
Federal University of Santa Catarina (UFSC)

Graduate Program in Automation and Systems Engineering (PosAutomação)

Cleber Jorge Amaral

GoOrg: A model to automatically design organisations for

Multi-Agent Systems

Florianópolis - SC - Brasil

January 2023

Cleber Jorge Amaral

GoOrg: A model to automatically design organisations for

Multi-Agent Systems

Doctoral Thesis submitted to the Graduate Program
in Automation and Systems Engineering (PosAutomação)
of Federal University of Santa Catarina (UFSC) in
partial fulĄllment of the requirements for obtaining
the doctoral degree (Doctor in Automation and Sys-
tems Engineering).
Supervisor: Jomi Fred Hübner
Co-supervisor: Stephen CraneĄeld

Florianópolis - SC - Brasil

January 2023

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Amaral, Cleber Jorge
 GoOrg: A model to automatically design organisations
for Multi-Agent Systems / Cleber Jorge Amaral ;
orientador, Jomi Fred Hübner, coorientador, Stephen
Cranefield, 2023.
 140 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2023.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2. Design
Organizacional. 3. Estrutura Organizacional. 4. Sistemas
MultiAgentes Abertos. 5. Design Automático. I. Hübner, Jomi
Fred. II. Cranefield, Stephen . III. Universidade Federal
de Santa Catarina. Programa de Pós-Graduação em Engenharia
de Automação e Sistemas. IV. Título.

Cleber Jorge Amaral

GoOrg: A model to automatically design organisations for
Multi-Agent Systems

This work in the doctoral degree was evaluated and approved by a thesis defence
committee composed of the following members:

Prof. Ricardo Azambuja Silveira, Dr.
INE/CTC/UFSC

Prof. Jaime Simão Sichman, Dr.
PCS/USP

Prof. Rafael Cauê Cardoso, Dr.
DCS/University of Aberdeen

We hereby affirm that this is the original and Ąnal version of the thesis which was
evaluated and approved for obtaining the title of doctor in Automation and Systems

Engineering.

Coordinator of the Graduate Program
in Automation and Systems

Engineering (PosAutomação)

Prof. Jomi Fred Hübner, Dr.
Supervidor

Florianópolis - SC - Brasil
January 2023

This work is dedicated to my mother and father, Laci and Jorge who gave me the very

Ąrst and most important lessons of my life. This work is also dedicated to my wife

Sharlene, my daughter Sarah and my son Nathan who unconditionally supported me

throughout a long journey in this research.

Acknowledgements

A special feeling of gratitude to Jomi, who from the very beginning of this research

said the exact thing that I needed to hear. There can be no greater example of a kind

and humane conduct that transcends the topics covered in this PhD thesis.

I also want to express my gratitude to Stephen for his once again excellent advice. I

also want to acknowledge the help, inspiration, and motivation I received from my friends

Timotheus Kampik, Cristina Helena, Michael Silva, Thomás Teixeira, Mozart Gonçalves,

and Olivier Boissier.

Thank you to the professors, staffs and students of the PosAutomação program

of UFSC and of the Information Science Department of the University of Otago for all

the good lessons, talks and support. Also, many thanks to the publicationsŠ reviewers for

their valuable contributions, and to Ricardo Silveira, Jaime Sichman and Rafael Cardoso

for their insightful criticism in reviewing this thesis.

In closing, I would like to thank IFSC for approving and supporting this research,

and the program CAPES-UFSC ŞAutomação 4.0Ť, the project AG-BR of Petrobras and

the post-graduate program PosAutomação of UFSC for partially funding this research.

ŞI would rather have questions that cannot be answered

than answers that cannot be questioned.Ť

(Richard Feynman)

Resumo

O design de organizações é uma tarefa complexa e trabalhosa. Isto é tema de
estudos recentes que deĄnem modelos para executar esta tarefa automaticamente.
No entanto, os modelos existentes restringem o espaço de possíveis soluções requisi-
tando deĄnições prévias dos papéis organizacionais e geralmente não são adequados
para o planejamento de recursos. Esta tese de doutorado apresenta o GoOrg, um
modelo que utiliza como entrada um conjunto de objetivos e um conjunto de agentes
disponíveis para gerar diferentes arranjos de estruturas organizacionais construídas
a partir de posições organizacionais sintetizadas. As características mais distintas do
GoOrg é o uso de posições organizacionais ao invés de papéis e que as posições são
sintetizadas automaticamente no lugar de requisitar que o usuário as deĄna. Estas
características facilitam a parametrização, a utilização no planejamento de recursos
e as chances do modelo de encontrar soluções viáveis. Para avaliar o GoOrg, esta
tese introduz duas especializações que estendem o modelo. Estas extensões deĄnem
processos e restrições, ilustrando como o GoOrg pode ser adequado para diferentes
domínios. Entre os aspectos associados ao design de organizações, este trabalho ap-
resenta uma comparação entre modelos de design organizacional e discute entradas,
abstrações de agentes e procedimentos para adaptação de organizações durante seu
ciclo de vida.

Palavras-chave: Design Organizacional. Estrutura Organizacional. Estrutura So-
cial. Sistemas MultiAgentes Abertos. Design Automático.

Resumo Expandido

Introdução

Agentes são entidades autônomas de software que normalmente cooperam com out-
ros, formando Sistemas Multi-Agentes (SMAs). Para que seus objetivos comuns
sejam alcançados, os agentes fazem parte de organizações que restringem ou in-
centivam certos comportamentos de agentes. Organizações são entidades indepen-
dentes dos agentes, portanto, projetadas utilizando modelos, técnicas e ferramentas
próprias. Uma organização é fundamentalmente deĄnida por sua estrutura, ou seja,
por posições organizacionais, suas relações e responsabilidades. Apesar da importân-
cia da estrutura e o quão trabalhoso é projetá-la, há poucos e limitados modelos
de projeto automático de estruturas organizacionais. De fato, é desaĄador elabo-
rar um modelo de projeto automático de organizações que seja efetivo, adaptável
e simples de parametrizar. O modelo GoOrg apresentado nesta tese busca vencer
estas limitações. As entradas do modelo são os objetivos e os agentes disponíveis.
As saídas são estruturas organizacionais cuja viabilidade é calculada além de out-
ros atributos que ajudam a selecionar a organização mais adequada para um dado
cenário. O GoOrg não utiliza o conceito de papéis organizacionais, como em outros
modelos, ao invés disso utiliza posições que possuem relações uma-para-um com
agentes. Esta característica facilita a veriĄcação de viabilidade de uma organiza-
ção, ou seja, se uma dada organização gerada poderá ser preenchida pelos agentes
disponíveis. Além disso, a demanda por agentes pode ser veriĄcada em tempo de
projeto e a distribuição de objetivos pode ser estabelecida com maiores critérios pela
ferramenta de projeto organizacional. Para demonstrar a aplicabilidade do modelo,
esta tese apresenta também duas extensões do GoOrg, uma desenvolvida para um
cenário industrial de produção de uma fábrica e outra para um cenário de sensores
distribuídos para rastreamento de objetos.

Objetivos

O objetivo geral deste trabalho é desenvolver um modelo para geração automática
de estruturas organizacionais para SMAs que seja independente de domínio. Os ob-
jetivos especíĄcos são: (i) que o modelo seja extensível para diferentes domínios;
(ii) que considere os agentes disponíveis veriĄcando a viabilidade das estruturas
organizacionais geradas e (iii) que permita que as estruturas geradas sejam orde-
nadas utilizando diferentes critérios para que a ŞmelhorŤ estrutura, conforme as
preferências do usuário, possa ser automaticamente selecionada.

Metodologia

Esta pesquisa utiliza a seguinte metodologia: (i) realização de revisão bibliográĄca
sobre geradores de organizações, destes as clássicas do campo de pesquisa da ad-
ministração até as pesquisas de geradores automáticos de organizações de SMAs;
(ii) deĄnição do problema de pesquisa; (iii) proposição de uma solução; (iv) imple-
mentação da solução; e (v) avaliação da solução.

Resultados e Discussão

O GoOrg utiliza representações impessoais de agentes, desacoplando a organiza-
ção dos agentes, facilitando a geração de mais candidatos e tornando o projeto
de organizações mais Ćexível, uma vez que não se restringe às especiĄcidades de
agentes nomeados. A utilização de posições organizacionais ao invés de papéis or-
ganizacionais faz com que os recursos possam ser estimados em tempo de projeto

e eleva o controle do projeto sobre a distribuição de atividades a determinados
agentes, elevando a relevância desta etapa. Apesar das vantagens que o modelo de
posições com relações um-para-um traz, há a desvantagem de reduzir a Ćexibilidade
de combinações em tempo de execução, o que pode elevar a necessidade de refazer
o projeto organizacional quando o cenário é alterado. O GoOrg se destaca por sin-
tetizar posições ao invés de requerer que os papéis organizacionais sejam deĄnidos
pelo usuário, reduzindo a complexidade da parametrização do modelo e reduzindo
a inĆuência dos vieses do usuário. No entanto, isso traz maior complexidade com-
putacional. No que se refere as entradas do modelo, destaca-se que o GoOrg utiliza
principalmente objetivos organizacionais e características que podem ser associadas
a estes, sendo relativamente mais simples de se conceber comparado com outros
modelos que requerem a deĄnição dos comportamentos dos agentes. Como saída,
o GoOrg gera um conjunto de estruturas quantiĄcadas por atributos, facilitando a
seleção automática da estrutura mais adequada para o cenário. Por Ąm, conforme
demonstrado pelas extensões apresentadas, o GoOrg pode facilitar adaptações orga-
nizacionais durante a execução do SMA, suportando realocações simples de agentes,
trocas de estrutura por outras previamente criadas ou, se necessário, reprojetando
completamente as estruturas organizacionais. Para cada procedimento de adaptação
foram discutidos custos associados como o curso de aquisição de novos agentes e o
custo de sobrequaliĄcação de agentes.

Considerações finais

O projeto organizacional tem sido reĄnado ao longo do tempo, desde os estudos
no campo da administração aos modelos de projeto automático de organizações
para SMAs. Os modelos de geração automática para SMAs utilizam papéis orga-
nizacionais que, apesar da Ćexibilidade em tempo de execução, diĄcultam a esti-
mação de recursos e reduzem a relevância do projeto organizacional. Este estudo
adotou posições organizacionais que compartilham as principais vantagens dos pa-
péis, como o desacoplamento da organização de agentes nomeados, porém reĆetindo
numericamente demandas, o que permite estimá-las e veriĄcar antecipadamente a
viabilidade de organizações. Este modelo foi avaliado do ponto de vista de duas
extensões desenvolvidas para diferentes domínios. As extensões puderam gerar con-
juntos de estruturas com atributos quantiĄcados, realizando a seleção automática
do ŞmelhorŤ candidato conforme as preferências do usuário deĄnidas no momento
do projeto. Os processos de geração e seleção de organizações foram implementados
como módulos distintos, o que permite dividir a complexidade, além de acelerar os
resultados quando apenas um dos processos é requisitado. Porém, na realização do
projeto organizacional o tempo de processamento não é o único aspecto a se con-
siderar. Quando se planeja optar por procedimentos de adaptação mais leves como
realocações e trocas de estruturas por outras previamente geradas, há também de
se veriĄcar outros custos como de aquisição e sobrequaliĄcação de agentes. Como
trabalhos futuros, planeja-se testar os procedimentos de adaptação em diferentes
cenários, substituir o processo de busca de soluções por um algoritmo mais rápido,
substituir o processo de vinculação de agentes com posições organizacionais por um
algoritmo ótimo, implementar mais extensões para diferentes domínios e formas de
estruturas e concluir a integração do modelo com uma ferramenta de desenvolvi-
mento de SMAs.

Palavras-chave: Design Organizacional. Estrutura Organizacional. Estrutura So-
cial. Sistemas MultiAgentes Abertos. Design Automático.

Abstract

The design of organisations is a complex and laborious task. It is the subject
of recent studies, which deĄne models to automatically perform this task. However,
existing models constrain the space of possible solutions by requiring a priori deĄni-
tions of organisational roles and usually are not suitable for planning resource use.
This doctoral thesis presents GoOrg, a model that uses as input a set of goals and a
set of available agents to generate different arrangements of organisational structures
made up of synthesised organisational positions. The most distinguishing charac-
teristics of GoOrg are the use of organisational positions instead of roles and that
positions are automatically synthesised rather than required as a user-deĄned input.
These characteristics facilitate the parametrisation, the use for resource planning
and the chance of Ąnding feasible solutions. To evaluate GoOrg, this thesis intro-
duces two specialisations that extend the model. These extensions deĄne processes
and constraints, illustrating how GoOrg suits different domains. Among aspects that
surround an organisationŠs design, this work presents a comparison of design models
and discusses models input, agentsŠ abstractions and procedures for adapting the
organisation during its life cycle.

Keywords: Organisational Design. Organisational Structure. Social Structure. Open
Multi-Agent Systems. Automated Design.

List of Figures

Figure 1 Ű Automated design of a PCB Production scenario. 27

Figure 2 Ű Some other candidate solutions for the PCB Production scenario. . . . 28

Figure 3 Ű Design model categories. 32

Figure 4 Ű The generic design process of GoOrg-based models. 43

Figure 5 Ű GoOrg model. 44

Figure 6 Ű GoOrg4Prod model. 47

Figure 7 Ű A given set of goals with associated workloads and dataloads. 48

Figure 8 Ű GoOrg4Prod organisational structure attributes in three dimensions. . . 50

Figure 9 Ű The four processes of GoOrg4Prod. 53

Figure 10 ŰThe set 𝐺1 of split goals for ã𝑔 “ 4 and Ó𝑔 “ 1000. 53

Figure 11 ŰSupported transformations. 55

Figure 12 ŰStep by step of state search with all possible solutions for the given 𝐺. 58

Figure 13 ŰThe available agents. 62

Figure 14 ŰThe generated candidates quantiĄed according to the userŠs preferences. 62

Figure 15 ŰThe two best structures, which are not 100% feasible. 63

Figure 16 ŰTwo feasible structures for the given example. 63

Figure 17 ŰCandidate #1646 . 64

Figure 18 ŰA MAOP approach for the DSN domain. 68

Figure 19 ŰGoOrg4DSN model. 70

Figure 20 ŰThe three processes of GoOrg4Prod. 72

Figure 21 ŰA motivating scenario with four sectors, each one with 5 sensors. 75

Figure 22 ŰThe set of goals in which no target is being detected. 76

Figure 23 ŰCandidate #1 (unique) when there is no target being detected. 76

Figure 24 ŰThe set of goals in which one target is being detected. 76

Figure 25 ŰCandidate #1 for the scenario with 1 target being detected. 77

Figure 26 ŰCandidate #1 for the scenario in which three targets are being detected. 78

Figure 27 ŰGoOrg simpliĄed class diagram. 81

Figure 28 ŰFeed Production Scenario. 88

Figure 29 ŰSome of the candidates for the Feed Production Scenario. 88

Figure 30 ŰA reallocation by replacing an agent by another. 90

Figure 31 ŰMatching kinds of agents and kinds of positions 91

Figure 32 ŰA required structure-switching due to a change in the userŠs preferences. 93

Figure 33 ŰComparing the generality of candidates of the motivating scenario. . . 94

Figure 34 ŰAcquisition cost when switching between structures of the motivating

scenario. 95

Figure 35 ŰA complete redesign after a change to the set of goals. 96

Figure 36 ŰDifferent forms of assigning goals to organisational members. 97

Figure 37 ŰComparing a structure of roles and a structure of positions. 100

Figure 38 ŰA structure of instances of roles. 100

Figure 39 ŰComparing examples of user-deĄned roles and synthesised positions

structures. 102

Figure 40 ŰComparing structures for the given scenario regarding all attributes. . . 103

Figure 41 ŰComparing generators with roles and goals as input. 105

Figure 42 ŰComparing the height of structures for the given scenario. 119

Figure 43 ŰComparing the efficiency of structures for the given scenario. 120

Figure 44 ŰSynthesing roles, relationships, missions and norms from a GoOrgŠs

output. 133

Figure 45 ŰThe identiĄcation of the roles associated with positions. 137

List of Tables

Table 1 Ű Comparison among Automated Organisational Structure Generators. . 39

Table 2 Ű All the candidates for the given 𝐺 containing just two goals. 59

Table 3 Ű Organisational structures generated for Feed Production with three goals. 85

Table 4 Ű Candidates #2, #3 and #4 for Feed Production scenario with three goals.103

