Congress 2019. Chapter 4
presents the second contribution of this work, consisting of a simplified optical model for
fresnel collectors and some analyses of solar aiming strategies, which was published
in the article Brandão, Costa Mendes, and Normey-Rico (2022). In Chapter 5, the
complete defocusing MPC structure proposed in this thesis is presented and evaluated
with nonlinear controllers. This chapter also analyses the effects of different sources of
uncertanties on the expected precision of the defocusing actuation. The results of this
paper resulted in the article Brandão and Normey-Rico (submitted) that was submitted
to Solar Energy journal. Chapter 6 presents the last contribution of this thesis, consisting
of proposals for improving precision and computation time of the defocusing algorithm
with the use of neuro-fuzzy models, which resulted in Brandão, Chicaiza, et al. (2023),
which was submitted for the IFAC World Congress 2023. This chapter was developed in
cooperation with Phd student William D. Chicaiza, during my period at Universidad de
Sevilla, in Spain. Finally, the conclusion of the document is made with an overview of
the work, presentation of future research perspectives, an overview of the challenges
along the way, and a brief report on the chronological advance of the PhD process that
culminated in this thesis.
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2 THEORETICAL BACKGROUND

In this chapter, a review of the main topics related to the research themes pre-
sented in this document is carried out. Initially, a review of control techniques applied
in thermosolar energy generation systems is made. Next, reviews are presented on
the types of predictive controllers to be considered: Nonlinear, Hybrid, Distributed, and
Stochastic.

2.1 HELIOTHERMIC PLANTS

There are several ways to take advantage of the energy from the sun, from using
photovoltaic cells to generate electricity (BRAGA et al., 2019) to drying fruits for snacks
(MNKENI et al., 2001). One of the most studied technologies for harnessing solar ther-
mal energy is Concentrating Solar Energy (CSP). Plants that use CSP capture solar
radiation and concentrate it in a receiver (called absorber), through which a Heat Trans-
fer Fluid (HTF) circulates, which is heated by the solar energy that reaches the receiver.
Solar radiation can be concentrated through lenses or mirrors, the latter being more
common (LOVEGROVE; STEIN, 2012). The set of reflecting and absorbing mirrors is
referred to as a collector, the main types of collectors being PTC, Linear Fresnel Col-
lector (LFC), and the parabolic disk collector (Figure 6 ). These collectors are arranged
in series and parallel, forming a field of solar collectors, enabling the capture of solar
irradiance over a large area and raising the HTF to high temperatures.

*
Figure 6 – Solar tracking on different types of solar collectors.

Source: Silvi (2011).
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The thermal energy captured by the solar field can be used directly, or it can feed
a thermodynamic cycle (such as the Rankine cycle ) coupled with a generator, enabling
the generation of electrical energy (LOVEGROVE; STEIN, 2012). Heliothermic power
plants can be divided into three subsystems: The solar field, composed of collectors
and storage tanks of HTF; The heat transfer system, in which the thermal energy from
the field is transmitted to the thermodynamic cycle; and the power block, which contains
the stages of the thermodynamic cycle and the generator (RETORTA et al., 2018). A
representation of the basic structures of this type of plant is presented in Figure 7.

Figure 7 – Overview of a solar thermal plant.

Source: Adapted from U.S. Department of Energy (2011).

The operation of heliothermic plants presents several challenges, such as control
of collectors, prediction of solar irradiation, control of energy conversion systems and
general control of the process (CAMACHO; BERENGUEL; RUBIO, et al., 2012). As
solar irradiance is the energy source of solar plants, predicting this variable is very
important for plant planning and operation, which motivated studies that use sky imaging
for short-term estimates, such as Achleitner et al. (2014), Darbali-Zamora et al. (2015)
and Cervantes et al. (2016).

The control of the collectors must ensure that, even with the relative movement
of the Sun, there is concentration of solar energy in the absorbers. How this is done
depends on the type of collector and this type of problem is known as solar aiming or
solar tracking.

In PTC collectors (BAKHTIARI; BIDI, 2015) (as shown in item a of Figure 6),
tracking is performed by rotating the reflecting mirrors around the collector tube. In this
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case, the strategy is simple and consists of keeping the collector opening perpendicular
to the incident rays, in order to make them converge to the focus of the parabola. Due
to the optical properties of parabolic mirrors, if the rays do not fall perpendicular to the
collector’s mirror opening, the sun’s rays will not converge on a single focal point, which
can impair the capture of solar energy. In the case of parabolic disk collectors (item c
in Figure 6), the process is similar to PTC collectors, but a second degree of freedom
is introduced in the manipulation of the mirrors. In the case of fresnel collectors (PINO,
F. et al., 2013) and central tower (ELSAYED et al., 2018) (b and d items in Figure 6,
respectively), tracking is more complex because there are several mirrors with different
inclinations, and factors such as mirror shading and cosine losses. A brief review of
systems in tracking can be found in Jamilu (2017).

In the literature, there are several proposals for optical models for fresnel collec-
tors, but these are mostly very generic and complex, being developed with the objective
of design and analysis of collector efficiency. In these cases, techniques from ray trac-
ing are used in these models, as presented in Osório et al. (2016), Eddhibi et al. (2017)
and Benyakhlef et al. (2014). This type of model can present a high computational cost,
being unfeasible in predictive control applications. There are proposals for models that
do not use ray tracing, such as the one proposed by F.J. Pino et al. (2013), but these are
often too complex, which also makes the computation cost high. The work of Barbón
et al. (2020) presents a study on the impact of the actuation time of tracking and the
performance of the collector, which is pertinent to evaluate the maximum sampling time
that this system should have.

2.2 FRESNEL COLLECTOR FIELD MODELING

In order to study the fresnel collectors and not having easy access or flexibility to
perform experiments in this type of process, it was necessary to study what the literature
had avaliable in regard to modeling. The following sections present some of these
literature proposed models, considering the thermodynamics and optical characteristics
of Linear Fresnel Collectors.

2.3 OPTICAL MODELS FOR FRESNEL COLLECTORS

The first step of the development of the collector optical model is the definition
of a set of parameters that describes the collector and the direction of the sun’s rays. In
this work, a Fresnel collector is considered, with nmirr plane parallel mirrors, equidistant
∆x meters, with length Cmirr and width Lmirr . The absorber is also considered to be
flat, with Cabs length, Labs width and Eabs elevation relative to the plane of the mirrors.
The mirrors are numbered from west to east, with the first mirror being the westernmost
(towards the sunset) and the last mirror the easternmost (towards the sunrise). A x-
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coordinate axis is also defined, originating in the central axis of the absorber. The
variables xi , i = 1,...,nmirr , represents the position of the rotation axis of each mirror i on
the x axis. Figure 8 presents a visualization of these parameters in a collector.

Figure 8 – Detailing of some of the collector’s parameters.

Source: The author.

Figure 9 presents the variables used to define the solar rays. The angle θ rep-
resents the angle of incidence of the solar ray in the horizontal plane, measured from
zenith location (i.e. solar zenith angle), and can be obtained by equations that relate it to
the day, time, and position of the collector, as presented in Sandia National Laboratories
(2018). This angle can be decomposed into two perpendicular components:

• hl , the projection of θ in the longitudinal plane of the collector;

• ht , the projection of θ in the transversal plane of the collector. It admits negative
values from sunrise until solar noon and positive values from solar noon until
sunset.

The value of θ as well as the projections can be calculated through the following
expressions, given by Pigozzo (2019):

ht = tan–1(tan(θ)sin(γS)), (1)

hl = tan–1(tan(θ)cos(γS)). (2)

Besides the parameters presented above, it is also necessary to define two
parameters of each mirror (illustrated in Figure 10):

• βi is the smallest angle between the plane that passes through the rotation axes
of all mirrors and mirror i . It is positive when the mirror is rotated clockwise and
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Figure 9 – Detailing of the angles describing the sun rays direction.

Source: Adapted from Wagner (2012).

negative when the mirror is rotated counterclockwise (as shown in Figure 10). It
is limited between -90o and 90o and is the variable manipulated to perform the
solar tracking;

• µi is the angle between the straight line passing through the center of rotation
of mirror i and center of the absorber, and the horizontal plane (segment AB in
Figure 10), always measured by the sunrise side. This angle is always positive
and can be calculated by the following expression:

µi = tan–1 Eabs
xi

. (3)

The first concept to be considered in the model is the reflection of the solar
rays in the mirrors. According to Snell’s Law, light inciding in a reflective surface will be
reflected at an angle equal to the angle of incidence to the normal of this surface. In the
case of a mirror i of the collector, the angle of incidence of solar rays will be denoted by
θi , and its transversal and longitudinal projections denoted by θt ,i and θl ,i respectively.
Figure 11 presents an illustration of these angles.

Note that for solar tracking on a Fresnel collector, θt ,i is very important, being
affected by both the sun’s rays’ direction (ht ) and the inclination of the mirror (βi ), and
is given by Equation (4).

θt ,i = ht +βi . (4)
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Figure 10 – Detailing of some of the mirror’s parameters.

Source: The author.

With the basic parametrization of the problem defined, the different proposals for
optical model can be analyzed.

The literature presents some optical models for Fresnel collectors, as presented
in (HUANG et al., 2014; TSEKOURAS et al., 2018; CAGNOLI et al., 2018), but these
models use ray-tracing techniques, and thus, they have an inherent elevated computa-
tional cost, associated with the multiple calculations necessary for the implementation
of the ray-tracing technique. Analytical models are also available, such as the one
presented in Wang et al. (2020), that presents a simple and accurate model, but as-
sumes an specific aiming strategy, therefore cannot be used to study different tracking
techniques or defocusing.

The analytical model proposed by F. J. Pino et al. (2013) considers two and
three dimensional characteristics of the collector and incorporates a thermal model
of the absorber, but the energy effects of the optical part of the model are validated
indirectly, with temperature data from a real collector, thus taking into account the
combined behaviour of the thermal and optical models. The model proposed in Zhu
(2013) is accurate and does not assume an specific aiming strategy, but demands a
considerable computation time, around 3 s per evaluation, that can impede its use on
prediction models of advanced controllers.

In addition to optical models, thermodynamic models are very important to de-
scribe the behavior of collectors and collector fields. These models relate the discharge
temperature of each loop and field to the flow rate of HTF which is heated by the
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Figure 11 – Detailing of the angles describing the sun rays direction.

Source: Adapted from (WAGNER, 2012).

radiation concentration in the collector. Due to the high length of the pipes through
which the HTF moves, the effect of the transport delay can be significant in this type of
process and can make it difficult to implement simple control strategies. The ambient
temperature is also important in these models as it directly contributes to the thermal
losses in the process. There are several proposals for thermodynamic models for solar
fields, as shown in Robledo et al. (2011), Padilla et al. (2011), Spoladore et al. (2011)
and Tian, Perers, et al. (2018).

2.4 THERMODYNAMIC MODEL

The literature has some models that represent the dynamics of heat exchange
in the absorber tube of a linear collector. Some more sophisticated models, such as
Cagnoli et al. (2018), Ordóñez et al. (2020) and Padilla et al. (2011) explicitly consider
the interactions between glass insulation, absorber tube, HTF and secundary reflector
in order to better estimate the thermal energy exchange. Other models consider a
disributed parameter structure, such as Spoladore et al. (2011) and Carmona (1985)
to better characterize the distributed nature of the process, which is especially relevant
when considering lengthy loops of solar collectors. More general approaches, such as
the one presented by Tian, Perers, et al. (2018) use quasi-dynamic models to represent
flat plane and PTC collectors in a solar field. This type of model, although useful
for process analysis, is not suited for control related works as these impose relevant
changes to the inputs of the model.

Although validated and precise, the previouslly presented models can require
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much computational effort when composed of partial differential equations. In order to
be used on real-time MPC applications, lumped parameter models are better suited
as these usually do not requite as much time to be solved. In this sense, Robledo
et al. (2011) uses a lumped model coupled with an optical description of a fresnel
collector, which is validated with experimental data for temperature but not for the
optical components of the model. Araújo Elias et al. (2019) uses an adapted lumped
version of the distributed model proposed by Carmona (1985) and that is extensively
used in this thesis. This model represents the ACUREX collector field, with Therminol
55 thermal oil as the HTF. In this model, the expression for the output temperature of
HTF at each collector is given by eqs. (5-8):

ρf Cf Af Tout ,i ,j (t) = δout ,i ,j (t)Γ(h)I(t)–ρf Cf
vi (t –dc)(Tout ,i ,j (t)–Tin,i ,j (t))

nc L
–

Hl (T̄ (t),Ta(t))
nc L

,

(5)

T̄ (t) =
Tout ,i ,j (t)+Tin,i ,j (t)

2
, (6)

ρf (t) = 903–0.672T̄ (t), (7)

Cf (t) = 1820+3.76T̄ (t). (8)

With:

• Tin,i ,j : Input temperature of HTF at loop i , collector j ;

• Tout ,i ,j : Output temperature of HTF at loop i , collector j ;

• Ta: Ambient temperature;

• vi : Flow of HTF at loop i ;

• δout ,i ,j : Applied focus value at loop i , collector j

The other parameters are specific mass (ρf ), heat capacity ( Cf ), transversal
secction area of the absorber tube (Af ), collector efficiency (Γ), the solar hour angle (h),
solar irradiance (I), collector length (L) and number of collectors at each loop (nc). The
function Hl represents the thermal losses at the collector.

As the defocusing of the collectors involves the movement of mechanical parts
such as mirrors, there is a dynamic to be considered for changes on the focus. This
actuation dynamic is modeled as a first order differential equation with unitary static
gain and a time constant τa as shown on Equation (9):

τa
dδout ,i ,j (t)

dt
= –δout ,i ,j (t)+δi ,j (t). (9)

Since one of the goals of the controllers considered in this thesis will be to
maximize the energy at field discharge, it is not necessary to calculate the mixture
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temperature of the union of the parallel loops. Safety considerations regarding thermal
fluid are performed only with the fluid temperature in each loop. That is, each loop is
modeled as an independent entity. The connection between loop models occurs only
in the field flow restriction: The sum of the flow rates of all loops cannot exceed the
maximum possible flow rate for the field. The total flow rate in a field with nl loops is
given by Equation (10).

vfield (t) =
nl∑︂

i=1

vi (t). (10)

2.5 NONLINEAR MODEL PREDICTIVE CONTROL

To represent characteristics such as transport delay, variation of properties of
HTF and the dynamics between process variables with fidelity, it is interesting to use
nonlinear models such as the one presented in Equation (5). Good models are essential
for developing predictive controllers, as they allow the understanding of future process
behavior in order to the determine the most appropriate control action. In the case
of solar fields, these controllers typically manipulate the load flow rate of each solar
field loop in order to control the temperature behavior at the field discharge, as seen in
Camacho, Gallego, Escaño, et al. (2019b) and Aurousseau et al. (2016).

In the control of heliothermic fields with concentrators, the control hierarchy can
follow a structure like the one presented in Figure 12, with an upper layer that controls
the temperature of the thermal fluid in each loop manipulating the flow, and systems at
a lower level, that perform the tracking of the Sun and manipulate the mirrors.

Figure 12 – Hierarchy of the control system for a solar thermal loop with two collectors.

Source: The author.

A review of the types of predictive controllers to be studied in this work will be
presented below.

The definition of a controller Model Predictive Control (MPC) consists in the
formulation of an optimization problem that calculates the desired control actions. A
generic way of representing this type of problem can be found in Equation (11).
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min
U

∫︂ Hp

0
J(x(t),u(t))dt +Jt (x(Hp)) (11a)

Subject to

ẋ = fnl (x(t),u(t)), t ∈ [0,Hp], (11b)

x(t) ∈X ,u(t) ∈U t ∈ [0,Hp], (11c)

x(0) ∈X0,x(Hp) ∈XHp
(11d)

where Hp represents the final time of the prediction horizon, x(t) the prediction for the
states at a time t , and u(t) the proposed value for the manipulated variables at a time t of
the prediction horizon. Function J(.) represents the cost of reaching a certain objective
(e.g. the error in following a reference) in the prediction horizon, while the function
Jt (.) represents a cost to be evaluated only at the end of the prediction horizon. The
prediction is represented in (11b), with the function fnl being the differential equation
that represents this model. In (11c) restrictions on states and variables manipulated
during the prediction horizon are represented, while in (11d) the initialization of states
with measurements (represented by the set X0 ) is presented, and terminal restrictions
are presented for states and manipulated variables,x(Hp) and u, respectively.

The model used in the prediction can be of several forms, being decisive in
the type of control problem and in the algorithm to be used to solve such problem.
In the case of nonlinear models, as observed in the works presented in the previous
section, the optimization problem to be solved by MPC is a Nonlinear Programming
(NLP). Due to the discrete nature of the controllers implementation, it is necessary to
partition the controller’s prediction horizon and assume some behavior for the controlled
variable during the partitions. It is common to assume that the manipulated variables
are constant in each partition (Zero-Order Hold). For notation of the discrete MPC,
consider the equivalente presented by Equation (12).

u(t) = u(k ) for t ∈ [tk , tk+1), k ∈ [0,1, ...,Hp –1]. (12)

Where ts is the duration of each partition (or sampling time), tk is the time at the
beginning of the partition k given by expression tk = ts k , and k is a non-negative integer.
The discretization of the dynamic model of the process involves the calculation of the
integral of the equation (11b) is more complex and can be performed in several ways
(eg Euler, Runge-Kutta , etc ). With this, we have that the optimization problem to be
solved in a Nonlinear MPC can be in the form described in (13):

min
u

Hp∑︂
k=1

Jd (x(k ),u(k ))+Jt (xHp
) (13a)
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Subject to

x(k +1) = fd (x(k ),u(k )), k ∈ [0, ...,Hp –1], (13b)

x(k ) ∈X , k ∈ [1, ...,Hp], (13c)

u(k ) ∈U , k ∈ [0, ...,Hp –1], (13d)

x0 ∈X0,xHp
∈XHp

. (13e)

Since Jd (.) is a discrete equivalent of the cost J(.), fd (.) is a discretization of the
model given in Equation (11b). A reference on how to implement this type of controller
can be found in Johansen (2011) and Kirches (2012).

Some works that use nonlinear MPC in solar thermal systems can be found in
Torrico et al. (2010), which proposes a robust nonlinear predictive controller to consider
important elements, such as transport delay, to keep the temperature of HTF constant
throughout loop in a desalination plant; Camacho, Gallego, Escaño, et al. (2019a)
performs a solar field control considering nonlinearities and discrete elements to change
the plant’s operating mode to maintain production objectives; and Vergara et al. (2016)
which performs the control of large solar fields, considering problems such as the
passage of clouds through a part of the field and the thermal imbalances that this
causes.