List of Abbreviations and Acronyms

CPU Central Processing Unit

DF Directory Facilitator

DSN Distributed Sensor Networks

FIPA Foundation for Intelligent Physical Agents

IDE Integrated Development Environment

JVM Java Virtual Machine

MAOP Multi-Agent Oriented Programming

MAPC Multi-Agent Programming Contest

MAS Multi-Agent System

MaSE Multiagent Systems Engineering

OSD Organisation Self-Design

PCB Printed Circuit Board

SADDE Social Agents Design Driven by Equations

OMACS Organization Model for Adaptive Computational Systems

DOMAP Decentralised On-line Multi-Agent Planning

ODML Organizational Design Modeling Language

KB-ORG Knowledge-Based Organization Designer

Contents

1 INTRODUCTION . 25

1.1 MOTIVATION . 25

1.2 PROBLEM AND RESEARCH QUESTIONS 27

1.3 OBJECTIVES . 29

1.4 CONTRIBUTION AND RELEVANCE . 29

1.5 DOCUMENT STRUCTURE . 30

2 ORGANISATION DESIGN MODELS 31

2.1 AUTOMATED ORGANISATIONAL DESIGN BY TASK PLANNING . . . 33

2.2 SELF-ORGANISATION APPROACHES 33

2.3 AUTOMATED ORGANISATIONAL STRUCTURE GENERATORS 35

2.3.1 Structure GeneratorsŠ Background . 35

2.3.2 State of the Art . 37

2.3.3 Comparing Structure Generators . 38

3 GOORG MODEL . 43

3.1 GOORG ELEMENTS . 44

3.2 ATTRIBUTES OF AN ORGANISATIONAL STRUCTURE 46

3.3 GOORG HIGHLIGHTED CHARACTERISTICS 46

4 GOORG4PROD: A SPECIALISATION FOR A FACTORY PRODUC-

TION LINE DOMAIN . 47

4.1 GOORG4PROD ELEMENTS . 48

4.2 GOORG4PROD ADDED ATTRIBUTES 50

4.3 GOORG4PROD PROCESSES . 52

4.3.1 Preparing goals for assignments . 53

4.3.2 Generating organisations . 54

4.3.3 Binding agents and positions . 59

4.3.4 Choosing organisations . 60

4.3.5 Computational complexity . 61

4.4 GOORG4PROD RESULTS . 61

5 GOORG4DSN: A SPECIALISATION FOR THE DISTRIBUTED SEN-

SORS NETWORK DOMAIN . 67

5.1 GOORG4DSN ELEMENTS . 69

5.2 GOORG4DSN ADDED ATTRIBUTES . 71

5.3 GOORG4DSN PROCESSES . 71

5.3.1 Generating organisations . 72

5.3.2 Binding agents and positions . 74

5.3.3 Choosing organisations . 74

5.3.4 Computational complexity . 74

5.4 GOORG4DSN RESULTS . 75

6 GOORG: IMPLEMENTATION . 79

6.1 TOOLS AND PROGRAMMING LANGUAGES 79

6.2 GOORG IMPLEMENTATION ARCHITECTURE 80

6.2.1 Executing GoOrg Implementation . 82

6.2.2 GoOrg Implementation Inputs . 83

6.2.3 GoOrg Implementation Outputs . 83

6.3 EXTENDING GOORG . 84

7 DISCUSSION . 87

7.1 ORGANISATIONAL ADAPTATION . 87

7.1.1 Reallocation . 90

7.1.2 Structure-switching . 92

7.1.3 Redesign . 96

7.2 ASSIGNING GOALS TO NAMED AGENTS, ROLES OR POSITIONS . . 96

7.3 PLANNING RESOURCES OF ORGANISATIONS 98

7.4 SYNTHESISING POSITIONS INSTEAD OF REQUIRING USER-DEFINED

ROLES . 100

7.5 USING GOALS AS INPUT INSTEAD OF ROLES AND BEHAVIOURS . 104

7.6 SUMMARY OF THIS DISCUSSION . 105

8 CONCLUSION . 107

BIBLIOGRAPHY . 109

APPENDIX A Comparing organisational attributes among candidates . . 119

APPENDIX B XML speciĄcation of Feed Production with four goals . . 121

APPENDIX C XML speciĄcation of DSN with 4x5 sensors and 3 targets 123

APPENDIX D XML speciĄcation and outputs for Feed Production with

three goals . 127

APPENDIX E Improving GoOrg . 131

APPENDIX F Synthesizing organisational roles 137

APPENDIX G Works developed during the PhD 139

25

1 Introduction

In this chapter it is presented the motivation for this work, the problem and re-

search questions that guided the investigations done, and the objectives and contributions

of this thesis.

1.1 Motivation

A software entity known as an agent is one that has certain beliefs, goals, and

capabilities and demonstrates some autonomy by choosing how it will carry out its goals

(Bordini et al., 2007; Rahwan et al., 2015). A typical agent is a member of a Multi-

Agent System (MAS) and is not operating in isolation in the environment in which it is

located. To achieve the systemŠs goals, it is necessary some mechanism to organise and

coordinate such autonomous entities in a MAS (Hübner et al., 2002). Organisations are

used to overcome this problem by promoting a coherent mechanism, which constrains and

upholds acceptable behaviour of agents (Boissier et al., 2016; Hübner et al., 2002; Sierra

et al., 2004). The organisation is an entity in which members adhere to a set of rules,

have similar beliefs, and cooperate in achieving common goals. Because organisations are

independent of agents, they are typically designed using distinct models, techniques and

tools (Gasser, 2001). Additionally, the design of organisations is arguably as important as

the design of the agents (Boissier et al., 2013; Cardoso and Ferrando, 2021).

Among the organisationŠs aspects to deĄne, the organisational structure is crucial.

It represents positions, displaying the hierarchy, relationships and responsibilities (Daft,

2009). An explicit structure allows members to know their position related to others, their

authority relationships, and their commitment to organisational goals (Hatch, 1997). It

supports agentsŠ entrances and exits. It also promotes a method of task assignment (De-

Loach, 2002).

Despite its signiĄcance and how time-consuming organisational design is, only a

small number of research have focused on automatic generators of explicit organisational

structures (DeLoach and Matson, 2004; Horling and Lesser, 2008; Sierra et al., 2004; Sims

et al., 2008; So and Durfee, 1998). Although seminal, these works still have limitations

to overcome. Indeed, determining a design model that is effective, adaptable, and simple

to parametrise is challenging. Due to the speciĄcity of each domain and the high num-

ber of variables that surround the design process, no existing model can be considered a

decisive solution. This thesis presents GoOrg, a MAS organisational design model for au-

26 Chapter 1. Introduction

tomatically generating organisations, which addresses these issues. GoOrg considers that

organisational structures are composed of organisational positions, which can be arranged

into many shapes. It also considers that agents can occupy organisational positions and

commit to their assigned goals. As input, GoOrg expects a set of goals and a set of avail-

able agents. Goals are used to synthesise organisational positions. Structures are created

from the synthesised positions. The feasibility of each structure is evaluated using a given

set of available agents. GoOrg outputs a list of organisational structures sorted according

to the userŠs preferences.

The concept of roles is used in existing models for generating organisational struc-

tures for MAS (DeLoach and Matson, 2004; Horling and Lesser, 2008; Sierra et al., 2004;

Sims et al., 2008; So and Durfee, 1998). Agents and roles have many-to-many relation-

ships. Although intuitive, the concept of roles does not ease planning resource use and

checking the organisationŠs feasibility. GoOrg uses organisational positions instead, which

have one-to-one relationships with agents (Slade, 2018). Therefore, a position-based or-

ganisational structure reĆects resource demands.

Existing models expect roles as input, which means that roles should be deĄned

a priori by the user. This restricts the set of solutions, possibly making it infeasible

to Ąnd a structure to be Ąlled by the available agents. Indeed, many situations may

require roles that the user cannot foresee, which for those models means that they cannot

produce feasible organisations for the given inputs. In contrast to related works, in GoOrg,

organisational positions are synthesised, relieving the user from the task of deĄning roles.

Synthesized positions increase the likelihood of Ąnding structures that can be Ąlled by

the available agents by generating a wider range of potential solutions. Besides, existing

models require agent behaviour deĄnitions. Behaviours are complex and time-consuming

to deĄne. Instead, GoOrg employs goals as inputs, which are typically simpler to deĄne.

From the contributions of the administration research Ąeld to the contributions of

the computing science research Ąeld, this work covers the state-of-the-art in organisational

design. It depicts the computational models, presenting them into different classes, and

compares GoOrg with other automated organisational structure generators.

This work also introduces GoOrg4Prod and GoOrg4DSN, specialisations of GoOrg

which deĄne particular processes. They illustrate how the model can be customised for

different purposes by selecting particular constraints. These specialisations divide the

design into subprocesses. A distinction between processes facilitates the encapsulation of

parts of the design into modules. For example, the separation of the binding subprocess

from the generating subprocess is relevant for making quicker adaptations for running

organisations. The implementation of GoOrg is also depicted, and a discussion regarding

organisational design aspects is presented.

1.2. Problem and Research Questions 27

1.2 Problem and Research Questions

The Ąrst challenge this research addresses is the automated design of organisational

structures. An organisationsŠ generator must consider that a problem domain has a set

of goals to be achieved, and possibly these goals cannot be achieved by a single agent. In

this sense, it is necessary to organise agents into some structure in which the goals can

be distributed across organisational positions. The agents thereby assume organisational

positions and are in charge of completing their assigned goals. There must be a way

to constrain the generator on Ąnding solutions, which depends on each goal and on the

problem domain. For instance, in some domains, it makes sense to associate the goals

and the agents with some skills. Therefore, a goal can indicate the required skills that an

agent should have to achieve it.

To illustrate the problem, it is considered the set of goals for the Printed Circuit

Board (PCB) Production scenario presented in Figure 1a. In the mentioned Ągure, each

circle represents a goal, each shaded box refers to the needed skills to achieve the goal, and

the bodies on the bottom represent available agents that can be part of the organisation.

It is intended to generate organisational structures like the one shown in Figure 1b. In

this Ągure, each unĄlled box represents an organisational position of a structure, each

shaded box refers to the needed skills to achieve the goal and the bodies closer to each

organisational position represent the agent that is occupying each organisational position.

PCB
Production

Buy Supplies PCB
Assembly

Buy
Components

Buy Other
Supplies Apply Paste Place

Components
Soldering

Components
Pick and

PlacePurchase Purchase Print Heat

alice bob
[Purchase]

paul mary
[Print]

tom
[Pick and

Place]

fred
[Heat]

(a) Inputs: A set of goals with required skills.

Production
Manager

Assembling
CoordinatorPurchaser

Purchase

Paster
Applicator

Print

Components
Placer

Pick and
Place

Components
Welder

Heat
fred

[Heat]

tom
[Pick and

Place]

mary
[Print]

alice

paul

bob
[Purchase]

(b) Output: An organisational structure.

Figure 1 Ű Automated design of a PCB Production scenario.

However, from the given set of goals, the structure illustrated in Figure 1b may not

be the only possible solution. Indeed, there are numerous locations in the hierarchy where

the positions shown in Figure 1b can be organised. They may also be a part of various

hierarchies or other kinds of structures, and they can be in charge of a variety of goals.

The goals can also be split, and their parts can be assigned to different positions. Besides,

the structure must be feasible according to the available resources (agents) for this domain

problem. Figure 2 illustrates some of the many candidates that can be generated. In this

28 Chapter 1. Introduction

sense, the second challenge this research addresses is how to choose an organisational

structure candidate among others.

Production
Manager

Purchaser

Purchase

Paster
Applicator

Print

Components
Placer

Pick and
Place

Components
Welder

Heat

fred
[Heat]

tom
[Pick and

Place]

mary
[Print]

alice

bob
[Purchase]

(a) A Ćat structure for specialised agents.

Production
Manager

Full
AssemblerPurchaser

Purchase

Factotum
Agent

paul

bob
[Purchase]

Print
Pick and

Place
Heat

(b) A structure with a factotum agent.

Figure 2 Ű Some other candidate solutions for the PCB Production scenario.

For choosing a candidate, according to relevant characteristics for the problem

domain, it is necessary to somehow quantify the potential solutions (candidates). Indeed,

for the PCB Production scenario illustrated, there are some characteristics of the organi-

sational structures that can be inferred. For instance, the solution illustrated by Figure 1b

has many specialist positions, i.e., each agent achieves just one goal, leaving other goals

to other agents of the organisation and that structure is also very hierarchical (tall).

The solution illustrated by Figure 2a has also many specialist positions, but it is Ćatter.

Still, the solution shown in Figure 2b is more compact than the others as it takes the

presence of a factotum agent into account. As demonstrated, two attributes that may be

inferred from hierarchies are the generality (contrasting with speciality) of positions and

the height of structures. Such attributes can be quantiĄed and then utilised to sort and

choose organisational structures in accordance with the userŠs preferences.

Furthermore, generating and choosing organisational structures is usually a com-

putationally expensive task and it might be required to repeat it several times. Indeed,

it might be necessary to make adaptations as the systemŠs conditions change over the

organisationŠs lifecycle. Fortunately, not every change requires a complete design proce-

dure. For instance, the available agents that were informed in the design time may change

while the system is running. Some changes in the availability of agents may be solved

with simple reallocations of agents, i.e., the structure is still the same, just the bindings

between agents and positions change. However, there are situations when maintaining the

same structure is impractical, such as when agent availability has altered so that no agent

meets the requirements to Ąll an existing position. In these circumstances, a structure-

switching is appropriate because one of the generated solutions might be better suited for

the new condition. Still, there are cases in which there is no solution to any extent, for

instance, when the set of goals has changed. In such cases, it is necessary a redesign. It is

important to provide different ways to adapt the organisation, and to provide information

to calculate the impact of a change.

1.3. Objectives 29

In summary, this research intends to answer the following questions:

• How to automatically generate domain-independent organisational structures for

MAS?

• How to choose an organisational structure candidate among others?

• How to make the organisation generator facilitate organisational adaptations in a

running (online) MAS?

1.3 Objectives

The general and speciĄc objectives of this research are:

General Objective

Develop a model to automatically design domain-independent organisational struc-

tures for Multi-Agent Systems.

SpeciĄc Objectives

• Develop a model to automatically generate and choose organisational structures;

• Make the model extendable to be specialised for different domains;

• Consider a set of available agents to allow resources planning and to check the

organisational structure feasibility; and

• Allow the generated structures to be sorted according to different criteria.

1.4 Contribution and Relevance

The main contributions of this research are:

• The development of a new model to automatically design and choose organisational

structures;

• The development of a novel approach for synthesising organisational positions, which

besides facilitating the model parametrisations also helps to generate more solutions;

• A discussion and proposal of new perspectives on some organisational design aspects

such as the importance of using impersonal representations of agents like organisa-

tional positions or roles, the importance of the use of positions instead of roles for

planning resources and different adaptation procedures for organisations; and

30 Chapter 1. Introduction

• To make available a free and open organisational structure generator tool that can

be used, extended and improved by the community.

1.5 Document Structure

The rest of this document is structured as follows: Section 2 presents the state

of the art of organisational design research area, ranging from contributions of the Ad-

ministration Research Field to organisational design models proposed by the MAS com-

munity, in which GoOrg is compared to other approaches; Section 3 presents GoOrg, a

novel extensible model for generating and choosing organisational structures; Section 4

presents GoOrg4Prod, a specialisation of GoOrg for a factory domain; Section 5 presents

GoOrg4DSN, a specialisation of GoOrg for the Distributed Sensor Networks (DSN) do-

main; Section 6 presents details of the implementation of GoOrg; Section 7 presents a

discussion on aspects of organisational design, including procedures for adapting organi-

sations, model inputs, and planning resources; Finally, Section 8 presents conclusions and

recommendations for future research.

31

2 Organisation Design Models

This work proposes an automated design model for generating organisations. It

often uses the terms organisational design model and organisation generator interchange-

ably. In fact, a model is an abstraction of a system under study (Kühne, 2006). This work

considers that a generator is a model, since each class of generators abstracts organisations

in a distinctive approach by undergoing some kind of transformation process. Although

this work is focused on automated design models, it is worth contextualising the broad

research area of organisational design models.

Different design models can be placed into categories and classes.1 The Ąrst cat-

egorisation is set from the research area and the kind of organisational members. There

are studies in the Administration Research Field for designing organisations for humans

and in the computing area, which is mainly concerned with designing organisations of

software. Focusing on the design of organisations of software, there are the subcategories

of automated and non-automated models, and organisations of autonomous and non-

autonomous entities. Finally, in the matter of this work, it is considered that automated

design models are in different classes. Figure 3 provides an overview of the works that lie

under the referred categories and classes. Following this, the categories and classes are

detailed.

The design of organisations is a long-standing research topic in the administra-

tion research Ąeld. This Ąeld is concerned with organisations formed by humans, such as

companies. Most works propose frameworks that state an organisation model and issues

to be solved (often iteratively). According to the kinds of tasks, the job can be split into

functions and, for instance, if the organisation is geographically distributed, it may require

departments for different regions. Among the spawned models are the iterative method

proposed by Stoner and Freeman (1992), the Star Model proposed by Galbraith (1995),

the step-by-step framework proposed by Burton et al. (2011) and the design process in-

troduced by De Pinho Rebouças De Oliveira (2006).

In the design of organisations of software, there are many studies of Service Com-

position, which can orchestrate applications by deĄning sequences and managing com-

munication among Web services (Wu et al., 2015). Service Composition has no concern

about the degree of autonomy of the software artefacts it is orchestrating. Besides, there

are many studies of organisations formed by computational agents, i.e., autonomous en-

1 The term ŞclassŤ is being used to refer to something more speciĄc than a category.

32 Chapter 2. Organisation Design Models

Organisation
Design Models

humans

software

kind of
members

yes

no

automated
model?

yes

no

autonomous
members?

Galbraith's
Star Model

Burton's
Step-by-

step

Service
Composition
approaches

MAS
community's

studies

Ferber's
AALADIN

Tambe's
STEAM

task
planners

self-
organistions

structure
generators

Decker's
TAEMS

Sleight's
approach

Cardoso's
DOMAP

Ishida's
approach

So and
Durfee's
approach

Labella's
approach

Sierra's
SADDE

DeLoach's
OMACS

Sims's
KB-ORG

Horling's
ODML

GoOrg

Stoner and
Freeman's

method

De
Pinho's
process

Hubner's
Moise

Krausburg's
coalliations

Figure 3 Ű Design model categories.

tities, which is a research subject of the MAS community.2 The models for designing

organisations for Service Composition and for MAS also can be placed into the subcate-

gories of non-automated and automated models. The former models require the deĄnition

of the organisation from the user (engineer), and the latter uses artiĄcial intelligence to

automatically generate organisations (Amaral and Hübner, 2019, 2020a; Wu et al., 2015).

Considering just models for designing organisations for MAS, some examples of

non-automated organisation generators are STEAM (Tambe, 1997), AALADIN (Ferber

and Gutknecht, 1998) and ℳ𝑜𝑖𝑠𝑒` (Hübner and Sichman, 2003). These models allow

explicit organisational design in a wide variety of structures and other aspects such as

norms, roles, relationships, organisational goals, and ontologies. They are problem-driven

approaches, and the organisationŠs design is speciĄed by a human (the user/engineer).

However, this study is focused on automated computational organisation generators, i.e.,

those that automatically generate organisations through computational processes.

To dive into the particular subcategory of automated models, this chapter presents

the current state of the art of automated computational organisation generators. It is

structured as follows: the next sections present three classes of automated organisation

generators: Section 2.1 presents automated organisational design by task planning; Section

2.2 introduces self-organisation approaches; and Section 2.3 presents automated organi-

sational structure generators. This work is situated in the third class of organisational

structure generators, which is the only one that focuses on generating explicitly modelled

organisations (Hatch, 1997; Sims et al., 2004).

2 Since both humans and agents have some degree of autonomy, there is an intersection between studies
of organisations of MAS and studies of organisations of humans.

2.1. Automated Organisational Design by Task Planning 33

2.1 Automated Organisational Design by Task Planning

The automated organisational design by task planning is the Ąrst class to be intro-

duced. These generators usually create problem-driven organisations, for speciĄc and often

short-term purposes. The organisational structure, when it exists, is not explicit, and it is

frequently a non-intended result of a task allocation process. Such generators are focused

on solving a given problem by decomposing tasks, allocating them and sending plans to

available agents. Usually, there are no roles in this context; the agents are already named

and have received their responsibilities somehow. They typically cooperate by fulĄlling

their tasks. In this sense, a common goal is achieved when a number of tasks are achieved

by the organisational members (agents). For instance, a marketplace organisation that

has the goal do business achieves it when a member achieves the goal sell product and

another member achieves the goal buy product. In this particular class, the automated

planning community has produced many contributions to MAS design.

An earlier study on planners able to generate organisations is TÆMS (Decker,

1995). This domain-independent framework provides a way to quantitatively describe in-

dividual tasks that are performed in shared environments. It does not use the concept of

roles. Tasks, which are slightly similar to goals, are allocated directly to agents. This ap-

proach proposes mixing perspectives from traditional task planners, i.e., problem-driven,

and self-organisation, which are experience-driven approaches. Sleight (2014) presents an

agent-driven planner from a similar perspective, but using the Decentralised Markov De-

cision Process model. It considers the organisation as a Ąrst-class object with a dynamic

response to environmental changes. There are no goals in this domain-independent ap-

proach; it uses rewards in stochastic environments instead. The concepts of roles and

explicit structures are also absent.

Cardoso and Bordini (2019) has proposed a domain-independent model called

Decentralised On-line Multi-Agent Planning (DOMAP). This task planner Ąrst creates

factored representations for each agent, based on their limited vision. The second step

is to assign goals to agents according to estimations. Following that, agents effectively

plan individual actions without sharing private details. Redesign processes may occur if

any individual plan fails. Finally, the allocated agents execute their plans. Although the

algorithm does not use explicit organisation in the allocation process itself, it can use an

organisational structure as input to Ąll the roles with available agents.

2.2 Self-organisation Approaches

The second class uses self-organisation approaches, which is often referred to as

Organisation Self-Design (OSD). In this class, the organisations emerge from the dynamics

of the scenario, usually deĄned by the agentsŠ common interests and interactions (Fink

34 Chapter 2. Organisation Design Models

et al., 1983). The resulting organisations are Ćexible, may operate continuously, have

overlapping tasks, formed by named agents, have no external or central control, no hi-

erarchy, and information Ćows among agents in many directions (Ye et al., 2016). The

organisational structure is usually a non-intended ephemeral outcome of this bottom-

up process, i.e., it is a result of arbitrary and temporary situations. For instance, the

agent that Ąrst achieves a goal leads a team to achieve the next goal. The target of this

method is to solve some problem and not precisely design an organisation (Sims et al.,

2008). Self-organisation approaches are more concerned about coordination policies and

less concerned about the generated organisational structure itself (Sleight et al., 2015).

In one of the earlier studies, Ishida et al. (1992) has presented an adaptative self-

design approach which creates and destroys agents to allocate tasks according to resources

and environmental changes and needs. Decker et al. (1997) proposed an approach for

adaptation of MAS on organisational, planning, scheduling and execution levels. It uses

the cloning technique in the execution phase, which is the action of creating a clone

agent to partially or totally transfer tasks.3 A study presented by So and Durfee (1998)

encompasses the characterisation of different organisational designs and includes self-

organisations and the reconĄguration process for stable organisations. This study also

proposes a way to evaluate the organisationŠs design. In another work, Kamboj and Decker

(2007) extended the study performed by Decker et al. (1997), adding a task representation

framework, enabling this new method to become domain-independent and to reason about

quantitative aspects of tasks. There are several studies on self-organised swarms based

on computationally limited agents, which often do not even know about the presence of

other agents and that are coordinated by simple mechanisms (Labella et al., 2007; Ye

et al., 2016).

More recently, Kota et al. (2012) study presents a decentralised approach in which

agents can reason about adaptations to modify their structural relationships when there

are opportunities for improving the system performance. Ye et al. (2014) joined cloning

and spawning functions on their self-design method. In this sense, besides cloning, when

overhead is detected, an agent is also able to delegate a task when it is detected that the

agent cannot perform the task at a certain time.

Ohta et al. (2006), Rahwan et al. (2015), Krausburg et al. (2021) and other studies

on coalitions are also included in this class of organisation generators. These approaches

differ in some characteristics compared to other self-organisation approaches as they usu-

ally have centralised information and algorithmic process that could not be considered

a bottom-up sequence. However, they do share other characteristics of self-organisation

approaches as they usually generate organisations of named agents, the organisations have

3 The cloning mechanism is used by agents when predicting or perceiving overload (Shehory et al.,
1998).

2.3. Automated Organisational Structure Generators 35

little relationship deĄnitions fostering to handle overlapping tasks and having information

Ćowing in many directions. Besides, the concerns with the algorithmic performance show

that these approaches are mainly sensitive to the dynamics of the scenario.

2.3 Automated Organisational Structure Generators

Finally, the third class is the automated organisational structure generators. It is

focused Şon a speciĄcation of desired outcomes and the course of actions for achieving

them, analysis of the organisational environment and available resources, allocation of

those resources and development of organisational structures and control systemŤ (Hatch,

1997). It considers inputs such as organisational goals, available agents, resources and

performance targets, producing explicit organisation deĄnitions, which may include roles,

constraints, assignments of responsibilities, hierarchy levels, and other relationships. In

recent years, this class received little attention. In fact, studies on task planning have

attracted interest for a while, and in recent years, studies on self-organisations have gained

even more attention. Nevertherless, the automated organisational structure generators are

the only ones that carefully designs organisations as Ąrst-class abstractions (Sims et al.,

2008). This paradigm of conceiving about organisations treats them as separate from

the environment and the agents. This has a number of beneĄts, one of which is that it

supports the separation of concerns of a MAS which is a strategy to deal with complex

systems.

This work is in this particular class. The adopted deĄnitions for organisation and

organisational design, as follows, are adherent to this particular class of organisation

generators.

2.3.1 Structure GeneratorsŠ Background

According to Pattison et al. (1987, p. 88), Şorganisation design is the problem

of choosing the best organisation class Ů from a set of class descriptions Ů given

knowledge about the organisationŠs purpose (goal, task, and constraints on the goal)

and the environment in which the organisation is to operateŤ. This deĄnition assumes

that the design is rational and built as a top-down process. This approach is commonly

used to create explicit organisations. When organisations are explicit entities, agents and

designers can reason about the organisation itself, facilitating its improvement. In the

following, this work shed light on the emphasized words.

As stated by McAuley et al. (2007, p. 12) organisations are Şcollectivities of peo-

ple whose activities are consciously designed, coordinated and directed by their members

to pursue explicit purposes and attain particular common objectives or goalsŤ. Pattison

et al. (1987, p. 64) deĄne an organisation as Şa group of one or more individuals whose

36 Chapter 2. Organisation Design Models

purpose is to perform some set of tasks in an attempt to achieve a set of goals while

observing a set of constraintsŤ. For Katz and Kahn (1987), an organisation is Şa system

of rolesŤ and Şthe psychological basis of organisational function are seen in terms of mo-

tivation to fulĄl the rolesŤ. For this class, an organisation is represented by a structure

of organisational roles or positions and their relationships, and agents occupy these posi-

tions cooperating to achieve the organisational goals. In this sense, the organisation and

the agents are separate entities. Consequently, agents can reason about the organisation,

they can enter or leave it, they can change or adapt it, and they can obey or disobey its

rules (Hübner et al., 2010).

Notably, the deĄnition given by Katz and Kahn (1987) mentions organisational

roles, which are impersonal representations used as interfaces between the organisation

and agents. A role is deĄned as Şan abstract representation of an agent function, service,

or identiĄcation within a groupŤ (Ferber and Gutknecht, 1998, p. 130), and roles Şcan be

seen as place-holders for agents and represent the behaviour expected from agents by the

society designŤ (Dastani et al., 2003, p. 2). A role refers to a set of responsibilities, often

materialised as one or more organisational positions, to be occupied by agents.

Many studies of what is known as contingency theory point out that there is no

one best way to design organisations and no general principles for all situations (So and

Durfee, 1998). One may even say that organisations, as instances of design models, cannot

be considered absolutely right or wrong because it depends on the attribute in focus. An

organisation may exist for many purposes and can be inserted into different environments

and contexts. For instance, companies positioned in competitive markets have to achieve

some set of goals using fewer resources as much as possible, delivering some speciĄed

quality as soon as possible. Other organisations exist for other purposes such as common

safety, knowledge sharing, technological improvements, social assistance and health care,

and so on. Indeed, the concept of ŞbestŤ is subjective, so it is supposed to be deĄned by

the user (engineer).

In this class, the organisational structure (social structure or simply ŞstructureŤ)

is the most essential element of an organisation. As stated by Mintzberg (1983, p. 2),

a structure can be deĄned as Şthe sum total of the ways in which its labour is divided

into distinct tasks and then its coordination is achieved among these tasksŤ. It repre-

sents the existing positions of an organisation, showing the hierarchy, relationships, and

responsibilities (Daft, 2009). It refers to an administrative instrument resultant of identiĄ-

cation, analysis, ordering and grouping of activities and resources of companies, including

span degrees and decision process to achieve the expected goals (Fink et al., 1983). As

seen, the structure is intrinsically linked to many other organisational aspects. Besides,

as pointed out by Durfee et al. (1987, p.1280), Şan organisational structure speciĄes a set

of long-term responsibilities and interaction patternsŤ, and it Şprovides guidance without

2.3. Automated Organisational Structure Generators 37

dictating local decisionsŤ. Notably, the structure is a staple of organisational design (Kil-

mann et al., 2010). In fact, Şall organisations develop some deliberate structureŤ (Robbins

and Coulter, 2012, p. 6), even when it is not explicit. The inseparability of organisation

and structure concepts is observed in different studies in which correlated categorisations

are presented (Burns and Stalker, 1994; Hatch, 1997; Pettigrew and Fenton, 2000; Stoner

and Freeman, 1992). Some researchers do not even put boundaries between these con-

cepts, often treating organisation and structure as the same thing (Pettigrew and Fenton,

2000). In this class, organisations are described by their structures. From organisational

structure descriptions, organisations can be instantiated to be occupied by agents in a

running system.

Approaches based on organisational roles or positions tend to create formal organi-

sations in a top-down manner on the basis of organisational purposes, which are typically

stated as a set of goals. For many authors (Newman, 1973; Robbins and Coulter, 2012),

goals provide the Ąrst pillar of an organisational design, representing the organisationŠs

strategy. A goal is a desired state of the world (Boissier et al., 2016), and thus can be

used to deĄne the systemŠs overall behaviour (Uez and Hübner, 2014).

An organisation can be seen as a subsystem embedded in a supersystem: the en-

vironment. The environment provides inputs to its subsystems and consumes their out-

puts (Hatch, 1997). Organisations are diverse in kind and form according to their purposes

and environments. Arguably, it is practically impossible to address speciĄcities of all sorts

of organisational purposes and environments. For this reason, domain-independent models

in this class allow the user adapting the model for speciĄc domains.

2.3.2 State of the Art

An earlier study in this class is Social Agents Design Driven by Equations (SADDE)

(Sierra et al., 2004). It uses as input mathematical models to predict efforts and create an

organisational structure. It is a comprehensive method for designing a MAS that starts

from a manual process for creating domain-speciĄc equations. Then, it establishes the or-

ganisation, which is a semi-automatic process. The last two procedures are the deĄnition

of agent models and the creation of a MAS. All these phases are connected by deĄned

transitions, including feedback from the MAS to each earlier phase.

DeLoach and Matson (2004) proposed another approach called Organization Model

for Adaptive Computational Systems (OMACS) (see also Deloach et al. (2008); Matson

and Deloach (2005)). It is an extension of the work Multiagent Systems Engineering

(MaSE), a methodology that among its functions deĄnes a way to identify roles from a

given set of goals, in this case, aided by an a priori deĄnition of use cases. However, MaSE

is not an automated model like its extension. OMACS proposes a mathematical process

in which agents are allocated into roles based on the capabilities that an agent possesses,

38 Chapter 2. Organisation Design Models

and what a role requires. To design an organisation, it needs goals, roles, capabilities, and

agent types as input. The model requires a priori deĄned roles. It does not set hierarchy

relationships directly but deĄnes a function for setting relationships in a generic way.

Agents can also have a special kind of relationship to deĄne a coordination level.

Sims et al. (2008) have proposed the model Knowledge-Based Organization De-

signer (KB-ORG) to generate organisations for MAS. Their approach does a combinatorial

search over the space of candidate organisations describing both hierarchical and peer-

to-peer elements. The major contribution regards efficiency by the use of segmentation of

application-level and coordination-level functions in the planning process, reducing com-

putational efforts considerably. When an application-level role is split among agents, the

algorithm synthesises a coordination role. The whole process allocates agents to roles, and

resources to speciĄc tasks, and creates organisational coordination roles. As inputs, the al-

gorithm has environmental conditions, goals, performance requirements, role characterisa-

tions and agentsŠ capabilities. The outputs are the allocation of agents to application-level

and coordination-level roles. KB-ORG uses quantitative models to deĄne roles.

In another study, Horling and Lesser (2008) introduced Organizational Design

Modeling Language (ODML). Their approach allows quantifying organisation models,

which can be used to predict performance and as a heuristic method to choose designs.

They argue that with this, it is possible to deduce how and why a design can be chosen over

others for a given context. An algorithm template produces a range of possible organisation

instances to be searched by the automated process. The organisation search space is

deĄned by decision points speciĄed by variables and has-a relationships. The template is

similar to a structure of roles, showing their hierarchy and relationships. The algorithm

creates instances for all possible structures foreseen by the templates and, after that,

searches for the best one. ODML is considered both as a language and as a search-space

algorithm that creates and chooses organisation instances. The input includes organisation

characteristics and node deĄnitions. For instance, a role can be deĄned as a node in which

the desired behaviour of an agent that enacts such a role should follow. Other parameters

that should be deĄned are scenario constants, the cardinality of each node, relationships

among nodes, and constraints. The authors acknowledged that the approachŠs drawbacks

are the level of effort necessary to build the models and the complexity of the algorithm

response.

2.3.3 Comparing Structure Generators

Table 1 gives an overview of Automated Organisational Structure Generators, the

class of generators that GoOrg belongs to. The models are being compared by their inputs,

by characteristics of their organisational generation process, and their outputs.

In this particular class of generators, it is expected to start the organisational

2.3. Automated Organisational Structure Generators 39

design by the organisation strategy, i.e., the goals. In the Ąrst column, it is assessed

whether Goals are inputs. It can be considered that all the generators in this class have

organisational goals as their primary concern. Even the models SADDE and ODML, which

require agentsŠ behaviours instead of goals, can be considered as having goals as inputs

since the agentsŠ behaviours are usually deĄned to accomplish goals. The No need roles

as inputs column indicates if the generator needs a priori deĄned roles. The deĄnition of

roles can be a complex task since it requires knowledge about the domain and available

agents to deĄne which sets of responsibilities should be joined together. Even in a known

domain, such as a school, in which one may expect the roles of teacher, secretary and

director, it is possible to have roles less obvious, such as tutor and discipline coordinator.

Indeed, it is hard to know which roles a MAS should present. GoOrg is the only model

that does not require role deĄnitions, easing the userŠs parametrising job (this statement

is further discussed in Section 7.2 and Section 7.5).

Table 1 Ű Comparison among Automated Organisational Structure Generators.

Organisation
Generator

G
oa

ls
ar

e
in

pu
ts

N
o

ne
ed

ro
le

s
as

in
pu

ts

H
as

qu
an

ti
ta

ti
ve

an
al

ys
is

O
rg

an
is

at
io

ns
ar

e
ex

pl
ic

it

Is
do

m
ai

n-
in

de
pe

nd
en

t

Sy
nt

he
si

se
s

R
ol

es
/P

os
it

io
ns

Sy
nt

he
si

se
s

C
oo

rd
.

L
ev

el
s

Sy
nt

he
si

se
s

O
rg

.
N

or
m

s

Sy
nt

he
si

se
s

de
pa

rt
m

en
ts

B
in

ds
ag

en
ts

an
d

ro
le

s/
po

si
ti

on
s

D
oe

s
re

so
ur

ce
pl

an
ni

ng

D
oe

s
re

al
lo

ca
ti

on
s

D
oe

s
st

ru
ct

ur
e-

sw
it

ch
in

gs

GoOrg Y Y Y Y Y Y Y* F Y* Y Y Y* Y*
SADDE Y* - Y Y Y - - - - Y - Y* -
OMACS Y - Y Y Y - - - - Y - Y* Y*
KB-ORG Y - Y Y Y - Y - - Y - Y* -
ODML Y* - Y Y Y - - - - Y - Y* Y*

Legend: (Y)es, (-)No, on the (F)uture work and (*) see comments.

The column Has quantitative analysis describes the capability of generators to

create structures that take into account quantitative parameters. For instance, a model

may be parametrised with the expected effort to accomplish a goal, which helps the model

generate more accurate organisations considering the production scenario. Organisations

are explicit refers to models that use explicit organisation representations. Top-down

design approaches usually generate explicit organisations as entities, which agents and

humans can reason about. An explicit organisation is also a way for entrants to know

their responsibilities in the system, easing their cooperation in achieving organisational

goals. Is domain-independent relates to models that are not restricted to any particular

40 Chapter 2. Organisation Design Models

problem domain. All the assessed models have these three mentioned features.