One of the challenges to the implementation of predictive controllers that use
nonlinear models is the calculation of predictions in solving the optimization problem
which, depending on the complexity of the model, can have a high computational cost.
This high cost can make the controller unable to calculate the control actions in a
sampling period, which would make the real-time application unfeasible. Note that,
in this case, the high computational cost is not associated with the complexity of the
control problem itself, but with the numerical integration of the differential equation of the
process model. A technique widely used to facilitate the calculation of these predictions
in nonlinear predictive control problems is the Multiple Shooting, which will be described
in the next section.

2.5.1 Multiple Shooting

The traditional implementation of the calculation of predictions in MPC is per-
formed iteratively and sequentially, using for the calculation of xk+1 the previous values
of states (x(k)) and manipulated variable (u(k)), as represented in the constraint (13b).
Explaining the calculation of the predictions in this way, with x0 being the initial condi-
tions, we have that:
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x(1) = fd (x0,u0),

x(2) = fd (x(1),u(1)),

= fd (fd (x0,u0),u(1)),

x(3) = fd (x(2),u(2)),

= fd (fd (fd (x0,u0),u(1)),u(2)),
...

x(Hp) = fd (x(Hp –1),u(Hp –1)).

Note that in this way the values of x(k) obtained are always consistent with the
predictions calculated up to the instant k –1 and with the proposed controls, which intu-
itively seems desirable, but introduces a series of strict restrictions in the optimization
problem, which can hinder the convergence of the algorithm. Furthermore, the sequen-
tial nature of the calculation of these predictions prevents them from being obtained
with parallel computation.

Multiple Shooting (BOCK; PLITT, 1984) is a technique that facilitates solving
the optimization problem of MPC and simultaneously calculating the predictions of the
process model, especially in nonlinear systems with ill-conditioned dynamics (stiff ). For
such, the values of the initial conditions of the states (x0(k )) in the prediction horizon are
defined as decision variables of the optimization problem. This increases the number
of degrees of freedom of solver, which can facilitate the resolution and makes the value
of the states at each instant independent of the process model, which is not desired.
To reestablish the relationship between the initial condition value of the states and the
process model, the constraint (13b) is replaced by the constraints (14b) and (14c), as
shown below:

min
x0,u

Hp∑︂
k=1

Jd (x(k ),u(k ))+Jt (x(Hp)) (14a)

Subject to

fd (x0(k ),uk )–x(k +1) = 0, k ∈ [0, ...,Hp –1] (14b)

x0
k = xk , k ∈ [1, ...,Hp] (14c)

x(k ) ∈X , x0(k ) ∈X , k ∈ [1, ...,Hp] (14d)

u(k ) ∈U , k ∈ [0, ...,Hp –1] (14e)

x0 ∈X0, x(0)0 = x0, xHp
∈XHp

. (14f)
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Although problems (13) and (14) result in the same optimal control problem, the
new formulation allows solver to have more freedom to solve this problem, converging
faster.

Note that in this case, it is necessary to define the initial conditions at each point
of the prediction horizon (x0(k),k ∈ [1, ...,Hp]), and not only x0. As the initial condition
given to solver does not necessarily imply a feasible solution of (14), a discontinuity
of predictions in the prediction horizon may occur in the initial steps of the problem
resolution, as can be seen in Figure 13. Although the state trajectories in the figure
appear to be continuous, these are discrete and were obtained with an integration step
much smaller than the sampling time, resulting in lines that appear continuous. As the
solver advances the iterations to solve the optimization problem, the constraint (14b)
imposes the coherence of predictions, which can also be observed in Figure 13.

Figure 13 – Predictions and control actions in a predictive control problem with multiple
shooting. The graph tp the left represents the beginning of the solution. The
graph to the right represents the end of the solution.

Source: Kirches (2012).

The benefits of using this approach are found in the generation of an optimiza-
tion problem with a more sparse structure that can be explored by solvers of quadratic
recursive programming, improving the performance in solving the problem (ANDERS-
SON, 2013). Furthermore, the convergence of solver in nonlinear problems is improved
as the negative impact of a bad initial estimate is mitigated over the iterations (BOCK;
PLITT, 1984). A comparison of the performance gain possible with the use of multiple
shooting in solving predictive control problems can be found in the work of Hussein
et al. (2019).

2.5.2 Practical Nonlinear Model Predictive Control (PNMPC)

The Practical Nonlinear Model Predictive Control (PNMPC) is a nonlinear MPC
proposed by Plucenio et al. (2007) which is based on the linearization of the process
model at each sampling time. The control action is obtained by the same methods used
in linear MPCs, that is, by solving an Quadratic Programming (QP), which has fast and
reliable solvers. In linear MPC, such as Dynamic Matrix Control (DMC) and Generalized
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Predictive Control (GPC), the predictions are written as a linear function of the future
control increments, expressed in Equation (15)ˆ︁Y = G.∆U +F . (15)

Where G is a matrix with coefficients that define the dynamic response of the model to
the incremental inputs ∆U and F represents the response of the system given that no
change on the input is provided, being called free response.

In PNMPC the predictions are computed as expressed in Equation (15), and
the values of the dynamic response matrix (Gpnmpc) and the free response (Fpnmpc)
are obtained from a nonlinear model fnl at each sampling time. This procedure works
in practice but does not guarantee finding the optimal solution for the nonlinear con-
trol problem (ANDRADE et al., 2013). In order to understand how to obtain Gpnmpc

and Fpnmpc , consider that at a given sampling time, the predictions obtained with
the nonlinear model for the prediction horizon Hp can be written as a function of the
past controlled variables’ values

←−
Y , manipulated variables’ values

←−
U and some pro-

posed future manipulated variables increments ∆U. In this case, the linearization of this
Fpnmpc(

←−
Y ,

←−
U ,∆U) yelds Equation (16).ˆ︁Y = Gpnmpc .∆U +Fpnmpc ∼= fnl (

←−
Y ,

←−
U ,∆U). (16)

The free response for the PNMPC controller is obtained by evaluating the nonlin-
ear model with no future movements for the manipulated variables, as seen on Equation
(17).

Fpnmpc = fnl (
←−
Y ,

←−
U ,∆U = 0). (17)

The dynamic matrix Gpnmpc is given by the jacobian of the nonlinear function, as
expressed in Equation (18), with Nu manipulated variables and Ny controlled variables.

Gpnmpc =
∂ˆ︁Y
∂∆U

⃓⃓⃓⃓
⃓
U=U0

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂Ŷ 1
∂∆U1

∂Ŷ 1
∂∆U2

· · · ∂Ŷ 1
∂∆UNu

∂Ŷ 2
∂∆U1

∂Ŷ 2
∂∆U2

· · · ∂Y2̂
∂∆UNu...

... . . . ...
∂Ŷ Ny
∂∆U1

∂Ŷ Ny
∂∆U2

· · · ∂Ŷ Ny
∂∆UNu

⎤⎥⎥⎥⎥⎥⎥⎦ . (18)

Each term ∂ˆ︁Yj
∂∆Ui

is a matrix of the partial derivateives of the predictions of the
controlled variables yˆ︁i over the prediction horizon Hp with regard to the manipulated
variable u over the control horizon Hc , as expressed in Equation (19).

∂ˆ︁Yj
∂∆Ui

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂ŷ j (k+1)
∂∆ui (k ) 0 · · · 0
∂ŷ j (k+2)
∂∆ui (k )

∂ŷ j (k+2)
∂∆ui (k+1) · · · 0

...
... . . . ...

∂ŷ j (t+Hp)
∂∆ui (k )

∂ŷ j (t+Hp)
∂∆ui (k+1) · · · ∂ŷ j (t+Hp)

∂∆ui (k+Hc–1)

⎤⎥⎥⎥⎥⎥⎥⎦. (19)
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Notice that Equation (19) has derivatives with respect to the manipulated vari-
ables over every instant of the control horizon, which requires Hp ×Hc derivative com-
putations. The zero values above the main diagonal occur due to causailty, as if not
zero these would represent an output that depends on future control movements. Yang

(2016) performed comparisons on variants of ways to build the matrix ∂ˆ︁Yj
∂∆Ui

and con-
cludes that for many cases, it may not be necessary to compute all these computations.
This thesis uses the simplest of these proposals, which only requires Hp evaluations of
the partial derivative for each pair of manipulated and controlled variable. This structure
is presented in Equation (20), where it is noticeable that the elements are repeated in
the direction of the main diagonal.

∂ˆ︁Yj
∂∆Ui

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂ŷ j (k+1)
∂∆ui (k ) 0 · · · 0
∂ŷ j (k+2)
∂∆ui (k )

∂ŷ j (k+1)
∂∆ui (k ) · · · 0

...
... . . . ...

∂ŷ j (t+Hp)
∂∆ui (k )

∂ŷ j (t+Hp–1)
∂∆ui (k+1) · · · ∂ŷ j (k+1)

∂∆ui (k )

⎤⎥⎥⎥⎥⎥⎥⎦. (20)

The derivatives needed for the Jacobian (Gpnmpc) can be obtained analytically,
but given the diversity and complexity of nonlinear models, Plucenio et al. (2007) sug-
gests using numerical derivatives and proposes an algorithm for calculating Fpnmpc

and Gpnmpc , which consists of evaluating the nonlinear model for some small step
value ϵi for each manipulated variable. Plucenio et al. (2007) suggests ϵi to be 1% of
the previously applied manipulated variable value, as presented in Algorithm 1.

Algorithm 1 Computation of Fpnmpc and Gpnmpc
Considering:

• Gpnmpci is the i th column of the matrix Gpnmpc .

• Ȳ i is the output of the nonlinear model when ϵi is applied in one position of the
incrmental ∆U.

• ∆Ū i is an array of zeroes except at the position respective to the first instant of
the prediction horizon for input i , where it has ϵi as its value.

Do:
Fpnmpc = fnl (

←−
Y ,

←−
U ,∆U=0)

for i from 1 to Nu do
for k from 1 to Hp do

Compute ∆Ū i
Ȳ i = fnl (

←−
Y ,

←−
U ,∆Ū i )

Gpnmpci = Ȳ i–Fpnmpc
ϵi

Linear MPC algorithms such as DMC and GPC use mechanisms to correct the
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predictions of the process models at each sampling period, with the goal of achieving
zero prediction error in steady state. For PNMPC, an explicit version of the correction
made in GPC is used, adding to the free response at each point of the prediction
horizon the integral of the filtered prediction error epnmpc . The prediciton error is given
by Equation (21) while the filter is presented in Equation (22). As the computation of
the predictions is recursive, the corrected prediction of one instant is used to compute
the prediction of the next time step.

epnmpc = Y 0 – ˆ︁Y (0) (21)

ˆ︁Y (0) is the prediction for the controlled variables at the current time made at the previous
sampling time of the controller and Y 0 is the current measurement of the controlled
variables.

η(k ) = η(k –1) · (1+ fd )– fd ·η(k –2)+epnmpc ·Ki (22)

Plucenio et al. (2007) proposes a way to select the filter coefficients by selecting
the desired dynamics for the filter as well as an example of the impact of this filter on
the response of the control system in the presence of noise is presented. In this work,
the coefficients fd = 0 and Ki = 1 were used.

2.6 HYBRID PREDICTIVE CONTROL

In addition to continuous variables, it is also interesting to use binary variables in
solar field models to represent aspects such as pump activation, valve closure, mirror
blur, activation of auxiliary heat sources, etc. Models that incorporate both analog and
binary (or integer) variables are called hybrids, and can be used in hybrid predictive
controllers, as in Araújo Elias et al. (2019). These formulations result in Mixed-Integer
Nonlinear Programming (MINLP) problems, whose solution has a significant compu-
tational cost. These types of problems arise in power systems, and in particular solar,
as shown by Camacho, Ramirez, et al. (2010). In Camacho, Gallego, Escaño, et al.
(2019b), a hybrid controller is used to decide the operation mode of a solar cooling
plant, while in Vasallo and Bravo (2016) this type of controller is used to define the
production order in a solar plant. Proposing a formulation that does not involve solving
a mixed-integer problem, Prada et al. (2004) investigates how to define the production
order in a batch process.

There are some types of models that can be used to represent hybrid systems
in MPC, such as models Piecewise Affine (PWA), State Machines and Mixed Logical
Dynamical (MLD), Mixed Logical Dynamical. The following section will explore the
models MLD and present some works that use them in predictive controllers as this
framework will be used in this thesis.
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2.6.1 Mixed Logical-Dynamic Systems (MLD)

Many dynamic systems with logical or integer variables have behaviors governed
by logical expressions, such as a solar field that, when it is shaded, must have the flow
of HTF stopped to avoid heat loss to the environment. The incorporation of these logic
expressions is commonly performed through hierarchical control schemes, in which
decisions involving boolean logic are performed in high-level hierarchical structures,
while low-level controllers deal only with continuous variables. In the case of processes
in which logical variables are deeply embedded in the dynamics of the process, hierar-
chical structures become inadequate. In view of this type of problem, Bemporad and
Morari (1999) proposed a framework for the modeling and control of linear systems
with logical variables, being called Mixed Logical Dynamic (MLD).

In MLD, the logical expressions are rewritten as equivalent constraints in the
optimization problem, making it possible to adapt different types of expressions. The
dynamic models built with this methodology incorporate continuous (xc) and binary
(xb) manipulated variables continuous (uc) and binary (ub) and continuous (yc) and
binary (yd ). Binary (δ) and continuous (z) auxiliary variables are also used to construct
the constraints. The general form of the models MLD is presented in the system of
equations (23). ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(k +1) = Ax(k )+B1u(k )+B2δ(k )+B3z(k ),

y (k ) = Cx(k )+D1u(k )+D2δ(k )+D3z(k ),

E2δ(k )+E3z(k ) ≤E1u(k )+E4x(k )+E5.

(23)

Being

x =

[︄
xc

xb

]︄
, y =

[︄
yc

yb

]︄
, u =

[︄
uc

ub

]︄
.

and the matrices A,B1,B2,B3,C,D1,D2,D3,E1,E2,E3,E4 and E5 are the model param-
eters.

Many works use MLD for the formulation of hybrid controllers, such as Sun et al.
(2019), which investigates the application of hybrid predictive control in an intelligent
vehicle, or Liu et al. (2020), which implements a predictive control of a Buck converter,
or even HanBing et al. (2019), which propose a vibration control in a bridge. In the
context of renewable energies, the works of Elias et al. (2018) and Araújo Elias et al.
(2019) present formulations of MPC hybrid with MLD in order to avoid the overheating
of HTF of a solar field of parabolic collectors.

2.7 ADAPTATIVE NEURO-FUZZY INFERENCE SYSTEM

A Neuro-Fuzzy system is a form of Artificial Intelligence (AI) that combines the
advantages of Fuzzy Logic (FL) and Artificial Neural Network (ANN). The most notable
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is the Adaptative Neuro-Fuzzy Inference System (ANFIS) proposed by (JANG, 1993).
ANFIS uses FL to represent knowledge in an interpretable form based on rules whith
linguistic labels of human language. It has the capability to construct an input-output
mapping based on human knowledge in the form of fuzzy if-then rules. The association
with ANN makes the parametrization of the fuzzy rules incorporated into the learning
algorithm of the ANN. Once the FIS is obtained after completing the ANFIS training,
it is also possible to add rules, making this kind of technique also suitable to adaptive
setups.

The next sections will present some basic pertinent concepts of Fuzzy Inference
System (FIS) and ANN used in this thesis. Then, the ANFIS structure will be presented
in more detail.

2.7.1 Fuzzy Inference System

Fuzzy Inference Systems are computational models used for mapping a given
input-output set using the theory of fuzzy sets, concepts of fuzzy logic and IF-THEN
rules. The fuzzy set theory and fuzzy logic provide a mathematical basis for the mod-
elling the imprecise nature of real world systems (OLIVEIRA JUNIOR et al., 2007)

Fuzzy Sets

The Fuzzy Sets theory is an extension of the classical sets theory that was
formalized by Zadeh (1965) with the goal of building a mathematical basis for modelling
imprecise or approximate information. In classical set theory, the pertinence of an
element to a given set is taken as true or false. That is, given a set A in an universe U,
one can represent the relevance of elements to the set by some function f (x):

f (x) =

⎧⎨⎩1, if and only if x ∈U,

0, if and only if x ∉U.

This binary definition is extended by Zadeh with the proposal of more compre-
hensive membership levels, which assume intermediate values in the range [0, 1]. That
is, given a fuzzy set B in a universe U, one can represent the pertinence of elements to
this set by a characteristic function:

µB(x) : U → [0,1].

where µ(x)B is a function that will indicate the degree of membership of x in B. Several
different types of functions can be employed as pertinence functions and the most
common are trapezoidal, triangular and, in the case of this thesis a generalized bell
function:

µB(x) =
1

1+
[︂(︂x –c

a

)︂]︂2b .
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where a, b and c are parameters that determine the shape of the function, as exempli-
fied by Figure 14. Notice that for this type of symmetrical function, input values near
c have the greatest pertinence, while values lower than c –a have pertinences of less
than 50%.

Figure 14 – Representation of the generalized bell pertinence function.

Source: Hossain et al. (2018).