The next columns are related to the outputs of the generators. Synthesises Roles/-

Positions refers to the ability to automatically synthesise roles/positions. GoOrg is the

only model that is able to synthesise positions, which enlarges the search space, making

it possible to Ąnd more solutions to a given problem. For example, in the school domain

among the solutions generated by GoOrg, some positions have a set of responsibilities

that are usually delegated to what is known as a teacher, others to a secretary, tutor and

so on. In this sense, GoOrg synthesises positions that can be recognised as usual roles,

and it may also synthesise positions that could not be foreseen by the user (engineer). The

Synthesises coordination levels column represents the ability of the model to synthesise

coordination roles. KB-ORG speciĄcally synthesises coordination roles/positions using

quantitative data to infer the need for coordination agents. GoOrg synthesises positions,

placing them into many combinations regarding their levels in hierarchies, producing both

superordinate and subordinate positions. In this sense, GoOrg can synthesise coordina-

tion levels because some of the generated structures have coordination goals associated

with superordinate positions. Synthesise organisational norms indicates whether genera-

tors automatically create organisational norms, such as permissions and obligations, for

each role of a MAS. None of the works generate organisational norms. Synthesises depart-

ments refers to the speciĄc ability of the generator to create organisational departments

automatically. GoOrg can synthesise multiple hierarchies, which can form multiple organ-

isations or departments of an organisation.

Binds agents and roles column tells whether the model is doing agent alloca-

tions into roles/positions. This feature shows that the model can suggest an allocation

of the available agents throughout the generated organisational structure. Whether all

the roles/positions are Ąlled, an organisation can be considered feasible. Besides, all the

works have quantitative analysis, which allows one to set up the generator to create Ąll-

able and meaningful organisations. Although all the assessed models are able to check the

organisationŠs feasibility, they use roles. Roles do not ease the planning of resources, since

the dynamism of a role-based system (with many-to-many relationships between agents

and roles) makes the allocation of resources a very complex and hard-to-determine task.

These models can create instances of roles to register that a role is being used a number

of times. It is close to the concept of the organisational position, but these models have

no functionality to register the number of agents that is necessary to Ąll the structure (see

Section 7.3, for more details). In other words, other models estimate (plan) the number

of roles, not the number of agents that are necessary to a system. GoOrg, Does resource

planning because it uses positions instead of roles, positions reĆect the need for agents.

The following columns are related to the capability of the generators to deal with

reorganisations. Does reallocation refers to the ability to move agents from some posi-

2.3. Automated Organisational Structure Generators 41

tion/role to another without needing to redesign the organisation. It is considered that all

the assessed models can respond to a change in the parametrisation and produce different

agentsŠ allocations. Besides, the models are for the design phase of a system, i.e., it is

assumed that other coordination mechanisms handle the allocation process during the

organisationŠs lifecycle. Does structure-switchings refers to a switch from one structure

to another existing one. GoOrg, ODML and OMACS present mechanisms to quantify

organisations by attributes, so they can be chosen. Additionally, GoOrg can generate all

candidates for a given problem at once, and as the system conditions or userŠs preferences

change, GoOrg can pick a different structure to be used (see Section 7.1, for more de-

tails). Since GoOrg synthesises positions and generates structures with no concern about

the available agents, the chance of Ąnding an already generated structure that suits a new

systemŠs conditions is higher than in other models (see Section 7.4, for more details). How-

ever, this feature also has its drawbacks, which are the increased algorithm complexity,

memory usage, and time consumed on generating all the candidates.

In summary, the data presented in Table 1 indicates that the assessed models have

in common: (i) the (direct or indirect) use of goals as input; (ii) they generate explicit or-

ganisations; (iii) they are domain-independent; (iv) they bind agents and roles/positions;

(v), they generate feasible organisations; and (vi) they do (or allow) reallocations. How-

ever, most of the models are missing other features in which GoOrg stands out: (a) GoOrg

does not require roles as inputs; (b) it automatically synthesises positions, which can be

placed in different hierarchy levels; (c) GoOrg is the only model that uses the concept

of positions, which facilitates resources planning; (d) GoOrg produces multiple hierar-

chies such as organisations or departments of an organisation; and (e) GoOrg facilitates

structure-switching, generating and quantifying organisations by attributes.

Finally, it is essential to point out that there is no single type of organisation

suitable for all situations (Horling and Lesser, 2004). It is also true that there is no

individual approach ideal for creating all organisations (Daft, 2009). Each technique offers

some advantages that the others may lack, especially regarding different organisation

generator classes.

43

3 GoOrg Model

This section presents GoOrg, a model for automatically designing organisations,

expressed as structures composed of organisational positions. As stated by Seidewitz

(2003, p. 2), Şa model is a set of statements about some system under studyŤ. GoOrg is a

generic model. Its applicability to speciĄc domains lies with the addition of elements and

constraints as required by the domain. Thus, GoOrg needs to be extended (specialised)

to the domain it is being applied.

In fact, there is a diversity of domains in which organisations are used. For instance,

one may want to design organisations of agents for the production of a factory, or for

tracking objects of interest, or for rescuing victims of a calamity. Each domain may have

particular requirements and indicators of interest. For instance, a factory is concerned

with moving, assembling and efficiency; tracking is concerned with identiĄcation and

vision coverage; and rescue work is concerned with Ąnding, supporting and minimising

the impact of a calamity.

For any domain, GoOrg-based models use goals and agents to generate organi-

sations. According to the userŠs most preferred attributes, the generated structures are

sorted, and the best candidate is chosen. GoOrg does not specify any particular technol-

ogy to be used or how the generation and choosing processes are carried out. Instead, it

only deĄnes the expected inputs and outputs for the design, as shown in Figure 4.

Goals

...

#1 #2

#N

Generating organisations

#3

#2

Chosen organisation

Agents User's preferences

Figure 4 Ű The generic design process of GoOrg-based models.

Figure 5 illustrates the elements and attributes of the general model, GoOrg.

In the following, the model is presented in detail. Section 3.1 describes GoOrg from the

44 Chapter 3. GoOrg Model

perspective of the modelŠs elements; and Section 3.2 describes GoOrg from the perspective

of organisational structure attributes.

organisational
position

organisational
structuregoal

composed ofin charge of

11..* 1..* 1

*

agent
is bound to

*

*
0/1

0/1

feature

has

has
attribute

has
1
1

*

feasibility
is a

Figure 5 Ű GoOrg model.

3.1 GoOrg Elements

The GoOrg model considers only essential elements for an organisationŠs design:

goals, agents, organisational positions, features and the organisational structure. Formally,

each element is described as follows.

A goal is a desired state of the world to be achieved by the organisation. Goals

are to be fulĄlled by agents when they occupy organisational positions, so they become

performers in these positions. It is assumed that the agent occupying a position is in

charge of achieving the positionŠs assigned goals.

DeĄnition 1 (goal). A goal 𝑔 is represented as a symbol, and the set of all goals is denoted

by 𝐺.

𝑔 : 𝑠𝑦𝑚𝑏𝑜𝑙, 𝑔 P 𝐺

An agent occupies an organisational position to achieve its associated goals. An

example of an agent is a computer that has a microprocessor able to execute a number of

instructions per second, or an application that solves factorials. Formally, GoOrg deĄnes

an agent as follows.

DeĄnition 2 (agent). An agent 𝑎 is represented as a symbol, and the set of all agents is

denoted by 𝐴.

𝑎 : 𝑠𝑦𝑚𝑏𝑜𝑙, 𝑎 P 𝐴

Positions are place-holders for agents in an organisation. They reĆect the necessity

of agents for an organisation to function. If every organisational position has an agent to

occupy it, the organisation is considered feasible. The agent that occupies a position is in

charge of achieve the goals assigned with that position. Each position can only have one

agent in it at a time, and each agent can only occupy one position at a time. Formally,

an organisational position is deĄned as follows.

3.1. GoOrg Elements 45

DeĄnition 3 (position). A position 𝑝 is represented as a symbol, and the set of all posi-

tions is denoted by 𝑃 . The goals assigned to 𝑝 are speciĄed by the function 𝑔𝑝, considering

that 𝑝 must have at least one goal associated. The function 𝑎𝑝 speciĄes the agent occupying

the position 𝑝, considering that 𝑝 is a Şfree positionŤ when 𝑎𝑝p𝑝q “ 𝜖, and that an agent

cannot be bound to more than one position.

𝑝 : 𝑠𝑦𝑚𝑏𝑜𝑙, 𝑝 P 𝑃

𝑔𝑝 : 𝑃 Ñ 2𝐺

@𝑝 P 𝑃 , 𝑔𝑝p𝑝q ‰ tu

𝑎𝑝 : 𝑃 Ñ 𝐴 Y t𝜖u

@𝑝, 𝑝1 P 𝑃 , 𝑝 ‰ 𝑝1 ^ 𝑎𝑝p𝑝q ‰ 𝜖 ^ 𝑎𝑝p𝑝1q ‰ 𝜖 ñ 𝑎𝑝p𝑝q ‰ 𝑎𝑝p𝑝1q

GoOrg considers that a feasible organisation has all positions Ąllable by the avail-

able agents. To check if an agent can occupy a position, it compares the features that

an agent has to the features that the goals assigned to a position have. For instance, the

goal solve combinatorics can be associated with the feature solve factorials, representing a

required skill to fulĄl the goal. Similarly, the agent calculator may have the feature solve

factorials representing a skill it has. In this case, the agent calculator is able to fulĄl the

goal solve combinatorics since it has the required skill. In this regard, a feature is deĄned

as follows.

DeĄnition 4 (feature). A feature 𝑓 is an n-tuple, in which the Ąrst element is a symbol.

Besides the Ąrst element, optionally, a feature may have other elements (𝑒2, ..., 𝑒𝑛). The

set of all features is denoted by 𝐹 . The function 𝑓𝑔 speciĄes the features required by a

goal. The function 𝑓𝑎 speciĄes the features an agent has.

𝑓 : x𝑠𝑦𝑚𝑏𝑜𝑙, 𝑒2, . . . , 𝑒𝑛y, 𝑓 P 𝐹

𝑓𝑔 : 𝐺 Ñ 2𝐹

𝑓𝑎 : 𝐴 Ñ 2𝐹

GoOrg considers that each organisational structure is a particular description of

an organisation. GoOrg deĄnes an organisational structure as follows.

DeĄnition 5 (structure). An organisational structure 𝑜 is represented as a tuple. It is

composed of the already presented sets and functions 𝐺, 𝐴, 𝑃 , 𝐹 , 𝑔𝑝, 𝑓𝑔, 𝑓𝑎 and 𝑎𝑝.

𝑜 : x𝐺, 𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝y

46 Chapter 3. GoOrg Model

3.2 Attributes of an Organisational Structure

Each generated organisation has attributes that quantify it. The model only deĄnes

the attribute feasibility. The feasibility of an organisational structure is the ratio between

positions bound to agents and the total number of positions. It represents how viable it

is to Ąll the structure using the available agents.

DeĄnition 6 (feasibility). The feasibility of the organisational structure 𝑜 is represented

as Ùp𝑜q, a real number in the range [0,1]. It is the ratio of the number of bound positions

and the number of all organisational positions of the organisation 𝑜 (Eq. 3.1). The set 𝐵

contains the agents that are bound to positions in 𝑃 (Eq. 3.2). The organisation is entirely

feasible (Ùp𝑜q = 1) when every position is bound to an agent.

Ùp𝑜q “
|𝐵|

|𝑃 |
(3.1)

𝐵 “ t𝑎𝑝p𝑝q |𝑎𝑝p𝑝q ‰ 𝜖, 𝑝 P 𝑃 u (3.2)

3.3 GoOrg Highlighted Characteristics

The proposed model for automatically generating organisations considers that an

organisation is represented by its structure of positions. The organisational goals are

assigned to positions. Each position should by occupied by an agent. An agent can occupy

a position when it has the features required by that position

As a generic model, GoOrg does not specify any kind of relationship between posi-

tions. The kinds of relationships (such as Şis superior ofŤ), features and other speciĄcities

of a particular domain should be deĄned in an extension of GoOrg.

An organisational structure might have any form (shape). For instance, it can be

single positions with no relationships with each other, a group of positions with clear

relationships between them, or groupings of positions with relationships within their own

groups but none between them.

Besides, it is worth mentioning that the model does not specify that the generation

of structures depends on the set of available agents. However, the set of available agents

is used to check the structureŠs feasibility. If there is no available agent, no generated

structure is feasible. If the set of available agents changes over time, a new assessment of

the organisationŠs feasibility is made.

47

4 GoOrg4Prod: A Specialisation for a Fac-

tory Production Line Domain

GoOrg4Prod illustrates how GoOrg can be used in a particular domain.1 It intends

to generate structures of agents responsible for production activities in a factory. It is

assumed that an external mechanism will pick the chosen organisational structure that

is indicated by GoOrg4Prod. In this work, the term GoOrg4Prod refers to both a model

extension and an implementation that can generate organisation descriptions for a speciĄc

domain.

The generation of hierarchical structures is considered in this domain. It is assumed

that the hierarchical levels of each organisational member are relevant and used somehow

in the MAS. Organizational charts, despite their limitations, can be used to represent

hierarchies because they are focused on representing superior-subordinate relationships.2

organisational
position

organisational
structuregoal

composed ofin charge of

11..* 1..* 1

* 1

*

agent is bound to

*

* 0/1

0/1

feature
has

has

*

attribute

feasibility

has
1
4

height

generality efficiency

skill dataload workload are
are

is superior of

Figure 6 Ű GoOrg4Prod model.

GoOrg4Prod synthesises positions generating organisations in which goals should

be achieved routinely by executing some workloads. Notice that this particular approach is

using a baseline of 24 hours. It is considered that effort repeats at every baseline, as cycles,

such as a day in a factory. To be able to execute workloads, agents should have some skills.

GoOrg4Prod matches agents and positions using skills. As it is generating hierarchies,

the structures present the attributes height and generality, as later explained. Besides,

GoOrg4Prod uses workloads to calculate the organisationŠs efficiency, which among other

attributes can be used to choose organisations based on the userŠs preferences.
1 An implementation of GoOrg4Prod is available at https://github.com/cleberjamaral/

GoOrg4Prod.
2 There are criticisms arguing that organisational charts miss crucial aspects of organisational struc-

tures (Mintzberg and Van der Heyden, 1999).

4.1. GoOrg4Prod Elements 49

𝑠 : x𝑠𝑦𝑚𝑏𝑜𝑙y, 𝑠 P 𝑆

According to the aims, workloads may be required for achieving goals. A workload

𝑤 represents a demanded effort 𝑒 P R
` which requires a skill 𝑠 P 𝑆 to be performed. In

the example of Figure 7, there are four workloads: (i) the skill db access with a predicted

effort of 0.1 hours; (ii) the skill lift with a predicted effort of 4 hours; (iii) the skill move

with effort equals to 8 hours; and (iv) the skill pnp with a predicted effort of 1 hour. The

function 𝑤𝑔 maps goals to their workloads, as follows.

𝑤 : x𝑠, 𝑒y, 𝑠 P 𝑆, 𝑒 P R
`, 𝑤 P 𝑊

𝑤𝑔 : 𝐺 Ñ 2𝑊

Still according to the aims, it is considered that to achieve a goal it may be

necessary to establish communications, which is named dataloads. A dataload 𝑖 represents

a message, which has an estimated usage of bandwidth 𝑑 P R
` while it is sent to the

performer of the recipient goal 𝑟 P 𝐺. The function 𝑖𝑔 maps goals to their dataloads, as

follows.

𝑖 : x𝑠𝑦𝑚𝑏𝑜𝑙, 𝑟, 𝑑y, 𝑟 P 𝐺, 𝑑 P R
`, 𝑖 P 𝐼

𝑖𝑔 : 𝐺 Ñ 2𝐼

The set 𝐹 of features, is composed of workloads, dataloads and skills, as follows.

To match positions and agents only skills are used (the skills that agents have and skills

that workloads require).

𝐹 “ 𝑊 Y 𝐼 Y 𝑆 (4.1)

Additionally, GoOrg4Prod considers that organisational positions may have Şis su-

perior ofŤ relationships which stands for superordinate-subordinate relationships. Indeed,

a tree representing a hierarchy may have positions belonging to different levels. The func-

tion 𝑠𝑝p𝑝q records the position 𝑝1, which is the immediate superordinate of the position

𝑝. If 𝑝 has Şno superordinateŤ, 𝑠𝑝p𝑝q “ 𝜖. This function is deĄned as follows.

𝑠𝑝 : 𝑃 Ñ 𝑃 Y t𝜖u

Since the relationship Şis superior ofŤ and the function 𝑤𝑔 are used by the gener-

ator, they are being added as elements of the organisational structure. In this sense, the

stated deĄnition of the structure (DeĄnition 5) is replaced by the following formula.

50 Chapter 4. GoOrg4Prod: A Specialisation for a Factory Production Line Domain

𝑜 : x𝐺, 𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝, 𝑤𝑔y

An organisational structure is formed by one tree (hierarchy) or more, as a forest

of hierarchies. A tree may be composed of only one position (having no superordinate

and no subordinates). A forest with all trees composed of only one position has all these

positions in the same hierarchy level, which is the Ćattest structure. Among the generated

structures, there may exist trees that are composed of similar positions but in different

places in the hierarchies. For instance, in a factory hierarchy, the position 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟 is

superordinate of the 𝑝𝑎𝑐𝑘𝑒𝑟; in another hierarchy, 𝑝𝑎𝑐𝑘𝑒𝑟 is superordinate of 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟;

and in another, both are on the same level.

Finally, GoOrg4Prod has a few more parameters. In practice, agents have limited

capacity for performing workloads and sending/receiving dataloads. In response to this

practical issue, in GoOrg4Prod, ã𝑝 P R
` is deĄned to represent the maximum workload

allowed on each position. Following the same idea, Ó𝑝 P R
` is deĄned to represent the

maximum data load allowed to each position, which regards the dataloads that address a

goal 𝑔. To allow splitting goals into smaller ones when necessary, ã𝑔 P R
` and Ó𝑔 P R

`

are deĄned to refer to the maximum grain size for workloads and data loads.

4.2 GoOrg4Prod Added Attributes

GoOrg4Prod deĄnes new attributes of an organisational structure. The height of

the structure is calculated using superordinate-subordinate relationships. Based on how

the goals are distributed across positions, the generality of the structure is calculated.

From the added feature workload, the efficiency of an organisation can be quantiĄed. These

attributes are represented in a three-dimensional space. Every generated organisation has

a coordinate in this space. Figure 8 illustrates the organisation attributes space.

the most
efficient

tallest

with the highest proportion of
 generalist positions

efficiency generality

he
ig

ht

Figure 8 Ű GoOrg4Prod organisational structure attributes in three dimensions.