In order to illustrate the pertinence functions, consider the issue of classifiying
human body height as average or not. As this concept is very subjective, it is an ideal
case for representig fuzzy modelling concepts. Considering the use of the generalized
bell pertinence function in this case, one can define that an average height is around
1.7m, thus we have c = 1.7m. In order to determine the parameter a, one can think of
values for height that are considered short or tall (thus not average) by more than 50%
of people. Considering that most people would find an height of 1.9m high, it is possible
to obtain: c –a = 1.9m, thus a = 1.7–1.9 = –0.2m. The value of b can be chosen as to
make this transition from average to tall more intense or smooth. Let b = 1, thus the
membership function for this example (µavg(x)) is defined as:

µavg(x) =
1

1+
[︃(︃

x –1.7
–0.2

)︃]︃2 . (24)

Fuzzy Rules and Takagi-Sugeno Inference Models

A fuzzy rule is a conditional statement given by IF-THEN statements. These are
the rules used to make inferences in fuzzy logic, deciding the value of an output variable
based on the pertinence values of input variables. The parameters presented in the IF
statement are referred to as antecedents, while the THEN statement parameters are
called consequent. As an example of a fuzzy rule, consider the membership function for
human height of the previous example (µavg(x)). It is possible to formulate the following
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rule for deciding if a human can ride on an amusement park atraction:

IF x is average,

THEN x can ride

The example shows a simple case, but the IF statements can contain multiple
conditions, connected by AND and OR connectors. The rules of a fuzzy model can be
shaped in numerous ways through expert knowledge of a process in order to replicate
some input-optiput relationship, through Fuzzy Inference System (FIS). The literature
presents some structures for these inference systems and in the case of this thesis,
Takagi-Sugeno models (TAKAGI; SUGENO, 1985) are used. This type of FIS uses
rules of the following form:

IF x1 isF1 and x2 isF2 and xi isFi ,

THEN : fTS(x) = g0 +g1x1 + · · ·+gixi .

where gi ∈ℜ are consequent parameters, xi are the inputs, fTS the output respectively
for each rule and Fi represents the fuzzy sets defined by some membership function.
The parameters of the memebership functions that define Fi are the antecedent param-
eters. Notiece that the Takagi-Sugeno model has a polinomial to describe the outputs
of the rule, thus having a crisp (i.e. not fuzzy) output.

2.7.2 Neuro-Fuzzy Networks

The term Neuro-Fuzzy Networks refers to the combination of Artificial Neural
Network (ANN) with Fuzzy Inference System (FIS). These systems incorporate the tech-
niques of machine learning for ANN with the Fuzzy capabilites to represent complex
patterns and consist of an ANN where the neurons are composed of Fuzzy member-
ship functions and rules. In the Neuro-Fuzzy approach, a supervised training phase is
performed with reference input/output pairs in order to determine the antecedent and
consequent parameters of the pertinence functions. The rules generated from the data
can also be optimized using the expert’s knowledge (JANG; SUN, 1995).

This type of network can be trained by online and offline learning. In online
learning, the network changes dynamically as the data is presented, so that when more
data is provided to the net it does not need to be retrained on the previously presented
data. This thesis will only use offline training, in which there is no updating of the
network parameters after training. The next section describes the type of neuro-fuzzy
network that is predominant in the literature and that is used in this thesis, which is the
Adaptative Neuro-Fuzzy Inference System (ANFIS).
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2.7.3 ANFIS general structure

Adaptative Neuro-Fuzzy Inference System (ANFIS) is a type of neuro-fuzzy
network proposed by Jang (1993) which is considered to be a universal estimator
(JANG; SUN; MIZUTANI, 1997). It is composed by five layers of neurons, with two
layers of Takagi-Sugeno inference models. Each layer of the ANFIS has a particular
structure, with some described by a specific function, such as product or sum. The
general structure of ANFIS is represented in Figure 15, and described as follows.

Figure 15 – Representation of the Adaptative Neuro-Fuzzy Inference System.

Source: Jang (1993).

• The first layer is composed of adaptive neurons, each one representing a fuzzy
membership function for each input. In the case of this thesis, the generalized bell
pertinence function.

• The second layer is composed of neurons with the product operator and its output
is the product of all input signals. This represents the firing strengths for the fuzzy
rules.

• The third layer is the normalization layer, its output is the normalized weighted
sum of all input signals divided by the total firing strength.

• The fourth layer represents the consequent part of the inference system, where
each neuron is of the adaptive type and implements the rules of the Takagi-
Sugeno Model. The output of each neuron is obtained by evaluating the polyno-
mial of the rules with the original inputs of the network multiplied by the normal-
ization weight given by the previous layer.

• The fifth layer computes a sum of all input signals.
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This structure, coupled with the learning algorithms of ANN, allows for the reproduc-
tion of complex input/output relationships. For the adjustment of the precedent pa-
rameters, Jang (1993) proposes backpropagation technique for the antecedents and
least-squares for the consequent paramters. For a comprehensive description of AN-
FIS architecture, refer to the original papers Jang (1993) and Jang, Sun, and Mizutani
(1997) or even the Master’s thesis of Salazar (2020).

Despite being the first proposed neuro-fuzzy network found in the literature, there
is recent research that attributes good results for ANFIS. The work of William Chicaiza
Salazar et al. (2022) uses ANFIS to reproduce the behaviour of a absorption chiller high
temperature generator, in such a way that allows for constant updating of the model,
as a digital twin. J. M. Escaño et al. (2021) uses the neuro-fuzzy structure to estimate
temperatures on a PTC field and Suhail et al. (2021) uses ANFIS as a controller for
energy management of a plug-in hybrid electric vehicle.

FINAL REMARKS

This chapter presented a review of concepts relevant to this thesis. The contribu-
tions already made in this doctorate will be presented on the following chapters. These
deal with optical modelling of a fresnel collector, predictive control of a solar field using
the focus of the collectors as a manipulated variable and the potential uncertainties
introduced by this manipulated variable, and finally two proposals for computing the
mirror configuration for implementing the defocus proposed by the controllers.
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3 CONTRIBUTIONS: MODEL PREDICTIVE CONTROL OF SOLAR FIELDS WITH
DEFOCUSING

This chapter will present some of the contributions to model predictive control
of solar fields. The proposal presented is for a hybrid predictive controller for HTF
overheating prevention. The results of the work presented in this section were presented
at the Solar World Congress 2019 and can be found at Brandão, Costa Mendes, Elias,
et al. (2019). The main contributions of this chapter are:

• Development of an Hybrid Model Predictive Control strategy for CSP control with
defocusing;

• Comparison of three proposals of Hybrid Model Predictive Control for CSP control
with defocusing.

3.1 PREVENTION OF OVERHEATING IN SOLAR FIELDS WITH HYBRID MPC

This work focuses on the control of a solar collector field, which is composed
of several parallel collector loops. A solar collector loop is composed of several solar
energy collectors connected in serial configuration. Each collector is composed of a
reflector that focuses the sun irradiation on an absorber tube. Inside the absorber tube,
a Heat Transfer Fluid flows through the collector loop and recieves the thermal energy
from the absorber tube. The amount of energy that the HTF has at the output of the
loop is directly related to the amount of solar irradiation at the reflectors, which is both
the main source of energy for the process and its main disturbance, and the degree
of focus of the reflector. Typical control structures only manipulate the HTF flow as it
changes the amount of energy absorbed per unit of time, but the defocusing of the
reflector mirrors introduces a degree of freedom to the control structure and allows for
faster lowering of the HTF temperature.

The control strategy applied to this process must be capable of maintaining the
process under operational constraints, such as the maximum temperature allowed for
the HTF, while maintaining the power generation (SÁNCHEZ et al., 2018). This type
of process has very few degrees of freedom for the control actions as the HTF flow
is typically the only manipulated variable and the collectors are only defocused for
safety concerns. In a previous work, Araújo Elias et al. (2019) proposed two defocusing
strategies in order to keep the HTF temperature under the operational constraints while
maintaining the desired energy output: on/off and partial defocusing of the collectors.
This work aims integrating both defocusing strategies in a centralized Nonlinear Model
Predictive Control (NMPC) framework in order to obtain the best aspects from both
previous controllers.
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3.1.1 Proposed formulation for the controller

The proposed hybrid control structure aims to manipulate the HTF flow within
its operational range to achieve the reference tracking objective. The controller should
also defocus the solar collectors when the maximum HTF temperature is to be reached
in a predictable future horizon while considering the future reference trajectory for
the HTF temperature and the disturbances of ambient temperature, irradiation, and
inlet temperature. These control objectives are accomplished using Practical Nonlinear
Model Predictive Control (PNMPC) and are expressed on Equation (25).

J = J1 +J2 +J3. (25)

The terms J1, J2 and J3 represent three conflicting goals of the controller: Track-
ing a reference for the solar field output temperature, given by Equation (26a); Minimiz-
ing the motion of the manipulated variables, given by Equation (26b); and Maximizing
the HTF volume flow rate and focus value to indirectly maximize the process energy
output, given by Equation (26c).

J1 =
Hp∑︂

k=1

(Tout ,field (k )–Tref (k ))2QT , (26a)

J2 =
Hc∑︂

k=1

nl∑︂
i=1

(∆vi (k ))2Rv +
Hc∑︂

k=1

nc∑︂
j=1

nl∑︂
i=1

(∆ϕi ,j (k ))2Rϕ, (26b)

J3 = –
Hc∑︂

k=1

nl∑︂
i=1

(vi (k ))2Qv –
Hc∑︂

k=1

nc∑︂
j=1

nl∑︂
i=1

(ϕi ,j (k ))2Qϕ, (26c)

With:

∆vi (k ) = vi (k )–vi (k –1), k ∈ [1, . . . ,Hc ],

∆ϕi ,j (k ) =ϕi ,j (k )–ϕi ,j (k –1), k ∈ [1, . . . ,Hc ].

Tout ,field and Tref are the predicted and reference outlet temperatures of the
solar field for the prediction horizon, ∆vi the changes on the flow of each loop of the
solar field for the control horizon of this variable,ϕi ,j the focus variable for all collectors
of each loop of the field for the control horizon of this variable and ∆ϕi ,j the changes
on ϕi ,j for the same control horizon. The square matrices QT , Qv , Qϕ, Rϕ ans Rv are
weights of appropriate size. The prediction horizon is given by Hp while the control
horizon is given by Hc . The number of loops and collectors at each loop are given by
nl and nc respectively.
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The two control strategies that are combined in this thesis will be called On/Off,
in which the controller must completely defocus one or more manifolds in the loop if the
outlet temperature of any collector in this loop is above the upper limit in the controller’s
prediction horizon; and Partial, in which the controller combines flow manipulation and
partial collector defocusing in order to achieve the control objectives with reduced
control effort when compared to the On/Off case. The reduced control effort is desirable
as it provides longer life for actuators such as valves and pumps.

In order to implement the proposed integrated strategy, it is necessary to intro-
duce the binary variable Λi ,j which indicates if a collector should be focused (Λi ,j = 1)
or completely defocused (Λi ,j = 0). The constraints presented in Equation (28) and (29)
determine the possible values of the focus ϕi ,j and its change rate ∆ϕi ,j .

0≤ϕi ,j (t +k )≤ 10Λi ,j . i ∈ [1,nl ], j ∈ [1,nc ], k ∈ [1,Hc ], (28)

–Λi ,j (t +k )–10(1–Λi ,j (t +k )) <∆ϕi ,j (t +k ) <Λi ,j (t +k )+10(1–Λi ,j (t +k )),

i ∈ [1,nl ], j ∈ [1,nc ], k ∈ [1,Hc ]. (29)

If the collector should be in focus (Λi ,j = 1), the focus value will have a full range
between 0% focus (ϕi ,j = 0) and 100% focus (ϕi ,j = 10) and the change in focus is limited
to ± 10% (–1 <∆ϕi ,j < 1), but if the collector is to be completely defocused (Λi ,j = 0), the
focus value is forced to zero and the change in focus can vary from -100% to 100%, as
it must be able to go from completely focused to completely defocused and vice versa.

As stated Araújo Elias et al. (2019), there are operational limits on the HTF flow
rate (vMAX and vMIN ) and in order to prevent the controller from manipulating the flow
rate when the collector is defocused, the constraints presented in eqs. (30) and (31)
are applied, which forces the applied flow rate to stay at the upper bound when the
collector is defocused (Λi ,j = 0).

vi (t +k )≤ vMAX , i = 1..nl , j = 1..nc ,k = 1..Hc , (30)

vi (t +k )≥ vMINΛi ,j (t +k )+vMAX (1–Λi ,j ), i ∈ [1,nl ], j ∈ [1,nc ], k ∈ [1,Hc ]. (31)

To determine whether a collector should be defocused, the binary variable αi ,j
is introduced to indicate whether, at a given period in the forecast horizon, the HTF
temperature at collector j would exceed the maximum allowed temperature (αi ,j = 0) or
not (αi ,j = 1). This condition is expressed in Equation (32):

αi ,j (t +k –1) = 1↔ T̂ outi ,j (t +k |t)≤Tmax , i ∈ [1,nl ], j ∈ [1,nc ], k ∈ [1,Hc ]. (32)

Where T̂ outi ,j is the prediction for the outlet temperature of collector j of loop
i . This condition can be rewritten according to the inequalities presented in eqs. (33)
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and (34) by considering that the flow rate is at the upper bound when the collector is
defocused.

αi (t +k –1)T̂ outi ,j |v=vMAX
(t +k |t)–Tmax ,≤ 0 i ∈ [1,nl ], j ∈ [1,nc ], k ∈ [1,Hc ],

(33)

T̂ outi ,j |v =vMAX
(t +k |t)– (1–αi ,j (t +k –1|t))Tmax ≥ 0, i ∈ [1,nl ], j ∈ [1,nc ], k ∈ [1,Hc ].

(34)

The decision to completely defocus a collector (Λi ,j = 0) should be made if, at
any instant in the prediction horizon, the predicted outlet temperature of the collector is
above the upper limit of the HTF, as expressed in the inequalities in (35):

–αi ,j (t)+Λi ,j (t)≤ 0,

–αi ,j (t +1)+Λi ,j (t)≤ 0,
...

–αi ,j (t +Nα–1)+Λi ,j (t)≤ 0,

αi ,j (t)+αi ,j (t +1)+ . . . +αi ,j (t +Nα–1)–Nα+1≤ 0.

(35)

All the controllers presented in this section were implemented in Yalmip, a Matlab
toolbox for optimization and modelling. All optimization problems were solved using
IBM’s Cplex solver. Each of the tuning matrices of the objective function can be defined
as a multiplication of a scalar by an identity matrix of appropriate size. These scalars
are presentded in Table 1.

Table 1 – Tuning parameters of the controllers.

QT Qv Qϕ Rv Rϕ

On/Off 1e-5 1e-3 0.1 1e2 1e-3
Partial 1e-5 1e-3 0.1 1 1e2
Hybrid 1e-5 5e-3 0.1 1e4 1.13

Simulation results

To evaluate the performance of the hybrid controller and compare it with the
On/Off and partial defocusing controllers, three simulation scenarios were created:

• High irradiance scenario: irradiance profile for the morning of the day with high
peak irradiance and some clouds;

• Pump failure scenario: An irradiance profile for the early afternoon without clouds.
At two points in the simulation, a pump malfunction is simulated for loop 1 of the
solar field and the flow rate is fixed. Between t=36 min and t=54 min the flow rate
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is fixed at 8.10–3m3s–1 and between t = 132min and t = 156min the flow rate in
loop 2 was fixed at 12.10–3m3s–1.

• Pump failure scenario with modeling error: Same as previous case, but consider-
ing a 10% error in the optical efficiency parameter.

The applied profiles for ambient temperature and irradiance are presented in
Figures 16 and 17. To evaluate the simulated results, three performance indices were
considered: amount of heat absorbed by the HTF, the integral of the squared error of
reference tracking (ISE) for the solar field output temperature, and the calculation of the
average runtime for the controllers. The results are presented in table 2.

Figure 16 – Ambient temperature used for all cases.

Source: The author.
Figure 17 – Irradiance profiles: (a) High irradiance; (b) Pump failure.

Source: The author.

The simulation results for the high irradiance scenario are shown in figures
18, 19 and 20. These figures show the output temperature of the entire field and the
reference, the focus value for each collector, and the HTF flow rate for the two loops.
Since the partial defocus controller kept the flow rates high when compared to the
other controllers, the amount of thermal energy absorbed by the HTF is higher for this
controller (see Table 2). The hybrid controller showed small changes in flow rate, which
resulted in higher output HTF temperature variability and high ISE values. In this case,
the hybrid controller presented less aggressive compared to the other MPC, which
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Table 2 – Performance criteria for the simulated cases.

On/Off Partial Hybrid

1 - High irradiance
scenario

Heat [J] 3.8723e+09 4.6064e+09 3.5178e+09
ISE 5.8366e+04 4.4523e+04 9.2163e+04
Average time [s] 0.6728 0.0617 0.1367

2 - Nominal case
with pump

failure

Heat [J] 4.8853e+09 3.7994e+09 4.8700e+09
ISE 3.5497e+04 4.3240e+04 3.7473e+04
Average time [s] 0.7406 0.1178 0.0967

3 - Case with
modelling errors
and pump failure

Heat [J] 5.3123e+09 3.9164e+09 5.3761e+09
ISE 4.6513e+04 3.9734e+04 4.3900e+04
Average time [s] 0.6461 0.1128 0.1227

is desirable to reduce actuator wear, but may result in losses in energy absorption
efficiency. The partial and hybrid controllers presented lower computation times when
compared to the On/Off controller, because the optimization problem solved by this
controller is more complex.

The results for the pump failure scenario are shown in figures 21, 22 and 23.
As shown in Figure 23, it can be seen that the hybrid controller generates smaller
deviations from the reference temperature when compared to the other MPCs during
the pump failure. It is also notable that during both pump malfunctions, the hybrid
controller was able to converge the proposed control action to the set flow rate values.
This did not happen in the other controllers, with the On/Off (fig. 21) proposing different
flow rate values during the first pump failure, and the partial controller (fig. 22) proposing
different flow rate values during the second pump failure. It is important to note that
the switching observed in the On/Off controller (fig. 21) is undesirable and results from
the failure to obtain a feasible online solution to the optimization problem. The partial
controller defocuses two collectors in both loops for almost the entire simulation, as
can be seen in fig. 22. This is not desirable because, if there is no risk of overheating,
defocusing the collector decreases the amount of energy that can be absorbed by the
HTF, as can be seen by comparing the amounts of heat absorbed in table 2. For this
simulation case, the computation times behaved similarly to the previous case, with the
On/Off controller taking longer to compute the control actions.

The results of the pump failure scenario with model mismatch are presented in
Figures 24, 25 and 26. In this simulation case, it can be seen that the partial focus
controller (Fig. 25) uses lower flow values during the simulation, resulting in less energy
being absorbed by the HTF (Tab. 2). The On/Off and hybrid controllers showed similar
amounts of absorbed energy, but with much shorter computation times and worse refer-
ence tracking when compared to the partial focus controller. The defocusing frequency
shown in the hybrid controller (Fig. 26) is considerably higher than that calculated by
the On/Off controller (Fig.24), because the latter has constraints to avoid excessive
switching.
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Figure 18 – Simulation results for the nominal case with On/Off controller and high
irradiance.

Source: The author.

Importantly, the behavior of the MPC controllers is highly dependent on the
tuning parameters. The tuning of the controllers analyzed in this thesis was complex,
especially for the hybrid controller, because its objective function contained several
conflicting objectives with several variables that have very different ranges of possible
values.
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Figure 19 – Simulation results for the nominal case with partial focus controller and
high irradiance.

Source: The author.
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Figure 20 – Simulation results for the nominal case with hybrid controller and high
irradiance.

Source: The author.
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Figure 21 – Simulation results for the nominal case with pump failure with On/Off con-
troller and high irradiance.

Source: The author.
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Figure 22 – Simulation results for the nominal case with pump failure with partial focus
controller and high irradiance.

Source: The author.
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Figure 23 – Simulation results for the nominal case with pump failure with hybrid con-
troller and high irradiance.

Source: The author.
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Figure 24 – Simulation results for the case with parameter error, pump and on/off con-
troller failure and high irradiance.

Source: The author.



Chapter 3. Contributions: Model Predictive Control of solar fields with defocusing 66

Figure 25 – Simulation results for the case with parameter error, pump failure and con-
troller with partial focus and high irradiance.

Source: The author.
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Figure 26 – Simulation results for the case with parameter error, pump failure and hybrid
controller, and high irradiance.

Source: The author.
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3.2 FINAL REMARKS

This chapter presented a hybrid MPC algorithm for overheating prevention in a
solar collector field that manipulates flow rate and focus values. The controller combined
two previous MPC formulations that apply partial defocusing and On/Off of the collectors
and is based on the PNMPC controller. The resulting mixed integer optimization problem
is then solved at each controller iteration to obtain the optimal control actions. The
controllers were compared by simulating a field of two-loop solar collectors with a
validated process model. The irradiance and ambient temperature profiles used in the
simulation were obtained from experimental data. Three simulation scenarios were
evaluated to assess the performance of the controllers in situations that facilitate heat
transfer fluid overheating.

The results showed that the On/Off controller presents satisfactory performance
in all analyzed cases, but presents higher computation time when compared to the
Partial and Hybrid controllers. The Partial controller presented the worst performance
in general, with behaviors that often decreased the amount of energy absorbed by the
HTF. Despite presenting similar behavior to the On/Off controller, in cases of pump
failure the Hybrid controller proposes flow values that converge to the actual values in
the loop where the failure occurs, which is desirable because it shows that the controller
does not propose too many impossible actions during the failure. Also, when compared
to the On/Off controller, the Hybrid controller showed lower computation times.

With the conclusion of the work presented in thesis chapter, the matter of how to
implement the proposed defocus values in fresnel collectors must be adressed. In order
to do so, the next chapter presents a simplified optical model for a fresnel collector. This
model is later used to study how to implement some defocusing strategies and also the
effects of uncertainties in this new actuator and how these uncertanties can affect the
control system.



69

4 CONTRIBUTIONS: OPTICAL MODEL AND AIMING ALGORITHM FOR FRES-
NEL COLLECTORS

With the study of predictive controllers that use focus as a manipulated variable
presented in Chapter 3, the issue arose as to how this defocusing of solar collectors
can be implemented. To answer this question, it is necessary to study the optical
characteristics of the solar collector in order to develop a strategy for implementing the
defocusing. This chapter is dedicated to the development of a simplified optical model
for a fresnel collector, so that, from the available information about the position of the
Sun and Direct Normal Irradiance (DNI), the energy contribution of each mirror of the
collector is known. As the contribution of each mirror is conditioned to the logic used in
their manipulation in order to concentrate the irradiation on the absorber throughout the
day (referred to as solar aiming algorithm), these mechanisms will also be analyzed in
this section.

In face of the complexity and computational cost of the models available in the
literature, the main contributions of this chapter are:

• Development of an optical model for a Fresnel collector with simplifications that
allows its use in model-based control algorithms like Model Predictive Control;

• Proposal of two original solar aiming algorithms based on the optical model;

• Evaluation of three aiming methods while considering the manipulation of each
individual mirror of the Fresnel collector;

• Proposal of a simple binary defocusing strategy.

The results of this chapter were published in the Renewable Energy journal, and can
be found at Brandão, Costa Mendes, and Normey-Rico (2022).

4.1 THE OPTICAL MODEL

The simplified model proposed in this chapter is built in four steps: first, an
estimation of the shaded area on each mirror is calculated; then, an estimation of the
area of the absorber illuminated by each mirror is done; the third part consists of a
correction of the illuminated area of the absorber, considering the shadow cast by the
absorber on the mirrors. At last, the irradiance flux on the absorber is calculated, as
well as the Incidence Angle Modifier (IAM).

The model assumes some simplifying hypothesis: (i) The Sun is not considered
as a point source and the sun’s rays are considered all parallel; (ii) Although solar track-
ing is not assumed, shading between non-neighbouring mirrors is neglected because it
would mostly occur on mirror configurations that are unusual to the expected operation
of these collectors; (iii) No blocking of the reflected rays of a mirror by another mirror.
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Shaded area estimation

With the transversal angle of reflection θt ,i defined, considerations on the amount
of sunlight to be reflected by each mirror can be done by calculating the shaded region
of the mirrors. Shadows in the mirrors can appear for several reasons, such as:

• Some structure in the vicinity of the collector projects a shadow. In urban areas,
buildings can cause this kind of shadow.

• The absorber projects a shadow over the mirrors. This occurs when the sun is in
the highest position on the day (for ht values close to zero). On these moments the
DNI is at its highest value, so this type of shading greatly impairs the performance
of the collector.

• The positions of the collector’s mirrors cause a shadow in the neighboring mirrors.
This occurs mainly at the beginning and at the end of the day (for ht values close
to -90o and 90o).

In the proposed model, we consider the shadows caused by mirrors in other
mirrors and the shadow caused by the absorber on the mirrors. In this section, a model
for calculating the shadow between mirrors will be presented (illustrated in item c of
Figure 27). The effect of the shadow cast by the absorber will be considered only
when calculating where the reflected beam effectively intersects the absorber plane, on
section 4.1.

A situation with an effect similar to the shading of a mirror is the case when
some part of the reflected beam is blocked by a neighboring mirror (as shown in item
b of Figure 27). This blocking situation will not be addressed in this model because it
was considered to be insignificant for the situations in which a Fresnel solar thermal
collector operates.

Figure 27 – Illustration of three situations of interactions between sunbeams and mirrors
in Fresnel collectors.

Source: Eddhibi et al. (2017).

An assumption made for this model, that simplifies the number of situations in
which shading between mirrors occurs, is the existence of some tracking mechanism.
When considering the effect of tracking possibilities (i.e. making some part of the beams
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reflected by the mirrors hit the absorber), it is reasonable to consider that the following
situations can be ignored:

• Mirror i shaded by a non-neighboring mirror.

• Mirror i shaded by a neighboring mirror j , tilted to the opposite inclination of mirror
i (i.e. βi sign different from the βj sign).

Therefore, only three shading situations for a mirror i are considered:

1. Mirror i is not shaded;

2. Mirror i is shaded by mirror i +1, where βi ≥ βi+1 ≥ 0 and ht ≤ 0 (represented in
Figure 28 a);

3. Mirror i is shaded by mirror i –1, where βi ≤ βi–1 ≤ 0 and ht ≥ 0 (represented in
Figure 28 b).

Figure 28 – Illustration of the mirror shading situations considered on the model. Yellow
line represents the solar ray that delimits the shaded area of mirror i .

Source: The author.

Given these three possibilities, the proposed model calculates the shaded sec-
tion on the mirror (Si ) and limits it so that:

1. If Si > Lmirr (the calculated shadow is greater than the width of the mirror), then
it is limited to the width of the mirror (Si = Lmirr ) and there is complete shading of
mirror i .

2. If Si < 0 (the calculated shadow is smaller than the width of the mirror), then there
is no shadow on mirror i , therefore Si is set (corrected) to zero.

3. Otherwise, the value of Si is maintained.
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The handling of the Si value described above allows differentiating the case with
the absence of shadow. To differentiate between situations 2 and 3 and to calculate the
Si value, it will be necessary to analyze the geometry of the problem as follows.

Figure 29 represents situation 2 when there is a shadow bigger than half the
width of the mirror. Analysing Fig. 8, five points can be highlighted:

Figure 29 – Important variables for calculating shadow in a mirror. Solar morning and
shade greater than half of the mirror.

Source: The author.

• A: Point where the solar ray that limits the shadow in mirror i touches mirror i +1;

• B: Rotation axis of mirror i +1;

• C: Point where the solar ray that limits the shadow in mirror i intersects (or would
intercept if it does not hit mirror i) in the plane of the mirrors;

• D: Point where the solar ray that limits the shadow in mirror i intersects mirror i ;

• E: Rotation axis of mirror i .

Also in Figure 29, the following variables are defined:

• SH,i : Width of the shadow that mirror i + 1 casts on the plane of the mirrors,
ignoring other mirrors;

• ∆SH,i : Position of point C subtracted from position of point E. It will be negative if
the shadow in mirror i is less than half the width of the mirror.
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The analysis of Figure 29 evidenciates the connection between SH,i and ∆SH,i
which given by:

∆SH,i = SH,i –(Lmirr +∆x). (36)

The proposed model calculates the shaded region Si from the connections be-
tween the scalene triangles ∠ABC and ∠CDE as illustrated in figures 30 and 31, both
scalene.

Figure 30 – ABC triangle. Solar morning and shadow greater than half of the mirror.

Source: The author.

Triangle ∠ABC has two angles that can be defined as a function of ht and βi+1,
i.e. it is possible to determine the value of the angle ξi by adding the inner angles of the
triangle:

ξi = 90o –ht –βi+1. (37)

As the opposite angle to the BC side of the triangle is now known, it is possible to
calculate SH,i from the law of sines:

SH,i =
Lmirr

2
sin(ξi )

sin(90o +ht )
. (38)

With the calculated value of SH,i , it is possible to obtain the value of ∆SH,i from
Equation (36). With this value, the triangle ∠CDE can be analyzed.

Figure 31 – CDE Triangle. Solar morning and shadow greater than half of the mirror.

Source: The author.

This triangle helps to determine the value of ∆Si . In a similar way to the proce-
dure adopted in triangle ∠ABC, the value of ϕi from the sum of the internal angles of
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the triangle can be obtained, resulting in Equation (39):

ϕi = 90o –ht –βi . (39)

Using the law of sines:

∆Si =∆SH,i
sin(90o +ht )

sin(ϕi )
. (40)

With the value of ∆Si it is possible to calculate the value of Si from Equation
(41):

Si =∆Si +
Lmirr

2
. (41)

The value of Si , calculated for the case exposed in Figure 29, allows to analyze
if the relations obtained for this case apply when the shadow in mirror i is less than half
the width of the mirror (i.e., if Si < Lmirr /2, or equivalently, if ∆Si < 0). This situation is
illustrated in Figure 32.

Figure 32 – Important variables for calculating shadow in a mirror. Solar morning and
shade smaller than half of the mirror.

Source: The author.

Mounting the triangles ∠ABC and ∠CDE, and performing the same procedures
described above, it is possible to obtain the same expressions. Therefore, these equa-
tions are valid for situation 2 (βi ≥βi+1 ≥ 0 and ht ≤ 0).

For situation 3 (βi ≤βi–1 ≤ 0 e ht ≥ 0), it is necessary to know mirror i–1 projecting
shadow in mirror i . This situation is illustrated in Figure 33.



Chapter 4. Contributions: Optical model and aiming algorithm for fresnel collectors 75

Figure 33 – Important variables for calculating shadow in a mirror. Solar evening and
shade greater than half of the mirror.

Source: The author.

Mounting the triangles ∠ABC and ∠CDE for this case and aware of the sign
changes, procedures similar to those performed for situation 2 can be used, resulting
in the following equations:

ξi = 90o –ht –βi–1, (42)

SH,i =
Lmirr

2
sin(ξi )

sin(–90o +ht )
, (43)

∆SH,i = SH,i –(Lmirr +∆x), (44)

ϕi = –90o –ht –βi , (45)

∆Si =∆SH,i
sin(–90o +ht )

sin(ϕi )
, (46)

Si =∆Si +
Lmirr

2
. (47)

With all cases evaluated, it is now possible to calculate the shadow appendix of
the mirror for the considered situations. Hereafter, Algorithm 2 presented on A summa-
rizes the calculation procedure developed in this section. It is important to note that in
situation 2 the last mirror will never be shaded, while in situation 3 the first mirror will
never be shaded.

Having the shaded region established, it is now possible to determine where the
light beam reflected by the mirrors will reach the plane of the absorber. These equations
will be presented in the following section, as well as the consideration of the absorber’s
shadow.
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Absorber illuminated area estimation

When a collector mirror has a shaded region, only part of this mirror reflects the
incident sun rays in the direction of the absorber. To be able to determine whether these
beams intercept the absorber, it is necessary to know where these beams intercept the
absorber’s plane, as illustrated in figures 34 and 35, which represents the case ht < 0.

Figure 34 – Illustration of variables used for calculating the incidence band on the ab-
sorber’s plane.

Source: The author.

In this figure, some important variables are illustrated to express where the beam
reflected by the mirror falls on the plane of the absorber:

• xabs
1,i : Position on the x axis of the most extreme point of the range reflected by

the mirror i , when intercepting the plane of the absorber, in the west direction.

• xabs
2,i : Position on the x axis of the farthest point of the band reflected by the mirror

i , when intercepting the plane of the absorber, in the east direction.

• xabs
c,i : Position on the x axis where a radius reflected at the center of the mirror i

would intercept the plane of the absorber.

• δxi : projection of the width of the mirror i in the plane of the mirrors (or absorber),
in the direction of the reflected beams.

• δSi : Projection of the shaded area Si of the mirror i in the plane of the mirrors (or
absorber), in the direction of the reflected beams.
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Figure 35 – Illustration of variables used for calculating the incidence band on the ab-
sorber’s plane.

Source: The author.

• ∆Li : difference between xi and xabs
c,i . It will be negative if the reflected rays are in

the west direction (left of the figure).

• σi : Angle between the reflected rays in the mirror i and the plane of the mirrors’
axes.

The observation of Figure 34, as well as the definitions of ht and θt ,i presented
previously allows to obtain the following expression for the calculation of σi :

σi = –2θt ,i +90o +ht . (48)

Consequently, knowing the value of the absorber elevation (Eabs), it is possible
to calculate ∆Li through the relations between angles and sides in a rectangle, resulting
in the expression:

∆Li =
Eabs

tan(σi )
. (49)

From the definition of ∆Li and with its value calculated by the Equation (49) (note
that in this case ∆Li < 0), it is possible to write an expression to determine xabs

c,i :

xabs
c,i = xi +∆Li . (50)

For the same situation, more useful variables can be defined, as shown in Figure
35. Note that to determine the region where the reflected band falls in the plane of the
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absorber, given by the pair (xabs
1,i , xabs

2,i ), it is necessary to know the values of xabs
c,i ,

δxi and δSi . To calculate the value of δSi , an analisys of the relationships between
incidence angles, reflection, and inclination in mirror i must be carried out. A ilustration
of these variables for the case evaluated is presented in Figure 36.

Figure 36 – Detailment of the triangle and relevant angles for obtaining the projection
of the shaded area of mirror i on the direction of the reflected rays on the
plane of the mirrors’ axes.

Source: The author.

Analyzing the angles and the triangle shown in the figure, the derivation of an
expression to obtain ηi is straightforward as follows:

ηi = 2θt –ht +90o –βi . (51)

With this value and knowing the values of Si and λi (λi = 180o –σi ), it is possible
to calculate the value of δSi through the law of sines applied to the triangle shown in
Figure 36, resulting in the Equation (52).

δSi = Si
sin(ηi )
sin(λi )

. (52)

And, in a similar way:

δxi =
Lmirr

2
sin(ηi )
sin(λi )

. (53)

With the value of δSi calculated and the previously established relationships, we
can obtain the incident range in the plane of the absorber is defined by:

xabs
1,i = xabs

c,i –δxi , (54)

xabs
2,i = xabs

c,i +δxi –δSi . (55)

With the incident range calculated, the shadow effect of the absorber into the
mirrors is introduced. This compensation takes place in a few steps, illustrated in Figure
37:
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• Projection of the incident range in the absorber plane (xabs
1,i , xabs

2,i ) at the angle
of incidence in the absorber, resulting in (xmirr

1,i , xmirr
2,i );

• Projection of the absorber shadow in the plane of the mirrors’ axes in the direction
of the transverse solar incidence angle (ht ), resulting in (xmirr

1,abs, xmirr
2,abs);

• Comparison of intersections between (x ′mirr
1,i , x ′mirr

2,i ) and (x ′mirr
1,abs, x ′mirr

2,abs), deter-
mining the values for the range reflected in the plane of the absorber (x ′mirr

1,abs,
x ′mirr

2,abs)

Figure 37 – Illustration of variables used for calculating the incidence band on the ab-
sorber’s plane, considering the absorber’s shadow.

Source: The author.

As seen before, to obtain the projection of the illuminated band in the plane of the
mirrors’ axes, it is enough to have the knowledge of the value of ∆Li (already calculated
by the Equation (49)), resulting in

xmirr
1,i = xabs

1,i –∆Li . (56)

xmirr
2,i = xabs

2,i –∆Li . (57)

The values of (xmirr
1,abs, xmirr

2,abs) can be obtained from the relationship of the
rectangle formed by the plane of the mirrors’ axes, the direction of the shadow of the
absorber, passing through the center of the absorber, and the elevation of the absorber,
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resulting in

xmirr
1,abs =

Eabs
tan(90o +ht )

–
Labs

2
, (58)

xmirr
2,abs =

Eabs
tan(90o +ht )

+
Labs

2
. (59)

Finally, the binary variable Smid
i , which has a value of 1 if the absorber shadow

is contained within the illuminated range is defined.
With the projections in the plane of the mirrors’ axes defined, it is possible to

investigate if there is interception between them and make the assignments of the
values to (x ′abs

1,i ,x ′abs
2,i ). This comparison can be described as follows:

• Case xmirr
2,abs > xmirr

1,i and xmirr
2,abs < xmirr

2,i implies in the intersection on the west side.

– Case xmirr
1,abs < xmirr

1,i and xmirr
2,abs > xmirr

1,i , the shadow of the absorber is in the
middle of the illuminated band, therefore:

Smid
i = 1, (60)

x ′abs
1,i = xabs

1,i , (61)

x ′abs
2,i = xabs

2,i , (62)

Otherwise:

Smid
i = 0, (63)

x ′abs
1,i = xmirr

1,i +∆Li +(xmirr
2,abs –xmirr

1,i ) = xabs
1,i +(xmirr

2,abs –xmirr
1,i ), (64)

x ′abs
2,i = xabs

2,i . (65)

• Case xmirr
1,abs < xmirr

2,i and xmirr
1,abs > xmirr

1,i results in the intersection on the east side.