4.2. GoOrg4Prod Added Attributes 51

Height refers to how centralised and bureaucratic a hierarchical organisation is,

since a long chain in a tree may imply that the organisation is very centralised, impacting

its decision-making model. Generality indirectly changes the shape of the structure, in

both the vertical and the horizontal directions, since it may impact the organisationŠs

workĆow. Besides, one may argue that generalist positions may improve robustness since

other agents would be able to take on responsibilities in case of an agent fails. Efficiency

indicates how close the combined capacity of the agents, which will occupy the generated

positions, is to the expected efforts considering the given goals.

The height of an organisational structure is deĄned as a ratio between the actual

height and the tallest hierarchy that GoOrg4Prod can generate from the input. The top

level is formed by all top superordinate positions (the positions that have no superordinate,

i.e., 𝑠𝑝p𝑝q “ 𝜖). The next level contains all subordinates of the top superordinate positions.

The other levels follow the same idea.

Formally, the height of an organisational structure 𝑜 is represented as áp𝑜q, a real

number in the range [0,1]. It is the ratio between the actual height and the maximum

height that the model generates (Eq. 4.3). The function 𝑙p𝑝q maps a position 𝑝 to an

integer representing the hierarchical level that the position 𝑝 is situated at (Eq. 4.2). The

function 𝑙p𝑝q counts from the position 𝑝 to its top superordinate position, one level for

each relative superior in the organisational structure. The longest chain of hierarchies

(trees of the structure) is deĄned by 𝑚𝑎𝑥p𝑙p𝑝qq, for all 𝑝 P 𝑃 . The cardinality of the set

of goals (|𝐺|) represents the maximum chain of positions that the model produces. The

cardinality |𝐺| should be equal to or greater than 2 to generate different and comparable

candidates.

𝑙p𝑝q “

$

&

%

0 𝑠𝑝p𝑝q “ 𝜖

1 ` 𝑙p𝑠𝑝p𝑝qq otherwise
(4.2)

áp𝑜q “

$

&

%

𝑚𝑎𝑥
𝑝P𝑃

p𝑙p𝑝qq´1

|𝐺|´1
|𝐺| ě 2

0 otherwise
(4.3)

The generality of an organisational structure measures the similarity of positions

considering their assigned goals. The most generalist organisation has all goals assigned

to every position, i.e., all the agents would be able to play any position and perform any

goal. GoOrg4Prod can split a goal into smaller ones to assign it to multiple positions, as

explained in Section 4.3.1. This specialisation assumes that achieving all parts implies the

achievement of the original goal.

Formally, the generality of an organisational structure 𝑜 is represented as 𝜃p𝑜q, a

real number in the range [0,1]. It is the ratio between the actual and the maximum possible

number of goals assigned to positions (Eq. 4.4). The set 𝐺𝑃 contains the recorded goals

52 Chapter 4. GoOrg4Prod: A Specialisation for a Factory Production Line Domain

for all positions (Eq. 4.5), and its cardinality is represented as |𝐺𝑃 |. The minimal possible

number of goals spread across positions is given by the minimal of the cardinality of 𝐺

and the cardinality of 𝑃 . The maximum possible number of goals assigned to positions

is given by the cardinality of the set 𝐺 (|𝐺|q times the cardinality of the set 𝑃 (|𝑃 |). In

this sense, the maximum generality (𝜃p𝑜q = 1) occurs when every position is assigned to

every goal. In contrast, the minimum generality (𝜃p𝑜q = 0), which represents the most

specialist organisation, has each goal assigned to only one position.

𝜃p𝑜q “
|𝐺𝑃 | ´ 𝑚𝑖𝑛p|𝐺|, |𝑃 |q
|𝐺||𝑃 | ´ 𝑚𝑖𝑛p|𝐺|, |𝑃 |q

(4.4)

𝐺𝑃 “
ď

𝑝P𝑃

𝑔𝑝p𝑝q (4.5)

In GoOrg4Prod the efficiency of a structure 𝑜 is represented as Öp𝑜q a real number

in the range [0,1]. It is the capacity utilisation of the organisation, which is given by the

ratio between the utilisation and the capacity (Eq. 4.6). In the equation, Þ𝑖p𝑎q refers to

the i-th element of the tuple 𝑎. The utilisation is given by the sum of workloadsŠ efforts

associated with all given goals. The organisationŠs capacity is the number of positions of

the organisational structure times ã𝑝 (the maximum workload allowed per position).

Öp𝑜q “

ÿ

𝑔P𝐺

Þ2p𝑤𝑔p𝑔qq

|𝑃 |ã𝑝

(4.6)

With these new attributes, GoOrg4Prod can quantify an organisation by height,

generality, feasibility and efficiency.

4.3 GoOrg4Prod Processes

GoOrg4Prod generates and chooses organisations in a chain of four processes: (i)

the given goals in 𝐺 are split down into smaller goals according to the granularities (ã𝑔

and Ó𝑔) set by the user; (ii) organisational positions are synthesised and structures are

generated in a process that searches the space with all possible organisations according to

the supported transformations; (iii) the positions of generated structures are bound to the

given agents and the feasibility of the organisation is calculated; and (iv) an organisation

with positions and bound agents is chosen. It is important to mention that although this

work is suggesting a method for organisation generation, it is not claiming it is the only

possible one. Figure 9 illustrates the mentioned processes.

54 Chapter 4. GoOrg4Prod: A Specialisation for a Factory Production Line Domain

process focus on dataloads instead of workloads using the bandwidth grain size Ó𝑔, creating

the set 𝐺2.

Algorithm 1: splitGoalsByWorkload
Data: 𝐺 the set of goals, ã𝑔 the max workload grain size
Result: 𝐺1 the resulting set of split goals
begin

𝐺1 Ð {}
foreach Goal 𝑔 in 𝐺 do

𝑒 Ð 0

foreach Workload 𝑤 in 𝑤𝑔p𝑔q do
𝑒 Ð 𝑒 ` Þ2p𝑤q // sum of efforts of workloads in g

end
𝑠𝑙𝑖𝑐𝑒𝑠 Ð 𝑚𝑎𝑥p𝑐𝑒𝑖𝑙p𝑒{ã𝑔q, 1q // number of slices

if 𝑠𝑙𝑖𝑐𝑒𝑠 “ 1 then
𝐺1 Ð 𝐺1 Y t𝑔u

else
foreach 𝑛 from 1 to 𝑠𝑙𝑖𝑐𝑒𝑠 do

𝑔1 Ð new 𝑔𝑜𝑎𝑙

𝑔1 Ð 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒p𝑔, “$”, 𝑛q
foreach Workload 𝑤 in 𝑤𝑔p𝑔q do

𝑤𝑔p𝑔1q Ð 𝑤𝑔p𝑔1q Y t𝑔1 ÞÑ xÞ1p𝑤q, Þ2p𝑤q{𝑠𝑙𝑖𝑐𝑒𝑠yu
end
foreach Dataload 𝑖 in 𝑖𝑔p𝑔q do

𝑖𝑔p𝑔1q Ð 𝑖𝑔p𝑔1q Y t𝑔1 ÞÑ xÞ1p𝑖q, Þ2p𝑖q, Þ3p𝑖q{𝑠𝑙𝑖𝑐𝑒𝑠yu
end
𝐺1 Ð 𝐺1 Y t𝑔u

end

end

end

end

4.3.2 Generating organisations

GoOrg4Prod generation process is based on a state-space search algorithm. Each

state represents a partial or Ąnished structure of organisational positions. The initial state

is a structure with no positions and all 𝑔 P 𝐺 to be assigned to positions. To simplify, it

is being considered that 𝐺 “ 𝐺1, i.e., 𝐺 is the set of goals after some of them were split.

Every goal assigned to a position is a step towards building an organisational

structure. The solution is an organisational structure 𝑜 with all 𝑔 P 𝐺 assigned. The search

algorithm uses a cost function based on the userŠs preferences. It Ąrst explores search states

representing the most preferred organisations. After building the most preferred solutions,

the algorithm keeps building other structures until there are no unexplored search states.

4.3. GoOrg4Prod Processes 55

To generate a variety of structures, GoOrg4Prod apply three structure transforma-

tions considering every 𝑔 P 𝐺 in two stages. The structure transformations are illustrated

in Figure 11, in which the previous states are represented on the top of the Ągure (iden-

tiĄed by a1, b1 and c1, respectivelly to each kind of transformation). The states on the

bottom of the Ągure (identiĄed by a2, b2 and c2), represent the result of each transforma-

tion. On each represented transformation, on the lefthand side, the goals are illustrated,

being the unĄlled ones not assigned goals and shaded ones the goals that were already

assigned to some position. On the righthand side, the structure of positions is illustrated.

In the Ąrst stage of the search, a transformation assigns every 𝑔 P 𝐺 to a new top

superordinate position, i.e., |𝐺| structures 𝑜 are created with only the Ąrst position of

the hierarchies (Figure 11a). In the second stage, every remaining 𝑔 P 𝐺 is: (i) assigned

to a new top superordinate position, i.e., it applies the same transformation used in the

Ąrst stage which creates a new tree in the forest, repeating to each remaining goal the

transformation illustrated in Figure 11a; (ii) assigned to new positions that are created

to be subordinate of every 𝑝 P 𝑃 , repeating to each remaining goal and every existing

position the transformation illustrated in Figure 11b; and (iii) assigned to every existing

𝑝 P 𝑃 (no position is created), repeating to each remaining goal and every existing position

the transformation illustrated in Figure 11c.

b2 c2

c1b1

a2

a1

no
position
in the

hierachy

g0 g1

g0 g1
[g0]
p0

[g0]
p0

[g1]
p1

[g0,g1]

p0

[g0]
p0

[g0]
p0

g0 g1 g0 g1

g0 g1 g0 g1

Figure 11 Ű Supported transformations.

The mentioned transformations are detailed as follows. In the Ąrst transformation,

called 𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔q, a goal is assigned to a new superordinate position. The

new position is added to the set of existing positions 𝑃 . The assigned goal 𝑔 is recorded

by the function 𝑔𝑝, the skills of the workloads of 𝑔 given by the function 𝑤𝑝 are recorded

by the function 𝑓𝑔 (set 𝑆 1) and the function 𝑠𝑝 records that 𝑝 has no superior. This

transformation from the structure 𝑜 to the structure 𝑜1 is formalised as follows in which

barred arrow notation for elements is used to represent the mappings of a function, i.e.,

𝑎 ÞÑ 𝑏 means 𝑏 is the image of 𝑎, such that 𝑎 and 𝑏 are elements of Ąnite sets.

56 Chapter 4. GoOrg4Prod: A Specialisation for a Factory Production Line Domain

𝑜 “ x𝐺, 𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝, 𝑤𝑔y

𝑝 “ 𝑛𝑒𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔q

𝑆 1 “ tÞ1p𝑤q |𝑤 P 𝑤𝑔p𝑔qu

𝑜1 “ x𝐺, 𝐴, 𝑃 Y t𝑝u, 𝐹, 𝑔𝑝 Y t𝑝 ÞÑ t𝑔uu,

p𝑓𝑔zt𝑔 ÞÑ 𝑓𝑔p𝑔quq Y t𝑔 ÞÑ p𝑓𝑔p𝑔q Y 𝑆 1qu, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝 Y t𝑝 ÞÑ 𝜖u, 𝑤𝑔y

In the second transformation, called 𝑎𝑑𝑑𝐴𝑆𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒p𝑔, 𝑝1q, the goal 𝑔 is assigned

to a new position 𝑝 that is a subordinate of 𝑝1. Thus, the new position is added to the set

of existing positions 𝑃 . The goal 𝑔 is assigned to the new position 𝑝, which is recorded by

the function 𝑔𝑝. The skills of the workloads of 𝑔 given by the function 𝑤𝑝 are recorded by

the function 𝑓𝑔 (set 𝑆 1). The function 𝑠𝑝 records 𝑝1 as superior of 𝑝. This transformation

is formalised as follows.

𝑜 “ x𝐺, 𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝, 𝑤𝑔y

𝑝 “ 𝑛𝑒𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑎𝑑𝑑𝐴𝑆𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒p𝑔, 𝑝1q

𝑆 1 “ tÞ1p𝑤q |𝑤 P 𝑤𝑔p𝑔qu

𝑜1 “ x𝐺, 𝐴, 𝑃 Y t𝑝u, 𝐹, 𝑔𝑝 Y t𝑝 ÞÑ t𝑔uu,

p𝑓𝑔zt𝑔 ÞÑ 𝑓𝑔p𝑔quq Y t𝑔 ÞÑ p𝑓𝑔p𝑔q Y 𝑆 1qu, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝 Y t𝑝 ÞÑ 𝑝1u, 𝑤𝑔y

In the third transformation, called 𝑗𝑜𝑖𝑛𝐴𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔, 𝑝q, the goal 𝑔 is assigned to

an existing position 𝑝. Thus, no new position is created, just 𝑔 is assigned to the existing

𝑝 being recorded by 𝑔𝑝p𝑝q. After assigning 𝑔 to 𝑝, the skills of the workloads of 𝑔 given by

the function 𝑤𝑝 are recorded by 𝑓𝑔 (set 𝑆 1). Besides, the function 𝑓𝑔 records the dataloads

of 𝑔 recorded by 𝑖𝑔 (set 𝐼 1), which excludes dataloads of other goals assigned to 𝑝 that

address 𝑔, since they are loopbacks to 𝑝. In other words, it is assumed that an agent

occupying the position 𝑝 would not need to send a message to itself. This transformation

is formalised as follows.

𝑜 “ x𝑃, 𝐺, 𝐹, 𝐴, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝, 𝑤𝑔y

𝑗𝑜𝑖𝑛𝐴𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔, 𝑝q

𝑆 1 “ tÞ1p𝑤q |𝑤 P 𝑤𝑔p𝑔qu

𝐼 1 “ 𝑖𝑔p𝑔qzt𝑖 |𝑖 P 𝑖𝑔p𝑔q ^ Þ3p𝑖q P 𝑔𝑝p𝑝qu

𝑜1 “ x𝑃, 𝐺, 𝐹, 𝐴, p𝑔𝑝zt𝑝 ÞÑ 𝑔𝑝p𝑝quq Y t𝑝 ÞÑ p𝑔𝑝p𝑝q Y t𝑔uqu,

pp𝑓𝑔zt𝑔 ÞÑ 𝑓𝑔p𝑔quq Y t𝑔 ÞÑ p𝑓𝑔p𝑔q Y 𝑆 1 Y 𝐼 1quq, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝, 𝑤𝑔y

4.3. GoOrg4Prod Processes 57

These structure transformations are applied by the search algorithm on every state

exploration. Algorithm 2 speciĄes the successor states of the search.

Algorithm 2: Successors - creates new states to explore
Data: 𝐺𝑛𝑎 a list of not assigned goals, 𝑃 the current set of positions
Result: 𝑈 a list of successor states
begin

List 𝑈 // The successors list

if 𝑃 “ tu then
foreach Goal 𝑔 of 𝐺𝑛𝑎 // For each not assigned goal

do
𝑈.𝑎𝑑𝑑p𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔qq // Add as a superordinate

end

else
foreach Goal 𝑔 of 𝐺𝑛𝑎 // For each not assigned goal

do
𝑈.𝑎𝑑𝑑p𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔qq // Add as a superordinate

foreach Position 𝑝 of 𝑃 // For each existing position

do
𝑈.𝑎𝑑𝑑p𝑎𝑑𝑑𝐴𝑆𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒p𝑔, 𝑝qq // Add as a subordinate of p

𝑈.𝑎𝑑𝑑p𝑗𝑜𝑖𝑛𝐴𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔, 𝑝qq // Assign g to existing p

end

end

end

end

The set 𝐺𝑛𝑎 has all non-assigned goals and the set 𝑃 has all positions of this

state (according to the partial organisational structure 𝑜). Each transformation creates

a new state to be explored. For instance, 𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔q creates a state based

on the current state (current partial 𝑜) assigning 𝑔 to a new superordinate position in 𝑃

and updating 𝐺𝑛𝑎. Each created state will be later explored, and new successors may be

created. To generate successors of the created search states, the algorithm use 𝐺1
𝑛𝑎 such

that 𝐺1
𝑛𝑎 “ 𝐺𝑛𝑎zt𝑔u.

GoOrg4Prod does not stop searching after Ąnding a solution. Instead, it keeps

exploring all the search space. Thus, the Ąnal output is not only one solution, but a list

of all possible solutions.

To illustrate how the algorithm performs the search, a set 𝐺 with two goals (g0

and g1) is taken into consideration. To simplify, no features are being presented, but it

is being considered that each goal has some effort associated, needing to be assigned to

some organisational position. Figure 12 shows the generation process while searching in

the space of solutions for this particular set of goals. In the initial state, represented at the

top of Figure 12, there is no hierarchy yet, the only transformation that can be applied is

𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔q. In one successor state, 𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔q is applied to 𝑔0,

58 Chapter 4. GoOrg4Prod: A Specialisation for a Factory Production Line Domain

and in another state, it is applied to 𝑔1, both generating hierarchies of a single position.

Neither of these states is a target state, since there is still a goal in 𝐺 to be assigned. At

the bottom of the Ągure, the four target states for this 𝐺 are presented.

Since each of the intermediary states has one existing position in the hierarchy,

the remaining goal of these states is the subject of the three transformations. According

to the structure transformation, a different state is created. Some of the states are similar

to a previously created state, thus pruned. To save space in this illustration, it is pointed

to the similar outcome that was considered to prune the other.

addSuperiorPosition(g0)

ad
dA

Sub
ord

ina
te(

g1
,p0

)

[g0]
p0

no
position
in the

hierachy

[g0]
p0

[g1]
p1

[g0,g1]

p0

g0 g1

addSuperiorPosition(g1)

[g1]
p0

[g0]
p0

[g1]
p1

[g1]
p0

[g0]
p1

addSuperiorPosition(g1)

joinAPosition(g1,p0)

addASubordinate(g0,p0)

Candidate #1 Candidate #2 Candidate #3 Candidate #4

addSuperio
rPositi

on(g0)

joi
nA

Po
sit

ion
(g

0,
p0

)

g0 g1 g0 g1

g0 g1 g0 g1 g0 g1 g0 g1

Figure 12 Ű Step by step of state search with all possible solutions for the given 𝐺.