– Case xmirr
2,abs > xmirr

1,i and xmirr
2,abs < xmirr

2,i , we have that the shadow of the ab-
sorber is in the middle of the illuminated band, therefore:

Smid
i = 1, (66)

x ′abs
1,i = xabs

1,i , (67)

x ′abs
2,i = xabs

2,i , (68)

Otherwise:

Smid
i = 0, (69)

x ′abs
1,i = xabs

1,i , (70)

x ′abs
2,i = xmirr

2,i +∆Li +(xmirr
1,abs –xmirr

2,i ) = xabs
2,i +(xmirr

1,abs –xmirr
2,i ). (71)
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Otherwise, there is no intersection of the absorber’s shadow with the i mirror,
therefore:

Smid
i = 0, (72)

x ′abs
1,i = xabs

1,i , (73)

x ′abs
2,i = xabs

2,i . (74)

This calculates the band in the plane of the absorber that is illuminated by mirror
i , for ht < 0. The case for ht > 0 is obtained in a similar way. Algorithm 3 presented on
A shows the complete process for calculating the illuminated range in the plane of the
absorber for any situation.

With the values of the radiation incidence ranges reflected by the mirrors already
known, it is possible to compute the flow received by the absorber, taking into account
the radiance concentration promoted by the collector. This calculation will be presented
in the next section.

Absorber Irradiance flux estimation

In order to obtain the flow that falls on the absorber, it is necessary to know how
much of the flow that falls on the mirrors is redirected to the absorber, which portion of
this flow hits the absorber and which types of effects can attenuate the incident flow.
One of the main components that cause the decrease of the flow in the absorber is due
to these losses by cosine. Figure 38 presents an illustration to present this concept.

Figure 38 – Illustration of losses by cosine.

Source: The author.

Cosine losses occur when a flow (energy per area) is not perpendicular to a
surface. In Figure 38, the three arrows represent a flow of energy similar to solar
radiance. When one considers the distribution of the arrows of the figure along the
plane A compared with their incidence in the plane B, one can notice that in the plane
B, they are distributed in a larger area. Considering that each arrow carries an equal
amount of energy, it is possible to conclude that the flow of energy through the B plan
will be smaller, since the same amount of energy is focused on a larger area.

Due to the geometry of the problem, it is possible to notice that this decrease
in the value of the flow is related to the cosine of the incidence angle in the analyzed
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plane. Therefore, we have that, considering a flow f incurring in a surface B with angle
γ, the value of the flow applied in this plane is given by:

fB = f cos(γ). (75)

In the case of the Fresnel collector, the losses by cosine are different for each
mirror and should be considered individually when calculating the flow in the absorber.

With the knowledge of the incidence ranges of the reflected rays by each mirror i
(x ′abs

1,i ,x ′abs
2,i ), the calculation of the flow in the absorber consists in verifying which part

of the reflected range hits the absorber and multiplying this value by the cosine of the
incidence angle. These values are summed up and results in the incidence factor (τt ),
as presented in Algorithm 4.

With the execution of this algorithm, the value of τt is obtained, which when mul-
tiplied by the DNI provides the value of the irradiance flow, considering the geometry of
the collector. Next, the concept of the Incidence Angle Modifier (IAM) will be presented
and how to calculate it from the flow τt .

Incidence angle modifier

The incidence angle modifier is an interesting indicator to evaluate the optical
behavior of collectors. It is defined as a ratio between the flow in the absorber at a given
time and the flow in the absorber at the moment of maximum solar incidence, when
h = 0o. Therefore, it is a measure of when the flux at a given time compares with the
flux at the moment of peak irradiation.

To facilitate the analysis of IAM, it can generally be divided into two components:
transversal (IAMt ) and longitudinal (IAMl ), the relationship between them being given
by:

IAM = IAMt × IAMl .

The longitudinal component of the IAM can be calculated by analyzing the be-
havior of the collector for variations of hl . Figure 39 presents an illustration of important
variables for calculating transverse IAM.

Figure 39 – Illuminated longitudinal band and important angles for obtaining IAMl .

Source: The author.
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When analyzing Figure 39, it is possible to notice that depending on the length of
the absorber, the mirrors and the angle θl , part of the absorber does not receive solar
irradiation reflected by the mirrors. This shadow on the absorber is the main component
that affects the flow in the transversal direction. Another important component for the
decrease of the flow in this direction are the losses by cosine. In this case, it is remark-
able that the longitudinal angle of incidence in the mirrors (θl ) is equal to the angle of
incidence of the rays reflected in the absorber.

Considering these two components, the longitudinal incidence factor (θl ) can be
calculated by Algorithm 5 presented on A.

With all the elements of the optical model defined, one more development is
still necessary: to establish narrow limits (βmin

i and βmax
i ) for the inclinations of the

mirrors. These restrictions will be necessary for one of the tracking proposals to present
consistent results.

Mirror angle limits

The minimum and maximum inclination limits for each mirror and for a given
time of day were obtained considering the situations in which the beam reflected by
the mirror intercepts the absorber on the east side (βmax

i ) and west side (βmin
i ). These

boundary conditions are illustrated in Figure 40.

Figure 40 – Illustration of the mirror inclination limits.To the right, the upper limit; To the
left, the lower limit.

Source: The author.

To obtain the minimum inclination value (βmin
i ), consider the situation described

by Figure 41. In this case the incident rays come from the sunrise direction, so ht ≤ 0,
besides, due to the mirror inclination, the angle βmin

i ≥ 0. The points A, B, C, D and E
are defined as:
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• A: Rightmost point of the mirror, where the radius that will tangent the absorber
will be reflected;

• B: Projection in the plane of the mirrors’ axes of point A;

• C: Mirror axis rotation analyzed;

• D: Point projection E in the plane of the mirrors’ axes;

• E : leftmost point of the absorber, where the radius reflected by the point A tan-
gents it.

Figure 41 – Case of mirror with minimal inclination.

Source: The author.

The Figure 42 shows the ∠ABC and ∠ADE triangles, as well as showing how ht
and θt ,i relate geometrically. Also in this figure are defined the angles φi and αi , which
will be calculated as follows
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Figure 42 – Detailing of triangles on case with minimal mirror inclination and ht ≤ 0.

Source: The author.

From the equation 4:
θt ,i = ht +βmin

i . (76)

Analyzing the ∠ABC triangle and the sine and cosine relations in a rectangle:

Ly ,i =
Lmirr

2
sin(βmin

i ), (77)

Lx ,i =
Lmirr

2
cos(βmin

i ). (78)

Analyzing the relationship between αi , θt ,i and ht in the ∠ADE triangle, results
in 180o =αi –2θt ,i +90o +ht . Soon:

αi = 90o +2θt ,i –ht . (79)

From the sine relationship in the ∠ADE triangle:

δxi =
Eabs –Ly ,i

tan(αi )
. (80)

With these variables defined, it is possible to notice that for the ray reflected at
the point A to tangent the absorber at the point E , the following expression must be
satisfied:

xi +Lx ,i (βi )–δxi (βi )+
Labs

2
= 0. (81)

Therefore, by numerically solving the Equation (81) for βi , it is possible to obtain
the value of βmin

i for ht ≤ 0. For the case of ht ≥ 0, building the same triangles ∠ABC and
∠ADE and establishing similar relations, its possible to realize that only the equations
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(79) and (80) are changed, becoming:

αi =90o –2θt ,i +ht , (82)

δxi =
–(Eabs –Ly ,i )

tan(αi )
. (83)

Therefore, Algorithm 6 presented on Appendix A shows the complete procedure
for the calculation of βmin

i . For the calculation of βmax
i , the situation exposed in Figure

43 must be analyzed. New triangles ∠ABC and ∠ADE are defined, as illustrated in
Figure 44. Building relationships in a similar way to the one done for the calculation of
βmin

i , it’s possible to assemble Algorithm 7 presented on Appendix A for the calculation
of βmax

i .

Figure 43 – Case of mmirror with maximal inclination.

Source: The author.
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Figure 44 – Detailing of triangles on case with maximal mirror inclination and ht ≤ 0.

Source: The author.

4.2 VALIDATION OF THE OPTICAL MODEL

To validate the proposed model, a methodology based on (SÁ et al., 2018) was
used, consisting of a comparison of the IAMs obtained in the proposed model with the
values obtained in a software of ray tracing and from experimental data. In this work,
(WENDELIN, 2003) was used as a reference model. This program is available for free
and also has open source. Figure 45 presents a synoptic of the program, showing the
collector’s design and some solar ray traces.

Figure 45 – SolTrace interface.

Source: Wendelin (2003).
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Parameter Value Unit
nmirr 11 -
∆x 0.2 m
Lmirr 0.5 m
Cmirr 64 m
Labs 0.3 m
Cabs 64 m
Emirr 4.00 m

Table 3 – Parameters of the collector used in the validation.

The parameters of the collector considered in this study were obtained from a
commercial product by (SOLAR, 2007) and are presented on Table 3. The values of
the solar angles were generated between 0o and 90o, to evaluate the behavior of the
model in a wide range of values. To determine the inclinations of the mirrors for both
simulations, a simple tracking scheme was used, which will be described in the next
section.

In order to use the SolTrace software, a sun shape must be defined for the
computations of the solar rays paths. The Buie distribution (BUIE et al., 2003) was
selected, with the parametrization and modeling given by (WILBERT, 2014), which
adjusted the data provided by Neumann et al. (2002) to fit the Buie model. This resulted
on Equations (84), (85) and (86), with α being the radial distance, given in milliradians.
The circumsolar ratio (CSR) considered for this sun shape was 0.3.

LBuie,rel (α) =

⎧⎨⎩
cos(0.326·α)
cos(0.308)·α ; α≤ 4.65,

ekαγ; α> 4.65,
(84)

γ= 2.2 · ln(0.52 ·CSR) ·CSR0.43 –0.1, (85)

k = 0.9 · ln(13.5 ·CSR) ·CSR–0.3. (86)

With the provided model, it is now possible to generate a sun shape profile curve,
as shown on Figure 46. The 100 data points used to build Figure 46 were provided to
Soltrace.

In order to validate the proposed model, two references were considered: SolTrace
model and manufacturer data sheet IAM data. As the manufacturer IAM data does not
consider an specific absorber, the proposed model must be slightly changed in order
to compute a comparable IAM. This can be done by replacing lines 3-11 of Algorithm
4 presented on A to not consider if the absorber was hit by the reflected ray, thus
x ′abs

1,i = xinf and x ′abs
2,i = xsup. It is not possible to reproduce such characteristics of the

manufacturer data on the SolTrace software (i.e. disconsider of the reflected rays in-
tercept the absorber while considering the effects of the absorber’s shadow over the
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Figure 46 – Buie sun shape profile.

Source: The author.

mirrors), thus the results comparing the proposed model with the manufacturer’s data
and the SolTrace results are presented separately.

The comparison of IAM with the SolTrace results for IAMt and IAMl are presented
on figures 47 and 48. It is notorious from the analysis of the figures that the proposed
model is able to reproduce the geometric behavior obtained by SolTrace with little
deviation. It is also evident the important effect that the absorber’s shadow has on the
IAMt , observable by the stagnate behaviour at smaller values of transversal solar hour
angle.

Figure 47 – Comparison of IAMt from SolTrace and the proposed model.

Source: The author.

The results comparing the proposed model with the manufacturer’s data are
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Figure 48 – Comparison of IAMl from SolTrace and the proposed model.

Source: The author.

presented in Figures 49 and 50. These also show similar results when comparing
the transversal and longitudinal results, although it is evident that the accuracy of the
proposed model seems to be smaller for small values of hour angle. This can be
significant as small transversal hour angles typically represent the moments of the day
with the highest solar irradiance, and in this case reached maximal deviation of 5.7%
over the manufacturer’s data. The oscillatory behaviour shown for transversal incidence
angles smaller than 50o is given by the absorber’s shadow passing through the mirrors.
As the shadow passes from one mirror to the other, the amount of irradiance on the
absorber oscillates.

Figure 49 – Comparison of IAMt from data sheet and the proposed model.

Source: The author.
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Figure 50 – Comparison of IAMl from data sheet and the proposed model.

Source: The author.

4.3 SOLAR TRACKING ALGORITHMS

With the completion of the optical model, it is possible to evaluate how the
Fresnel collector concentrates the incident irradiation flux on the collector’s absorber.
This concentration is highly dependent on how the mirrors are manipulated along the
day, as the direction of the solar irradiation is always changing. Most tracking algorithms
are composed of a simple logic that makes the solar ray that incides on the center of
each mirror intercept the center of the absorber. The contributions of this chapter are
tracking algorithms that try to maximize the energy directed to the absorber in some
way while considering physical constraints. The following subsections present three
strategies for solar tracking algorithms on Fresnel collectors.

To evaluate the different proposals and tracking, simulations were carried out
with values of ht referring to the path of the sun on a specific day, between 08:00 and
17:00 hours and each simulation has 100 points. The condensed DNI was constant
and equal to 1000 w .m–2.

4.3.1 Simple tracking

The simplest tracking system for Fresnel collectors is that which aims to make the
sun’s rays that pass through the center of the mirrors reach the center of the absorber.
Figure 51 shows the desired geometry for this type of tracking of the Sun.

From the analysis of the relationships between the angles described in Figure
51, it is easy to derive an analytical expression that associates the inclinations of the
mirrors (βi ) with the position of the Sun, being given by the following equation:

µi +βi +θt ,i = 90o. (87)
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Figure 51 – Representation of simple tracking for some solar hour angle. The orange
line represents the trajectory of the solar ray that is reflected at the center
a mirror.

Source: The author.

Substituting θt ,i , calculated by Equation (4), and rearranging the terms, we arrive
at a simple expression:

βi =
90o +ht +µi

2
. (88)

The simplicity of this expression allows this type of tracking to be implemented
mechanically, with only one actuator on all mirrors, as proposed in (PIGOZZO, 2019).
The figures 52 and 53 illustrate the slopes calculated for the mirrors and the incident
and reflected rays in the center of each mirror.

Figure 52 – Representation of the simple tracking for ht = –67.162o.
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Figure 53 – Representation of the simple tracking for ht = 13.292o.
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Figure 54 – Illustration of two aiming strategies: (a) represents the usual aiming strategy
and (b) represents an aiming strategy that makes the center of the reflected
beam coincide with the center of the absorber.

Source: The author. Source: The author.

4.3.2 Tracking with the center of the illuminated area

In order to make the incidence on the absorber more symmetrical, a new strategy
for tracking was devised: Instead of making the rays reflected on the center of each
mirror reach the center of the absorber (as illustrated on Figures 52 and 53), the new
proposal is to make the center of the beams reflected on each mirror incide on the
center of the absorber. This strategy is illustrated on Figure 54.

Since the proposed model already calculates the illuminated band in the ab-
sorber’s plane (x ′abs

1,i , x ′abs
2,i ), the calculation of the center of the illuminated region of
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the absorber is given by:

x ′abs,C
i =

x ′abs
1,i +x ′abs

2,i
2

. (89)

Since the calculation of (x ′abs
1,i ,x ′abs

2,i ) involves multiple steps and non-linearities,

it is not possible to find an analytical expression that relates x ′abs,C
i and βi , but it is

necessary to use a numerical method to obtain the mirror inclination values that take
x ′abs,C

i to zero (absorber center).

4.3.3 Tracking maximizing the absorbed solar irradiation flux

The algorithm presented here is a original proposal of this work and it‘s tracking
objective is to maximize the solar irradiance flow in the absorber. As the flow can be
calculated by the proposed model from the τt incidence factor, no major development
is necessary to implement this calculation. In this proposal, it is necessary to formulate
a highly non-linear optimization problem, which demanded the use of derivative-free
solvers such as Particle Swarm Optimization (PSO) and has a high computational cost.
The result of the previous proposal was used as an initial estimate for the optimization
problem, in order to make the solution of the problem easier. A condensed version of
the optimization problem that is solved is presented below:

max
βi

τt

subject to τt =Φmodel (βi ,ht )

βmin
i ≤βi ≤βmax

i i = 1...nmirr

(90)

Problem (90) presents the objective to maximize the incidence factor τt with the
manipulation of the inclination of the mirrors (βi ). In order to compute the value of τt , the
equality constraint is imposed, where Φmodel represents the optical model presented
in this work. The inequality constraints offer tight constraints on the inclinations of the
mirrors.

4.4 COMPARISON OF THE TRACKING ALGORITHMS

The results for the simulation of the three algorithms are presented on Figure 55,
where the total irradiance flux on the absorber at each simulation instant is presented.
For all simulations, the irradiance was considered constant at 1000 w .m–2 and only
the solar incidence angle changes. The figure shows that the simplest aiming strategy
results in similar irradiance flux on the absorber when compared with the two proposed
strategies. It is noticeable that the strategies of aiming with the center of the illuminated
beam and maximization of irradiance flux generate slightly higher irradiance flow in the
absorber, which can also be seen on Table 4. The flattening of the curve, observed on
all cases between 10:00 and 15:00 is given by the absorber’s shadow passing through
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the mirrors, thus diminishing the illuminated area of the mirrors, causing oscillations
and a smaller flux on the absorber.

Figure 55 – Simulation results for all aiming strategies.

Source: The author.

Mean time per
iteration Summation of flux

Simple aiming 6.74 10–5 s 100 %
Illuminated band
center aiming 0.04 s 100.7 %

Maximizing
flux aiming 0.42 s 100.8 %

Table 4 – Performance indicators for all evaluated aiming strategies.

Table 4 presents two parameters for comparing the results for each of the pro-
posals: Total irradiance that intercepted the absorber’s area over the simulation (shown
in percentages in relation to the simple aiming strategy) and the average computation
time. As expected, the first proposal has a very small computation time because it does
not require computations of complex components of the collector’s optical model. As
expected, the proposal that maximizes the flow obtained a summation value of the flow
greater than the other proposals, but not much higher.

Having the optical model and aiming strategies defined, it is now possible to study
how to implement partial defocusing on Fresnel collectors. This is possible because the
aiming strategy defines the inclinations of the mirrors and the proposed model is able
to provide the individual contributions of each mirror to the performance of the collector.
The next section presents an initial study on this regard.



Chapter 4. Contributions: Optical model and aiming algorithm for fresnel collectors 96

4.5 DEFOCUSING STRATEGY

The proposed strategy for partial defocusing of Fresnel collectors consists on
using each mirror on two possible states: following the inclination (βi ) provided by the
aiming strategy (referred here as focused mirrors) or; with an inclination that minimizes
it’s effects on the concentration (defocused mirror). This minimal interference inclination
is illustrated on Figure 56, with the variable ϱi , representing the focus status of each
mirror i . Assuming that defocusing is occurring prevalently near noon, when the solar
irradiance is at its greatest values during the day, the shading between focused and
unfocused mirrors is ignored, being considered only the shading already considered on
the optical model (neighboring focused mirrors).

Figure 56 – Illustration of the behaviour of a defocused mirror.

Source: The author.

With these two possible states for each mirror, an the knowledge of how much
irradiance is reflected to the absorber, an algorithm can be developed to compute which
combination of focused or defocused mirrors results on a desired focusing level (δ) for
the whole collector. In order to implement this algorithm, it is necessary to calculate the
relative incidence factor (τ∗i ) for each mirror i . This is done by Equation (91).

τ∗i =
τi
τt

(91)

The values of incidence factor for each mirror and the whole collector are calcu-
lated on Algorithm 4 presented on A. The goal of the proposed defocusing algorithm is
to make the current equivalent focus value of the collector (

∑︁nmirr
i=1 τ∗i ·ϱi ) be the closest

to some desired focus value (δ), which can be achieved by minimizing the result of
Equation (92).

Jdef
bin = (δ–

nmirr∑︂
i=1

τ∗i ·ϱi )
2 (92)
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It can be shown that the minimization of this J is equivalent to the mixed-integer
quadratic programming presented on Problem 93.

min
ϱ

0.5 ·ϱ′ ·H ·ϱ+ f ′ ·ϱ

subject to ϱi ∈ [0,1], i ∈ [1,nmirr ]
(93)

With

T = [τ∗1,τ∗2, . . . ,τ∗nmirr
]′

ϱ= [ϱ1,ϱ2, . . . ,ϱnmirr ]
′

H = T ·T ′

f = –δ ·T ′

The solution of Problem 93 should yield values of ϱi such the equivalent focus of
the collector is close to the desired. In order to evaluate this algorithm, this problem was
solved for various values of transversal solar hour (ht ), for eleven desired focus values.
These results are presented on Figure 57, which shows on dashed lines the desired
collector focus value and in continuous lines the equivalent focus value obtained for the
optimal combination of mirrors obtained on each case.

It is possible to see that, as expected, it is not possible to always obtain the
precise desired focus value, as the combination of focused and defocused mirrors
have a discrete and finite number of possibilities for each incidence angle. Although
it is not possible to obtain exact focus values on some cases, it is noticeable that on
the worst cases (e.g. δref

6 = 0.5), the maximal deviation did not exceed a range of 5%
deviation over the desired value. This indicates that it can be possible to implement such
defocusing strategy if the structure that proposes the defocusing takes into account this
level of imprecision on the actuator.
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Figure 57 – Simulation results for partial defocusing of a Fresnel collector.

Source: The author.

4.6 FINAL REMARKS

This chapter presented an simplified optical model for a Fresnel collector, which
was compared with data from a well established Ray Tracing optical modeling software
and experimental data. The model was used to evaluate three different solar aiming
strategies for this type of collector. The results show that the simple aiming algorithm
has a good performance even when compared with more complex proposals. Further
study is necessary for assessing if these new proposals, such as maximizing irradia-
tion distribution over the absorber, will have effects on the long term durability of the
absorber. This chapter also evaluated a possible algorithm for computing partial defo-
cusing on Fresnel collectors. The model and tracking algorithms presented allow for
future works with predictive controllers that manipulate the collector’s mirrors to control
the temperature of the thermal fluid. This is possible because the model presents data
on the contribution of each mirror to the overall performance of the collector. In order to
implement this strategy, it appears that the model should not be directly Incorporated
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on the controller’s prediction model, as the nonlinearities of the optic characteristics of
the system introduce much complexity for a optimization solver that is supposed to be
executed in real-time. The hierarchical concept appears as and interesting option for
control structure, which involves a higher-level master controller that determines the
focus value and a lower-level optimization problem that calculates the inclination of the
mirrors given the desired focus. This concept is explored in the next chapter.
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5 CONTRIBUTION: MPC WITH OPTICAL COLLECTOR MODEL

In Chapter 4 it was proposed a simplified model for the concentration ratio of the
controller to be used on defocusing computations but it was not incorporated into a con-
trol structure that defines the amount of necessary defocusing. This chapter presents
a control structure for defocusing control of Fresnel collectors that considers how the
collector implements the defocusing and analyzes some possible performance issues
that may arise from the incorporation of solar tracking manipulation on the sampling
time of the proposed MPC controller. The proposed control structure incorporates the
optical model of the fresnel collector on an intermediary layer between the MPC and
the collector’s mirror’s actuation, thus separating the problem of defining the amount of
defocusing to be applied and the computation of each mirror’s inclination angle, given
the solar position and the desired defocusing value. Thus, the main contributions of this
chapter are:

• A new control structure is proposed for the solar collector system, based on a
two-layer nonlinear MPC strategy;

• An optical model is used in the control structure to design a control law that
achieves the desired defocus;

• A sensitivity analysis for the defocusing structure is performed;

• Simulations are performed considering a Ray-Tracing optical model of the Fresnel
collectors.

The rest of this chapter is divided as follows: Section 5.1 describes the CSP
field, the fresnel collector, and the models utilized. Section 5.2 describes the two Model
Predictive Control structures used in this work. Section 5.3 describes the solar aiming
and the defocusing strategy utilized to implement the desired defocus level proposed
by the controllers. Section 5.4 presents the simulation results in closed loop for the
proposed controllers and the tracking error analysis.

5.1 SOLAR THERMAL FIELD AND FRESNEL COLLECTOR

Each fresnel collector, as seen in Chapter 2, is composed of a reflector that
focuses the sun irradiation on an absorber tube. Inside the absorber tube, a Heat
Transfer Fluid flows through the collector loop and receives the thermal energy from
the absorber tube. The amount of energy that the HTF has at the output of the loop is
directly related to the amount of solar irradiation at the reflectors, which is both the main
source of energy for the process and its main disturbance. Typical control structures
only manipulate the HTF flow as it changes the amount of energy absorbed per unit
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of time, but the defocusing of the reflector mirrors introduces a degree of freedom to
the control structure and allows for a faster actuation for lowering the HTF temperature
(MACHADO et al., 2022).

This work considers two models for the fresnel collector. The first is presented
in detail in Chapter 4, which consists of a simplified optical model built on Matlab that,
given the solar position angles (ht and hl ) and the mirrors’ inclination angles (β), pro-
vides the irradiance flux on the collector’s absorber (Iabs), as illustrated by Equation
(94). This model is used to compute the inclination of the mirrors that implement the
desired focus value. It has low computational complexity, allowing its use on optimiza-
tion problems in real-time. How to obtain the mirrors’ inclinations on the presence of
defocusing while tracking the sun will be presented in section 5.3 of this work.

Iabs(t) = fmodel (ht (t),hl (t),β(t)) (94)

The second model considered is developed on SolTrace software (WENDELIN,
2003), which uses Ray-Tracing technology to obtain the same output as the first model.
This second model is more accurate and is used as the actuator on the MPC simulations
performed in this work. It is also used to evaluate the errors due to the discrete actuation
of the tracking algorithm, as will be presented later. Differently from the previous optical
model, the SolTrace model is not built directly with equations but is created by providing
a geometric description of the collector, which substantially increases the computational
effort in order to evaluate the model. This increased computational cost makes this kind
of model impractical for Real-Time applications with relatively small sampling time, such
as MPC or other optimization-based algorithms.

Both the Matlab and SolTrace models are parametrized with the the collector’s
number of mirrors (nmirr ), length (Cmirr ) and width (Lmirr ) of the mirrors, length (Cabs),
width (Labs) and elevation (Eabs) of the absorber, and also the distance between mir-
rors (dmirr ). The azimuth angle of the central axis of the collector is also considered.
The solar thermal field considered in this work is composed of nc fresnel collectors
associated in series, composing a collector loop, and these nl loops are configured
parallel to each other. The resulting HTF flow from all the parallel loops gives the total
flow for the solar field and the temperature at the output of the field (T field

out ) is affected
by the output temperature of each loop.

The model utilized in this work to represent the heat exchanges that occur in
the solar field is a lumped parameter model for each collector is the one described in
Chapter 2, expressed in Equation (5).

The output temperature of the field is modeled with a weighted average of the
output temperatures of each loop, using the volumetric flow rates, as expressed on
Equation (95).
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T filed
out (t) =

∑︁np
i=1 Tout ,i ,nc

(t)vi (t)∑︁nl
i=1 vi (t)

(95)

5.2 OPTIMAL CONTROL OF SOLAR FIELD WITH DEFOCUSING

The proposed control structures aims to manipulate the HTF flow within its
operational limits in order to achieve the reference for the output temperature for the
solar field. The controllers should defocus the solar collectors when the maximum HTF
temperature is to be reached in a predictable future horizon while considering the future
reference value for the HTF temperature and the disturbances of ambient temperature,
irradiation, and inlet temperature. This control structure is described in Figure 58.

Figure 58 – Diagram of the proposed control structure for a generic solar field. The
outputs of the MPC are only shown for loop 1 for simplicity but are present
on all loops and collectors.

Source: The author.

The MPC controller solves an optimization problem that yields values for the
HTF flow (vi ) and focus (ϕi , j) which are passed down to some actuation structure. The
actuators for the flow are not explicitly modeled on this work as it is assumed that these
have fast actuation given the sampling time of the controller. The focus values obtained
for each collector are passed to an intermediary layer between the MPC and the mirror’s
actuators. Given the desired focus value, this layer will calculate the angular position
of each mirror on the respective collector while considering the solar tracking. The
procedure for computing these mirror inclination angles is detailed in section 5.3 and
considers the optical model described in Chapter 4. In summary, the MPC controllers
used in this work measure all the collectors’ output temperatures, manipulate the flow
on each loop and focus level on each collector of the field.

In the scope of this work, two nonlinear model predictive control were considered,
referred to as NMPC and PNMPC, and are described in the following sections.
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5.2.1 Nonlinear Model Predictive Control (NMPC)

The first proposal is to use the nonlinear process model directly as the prediction
model of the MPC controller, as shown in Chapter 2 in problem (96) (here repeated):

min
u

Hp∑︂
k=1

Jd (x(k ),u(k )), (96a)

Subject to

x(k +1) = fd (x(k ),u(k )), k ∈ [0,Hp –1], (96b)

x(k ) ∈X , k ∈ [1,Hp], (96c)

u(k ) ∈U , k ∈ [1,Hc ]. (96d)

Where Hp is the prediction horizon, Hc the control horizon, fd the dynamic model
of the process, xk are the predicted variables and uk the manipulated variables. For the
solar field control, this work considers the manipulated variables as the flow on each
loop i (vi (k )) and the focus value on collector j of loop i (δi ,j (k )), thus uk is given by:

uk =
[︁
v1(k ),v2(k ), ...,vnp(k ),δ1,1(k ), ...,δ1,nc

(k ), ...,δnp,ns (k )
]︁T

The predicted variables for this controller are the output temperatures of each
collector and the effective focus applied on the collector, given the actuation dynamics:

x(k ) =
[︂
Tout ,1,1(k ),Tout ,1,2(k )...,Tout ,1,ns

(t), ...Tout ,np,ns (t),

δout ,1,1,δout ,1,2, ...,δout ,1,ns
, ...δout ,np,nc

]︂T

The cost function Jd (as seen on Equation (25)) has terms penalizing three
aspects of the process: the tracking error for the reference of the output temperature
of the field (Tref ), as seen on Equation (26a); the discrepancy between the flow and
focus value to their respective maximal values (vmax and 1 respectively), as seen on
Equation (26b); and the movements of the manipulated variables, as seen on Equation
(26c).

With:

∆vi (k ) = vi (k )–vi (k –1), k ∈ [1, . . . ,Hc ],

∆δi ,j (k ) = δi ,j (k )–δi ,j (k –1), k ∈ [1,Hc ].

The constraints (96c) and (96d) define relevant constraints on the manipulated
and controlled variables, such as lower and upper limits for the flow, focus, and temper-
atures. It is also considered an upper limit for the sum of the flows of all loops. These
constraints are expressed in equations (98), considering i ∈ {1, ...,np} and j ∈ {1, ...,ns}.
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T min ≤Tout ,i ,j (k )≤T max , k ∈ [1, ...,Hp], (98a)

0≤ δi ,j (k )≤ 1, k ∈ [1, ...,Hc ], (98b)

vmin ≤ vi (k )≤ vmax , k ∈ [1, ...,Hc ], (98c)
nl∑︂

i=1

vi (k )≤ vmax ,field , k ∈ [1, ...,Hc ]. (98d)

The MPC formulation presented in (96) is classified as a Nonlinear Programming
(NLP) problem, which can be challenging to solve. One of the control proposals of this
work is to use directly this kind of implementation, and the controller will be called
nonlinear MPC (NMPC) This proposal utilises Multiple Shooting in order to compute the
predictions during the optimization. The second proposal consists of a transformation of
the NLP problem described by (96) through linearization of the prediction model at each
execution of the controller and also considering the focus variable δi ,j as an integer,
representing fixed levels of possible focus values. This second proposal denominated
Practical Nonlinear MPC (PNMPC) is described in the next section.

5.2.2 Practical Nonlinear Model Predictive Control (PNMPC)

The PNMPC controller used in this section is the partial defocusing controller
proposed by Elias et al. (2018) and that was used in Chapter 3. It uses integer variables
to model the partial defocusing of the collector in intervals of 10% and solves a Mixed-
Integer Quadratic Programming (MIQP) problem at each sampling time. The following
section presents details of the layer that computes the angles of the collector’s mirrors
given the desired focus value δi ,j and the solar angle ht . The tuning parameters for the
controllers are presented in Table 5.

Table 5 – Tuning parameters of the controllers.

QT Qv Qϕ Rv Rϕ

NMPC 10 1e4 1e2 1e2 1
PNMPC 1e-5 1e-3 0.1 1 1e2

5.3 DEFOCUSING STRATEGY

In order to describe the defocusing strategy, it is important to understand how
the solar tracking is usually made, considering the collector is completely focused. The
most simple tracking strategy consists of making the solar ray that would be reflected
in the center of the mirror hit the center of the absorber, as described in Section 4.3.1
and illustrated in Figure 51.
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Notice that, independently from the transversal projection of the solar hour angle
(ht ), the angle between the reflected solar ray and the horizontal plane that passes
through the centers of all the mirrors (µm) does not change. This angle µm is only
dependent on the geometry of the collector, and more specifically, depends on the
elevation of the absorber (Eabs) and the position of the mirror with respect to the
absorber’s position on the horizontal plane. For a given value for the inclination of mirror
m (β100%

m ) and a sun position angle ht , it is possible to obtain the transversal incidence
angle (θt ,m) of the solar rays on the mirror. This incidence angle is given with respect
to the normal vector of the mirror, represented by Nm in Figure 51.

Through some trigonometric analysis of the angles when performing the solar
tracking, as seen in Section 4.3.1, it is possible to arrive at a simple expression that
defines the interactions of these angles in this case, as expressed on Equation (99).
Therefore, it is very simple to compute the angle for all nmirr mirrors of each collector
given the solar position (ht ) and the geometry of the collector (µm).

β100%
m = 45o –

ht +µm
2

(99)

The proposed strategy for partial defocusing of Fresnel collectors consists of
changing the focal point for the fresnel collectors, in such a way that the amount of
irradiance incident on the absorber is equivalent to the percentage defined by the
defocus value (δi ,j ), with respect to the amount of irradiance that the absorber receives
when operating the solar tracking with complete focus. This procedure is exemplified by
Figure 59, where L represents the elevation of the new focal point under the absorber.

Figure 59 – Illustration of the defocusing strategy on the collector.

Source: The author.

The change in the focal point can be incorporated into the tracking algorithm
by replacing µm on Equation (99) with a new angle µ∗m, such that the reflected rays
intercept at height L. This new µ∗m is given by equation (100).

µ∗m = arctan
(︃

L. tan(µm)
Eabs

)︃
(100)

Thus, given the desired focus elevation L and the solar angle ht , it is possible to
compute the inclination angles for all the collector’s mirrors, as presented on Equation
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(101).

β∗m = 45o –
ht +µ∗m

2
(101)

Although helpful, Equation (101) is not sufficient to implement the defocusing
strategy, as the MPC controllers provide focus values (δi ,j ) in percentages and do not
directly provide the elevation for the new focal point. It is possible to incorporate the
computation of the elevation L directly into the MPC controllers, but this would introduce
even more nonlinearities on the controller, making it more challenging to run the control
structure in real-time, without evident benefits to the performance of the control.

This work proposes that in order to obtain the elevation that implements the
desired focus value, the model proposed by (BRANDÃO; COSTA MENDES; NORMEY-
RICO, 2022) (and here presented in generic form in Equation (94)) coupled with the
tracking algorithm expressed in Equation (101) can be used to provide the correlation
between the percentual focus value given by an elevation L, expressed as F (ht ,L) and
the desired focus value, generically expressed as F ref . Thus, for the NMPC, F ref = δi ,j ,
while for the PNMPC controller F ref = δi ,j /10.

In order to compute the focus value as a function of ht and L, it is necessary
to first obtain the irradiance at the absorber considering 100% focus (I100%

abs ), which is
done by evaluating Equation (94) with the β100%

m , obtained by Equation (99), as seen
on equation (102).

I100%
abs = fmodel

(︂
ht ,β

100%
m

)︂
(102)

Then, it is possible to compute the irradiance at the absorber for a given value
of elevation L (I∗abs) with equation (103).

I∗abs = fmodel (ht ,β
∗
m(ht ,L)) (103)

At last, the focus value obtained with the elevation L can be obtained by dividing
the irradiance level given L, by the irradiance level for complete focus, as expressed by
equation (104).