In this example, two states were pruned since they were similar to Candidate

#2 and Candidate #3. It has occurred because these candidates are created from more

than one intermediary state. For instance, a similar state to Candidate #2 was pruned

because from the righthand side intermediary state another state was created with a

position assigned to g1 and with another position assigned to g0 on the same hierarchy

level. Indeed, the search may produce states with the same distribution of goals and the

same relationships between positions which are considered similar states. It should be

noted that for pruning, the identiĄcation of each position (p0 and p1 in this example) is

not relevant.

Table 2 shows the generated solutions (the candidates). The order they appear is

arbitrary (using the userŠs preference UNITARY).

4.3. GoOrg4Prod Processes 59

Table 2 Ű All the candidates for the given 𝐺 containing just two goals.

Candidate Chart Description
#1

[g0]
p0

[g1]
p1

A structure with a superordinate-subordinate relation-
ship. The performer of the goal g0 is superior of the
performer of the goal g1. This is a specialised and hier-
archical solution for the given set of goals.

#2

[g0]
p0

[g1]
p1

A structure with only top superior positions, having no
superordinate-subordinate relationships. This is a spe-
cialised and Ćat solution for the given set of goals.

#3

[g0,g1]
p0

A structure with only top superior positions, having no
superordinate-subordinate relationships. This is a gen-
eralist and Ćat solution for the given set of goals.

#4
[g1]
p0

[g0]
p1

A structure with a superordinate-subordinate relation-
ship. The performer of the goal g1 is superior of the
performer of the goal g0. This is also a specialised and
hierarchical solution for the given set of goals.

Considering the organisational attributes, Candidate #1 and Candidate #4 have

a superordinate-subordinate relationship, presenting hierarchy levels. The other candi-

dates are the Ćatter structures. As the goals are spread across positions, the structures

can also present more specialist organisational positions or more generalist positions. In

this example, Candidate #1, Candidate #2 and Candidate #4, are equally specialists.

Candidate #3 is more generalist. Candidate #3 is also the more efficient structure, since

it expects only one agent to achieve the goals in 𝐺.

4.3.3 Binding agents and positions

GoOrg4Prod binds agents and positions matching their features. It allows the

veriĄcation of the organisationŠs feasibility considering the available agents. As presented

in Eq. 4.1, the set of features 𝐹 is formed by the sets of workloads, dataloads and skills

(both workloads and agentsŠ skills).

To bind agents to positions, GoOrg4Prod uses the First Fit algorithm (Algo-

rithm 3). This algorithm is not optimal; it is only being used to demonstrate a possible

binding strategy. The available agents in 𝐴 are settled one-by-one into positions of the

set 𝑃 , using the skills in 𝐹 to determine if the agent 𝑎 can occupy the position 𝑝. As

mentioned, in this work, agents and positions are one-to-one relationships. An agent 𝑎

can be bound to a position 𝑝 only if 𝑎 is not bound to another position and if 𝑎 has all

the necessary skills that 𝑝 requires, i.e., 𝑓𝑎p𝑎q Ě t𝑓𝑔p𝑔q |𝑔 P 𝑔𝑝p𝑝q ^ 𝑓𝑔p𝑔q P 𝑆u. When the

position 𝑝 is bound with an agent 𝑎, then 𝑎𝑝p𝑝q “ 𝑎 (DeĄnition 5).

60 Chapter 4. GoOrg4Prod: A Specialisation for a Factory Production Line Domain

Algorithm 3: FirstFit - binds agents and positions
Data: 𝑃 the set of positions, 𝐴 the set of available agents
Result: 𝑀 the set of bound positions and agents
begin

List 𝑀 // The matching list

foreach Position 𝑝 of 𝑃 // Foreach position of the structure

do
foreach Agent 𝑎 of 𝐴 // Foreach available agent

do
if 𝑓𝑔p𝑔q Ď 𝑓𝑎p𝑎q // ŚaŠ has features of p

then
𝑀.𝑎𝑑𝑑px𝑝, 𝑎yq // ŚaŠ matches with p

𝐴 Ð 𝐴zt𝑎u // ŚaŠ cannot be used again

𝑏𝑟𝑒𝑎𝑘 // stop inner loop

end

end

end

end

4.3.4 Choosing organisations

GoOrg4Prod sorts the generated organisations according to their efficiency (Öp𝑜q),

height (áp𝑜q), generality (𝜃p𝑜q) and the complementary attributes (the inverse of each

attribute). The feasibility attribute (Ùp𝑜q) is not being used to order but to exclude non-

feasible organisations.

The complementary attribute is obtained as the complementary percentage. For

instance, choosing á as a criterion means there is a preference for structures with great á

(structures as tall as possible). In this sense, choosing 1´á means there is a preference

for structures with á near zero (structures as Ćat as possible).

The user may deĄne multiple criteria which follow a priority order. The organisa-

tion in the highest ordering level of the priority criterion is considered the best candidate.

If two or more organisations are in the same ordering level, for a priority criterion, then

the next priority criterion is used. This process is detailed as follows.

Let 𝑐 be an ordering criterion (𝑐 P tÖ, á, 𝜃, 1´Ö, 1´á, 1´𝜃u) based on the or-

ganisational attributes. Let Ò P Γ be a natural number (Γ Ď Nq, representing a priority

order for a criterion according to the userŠs preferences, in which 𝑐1 is the most important

criterion for the user. Let 𝑐Òp𝑜q be a criterion value for the organisation 𝑜 according to

the priority Ò. A partial order relation representing the userŠs preferences is deĄned as ą
𝜌 ,

in which 𝑜ą
𝜌 𝑜1 means that 𝑜 is preferred to 𝑜1. If two criteria were set (Γ “ t1, 2u), 𝑜ą

𝜌 𝑜1

is deĄned as: 𝑜ą
𝜌 𝑜1 ðñ r𝑐1p𝑜q ą 𝑐1p𝑜1q _ p𝑐1p𝑜q “ 𝑐1p𝑜1q ^ 𝑐2p𝑜q ą 𝑐2p𝑜1qqs which can

be generalised as stated by the following formula. When two or more organisations share

4.4. GoOrg4Prod Results 61

the same values in all criteria, the Ąrst generated candidate is chosen, which would be an

arbitrary decision.

𝑜ą
𝜌 𝑜1 ðñ

„

|Γ|
Ž

Ò“1

𝑐Òp𝑜q ą 𝑐Òp𝑜1q ^ p
Ò´1

@
𝑖“1

𝑐𝑖p𝑜q “ 𝑐𝑖p𝑜
1qq

For instance, if the most specialist structure (1´𝜃) is the highest priority criterion

(𝑐1), then three candidates tie in the Ąrst criterion when comparing the candidates listed

in Table 2. Indeed, candidates #1, #2 and #4 each hold two positions. The Ąrst generated

candidate (#1) will be arbitrarily chosen if that is the only criterion speciĄed. If there is

a second criterion (𝑐2) and it is the Ćatter structure (1´á), then candidate #2 is chosen

because it is among the most specialists candidates and it has only one hierarchical level

(the Ćattest).

4.3.5 Computational complexity

GoOrg4Prod uses a blind search technique to generate structures, the breadth-Ąrst

search algorithm. On the one hand, it is complete and optimal; on the other hand, it is

computationally heavy. Considering 𝑛 “ |𝐺|, Eq. 4.7 gives the worst estimation of the

number of states visited by GoOrg4Prod search algorithm. As a worst estimation, the

equation does not take into account states that are pruned for being similar to existing

ones (with the same goals assigned to similar structures).

1 ` 𝑛 ` 2p𝑛´1q𝑛!𝑛 “ 𝑂p2𝑛𝑛!q (4.7)

As presented in Algorithm 2, all the possible structures have no positions before the

Ąrst iteration, so the algorithm does the only suitable transformation for each existing goal:

𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. On the next iterations, the algorithm picks the next goal to assign.

The algorithm creates one state for each of the three transformations and for each existing

position. In this sense, each goal creates a new superordinate (𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛), cre-

ates a subordinate (𝑎𝑑𝑑𝐴𝑆𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒) of each existing position and joins in each existing

position (𝑗𝑜𝑖𝑛𝐴𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛).

As an example, it is considered the case illustrated in Figure 10, in which |𝐺| “ 5.

According to Eq. 4.7, the algorithm may explore 9,606 states as the worst estimation for

searching for all possible solutions in this case.

4.4 GoOrg4Prod Results

To illustrate how the best candidate is chosen, the set of goals represented in

Figure 10 is considered. It is assumed that the user prefers the most generalist, efficient

4.4. GoOrg4Prod Results 63

solution has 100% of generality since all positions (only one in this case) are assigned to

all goals. It also has the minimum height, i.e., one level. Its efficiency is the highest for

this problem, 54.6%, which is the total effort (13.1 hours) over the baseline (24 hours).

Since all dataloads associated to the assigned goals are loopbacks, Candidate #1 has no

need for exchanging data among agents. Although it is the best candidate according to

the userŠs preferences, this solution is not feasible since there is no available agent that

has all the four skills (db access, lift, move and pnp) required by the position p0.

Organisation

Agents

FeedProduction
GetBox

MoveBox$0
MoveBox$1
PlaceBox

p0
db access

lift
move
pnp

LE
db acess
lift

BT
move

PP
pnp

(a) Candidate #1.

FeedProduction
GetBox

MoveBox$1
PlaceBox

p0

MoveBox$0

p1box ready

items ready

db access
lift

move
pnp

LE
db acess
lift

BT
move

PP
pnp

move

Organisation

Agents

(b) Candidate #2.

Figure 15 Ű The two best structures, which are not 100% feasible.

Figure 15b depicts Candidate #2, the second best solution according to the userŠs

preferences. The two dashed arrows represent dataloads that the performer of one goal

must send to the performer of another goal. Like Candidate #1, Candidate #2 has the

lowest height, since the two generated positions are in the same hierarchy level. However,

comparing to Candidate #1 its generality was reduced since each position has some degree

of specialisation. Additionally, its efficiency is reduced since it has two positions instead

of only one, which increases its idleness. This candidate is 50% feasible because only

position p1 has an agent able to perform it. Although candidates #1 and #2 are preferred

according to the userŠs preferences, neither of them is 100% feasible.

FeedProduction
GetBox

p0

MoveBox$0
MoveBox$1

p1box
ready

items
ready

db access
lift

LE
db acess
lift

BT
move

PP
pnp

move

Organisation

Agents

PlaceBox

p2

pnp

(a) Candidate #134.

BT
move

PP
pnp

Organisation Agents

FeedProduction
GetBox

p0

box
ready

move
MoveBox$0
MoveBox$1

p1

PlaceBox

p2

db access

pnp

lift

items
ready

LE
db acess
lift

(b) Candidate #446.

Figure 16 Ű Two feasible structures for the given example.

Figure 16 depicts two feasible candidates for the given example. Candidate #134

is one of the Ćattest structures, since it presents just one hierarchy level. However, its

64 Chapter 4. GoOrg4Prod: A Specialisation for a Factory Production Line Domain

generality is even more reduced compared to the candidates #1 and #2. Besides, compared

to the best candidates, it has more positions to be occupied, which drives to an undesirable

lower efficiency. Although it is far from the ideal solution (Candidate #1), taking the given

available agents and the userŠs preferences, this candidate is GoOrg4Prod Ąrst choice since

it is the Ąrst one that is 100% feasible.

Figure 16 gives another example of a feasible solution: Candidate #446. The gen-

erality, efficiency and feasibility attributes are the same as for Candidate #134. However,

according to the userŠs preferences, this solution is not as good as Candidate #134 be-

cause there are hierarchical relationships (represented as solid line arrows), which makes

this solution less Ćat. This candidate could be the Ąrst choice if the userŠs preferences

were set for the tallest and most general and most efficient solution.

The candidate #1646 (Figure 17) is at the bottom of the list to be chosen, it is

the worst candidate for the userŠs preferences. Its generality is very low, since only the

positions p0 and p2 are interchangeable. Its efficiency is also low due to the high number

of positions (|𝑃 | “ 5 for this candidate). Its height is also far from what the user prefers

(it has 5 levels). This candidate is 100% feasible assuming that there are 2 units of the

agents Box Transporter and DB Linkable Elevator. In the case of having only one unit of

each kind of agent, this candidate is just 60% feasible.

BT
move

PP
pnp

Organisation Agents

MoveBox$0

p0

items
ready

move

PlaceBox

p1

MoveBox$1

p2

FeedProduction

p3

GetBox

p4

db access

pnp

move

lift

items
ready

box
ready

requested
box

box
ready

LE
db acess
lift

BT2
move

LE2
db acess
lift

Figure 17 Ű Candidate #1646

As demonstrated, the three transformations of GoOrg4Prod can produce structures

with superordinate-subordinate relationships as found in classic organisational charts.5 A

superior (superordinate) is often responsible for some kind of coordination of its sub-

ordinates. A superordinate-subordinate relationship may imply, for instance, power and
5 Hierarchies are one of the existing MAS organisational structure paradigms (Horling and Lesser,

2004).

4.4. GoOrg4Prod Results 65

accountability of a position to another (Kilmann et al., 2010). The 𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

transformation can create the Ąrst position of an organisation, as well as other indepen-

dent pairs of the Ąrst position, potentially producing a forest of hierarchies. A forest may

represent multiple departments or even a collection of organisations. Additionally, the

transformations 𝑗𝑜𝑖𝑛𝐴𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 and 𝑎𝑑𝑑𝐴𝑆𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 assign a goal to existing positions

and to new organisational positions. Combining these transformations, it is possible to

have very hierarchical trees in which there are long chains of superordinate-subordinate

relationships (e.g., candidates #446 and #1646). In contrast, it is also possible to have

very Ćat structures with no superordinate-subordinate relationship in an organisational

chart (e.g., candidates #1, #2 and #134).

67

5 GoOrg4DSN: A Specialisation for the Dis-

tributed Sensors Network Domain

GoOrg4DSN is another specialisation of GoOrg. In this work, the term GoOrg4DSN

refers to both a model extension and an implementation that can generate organisation

descriptions for the DSN domain. It addresses the problem of Distributed Sensor Net-

works (DSN), introduced by Lesser et al. (2003). GoOrg4DSN is concerned with the

generation of organisational structures for tracking one or more moving targets in an

area.1 The objective is to detect targets and follow the target by selecting sensors to get

the most accurate coordinates of the target as it moves. A network of sensors that are

Ąxed in geographical positions provides the coordinates of targets as the sensorsŠ signals

are triangulated. The resolution track depends on how the sensors used in the trian-

gulations are distributed along the area and their distance from the target. Although

restricted, the processing capacity of the sensors can be used to host agentsŠ processes.

Other aspects such as the low-speed and unreliable communication, and the need to select

communication channels to avoid collisions bring additional challenges.

GoOrg4DSN is based on the approach proposed by Horling and Lesser (2008). In

their work, the area covered by the sensors is divided into sectors as groups of sensors. The

approach deĄnes three roles: Sensor Agent, Sector Manager and Track Manager. The Sen-

sorAgent performs scans for targets and reports detections. The SectorManager performs

many tasks: it sends to SensorAgents of the sector a scanning schedule, deĄnes communi-

cation channels, combines data from sensors to identify a target and communicates with

other Sector Managers. It also elects a sensor to play the role Track Manager when a new

target is identiĄed. The Track Manager picks sensors to keep updated about target coor-

dinates, reporting this information to the Sector Manager. All the sensors (agents) enact

the Sensor Agent role. In Horling and Lesser (2008)Šs implementation, the geographical

area of each sector is arbitrarily deĄned according to the number of sensors by sector,

which varies from 5 to 10 units, and also according to the density of sensors. Each sector

has a Sector Manager which is user-deĄned a priori. When a new target is identiĄed, as

the Sector Manager is usually busy with its duties, it prefers to elect other agents rather

than itself to be Track Manager.

For this problem, GoOrg4DSN uses the Multi-Agent Oriented Programming (MAOP)

approach (Boissier et al., 2013). In MAOP, autonomous entities are modelled as agents,

1 An implementation of GoOrg4DSN is available at https://github.com/cleberjamaral/GoOrg4DSN

68 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

non-autonomous entities such as environmental tools and resources exploited by the agents

are modelled as artefacts, and coordination mechanisms are modelled as organisations.

Considering the solution proposed by Horling and Lesser (2008), GoOrg4DSN has two

main conceptual changes which are the absence of explicit roles and the procedural task

of scanning the area placed on another level of abstraction. In GoOrg4DSN, the scanning

task that Horling and Lesser (2008) assigned to Sensor Agents are instead executed by

non-autonomous entities (artefacts).2 This MAOP approach is represented in Fig 18.

Agents

Artefacts

Organisation

MAS

External
Environment

Sector

Physical
Sensors

Non-
autonomous

entities

Autonomous
entities

Moving
Target

communication

Manage
Sector Manage

Track

act & perceive

interfaces

Positions
Goal

Figure 18 Ű A MAOP approach for the DSN domain.

In the top dashed rectangle, the MAS is shown in three dimensions: organisation,

agents and artefacts. The agents interact among themselves and also act on and perceive

the artefacts, which are interfaces to the external environment. In this domain, the ex-

ternal environment is formed by physical sensors situated in a delimited sector which can

be visited by moving targets.

The tasks performed by the agents change according to the environment dynamism

caused by entry, exit and movement of targets within the monitored area and across

sectors. Indeed, such dynamism changes the goals of the organisation. For instance, an

agent that manages a sector with no detected targets has to wait for an event to be

communicated by the sector artefacts or by agents that manage other sectors. When a

target is detected, a goal for tracking that particular target is created. In this sense, a

change to the set of organisational goals brings the need to redesign the organisation.

The dashed rectangle at the bottom of Figure 18 represents a sector that con-

tains Ąve geographically distributed sensors. The central sensor with a shaded inner circle

2 In Horling and Lesser (2008)Šs approach, Sensor Agents have some autonomy when they negotiate
their schedule with the Sector Manager. However, they mainly execute scans for targets, which are
procedural tasks.