F (ht ,L) =
I∗abs

I100%
abs

(104)

Now, it is only necessary to find which value of L results in the obtained focus
value F (ht ,L) to be equal to the reference focus F ref . This can be implemented with
many root-finding numerical methods, but as the proposed defocusing strategy requires
that the new focus elevation to be under the absorber, it is necessary to incorporate
this constraint on the solution, resulting in the optimization problem (105).

min
L

(︂
F ref –F (ht ,L)

)︂2
(105a)
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Subject to

0≤ L≤Eabs (105b)

The structure of this optimization problem is also illustrated by Figure 60, which
shows the main components of the problem and how they interact to obtain the value
of elevation L that implements the desired focus value.

The reference optical models which are commonly used to design from solar
collectors to whole CSP fields are based on Ray-Tracing techniques. These models
use the Monte Carlo method to simulate solar ray paths and compute their trajectory
while reflecting on mirrors and hitting opaque barriers, such as the absorber. Although
it is desirable to use the Ray-Tracing models to solve the optimization problem, it is not
practical as these models have relatively high computation times and the topology of
the cost function has several local minima and maxima, therefore it is necessary to use
heuristic techniques, such as Particle Swarm Optimization, in order to obtain a solution.
These heuristic techniques require large amounts of calls to the objective function and
to the Ray-Tracing model, making it impractical for real-time applications. Solving with
SolTrace takes approximately 44 seconds per sample, which is impractical considering
the sampling times of (SÁNCHEZ et al., 2018) and (ARAÚJO ELIAS et al., 2019) (30
and 6 seconds respectively). It would be necessary 22 days for computing the 44260
points mapping used later in this thesis.

The optical model proposed in Chapter 4 arises as a second option for this
approach, as it has a small computational cost and was validated with SolTrace for
solar tracking.

With the description of the defocus strategy complete, the following section
presents some simulations and analysis regarding the studied MPC controllers and
the effects of different kinds of errors on the defocusing strategy.
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Figure 60 – Detailing of some of the collector’s parameters.
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Source: The author.

5.4 RESULTS AND DISCUSSION

In order to compare the MPC described in section 5.2, the controllers were
incorporated into a Matlab simulation that implements the structure present in Figure
58. The dynamic model and computation of the mirror’s angles are all performed in this
Matlab simulation, but in order to consider possible errors in the optical model proposed
by (BRANDÃO; COSTA MENDES; NORMEY-RICO, 2022), which is used to compute
the mirror’s angles, this work also incorporates on the process model a ray-tracing
model of the solar fresnel collector built on the SolTrace software. The organization
of this simulation structure is presented in Figure 61, where it is possible to observe
the inputs and outputs of the MPC controllers, the mirror angle computation layer, the
SolTrace optical model, and the dynamic model of the collector.

The SolTrace model is used to calculate the effective focus value δi ,j that is
to be applied to the dynamic model, and is considered to be more accurate than the
focus value obtained considering the (BRANDÃO; COSTA MENDES; NORMEY-RICO,
2022) model, as it does not rely on approximations of geometric equations. Both MPC
controllers are evaluated with this structure and are subjected to irradiance (I(t)) and
ambient temperature (Ta(t)) signals as presented in Figure 62, which represents a
cloudy day with high irradiation. The evaluated controllers have a sampling time of 6
seconds and the simulation runs for Nsim = 2004 iterations, resulting in 3.34 hours of
simulated time. The solar transversal hour angle (ht ) was considered starting at -52o

and ending at 0.3380o, emulating operation starting from 09:00 until 12:20.
Four quantitative performance indices were considered in order to evaluate the

controllers, these being the mean computation time for each iteration of the controllers,
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Figure 61 – Representation of the main structures involved in the simulations for evalu-
ating the performance of the proposed MPC controllers.

Source: The author.

the standard deviation of the same time data, and the integral set-point tracking error,
defined by equation (106).

IAM =
Nsim∑︂
k=1

(T field
out (k )–Tref (k ))2 (106)

The graphical results of these simulations are presented in Figure 63 for the
PNMPC case and in Figure 64 for the NMPC case. It is possible to observe that
the NMPC controller maintains the output temperature of the solar field more closely
to the reference value of 295oC, but also presents more oscillatory behavior for the
manipulated variables. This excessive movement of the focus actuator can damage the
equipment if present for long periods of time and can become a relevant issue. As the
PNMPC controller can only apply defocusing action on 10% steps, it has more difficulty
lowering the temperature when the flow value has already reached its upper limit but
the temperature increase is not large. This shows that both strategies are capable of
safely operating the process (as none of the controllers caused the temperature to
surpass the upper limit of 300oC), but the NMPC controller allowed for tighter reference
tracking.

Although the graphical results may indicate a clear advantage for the NMPC
controller, when analyzing the quantitative indices, presented in table 6, it is possible
to note that the PNMPC controller presents a smaller and more consistent execution
time, indicated by the smaller values of mean and standard deviation. This is due to
the fact that solving the nonlinear optimization problem is more challenging and the
computation time can vary greatly as the convergence can require more iterations in
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Figure 62 – Irradiation and ambient temperature profiles considered for the simulations.

Source: The author.

Table 6 – Performance indices for the MPC simulations.

PNMPC NMPC
Generated Heat [J] 5.6880e+04 5.6824e+04
IAM 2.8719e+04 1.4769e+04
Average computation time [s] 0.0726 2.7266
Standard deviation of computation time [s] 0.0689 3.5431

certain situations.
It is also noticeable that the amount of thermal energy absorbed by the HTF is

greater in the PNMPC case. This is due to the increase in the temperature in the high
irradiation scenario when the HTF flow is at its upper limit, resulting in more energy
being absorbed. Although absorbing more energy is desirable, it is important to note
that this increase is obtained with temperature values very close to the upper limit. This
index must be observed together with the IAM, as it indicates how well the controller is
following the desired operational temperature.

5.4.1 Analysis of solar aiming and mirror inclination errors

Although inherently able to handle model uncertainties, the MPC controllers can
be very affected in the presence of significant modeling errors. This section analyses
the effects of errors in the values of solar angles and mirror inclination on the effective
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Figure 63 – Results for the simulation with the PNMPC controller.

Source: The author.

focus value that affects the collector. This analysis was performed in three ways:

• Mapping the correlation between focal point elevation (L), solar hour angle (ht ),
and desired focus value;

• Evaluating the effective focus resulting from the error in ht that results from the
sampling time of the control system;

• Evaluating the effective focus resulting from errors in the inclination of the collec-
tor’s mirrors (βi ).

The mapping of the correlation between elevation, hour angle, and focus was
performed by executing the defocus algorithm illustrated by Figure 60 for combinations
of ht ∈ [0o,90o] and F ref ∈ [0%,100%]. This mapping is presented in Figure 65, which
allows the visualization of the highly nonlinear behavior of the defocusing implemen-
tation. It is also noticeable that for values of transversal solar hour angle ht near 90o

(which usually represent sunset and sunrise situations), and focus values smaller than
10%, the solution seems degraded.

The behavior for high values of ht can be explained by the optical model con-
sidered, which does not account for all shading between mirrors on these solar angles,
but can be seen as acceptable when considering that a well-positioned collector will
only be exposed to these solar angles at times when the solar field is not operational.
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Figure 64 – Results for the simulation with the NMPC controller.

Source: The author.

The behavior for small values of focus is due to the effect of an odd number of mirrors
on this solar aiming strategy. Having a centralized mirror implies that, independent of
the proposed focal point elevation, the central mirror will always reflect upward, towards
the absorber, as seen in Figure 66, which impossibilities defocusing of the collector
for values equivalent to less than the energy reflected by this central mirror. This is a
limitation of this simple defocusing strategy for the case with an odd number of mirrors.
This limitation can be overcome by changing the defocusing strategy when only the
central mirror is illuminating the absorber.

In order to improve the visualization of the behavior of the defocusing strategy on
cases without this degraded result, Figure 67 presents the same defocusing data, but
only for ht ∈ [0o,60o] and F ref ∈ [10%,100%]. This range of values for the solar angle
and focus value was also used in the next results presented in this work, and the values
presented in Figure 67 were considered as references for the other analysis.

The next analysis consisted of running the defocus algorithm of Figure 60 for
values of ht added 0.022o, which is approximately the transversal angular displacement
of the sun for the sampling time of the controllers. These results are shown in Figure
68, which also shows the reference results considering no error on ht . In Figure, the
respective point with and without error is connected by a colored line to illustrate the
magnitude of the impact of this error on the effective focus value that was obtained.
The faint presence of the lines in Figure 68 shows the small scale of the impact of this
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Figure 65 – Mapping of the defocus strategy with respect to solar angle, defocus value,
and elevation of the focal point.

Source: The author.

Figure 66 – Defocusing case with an odd number of mirrors.

Source: The author.

sampling-induced tracking error, which was not greater than 0.1% for all considered
points, indicating that the sampling time is appropriate.

With the effects of tracking errors due to the sampling time analyzed, the last
evaluation of this work consists of introducing an error on the mirror’s angles βi ,j and
verifying the effective focus value. Similarly to the previous case, the points representing
the error on βi are connected by a line to the reference value in order to accentuate the
effect on the equivalent focus. For Figure 69, it was considered variations of ±0.05o on
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Figure 67 – Mapping of the defocus strategy with respect to solar angle, defocus value,
and elevation of the focal point, for a region without degenerate optimization
results.

Source: The author.

Figure 68 – Results for evaluation of tracking error due to sampling time of the tracking
structure.

Source: The author.

all βi ,j of the collector. The results show more representative errors, that in the worst
case resulted in 1.3% variation on the focus value, which can still be considered to have
a small impact on the performance of the defocusing control. The results of figures
70 and 71 show the effects of an error of 0.5o in the mirror inclination angles. These
latter results evidentiate that even relatively small errors for βi ,j can result in important
inconsistencies on the effective focus value, resulting in deviations as high as 18%
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Figure 69 – Results for evaluation of effective focus discrepancy for variations of ±0.05o

on the mirrors inclination angles.

Source: The author.

in this case. The observation of the figures also allows noticing that the effect of the
different errors considered in this work is highly nonlinear. These errors have more
impact on the vicinity of some specific values of ht .

Figure 70 – Results for evaluation of effective focus discrepancy for variations of 0.5o

on the mirrors inclination angles.

Source: The author.

The results presented in this section indicate that the implementation of defocus-
ing strategies on fresnel collectors is subject to interferences from many sources, which
can reduce the effectiveness of the control. A better understanding of the impacts of
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Figure 71 – Results for evaluation of effective focus discrepancy for variations of 0.5o

on the mirrors inclination angles, side view.

Source: The author.

uncertainties can be crucial for the effectiveness of solar field MPC applications.
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5.5 FINAL REMARKS

This chapter presented an evaluation of two Model Predictive Control proposals
for solar fields with defocusing fresnel collectors and analyzed the effects of different
types of errors on the effectiveness of the proposed defocusing strategy. The dynamic
simulations of the closed-loop systems operating with the proposed controllers showed
that the NMPC controller was able to more closely track the temperature reference for
the solar field albeit presented considerably greater and less coherent execution times
and more aggressive control actions when compared to the PNMPC proposal. The error
analysis showed that the sampling time has a small impact on the tracking accuracy
but also showed that relatively small uncertainty on the inclination of the collector’s
mirrors can produce great inconsistencies between the desired focus value computed
by the controller and the effective focus value affecting the process. The simulations
also showed that the proposed defocusing strategy is limited when considering an odd
number of mirrors on the collectors. Overall, the proposed control structure was able to
operate the process within the operational constraints and with reasonable computation
times.
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6 CONTRIBUTION: IMPROVING DEFOCUSING WITH NEURO-FUZZY MODELS

One of the main operational issues for Concentrating Solar Power (CSP) plants
is the overheating of the Heat Transfer Fluid (HTF), which frequently occurs as the solar
collector fields are designed to provide multiples of the thermal energy necessary to
operate. If overheating temperatures are reached, the HTF can degrade, generating
numerous issues, reducing the system’s performance, and compromising its safety. As
such, avoiding the operational upper bounds for temperatures constitutes an interesting
control problem, as the solar collector should provide the biggest energy output possible
while maintaining the integrity of the process components.

Many works utilize the Neuro-Fuzzy techniques to model nonlinear of dynamic
systems, control and estimation of solar concentration processes. ANFIS is a hybrid
model introduced by (JANG, 1993) widely used. For example, in (ESCAÑO, Juan
Manuel et al., 2020) developed a soft sensor to classify the behavior of drivers in real
time. The algorithm consists of several NF systems in combination with PCA. Besides,
a Neuro-Fuzzy estimator is developed in (ESCAÑO, J. M. et al., 2021) to estimate the
non-observable states in a parabolic trough solar field. In addition, (SALAZAR, W. D. C.
et al., 2021; SALAZAR, W. C. et al., 2022) a Neuro-Fuzzy model of a Fresnel solar field
and high temperature generator (HTG) is developed, focusing on a rule-based model.

The work in this chapter proposes a defocusing strategy for fresnel collectors,
considering the collector’s optical geometry in order to calculate the mirror inclination
angles that produce the required focus value. Two contributions to the proposed strategy
are compared: the first uses the model proposed in Chapter 4 in an optimization problem
to determine the mirrors’ angles, as presented in the previous chapter, and the second
consists of a Neuro-Fuzzy structure that is trained with a reference ray-tracing software.
Both implementations are compared with simulations from a reference optical modeling
software.

This Chapter is divided as follows: Section 6.1 describes the proposed defocus-
ing algorithm. Section 6.2 presents the optimization based defocusing strategy. Section
6.3 presents the ANFIS defocusing stratetgy, as well as the training process and training
results. Section 6.4 presents results where simulations comparing the proposed strate-
gies and SolTrace are shown. Section 6.5 presents the final remarks of the chapter.
The results of this paper were submitted to IFAC World Congress 2023.

6.1 DEFOCUSING STRATEGY FOR A FRESNEL COLLECTOR

The proposed strategy for defocusing of fresnel collectors consists of changing
the focal point of the mirrors, in such a way that the amount of irradiance incident on
the absorber is equivalent to the percentage defined by the desired focus value (F ref ),
with respect to the amount of irradiance that the absorber receives when operating the
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solar tracking with complete focus. This procedure was described in Section 5.3.
Although helpful, calculating the mirror inclination angles for a given focus eleva-

tion is not sufficient to implement the defocusing strategy, as there is no clear relation-
ship between F ref and the new elevation L. The next sections present two approaches
to obtaining the desired focus value.

6.2 OPTIMIZATION-BASED DEFOCUS

The optimization-based approach fot defocusing of fresnel collectors is the one
described in section 5.3, using the optical model presented in Chapter 4.

The reference optical models which are commonly used to design from solar
collectors to whole CSP fields are based on Ray-Tracing techniques. These models
use the Monte Carlo method to simulate solar ray paths and compute their trajectory
while reflecting on mirrors and hitting opaque barriers, such as the absorber. Although
it is desirable to use the Ray-Tracing models to solve the optimization problem, it is not
practical as these models have relatively high computation times and the topology of
the cost function has several local minima and maxima, therefore it is necessary to use
heuristic techniques, such as Particle Swarm Optimization, in order to obtain a solution.
These heuristic techniques require large amounts of calls to the objective function and
to the Ray-Tracing model, making it impractical for real-time applications. Solving with
SolTrace takes approximately 44 seconds per sample, which it may be a high sampling
time regarding the overheating issue.

The optical model proposed by (BRANDÃO; COSTA MENDES; NORMEY-RICO,
2022) arises as a second option for this approach, as it has a small computational cost
and was validated with SolTrace for solar tracking. With this model coupled with the pro-
posed optimization problem, the first proposal for the implementation of the defocusing
strategy is complete. The next section presents the other defocusing implementation
proposal, now based on a Neuro-Fuzzy approach.

6.3 NEURO-FUZZY BASED DEFOCUS

This chapter proposes a structure based on an ANFIS to compute the collector
focus point that results in a desired defocus value, as represented in Figure 74. In this
case, several data points were obtained from SolTrace in order to train the neuro-fuzzy
network. The SolTrace software was given a series of values for the solar position (ht )
and elevation (L) and, as described previously, equation 104 is used in order to obtain
reference values for the focus (F ref (ht ,L)). These values of ht , L, and F ref are then
used to train the neuro-fuzzy structure, as described in the next section. The goal is
to make this structure provide the correct values of L that implement the desired focus
values F ref , given a specific solar angle ht .
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6.3.1 Preparation of data

Preliminary work has been done on the data set to train the neuro-fuzzy based
defocus. The data set is stored in a Matrix D ∈ ℜn×m, where n is the total number of
samples (n = 44260) and m represents the number of variables, which in this case are
3. The variables that compose D are shown in Table 7.

Table 7 – Variables composing the data set.

Symbol description Range Unit
Min Max

ht Transverse solar angle. 0 90 [ o ]
F ref Desired focus 0 100 [%]
L Focus point 0 4 [m]

First, from D the minimum and maximum of each variable are identified. Sub-
sequently, the Matrix D is divided into three sets: training, checking, and validation as
shown in Figure 72. The learning set is composed of the training and checking sets and
has 35408 samples for the learning process and 8852 samples for validation.

Figure 72 – Organization of available data.
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Source: The author.

A normalization process is added to the learning set using Min-Max feature
scaling so that all values fall in the range [0, 1]. The values of each variable have a
different scale, which can affect the learning process due to inconsistencies. It is solved
by the normalization process, thus avoiding the different nature and magnitude of the
variables, as noted in William D. Chicaiza Salazar et al. (2021) and William Chicaiza
Salazar et al. (2022).

6.3.2 Neuro-Fuzzy model obtained

An ANFIS architecture is used to estimate the focus point (L), using the ht
and F ref variables as inlet and (L) as outlet. Thus, a Fuzzy Inference System (FIS)
was obtained to estimate the focus point of the collectors. In order to train the ANFIS
network, a dataset covering different working points is needed. The learning process of
the ANFIS architecture uses the training and test sets. In this process, the ANFIS looks
at the normalized RMSE of the training and check set in order not to overfit only the
first set, which would cause the obtained FIS to output inappropriate values for values
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that have not been seen in the learning process. In this way, it seeks a middle ground
where learning is general in both groups.

Initially, a subtractive clustering (SC) Chiu (1994) method is used to obtain the
membership functions, i.e., the number and centers of the antecedent parameters of
the fuzzy rules. A hybrid learning method is then applied; backpropagation (BP) to
determine the antecedent parameters and least squares to estimate the consequent
linear parameters for each epoch or sweep. The parameters of the ANFIS network
obtained in the learning process are presented in Table 8.

Table 8 – ANFIS parameters.

Description ANFIS
MF type: Gaussian
Optimization method: hybrid
Output MF type: linear
FIS Defocus
Number MFs: 5
Number rules: 5
Influence range 0.6
Epoch number: 2000

Each rule has antecedents and consequent parameters. The antecedent param-
eters consist of membership functions of the Gaussian type of each crisp input zi that
forms the fuzzy sets. Whereas a first-order polynomial function contains the consequent
parameters. Both parameters were adapted in the learning process. The outlet of each
rule is a linear combination of input variables added to a constant term. The final output
of the Fuzzy Inference system is the weighted average of each outlet of the rule.

The learning process of the ANFIS network uses a few epoch numbers, and
the training and checking sets present small errors (see Figure 73) The learning pro-
cess of the ANFIS network uses a few epoch numbers, and the training and checking
sets present small errors, indicating that the learning was general. The error indexes
obtained in the learning process for each model are shown in Table 9.

Table 9 – nRMSE index obtained of the learning process for the ANFIS and its updating
time.

RMSE min of ANFIS obtained
Training & Checking
FIS Defocus
nRMSETrain(×10–3) 8.1552
nRMSECheck (×10–3) 8.8586
ttw (h) 0.34



Chapter 6. Contribution: Improving defocusing with neuro-fuzzy models 122

Figure 73 – Normalized Root Mean Squared Error (nRMSE) vs. epoch.
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This chapter develops a neurofuzzy structure that will be referred as FISdefocus,
which is based on ANFIS. The FISdefocus should describe the relationship between the
focus elevation and a desired focus value for a Fresnel collector, as described in Fig.74.
The inputs the variables mentioned in Table 7, with exception of (L) that is chosen as
the model output and, therefore, the variable that the neuro-fuzzy network must learn.

Figure 74 – Neuro-Fuzzy based defocus.
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6.3.3 Validation on Neuro-Fuzzy based defocus

The validation process compares the output FISdefocus whit the validation data
set, that is, a new data set whit 8852 input-output samples. The new data were not
used in the learning process of the ANFIS network. Thus, five error indexes were used
to compare the FIS output with the actual output data: the arithmetic error mean (Ē),
standard deviation (Std), Root Mean Square Error(RMSE), Mean Absolute Percentage
Error (MAPE) and the coefficient of determination 1 R2. The error indexes are given by
the Equations (107)

RMSE =

√︄∑︁N
i=1(xi ,j – x̂ i ,j )2

N
(107a)

MAPE =

∑︁N
i=1

|(xi ,j–x̂ i ,j )|
xi ,j

N
×100% (107b)

R2 = 1–
xi ,j – x̂ i ,j
xi ,j – x̄ i ,j

(107c)

where N represents the number of samples N of validation data set, xi ,j is the actual
output value and x̂ i ,j is the output FISdefocus obtained and x̄ is the mean value of the
data. The error indexes provide information about precision, i.e, how much the error is
dispersed.

Figure 75 shows that FISdefocus is capable to follow the real value of focus point
with an error of 0.45e–3±4.5e–4 [m] as shown in Table 10.

Table 10 – Validation index of FISdefocus.

Error FISdefocus
indexes model
Mean 0.45e–3

Std ±4.5e–4

RMSE 4.5e–3

MAPE 0.08%
R2 0.9998

1 R2 is a number between 0 and 1, that measures how well a statistical model estimates an outcome.
If R2 = 0, the model does not describe the outputs, if 0 < R2 < 1, the model partially estimates the
outputs, and if R2 = 1 the model perfectly estimates the outputs.
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Figure 75 – (a) FISdefocus evaluation, FIS output data vs real data. (b) Validation zoom
in the first region (orange rectangle). (c) Validation zoom in a second region
( cyan rectangle).
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6.4 SIMULATIONS AND RESULTS OF THE TWO APPROACHES

This section presents the results for comparing the two proposed defocusing
structures when applied to the reference SolTrace model. The simulations were per-
formed as follows. Firstly, reference values for focus point elevation (Lref ) and solar hour
angle (ht ) was applied to the SolTrace reference model, resulting in values of reference
focus values (F ref ). In order to evaluate the accuracy of the defocusing strategies, the
reference focus values from SolTrace are used as inputs in both proposals and the
focus point elevation proposed in both cases was compared with the original Lref that
contain 44200 samples.

The mapping of the optimization-based proposal is presented in Figure 76, which
also presents color-coded information on the irradiance at the absorber. This color code
was generated by associating a typical solar irradiation curve with the solar angle data,
in order to estimate which points of the mapping represent high irradiation moments of
the day.

Regarding the optimisation based strategy, it is noticeable some abnormal be-
havior for small values of focus, which is due to considering a fresnel collector with
an odd number of mirrors. For small focus values, the central mirror will always reflect
directly up, toward the absorber. Therefore, it will not be possible to have an effective
focus that is smaller than the contribution of this central mirror. In this situation, the pro-
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Figure 76 – Mapping of the solution of the defocusing problem for the optimization
approach.

Source: The author.

posed defocsing strategy cannot find and L that implements the desired focus. As this
solution is to be implemented in future works, the following analysis will only consider
ht ∈ [0o,60o] and F ∈ [10%,100%].

In order to evaluate the accuracy of the calculated elevations obtained from
simulation, Figure 77 presents the results for both proposals and the reference values
from SolTrace.

It is possible to see the highly nonlinear behavior of the defocusing in fresnel
collectors. One can also notice that the ANFIS surface seems closer to the reference
surface for all points when compared with the optimization-based approach. This be-
comes more evident in Figure 78, where the error for both proposals is shown. It is
clearly seen that the ANFIS has, approximately, a flat and close to zero error in the
whole range.

Some performance indexes were calculated and presented in Table 11, which
reinforces the superior performance of the ANFIS proposal, even when comparing the
average execution time for each sample. The error is reduced considerably with respect
to the optimization based strategy and does not present problems when using an odd
number of mirrors.

Another advantage of both methods is the computation time in comparison to
the Soltrace software. Soltrace’s computation time (44 s) would be quite long to apply
defocus control signals given the nature of the problem, overheating. The computation
time of both methods is less than 1 second, with the ANFIS-based system being the
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Figure 77 – Comparison of the results for the optimization approach, Neuro-Fuzzy ap-
proach and the reference values for the focus.

Source: The author.

Figure 78 – Comparison of the error for the optimization approach, Neuro-Fuzzy ap-
proach.

Source: The author.
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shortest, less than 1 millisecond. In large scale Fresnel solar plants the computation
time is an important factor.

Table 11 – Performance indexes.

Index FISdefocus
Opt.
simple model

Opt.
SolTrace

Mean 4.4650e –05 0.3365 -
RMSE 6.6544e –05 0.0033 -
MAPE 0.2722% 11.3107% -
R2 0.9979 0.8344 -
Avg. comp.
time (s) 0.4e–3 0.4 44

6.5 CONCLUSION

In this work, an ANFIS network was employed to capture the focus point value
of a fresnel collector modeled in Ray-Tracing software. A fuzzy inference system of
First-order recursive of 5 rules is obtained once the learning process is completed. In
addition, the FIS obtained presents a low error, about the real value of the focus point. It
also presented an optimization approach that also implements the proposed defocusing
algorithm and showed inferior results when compare to ANFIS. Results showed that the
proposed defocus strategy based on the optimisation algorithm have limitations when
using an odd number of mirrors in the fresnel collector. On the other hand, the system
ANFIS based approach has shown to have a high performance, with a mean error of
4.4650e –05, a MAPE of 0.2722% and low computation time.

Future works can explore the limitations of the defocusing strategy by considering
a change of behavior when only the central mirror is illuminating the absorber. Improving
the optimization-based approach with a better optical model is also an interesting
research path as using a FIS model as the optical model of the problem could unite the
advantages of both approaches.
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7 CONCLUSION AND FUTURE WORK

This document presented the results obtained from the thesis titled "Modeling
and predictive control with defocusing in thermosolar systems". The thesis explored
the issue of controlling a solar fresnel collector filed with manipulation of the level of
focus at the solar energy collectors. The manipulation of the focus on each collector is
studied as it contributed to fast actuation on overheating scenarios of the HTF, which are
common in solar thermal power plants. This issue is tipically handled by safety systems,
thus is not usually incorporated in the control of the process, which can possibly reduce
the energy yeld of the solar field due to conservative defocusing.

Contributions were made in proposing MPC formulations for control of the field,
proposing a novel simplified optical model for the fresnel collector, and the proposal
of two defocusing strategies and and sensitivity analysis for some factors that could
significantly depreciate the performance of the control.

The first contribution was a variation of the controllers proposed by Elias et al.
(2018), by incorporating aspects of the On//Off and partial defocusing formulations. The
results showed that the proposed controller was able to avoid the overheating of the
process with smoother movement of the manipulated variables, with the exception of
pump failure scenario, where it presented difficulties on avoiding excessive movement
of the HTF flow. These results were presented at the Solar World Congress 2019:

BRANDÃO, Adriano S. M.; COSTA MENDES, Paulo Renato da; ELIAS, Tiago
De Araújo, et al. Overheating Prevention in Solar Collectors Using a Hybrid Predictive
Controller. In: ISES Solar World Congress 2019 Proceedings. Santiago, Chile: Interna-
tional Solar Energy Society, 2019. p. 861–872.

The second contribution was the development of a novel simplified optical model
for a fresnel collector, allowing the study of different solar aiming strategies and later
the implementation of defocusing strategies. The model is non-iterative and does not
require complex computations. It was validated through IAM with data from the manu-
facturer of the reference collector and with the SolTrace software. These results were
published in the Renewable Energy journal:

BRANDÃO, Adriano S. M.; COSTA MENDES, P.R. da; NORMEY-RICO, Julio
E. Simplified optical model, aiming strategy and partial defocusing strategy for solar
Fresnel collectors. Renewable Energy, v. 188, 2022. ISSN 18790682. DOI: 10.1016/
j.renene.2022.02.019.

The third contribution of this thesis was a methodology for evaluating the impacts
of using the proposed defocusing strategy through the lens of process control. It was
proposed a simple nonlinear MPC controller that provided reference focus values to
a lower structure that computes the inclination of each mirror of the collector in order
to obtain the desired focus. Then, it was simulated the error in obtaining this desired

https://doi.org/10.1016/j.renene.2022.02.019
https://doi.org/10.1016/j.renene.2022.02.019
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focus when introducing errors on the inclination of the mirrors, on the parallelism of the
mirrors and it was also analyzed the error introduced by the sampling time applied to
the solar aiming strategy. Results showed that errors as small as 0.5o on the inclination
of the mirrors can offset the effective focus in more than 20% of the desired focus value.
These results were submitted for publishing on the Solar Energy journal.

BRANDÃO, Adriano S. M.; NORMEY-RICO, Julio E. CSP field predictive control
with Fresnel collector defocusing. Solar Energy, submitted.

Finally, the last contribution of this thesis was an alternative to the optimization-
based approach for computing the inclination of the mirrors for defocusing. It was
proposed an ANFIS structure that was trained with data from SolTrace and presented
superior performance in both accuracy and computing time. These results were submit-
ted for the 2023 IFAC World Congress.

BRANDÃO, Adriano S. M.; CHICAIZA, William D., et al. Neurofuzzy Defocusing
strategy for a Fresnel collector. In: submitted

During the development of this thesis, it was also published an scientific dissemi-
nation paper at the Revista PPGEAS. In this paper, the issues of generating thermosso-
lar energy were presented, some of which are the motivation of this thesis.

BRANDÃO, Adriano S. M.; NORMEY-RICO, Julio E. Energia termossolar, cole-
tores Fresnel e os desafios da geração sustentável de eletricidade. Revista PPGEAS,
v. 4, p. 14–19, 2022.

7.1 FUTURE WORK

Much of the work of this thesis are the initial steps on researching the use of
defocusing with fresnel collectors. There are opportunities for improving the optical
model, the defocusing strategies and the controllers, such as:

• Improve the optical model by considering the geometry of the absorber, mirror
blocking and improving some of the approximations that are made.

• Analyze the impact of the different solar tracking strategies on the distribution of
heat over the absorber tube.

• Formulate a tracking strategy that minimizes the irradiance gradient over the
absorber tube.

• Propose a robust controller or stochastic controller considering the uncertanties
involved in the use of defocusing and the uncertain nature of the weather.

• Use ANFIS to learn the optics of the fresnel collector and use this model to
propose other optimization-based defocusing strategies.
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• Improve the proposed continuous defocusing stategy in order to allow total defo-
cusing when considering an odd number of mirrors.
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APPENDIX A – OPTICAL MODEL ALGORITHMS

Algorithm 2 Computation of the shaded area on mirror i
Result: Si
∆Si = –Lmirr /2
if βi ≥βi+1 ≥ 0 and ht ≤ 0 e i < nmirr then
ξi = 90o –ht –βi+1
SH,i = Lmirr

2
sin(ξi )

sin(90o+ht )
∆SH,i = SH,i –(Lmirr +∆x)
ϕi = 90o –ht –βi
∆Si =∆SH,i

sin(90o+ht )
sin(ϕi )

Si =∆Si + Lmirr
2

else if βi ≤βi–1 ≤ 0 and ht ≥ 0 e i > 1 then
ξi = 90o –ht –βi–1
SH,i = Lmirr

2
sin(ξi )

sin(–90o+ht )
∆SH,i = SH,i –(Lmirr +∆x)
ϕi = –90o –ht –βi
∆Si =∆SH,i

sin(–90o+ht )
sin(ϕi )

Si =∆Si + Lmirr
2

end
if Si < 0 then

Si = 0
else if Si > Lmirr then

Si = Lmirr
end
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Algorithm 3 Computation of the illuminated band reflected by mirror i on the absorber’s
plane.
Result: x ′abs

1,i ,x ′abs
2,i e Smid

i
initialization x ′abs

1,i = xabs
1,i ,x ′abs

2,i = xabs
2,i , Smid

i = 0

if ht < 0 then
σi = –2θt ,i +90o +ht
∆Li = Eabs

tan(σi )
xabs

c,i = xi +∆Li
ηi = 90o –ht –βi +2θt
δSi = Si

sin(ηi )
sin(σi )

δxi = Lmirr
2

sin(ηi )
sin(σi )

xabs
1,i = xabs

c,i –δxi

xabs
2,i = xabs

c,i +δxi –δSi

xmirr
1,abs = Eabs

tan(90o+ht )–
Labs

2

xmirr
2,abs = Eabs

tan(90o+ht )+
Labs

2

if xmirr
2,abs > xmirr

1,i e xmirr
2,abs < xmirr

2,i then
if xmirr

1,abs < xmirr
2,i e xmirr

1,abs > xmirr
1,i then

Smid
i = 1

else
x ′abs

1,i = xabs
1,i +(xmirr

2,abs –xmirr
1,i )

end
end
if xmirr

1,abs < xmirr
2,i e xmirr

1,abs > xmirr
1,i then

if xmirr
2,abs > xmirr

1,i e xmirr
2,abs < xmirr

2,i then
Smid

i = 1
else

x ′abs
2,i = xabs

2,i +(xmirr
1,abs –xmirr

2,i )
end

end
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if ht ≥ 0 then
σi = 2θt ,i +90o –ht
∆Li = Eabs

tan(σi )
xabs

c,i = xi –∆Li
ηi = 90o +ht +βi –2θt
δSi = Si

sin(ηi )
sin(σi )

δxi = Lmirr
2

sin(ηi )
sin(σi )

xabs
1,i = xabs

c,i –δxi

xabs
2,i = xabs

c,i +δxi –δSi

xmirr
1,abs = Eabs

tan(90o–ht )–
Labs

2

xmirr
2,abs = Eabs

tan(90o–ht )+
Labs

2

if xmirr
2,abs > xmirr

1,i and xmirr
2,abs < xmirr

2,i then
if xmirr

1,abs < xmirr
2,i and xmirr

1,abs > xmirr
1,i then

Smid
i = 1

else
x ′abs

1,i = xabs
1,i +(xmirr

2,abs –xmirr
1,i )

end
end
if xmirr

1,abs < xmirr
2,i and xmirr

1,abs > xmirr
1,i then

if xmirr
2,abs > xmirr

1,i and xmirr
2,abs < xmirr

2,i then
Smid

i = 1
else

x ′abs
2,i = xabs

2,i +(xmirr
1,abs –xmirr

2,i )
end

end
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Algorithm 4 Computation of the incidence factor τt ;
Result: τt
τt = 0
foreach i ;1≤ i ≤ nmirr do

xinf = –Labs
xsup = Labs
θabs

t = –θt –βi
if x ′abs

1,i > xinf then
xinf = x ′abs

1,i
end
if x ′abs

2,i < xsup then
xsup = x ′abs

2,i
end
if (x ′abs

1,i < –Labs/2 and x ′abs
2,i < –Labs/2) or (x ′abs

1,i > Labs/2 and x ′abs
2,i > Labs/2) then

χi = 0
else

χi = xsup –xinf
if Smid

i == 1 then
χi =χi –Labs

end
end
τi = cos(θabs

t )χi /Labs
end
τt =

∑︁i≤nmirr
i=1 τi

Algorithm 5 Computation of the incidence factor τl ;
Result: τl
τl = 0
if Cabs > Eabstan(hl ) then
τL = (Cabs –Eabstan(hl ))

τtcos(hl )
Cmirr

else
τl = 0

end
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Algorithm 6 Computation of de the minimal inclination of a mirror
Result: βmin

i
θt ,i = ht +βmin

i
Ly ,i = (Lmirr

2 )sin(βmin
i )

Lx ,i = (Lmirr
2 )cos(βmin

i )
if ht ≤ 0 then
αi = 90o +2θt ,i –ht

δx = (Eabs–Ly ,i )
tan(αi )

else
αi = 90o –2θt ,i +ht

δx = –(Eabs–Ly ,i )
tan(αi )

end
Solve for βmin

i : xi +Lx ,i –δx + Labs
2 = 0

Algorithm 7 Computation of de the maximal inclination of a mirror
Result: βmax

i
βmax

i = 0
θt ,i = ht +βmax

i
Ly ,i = (Lmirr

2 )sin(βmax
i )

Lx ,i = (Lmirr
2 )cos(βmax

i )
if ht < 0 then
αi = 90o +2θt ,i –ht

δx = (Eabs+Ly ,i )
tan(αi )

else
αi = 90o –2θt ,i +ht

δx = –(Eabs+Ly ,i )
tan(αi )

end
Solve for βmax

i : 0 = xi –Lx ,i –δx – Labs
2
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