5.1. GoOrg4DSN elements 69

represents the device that was a priori deĄned to host the agent to manage the sector.

Figure 18 is illustrating a situation in which a target was detected. The sensor with a

shaded outer circle was elected to be the manager of this tracking. The rest of the sensors

are devices that are hosting agents that are not yet part of the organisation. Indeed, the

network has distributed processing along with sensors. In GoOrg4DSN, each sensor hosts

an artefact process and also an agent process, which is often a stand-by agent. In this

sense, most of the sensors host an available agent which can be bound to an organisational

position, becoming an organisationŠs member.

Figure 19 illustrates how this specialisation extends GoOrg. To represent that

agents become busy while managing a sector and managing a tracking, the goals have

a feature of kind workload, which have an identiĄcation (referring to an intent) and an

expected effort to execute the workload. The attribute efficiency is calculated using work-

loads expected efforts. This implementation speciĄes two types of efforts: 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟

and 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘. The agents that manage sectors are deĄned a priori by the user ac-

cording to signal ranges. Sector managers are usually the agents that can better reach

sector sensors, and also reach other sector managers. To represent which sensor is previ-

ously deĄned as a manager, the speciĄed agents have a feature of kind intents recording

they were set to manage a sector. All agents also have a feature of kind sector to record

which sector they belong to. This includes the agents that occasionally are not members

of the organisation, but are available and may become a tracking manager if necessary.

A goal to track a target also has a feature of kind sector, allowing the identiĄcation of

the sector that is handling the tracking. In the running system, the agent in charge of

𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟, in the sector that is handling a tracking, must choose an agent to be

assigned to manage this tracking. In this sense, the chosen agent occupies the position

that GoOrg4DSN has synthesised for tracking the corresponding target.3 By the attribute

nearness, it is possible to check whether an agent and a target are in the same sector or

not.

5.1 GoOrg4DSN elements

GoOrg4DSN speciĄes three features to constrain the organisational design while

synthesising positions, arranging hierarchies and binding agents to positions. The added

features are: (i) intents, which are associated with agents; (ii) workloads, which are asso-

ciated with goals; and (iii) sectors which are associated with both goals and agents.

The agents have associated intents. These are used to inform GoOrg4DSN about

the a priori deĄned usage of the agents, regarding the ones that are chosen to manage a

3 It is assumed that if the target is simultaneously detected by sensors from different sectors, the
managers of the corresponding sectors will negotiate which sector should be associated with the
respective 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 workload.

70 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

organisational
position

organisational
structuregoal

composed ofin charge of

11..* 1..* 1

is superior of

* 1

*

agent is bound to

*

* 0/1

0/1

feature
has

has

*

attribute

feasibility

has
1
3

nearness

efficiency

sector intent workload
are

are

Figure 19 Ű GoOrg4DSN model.

sector. An intent is formally deĄned as a singleton tuple containing a symbol, as follows.

𝑡 : x𝑠𝑦𝑚𝑏𝑜𝑙y, 𝑡 P 𝑇

A goal may have a workload required to achieve it. A workload 𝑤 represents a

demanded effort 𝑒 P R
` associated with an intent 𝑡 P 𝑇 . A workload is formally deĄned

as a tuple of a symbol and a real positive number. The function 𝑤𝑔 maps goals to their

workloads, as follows.

𝑤 : x𝑡, 𝑒y, 𝑡 P 𝑇 , 𝑒 P R
`, 𝑤 P 𝑊

𝑤𝑔 : 𝐺 Ñ 2𝑊

Both agents and goals are associated with sectors. A sector refers to a group an

agent or a target belongs to. The sector feature is a priori associated with all available

agents (the ones that are deĄned to host a manager of a sector and the ones that are

deĄned to host available agents). In case of goals, the sector feature is associated with

the goals 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 according to the sector that is handling the tracking. A sector

is formally deĄned as a singleton tuple of a symbol, as follows.

𝑐 : x𝑠𝑦𝑚𝑏𝑜𝑙y, 𝑐 P 𝐶

The sets of workloads (𝑊), intents (𝑇) and sectors (𝐶) are subsets of the set of

features, as follows.

𝐹 “ 𝑊 Y 𝑇 Y 𝐶 (5.1)

Like GoOrg4Prod, GoOrg4DSN considers that organisational positions may have

superordinate-subordinate relationships. This only occurs in the case of a superordinate

being assigned to the 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 workload and the subordinate being assigned to

5.2. GoOrg4DSN Added Attributes 71

the 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 workload. The function 𝑠𝑝p𝑝q that records the superordinate of the

position 𝑝 and the organisational structure 𝑜 are deĄned as for GoOrg4Prod (Section 4.1).

GoOrg4DSN also adds a design parameter to prevent positions from being assigned

to a sum of workloads efforts that surpass 100%. It is deĄned as ã𝑝 P R
`, representing

the maximum workload allowed on each position.

5.2 GoOrg4DSN Added Attributes

GoOrg4DSN deĄnes new attributes of an organisational structure. From the added

feature workload, the efficiency of a structure is calculated, which was already deĄned in

Eq. 4.6. From the feature sector, the nearness of a structure is calculated.

Considering that a structure is a forest of hierarchies, nearness refers to how much

similar the positions of every tree in the forest are in terms of their sectors. This gives

an idea of how geographically near the positions are. For simplicity, this work does not

specify distances between sensors. Instead, GoOrg4DSN considers that sensors of the

same sector are close to each other and sensors of different sectors are far away from each

other. Formally, the nearness of an organisational structure 𝑜 is represented as 𝜌p𝑜q, a real

number in the range [0,1] (Eq. 5.2). The nearness reduces when a position has a different

sector compared to its superordinate. The maximum nearness (𝜌p𝑜q = 1) occurs when

every hierarchy (tree) is formed by positions assigned to goals of the same sector.

𝑛p𝑝q “

$

&

%

0 D𝑔 P 𝑔𝑝p𝑝qD𝑔1 P 𝑔𝑝p𝑠𝑝p𝑝qq, 𝑓𝑔p𝑔q X 𝐶 ‰ 𝑓𝑔p𝑔1q X 𝐶

1 otherwise

𝜌p𝑜q “

ř

𝑝P𝑃 𝑛p𝑝q

|𝑃 |
(5.2)

5.3 GoOrg4DSN Processes

GoOrg4DSN generates and chooses organisations in a chain of three processes: (i)

organisational positions are synthesised and structures are generated in a process that

searches the space with all possible organisations according to the supported transforma-

tions; (ii) the positions of generated structures are bound to the given agents and the

feasibility of the organisation is calculated; and (iii) an organisation with positions and

bound agents is chosen. Compared to GoOrg4Prod, the process for preparing goals is not

necessary for the DSN domain, since for this domain the goals are not divisible. Figure 20

illustrates the referred processes.

72 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

User's preferencesGoals Agents

Generating organisations

...

#1 #2

#N

Binding agents and positions

Design parameters

[?]
[?]

#2

#N

#1

#3 ... #3

#2

Choosing organisations

Figure 20 Ű The three processes of GoOrg4Prod.

5.3.1 Generating organisations

GoOrg4DSN uses the same state-space search algorithm that GoOrg4Prod uses.

It assigns goals to positions step by step, follows a cost function based on the userŠs

preferences, and generates all possible solutions according to its constraints. The algorithm

for generating successors states is similar to Algorithm 2, the difference is in the constraints

of the transformations.

GoOrg4DSN applies three structure transformations for every 𝑔 P 𝐺 into two

stages. In the Ąrst stage, a transformation assigns the goals 𝑔 P 𝐺 that are associated with

the workload 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 to new top superordinate positions. In the second stage, each

remaining 𝑔 P 𝐺 is the subject of the following structure transformations: (i) if 𝑔 is associ-

ated with a workload 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟, it is assigned to a new top superordinate position

creating a new tree in the forest; (ii) if 𝑔 is associated with a workload 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘, it is

assigned to new subordinate positions (for each position associated with a 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟

workload); and (iii) if 𝑔 is associated with a workload 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘, it is assigned to ev-

ery existing position (the ones associated with a 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 or with 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟

workloads). These transformations are presented as follows.

In the 𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔q transformation, a goal associated with the work-

load 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 is assigned to a new superordinate position. Indeed, in the running

system, an agent that manages a sector performs some actions that imply authority, a

workload Þ1p𝑓𝑔p𝑔qq “ 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 is only assigned to superordinate positions. The

new position is added to the set of existing positions 𝑃 . The assigned goal 𝑔 is recorded

by the function 𝑔𝑝, the Ąrst element (Þ1) of a workload tuple is recorded by the function

𝑓𝑔 and the function 𝑠𝑝 records that 𝑝 has no superior. The element Þ1 of a workload refers

to an intent, which can be either 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 or 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘. The only feature

that is recorded by 𝑓𝑔 is the intent inside of the workload, since it is the only relevant

data for further processes. This transformation from the structure 𝑜 to the structure 𝑜1 is

formalised as follows.

5.3. GoOrg4DSN Processes 73

𝑜 “ x𝐺, 𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝, 𝑤𝑔y

𝑇 1 “ tÞ1p𝑤q |𝑤 P 𝑤𝑔p𝑔qu

𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 P 𝑇 1

𝑝 “ 𝑛𝑒𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔q

𝑜1 “ x𝐺, 𝐴, 𝑃 Y t𝑝u, 𝐹, 𝑔𝑝 Y t𝑝 ÞÑ t𝑔uu,

p𝑓𝑔zt𝑔 ÞÑ 𝑓𝑔p𝑔quq Y t𝑔 ÞÑ p𝑓𝑔p𝑔q Y 𝑇 1qu, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝 Y t𝑝 ÞÑ 𝜖u, 𝑤𝑔y

In the 𝑎𝑑𝑑𝐴𝑆𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒p𝑔, 𝑝1q transformation, a goal associated with the workload

𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 is assigned to a new subordinate position. The superior position 𝑝1 must

be associated with a 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 workload. The new position is added to the set of

existing positions 𝑃 . The assigned goal 𝑔 is recorded by the function 𝑔𝑝, the Ąrst element

of the workload tuple is recorded by the function 𝑓𝑔, and the function 𝑠𝑝 records 𝑝1 as

superior of 𝑝. This transformation from the structure 𝑜 to the structure 𝑜1 is formalised

as follows.

𝑜 “ x𝐺, 𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝, 𝑤𝑔y

𝑇 1 “ tÞ1p𝑤q |𝑤 P 𝑤𝑔p𝑔qu

𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 P 𝑇 1

D𝑔1 P 𝑔𝑝p𝑝1q , 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 P tÞ1p𝑤1q |𝑤1 P 𝑤𝑔p𝑔1qu

𝑝 “ 𝑛𝑒𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑎𝑑𝑑𝐴𝑆𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒p𝑔, 𝑝1q

𝑜1 “ x𝐺, 𝐴, 𝑃 Y t𝑝u, 𝐹, 𝑔𝑝 Y t𝑝 ÞÑ t𝑔uu,

p𝑓𝑔zt𝑔 ÞÑ 𝑓𝑔p𝑔quq Y t𝑔 ÞÑ p𝑓𝑔p𝑔q Y 𝑇 1qu, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝 Y t𝑝 ÞÑ 𝑝1u, 𝑤𝑔y

In the 𝑗𝑜𝑖𝑛𝐴𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔, 𝑝q transformation, a goal associated with the workload

𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 is assigned to one of the existing positions. This transformation is applied

if 𝑔 is not associated with a 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 workload which prevents to have a position

responsible to manage more than one sector. The assigned goal 𝑔 is recorded by the

function 𝑔𝑝, and the Ąrst element of the workload tuple (Þ1) is recorded by the function

𝑓𝑔. This transformation from the structure 𝑜 to the structure 𝑜1 is formalised as follows.

74 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

𝑜 “ x𝐺, 𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝, 𝑤𝑔y

𝑇 1 “ tÞ1p𝑤q |𝑤 P 𝑤𝑔p𝑔qu

𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 R 𝑇 1

𝑗𝑜𝑖𝑛𝐴𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛p𝑔, 𝑝q

𝑜1 “ x𝐺, 𝐴, 𝑃, 𝐹, p𝑔𝑝zt𝑝 ÞÑ 𝑔𝑝p𝑝quq Y t𝑝 ÞÑ p𝑔𝑝p𝑝q Y t𝑔uqu,

p𝑓𝑔zt𝑔 ÞÑ 𝑓𝑔p𝑔quq Y t𝑔 ÞÑ p𝑓𝑔p𝑔q Y 𝑇 1qu, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝, 𝑤𝑔y

5.3.2 Binding agents and positions

GoOrg4DSN also uses the First Fit algorithm (Algorithm 3). The set of features

𝐹 is formed by the sets of workloads, sectors, intents and the Ąrst element of workload

tuples. The agents and positions are matched by intents and the Ąrst element of workload

tuples. It worths to mention that, GoOrg extensions implement a binding process just to

check the organisationŠs feasibility. At running conditions, the binding between agents and

positions in charge of 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 are deĄned by positions in charge of 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟

(which are superordinates of their sectors).

5.3.3 Choosing organisations

GoOrg4DSN sorts the generated organisations according to their efficiency (Öp𝑜q),

nearness (𝜌p𝑜q) and their complementary attributes (the inverse of each attribute). If the

feasibility (Ùp𝑜q) is not 100%, the organisational structure is not considered. The for-

mula used for choosing structures by the user-deĄned criteria is the same as GoOrg4Prod

(Section 4.3.4).

5.3.4 Computational complexity

The worst estimation of the number of search states visited is deĄned in Eq. 4.7,

the same as GoOrg4Prod. Yet, GoOrg4DSN prunes more states, for instance, constrain-

ing hierarchies in which a goal associated with 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 workload is assigned to a

subordinate position and when a goal associated with 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 workload is trigger-

ing the creation of superordinate positions. For comparison, for a scenario with |𝐺| “ 5,

GoOrg4Prod visits 9,606 states and generates 1,646 candidates. For the same number of

goals, GoOrg4DSN visits only 80 states and generates just 8 candidates.4 However, the

number of states to visit grows exponentially. For more complex scenarios, the number of

states and candidates may become too large and not viable for the search approach used

4 This took 1 second of user time on an Intel® Core™ i7-8550U CPU @ 1.80GHz with a 16 GB RAM
computer.

5.4. GoOrg4DSN Results 75

by GoOrg4DSN. To exemplify, for |𝐺| “ 7 GoOrg4DSN generates 612 candidates and for

|𝐺| “ 8 it generates 5812 candidates.5

5.4 GoOrg4DSN Results

To illustrate how GoOrg4DSN generates organisational structures, it is considered

an area divided into four sectors identiĄed by the four geographical quadrants (Figure 21).

Each sector contains Ąve sensors.

Sector
NW

Sector
NE

Sector
SW

Sector
SE

Figure 21 Ű A motivating scenario with four sectors, each one with 5 sensors.

The userŠs preferences are based on Horling and Lesser (2008)Šs approach. Due

to computational and communication restrictions of the sensors that host agents, it is

preferred idle structures (less efficient). With respect to the computational limits of the

sensors, in the DSN domain it is important to avoid assigning multiple goals to the

same position. Both efficiency and generality attributes deĄned for GoOrg4Prod domain

helps to measure the distribution of goals in a structure, but for GoOrg4DSN efficiency

is better. In the case of generality, the preference for more specialist structures could

result in structures that avoid assigning the 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 goal to positions that are

assigned to 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟, however, it would not avoid having multiple manage_track

goals to the same position. On the other hand, the preference for more idle structures

using the attribute efficiency avoids both of the mentioned situations. In other words, it is

preferred to avoid assigning 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 to a position in charge of 𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 or

to a position that is already in charge of another 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘. Besides, to optimise the

communication among sensors, it is preferred a structure with a high nearness. As both

𝑚𝑎𝑛𝑎𝑔𝑒_𝑠𝑒𝑐𝑡𝑜𝑟 and 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 goals are associated with a sector feature, a structure

with the higher nearness has all superordinate-subordinate relationships between positions

assigned to goals associated with the same sector. For instance, if there is a target in the

sector se, according to this criterion, the position assigned to 𝑚𝑎𝑛𝑎𝑔𝑒_𝑡𝑟𝑎𝑐𝑘 should be a

subordinate of the position assigned to manage the sector se, as they are physically close

to each other.

To show how GoOrg4DSN is used in such a dynamic scenario, in this section

different situations in terms of targets that should be tracked are presented. First, it is

5 This respectively took 1.1 seconds and 1.7 seconds on the same mentioned computer.

79

6 GoOrg: Implementation

This chapter goes over GoOrg implementation in depth. It shows the tools and

programming languages that were used to implement GoOrg and its software architecture.

It also describes the input and output formats, and explains how to extend GoOrg for

speciĄc domains.

6.1 Tools and Programming Languages

GoOrg is implemented in Java, an object-oriented programming language, that is

interpreted by a Java Virtual Machine (JVM). A JVM is available in many computing

platforms, which allows running Java applications in many computer architectures. GoOrg

is compatible with Java 8 or superior.1 For compiling GoOrg, Gradle is used. Gradle

is an automation software development tool, often used to build and manage project

dependencies. The Gradle script is deĄned in a Ąle called build.gradle which is usually

written in a Java interoperable language (such as Groovy, Kotlin and Scala). For managing

dependencies, the Gradle tool can retrieve packages from Apache Maven repositories.2

Apache Maven repositories are very popular, most of the libraries written for Java are

available in Maven-compatible repositories.

As input, GoOrg implementation uses a ℳ𝑜𝑖𝑠𝑒` like organisation speciĄcation

(Hübner and Sichman, 2003). ℳ𝑜𝑖𝑠𝑒` is an organisational model in which organisations

can be deĄned, including their goals which are speciĄed in form of an organisational

scheme. The organisation speciĄcation is deĄned in an XML Ąle, which is a popular format

for storing and transmitting arbitrary data. Since GoOrg may add some features to the

goals, the ℳ𝑜𝑖𝑠𝑒` XML format should be extended according to the extra information

added to the goals. ℳ𝑜𝑖𝑠𝑒` also does not expect a set of available agents as GoOrg does.

In this sense, another extension of the XML is the element available-agents and the nested

elements agent to indicate each available agent and its features, according to the domain.

GoOrg outputs organisational structures in form of graphs, which can be rendered

using Graphviz.3 The graphs may represent organisational charts (organigrams) of hier-

archical structures and other kinds of structural shapes. Graphviz is an application that

1 The implementation was tested with Java 11, 13 and 17.
2 The mentioned tools and more information about them are available at https://gradle.

org/, https://kotlinlang.org/, https://groovy-lang.org/ and https://scala-lang.org/ and
https://maven.apache.org/.

3 Graphviz is available at https://www.graphviz.org/.

80 Chapter 6. GoOrg: Implementation

produces graphical visualisation in many formats using as input a text language descrip-

tion of elements such as shapes and arrows. GoOrg also generates a list containing all the

generated structures and other relevant data such as the bindings between agents and

positions, and a JaCaMo project Ąle (JCM) for launching the agents that are bound with

organisational positions (Boissier et al., 2016).

6.2 GoOrg Implementation Architecture

GoOrg instantiation starts in the class OrganisationApp. The generation process

considers an XML Ąle as input that can be provided by the command line. The applica-

tion uses the class OrganisationXMLParser to get the inputs from a given XML Ąle. In

this case, GoOrg parses the functional-speciĄcation element of the XML Ąle deĄned by

ℳ𝑜𝑖𝑠𝑒`. This element has other nested elements such as goals and plans. GoOrg basically

gets the goals in the original format deĄned by ℳ𝑜𝑖𝑠𝑒`, but with the addition of features.

Listing 6.1 illustrates a ℳ𝑜𝑖𝑠𝑒` like scheme for the Feed Production Scenario with Three

Goals. The goal identiĄed as GetBox, and the goals MoveBox and PlaceBox. For instance,

as seen in the XML notation, the goal GetBox has the workload lift associated, and also

the dataload box ready. The workload and dataload elements are part of the necessary

extension of the ℳ𝑜𝑖𝑠𝑒` speciĄcation.

Listing 6.1 Ű A given set of goals as a ℳ𝑜𝑖𝑠𝑒` scheme.

1 <functional -specification >

2 <scheme id="scheme">

3 <goal id="GetBox">

4 <workload id="lift" value="8.00"/>

5 <dataload id="box␣ready" value="8.00" recipient="MoveBox"/>

6 <plan operator="sequence">

7 <goal id="MoveBox">

8 <workload id="move" value="8.00"/>

9 <dataload id="items␣ready" value="8.00"

10 recipient="PlaceBox"/>

11 </goal>

12 <goal id="PlaceBox">

13 <workload id="pnp" value="8.00"/>

14 </goal>

15 </plan>

16 </goal>

17 </scheme >

18 </functional -specification >

The list of available agents is provided by XML elements nested within the available-

agents element. Listing 6.2 illustrates a given set of agents, which was created for GoOrg4Prod

domain. In this domain, the agents have skills which is used to match agents and posi-

6.2. GoOrg Implementation Architecture 81

tions, according to their associated workloads. In this sense, the XML elements must be

deĄned according to the domain.

Listing 6.2 Ű A given set of available agents

1 <available -agents >

2 <agent id="bt">

3 <skill id="move"/>

4 </agent>

5 <agent id="pp">

6 <skill id="pnp"/>

7 </agent>

8 <agent id="ie">

9 <skill id="lift"/>

10 </agent>

11 </available -agents >

Figure 27 shows the class diagram of GoOrg. Near the top of the diagram, it is

illustrated the starting point class, OrganisationApp, and its relationships, for instance

with the class OrganisationXMLParser. The parsed goals are instantiated as GoalNode

objects. These objects are associated with the GoalsTree class, which has information

about node relationships. The parsed agents are instantiated as Agent objects, which are

associated to an AgentSet object.

Organisation
organisation.search

PositionsTree
organisation.requirement

PositionNode
organisation.requirement

GoalNode
organisation.goal

OrganisationBinder
organisation

OrganisationGenerator
organisation

AgentSet
organisation.resource

Agent
organisation.resource

«interface»
Resource

organisation.resource

«interface»
ResourceSet

organisation.resource

«interface»
Requirement

organisation.requirement

«interface»
RequirementSet

organisation.requirement

Feature
organisation.annotation

«abstract»
Annotation

organisation.annotation

OrganisationApp
organisation

Binding
organisation.binder

Attributes are
declared here

OrganisationPlot

OrganisationJacamoExport

OrganisationStatistics

«abstract»
Search

«abstract»
Fit

A search
algorithm

A binding algorithmThe main class

OrganisationXMLParser
organisation

Inputs

GoalsTree
organisation.goal

Outputs

Figure 27 Ű GoOrg simpliĄed class diagram.

GoOrg implements two main processes: (i) the organisation generation process,

which searches for the space visiting states and performs structure transformations; and

(ii) the binding process which binds agents and positions matching their features. The

classes used in the generation process are presented on the lefthand side and the classes

82 Chapter 6. GoOrg: Implementation

for the binding process on the righthand side of the diagram. The centre of the diagram

illustrates the classes that provide facilities to generate the outputs.

The generation process is handled by the class OrganisationGenerator, which picks

a search algorithm (currently only Breadth-First). The search state is deĄned by the class

Organisation. The initial search state has an empty PositionsTree and all goals of the

GoalsTree to be assigned. As the search is performed, the state that is being visited

is cloned and the PositionsTree (organisational structure) of the clone is subjected to

a transformation. The transformations and the algorithm to generate successor states

(Algorithm 2) are also deĄned in the class Organisation. The search reaches a target state

when all the goals of the GoalsTree are assigned to positions in the PositionsTree. When a

target state is visited, an organisational structure candidate is plotted in Graphviz format.

Besides, information about the solution is printed in the statistics Ąle.

After Ąnishing the search for generating candidates, i.e., there is no state to be

visited, the binding process is started. The binding process is handled by the class Organ-

isationBinder, which picks a binding algorithm (currently only First-Fit). It tackles the

binding of the organisations in order of preference, from greatest to least. The result of

the binding is printed in the statistic Ąle and a JaCaMo project Ąle is created considering

the agents that were bound with the positions of each candidate.

6.2.1 Executing GoOrg Implementation

GoOrg is compiled, tested and executed using Gradle. By default, the Gradle run

task compiles and launch the project, which includes downloading and linking the project

dependencies. This task can receive one or more arguments. The Ąrst argument should

be a ℳ𝑜𝑖𝑠𝑒` like XML organisation speciĄcation containing a scheme which deĄnes the

organisationŠs set of goals and optionally a set of available agents for the binding process.

If no agents are speciĄed, the generation process runs nornally, just the binding process

is not executed. Since no userŠs preferences were set, by default each search state has a

UNITARY weight (cost), resulting in an arbitrary search order. The following command

line illustrates how to launch GoOrg4DSN specifying the XML as input.

$./ gradlew run --args="examples/dsn.xml"

The next arguments refer to the criteria for ordering the generation process and,

consequently, the Ąnal list of candidates. The criteria also impact the generation process

order, because according to the chosen criteria the cost functions change, making prefer-

able structures the Ąrst ones to be generated. For instance, if GoOrg is parametrised to

generate more GENERALIST structures, the states to visit that present more GENER-

ALIST structures are less expensive in terms of the search cost function, which makes

the algorithm explore these states Ąrst. In the command line, it is possible to specify any

6.2. GoOrg Implementation Architecture 83

number of criteria, in which the last is the higher priority. The following command line

illustrates how to launch GoOrg4Prod specifying an XML as input and the userŠs prefer-

ences. In this example, it is preferred the more GENERALIST structures and secondly

the more EFFICIENT, followed by the FLATTER structures.

$./ gradlew run --args="examples/Feed_production_line_evaluation.xml \

FLATTER EFFICIENT GENERALIST"

6.2.2 GoOrg Implementation Inputs

GoOrg uses as inputs a set of goals and a set of agents. These sets are generically

provided in a ℳ𝑜𝑖𝑠𝑒` like XML Ąle. Other inputs refer to the userŠs preferences. To

summarise, the model inputs are:

• An XML containing the goals and agents;

• In the XML Ąle, the set of goals follows the ℳ𝑜𝑖𝑠𝑒` scheme with extra elements in

the XML referring to the features according to the domain;

• In the XML Ąle, the set of agents is given using the elements "available-agents",

"agent" and others according to the domain to refer to the agentŠs features;

• The sorting criteria in which the last mentioned criterion is the higher priority (if

not speciĄed UNITARY criteria is used, meaning no differentiation among states,

i.e., arbitrary generation order).

6.2.3 GoOrg Implementation Outputs

The main output that GoOrg produces is a set of organisational structures which

are represented by graphs. A graph format is used since the positions of a tree may have

different relationships, which can have different meanings according to the domain. Along

with other examples that are illustrated in this work, Figure 29 shows some of the graphs

generated for the Feed Production scenario with Three Goals.

In GoOrg, graphs are used to represent sets of goals and positions, since both can

be seen as nodes with relationships. Indeed, in GoOrg4Prod and GoOrg4DSN domains, it

is mainly used relationships to refer to superordinate-subordinate relationships, commonly

referring to authority relationships. However, it is also possible to represent other kinds

of relationships as GoOrg4Prod represents a bandwidth usage (dataload) in which agents

that are in charge of some particular goals must be aware. To summarise, the model

outputs are:

• The set of goals in Graphviz format;

84 Chapter 6. GoOrg: Implementation

• Organisational structure candidates in Graphviz format;

• Statistics about candidates including their attributes in CSV format;

• A JaCaMo (JCM) Ąle for launching the bound agents.

Table 3 shows a sample statistic output Ąle which is used to choose organisations.

Some of the organisational structures mentioned in this data are illustrated in Figure 29.

The name of the columns stand for: |𝑃 | is the number of synthesised positions, Idle for a

% of idleness, Effi for a % of efficiency (complement of idlenes), Genr for a % of generality,

Spec for a % of speciĄcness (complement of generality), Tall for a % of talness, Flat for

a % of Ćatness (complement of talness), Feas for a % of feasibility, and Levels for the

number of hierarchy levels. As speciĄed in Listing 6.2, there are three available agents

with the following skills: agent bt can move, agent pp can do pnp and agent ie can lift.

The column match shows bound positions and agents. The number of pairs of positions

and agents should be the same number of positions to have 100% of feasibility. As seen,

structures #1 to #10 are not 100% feasible.

The statistics generated refer to the attributes each candidate presents and the

matching result of positions and agents. This data helps to easily Ąnd the best feasible

candidate. In case of agentsŠ availability changes, it can be revised and a new candidate

can be quickly picked. Regarding the JaCaMo project Ąle (JCM), GoOrg generates a Ąle

with the bound agents for each candidate.4

6.3 Extending GoOrg

GoOrg is designed to be extended for different domains.5 Regarding GoOrg project

implementation, each domain requires a revision on the annotation package. The abstract

class Annotation gives the skeleton of a feature. In the GoOrg project the class Feature

extends Annotation, as an example of extension. It represents a very generic feature which

only has an identiĄcation. However, a feature is often a piece of more complex information,

for instance, something associated with an expected effort (such as a workload). As new

features are added, the class OrganisationXMLParser should be adapted for parsing the

speciĄc XML elements of the domain.

Each Annotation can be associated with both a position to be occupied and with an

agent. In GoOrg, the PositionNode and the Agent classes implement more generic classes

called Requirement and Resource, respectively. These generic classes support other kinds of

constraints that can be implemented in the future. The OrganisationBinder class deĄnes

bindings between requirements and resources, matching their Annotation objects. In this
4 Appendix D illustrates a JCM Ąle generated by GoOrg implementation.
5 Considering the use of a search space algorithm, GoOrg can be easily extended.

6.3. Extending GoOrg 85

Table 3 Ű Organisational structures generated for Feed Production with three goals.

id |P| Idle Effi Genr Spec Tall Flat Feas Levels Match
1 1 0 100 100 0 0 100 0 1
2 2 50 50 25 75 0 100 50 1 p1=ie
3 2 50 50 25 75 0 100 50 1 p1=pp
4 2 50 50 25 75 0 100 50 1 p1=bt
5 2 50 50 25 75 50 50 50 2 p1=pp
6 2 50 50 25 75 50 50 50 2 p1=bt
7 2 50 50 25 75 50 50 50 2 p1=ie
8 2 50 50 25 75 50 50 50 2 p0=ie
9 2 50 50 25 75 50 50 50 2 p0=pp
10 2 50 50 25 75 50 50 50 2 p0=bt
11 3 67 33 0 100 0 100 100 1 p0=pp p2=ie p1=bt
12 3 67 33 0 100 50 50 100 2 p2=pp p0=ie p1=bt
13 3 67 33 0 100 50 50 100 2 p0=pp p2=ie p1=bt
14 3 67 33 0 100 50 50 100 2 p1=pp p0=ie p2=bt
15 3 67 33 0 100 50 50 100 2 p1=pp p0=ie p2=bt
16 3 67 33 0 100 50 50 100 2 p0=pp p2=ie p1=bt
17 3 67 33 0 100 50 50 100 2 p2=pp p0=ie p1=bt
18 3 67 33 0 100 50 50 100 2 p1=pp p2=ie p0=bt
19 3 67 33 0 100 50 50 100 2 p1=pp p0=ie p2=bt
20 3 67 33 0 100 50 50 100 2 p0=pp p1=ie p2=bt
21 3 67 33 0 100 100 0 100 3 p0=pp p1=ie p2=bt
22 3 67 33 0 100 100 0 100 3 p1=pp p2=ie p0=bt
23 3 67 33 0 100 100 0 100 3 p2=pp p0=ie p1=bt
24 3 67 33 0 100 100 0 100 3 p1=pp p0=ie p2=bt
25 3 67 33 0 100 100 0 100 3 p0=pp p2=ie p1=bt
26 3 67 33 0 100 100 0 100 3 p2=pp p1=ie p0=bt

sense, the classes PositionNode and Agent should override the method getAnnotationIds/0

in order to return the annotations that matters in the domain. The bindings are registered

in the class Binding, which informs the feasibility attribute of the organisational structures

according to the given agent set.

For other domains, the Organisation class must also be revised in terms of struc-

tural transformations and organisational attributes. The transformations are applied to

every state successors generation (Algorithm 2). The output for a domain may also have

particular constraints. For instance, in GoOrg4Prod and GoOrg4DSN hierarchies were

applied for generating a forest of hierarchies. Other domains may require other kinds of

structures such as holarchies and teams (Horling and Lesser, 2004). Different kinds of

structures may call for other kinds of structural transformations. In this sense, according

to the constraints of the outputs, different structure transformations should be deĄned.

For deĄning proper attributes for another domain, the PositionsTree class must

86 Chapter 6. GoOrg: Implementation

be revised. This class gather information about the structure. Most of the attributes

can be inferred from the organisational structure shape and relationhips.6 By default,

GoOrg deĄne attributes and their counterparts in complementary ranges between 0 and

1. Listing 6.3 illustrates an attribute implementation. Attributes are used by the search

cost function whilst the search is in progress.

Listing 6.3 Ű Implementation of the attributes efficiency and idleness

public double getEfficiency () {

double capacity = this.tree.size() * Parameters.getMaxWorkload ();

double occupancy = this.getSumWorkload ();

return occupancy / capacity;

}

public double getIdleness () {

return 1 - getEfficiencyFactor ();

}

According to the domain, the given set of goals can also be the subject of processes

that should be executed before the generation process. For instance, in GoOrg4Prod the

goals are subject to a split process that divide large efforts and large data loads into smaller

amounts. It serves as an example of an adaptation of the inputs. Other adjustments that

are not mentioned here may also be necessary.

6 Other studies such as So and Durfee (1998) and Grossi et al. (2007) also propose methods for evalu-
ating an organisation.

87

7 Discussion

This section presents a discussion about aspects related to the organisational de-

sign, comparing GoOrg to other approaches. Five aspects are considered: (i) procedures

for organisational adaptation; (ii) assigning goals to named agents, roles or positions; (iii)

planning resources (agents) of organisations; (iv) the difference between synthesising po-

sitions and having user-deĄned roles; and (v) the difference between using goals as input

rather than roles and behaviours. At the end of this section, a summary of this discussion

is presented.

7.1 Organisational Adaptation

Due to the dynamism of the system, along with the organisationŠs life cycle, dif-

ferent situations may require different organisational adaptations (Hübner et al., 2006;

Martínez-Berumen et al., 2014; von Bertalanffy, 1968). Some circumstances might only

affect the resourcesŠ availability, in which a replacement of the resource solves the situ-

ation. Other situations cannot be solved using the current organisational structure. For

instance, a change in the set of available agents or in the userŠs preferences may re-

quire another structure, possibly an already generated one. Still, there are situations that

cannot be solved using any already generated candidate, such as a change in the goals,

which requires a complete redesign for generating new candidates. In this sense, three

adaptation procedures can be applied according to the situation: (i) reallocation, (ii)

structure-switching, and (iii) redesign.1

The separation between the processes of generating organisations and binding

agents and positions fosters these different adaptations. It splits the complexity of a design

model into modules, which facilitates the implementation and maintenance of proper

methods for both tasks. Besides, a design may be performed faster when its requirements

can be satisĄed by running just one of the processes. This separation is a characteristic

of GoOrg4Prod and GoOrg4DSN, two GoOrg specialisations introduced in this work.

To present how the mentioned procedures can be executed, it is considered the

motivating scenario illustrated in Figure 28. It requires an organisation of agents that has

three goals to feed a production line in a factory (see Appendix D for more details). The

agents must lift down boxes from shelves, and move them to place the required items on

1 Comparing to the classiĄcation stated by DeLoach and Matson (2004), a reallocation is a state

reorganisation and a redesign is a structure reorganisation.

7.1. Organisational Adaptation 89

Indeed, the structure #1 demands a factotum agent that must be able to lift, move and

pnp altogether. Oppositely, the most specialist positions require agents with fewer skills.

A specialist agent is focused on a few goals, possibly only one. The structures #11, #15

and #26 are examples of structures requiring just specialist positions.

It is considered that the previous structure may present different positions com-

paring to the new structure. Positions are considered similar when they are associated

with the same goals, which implies that they are associated with the same features (in

this example, the skills). To help in the analysis, it is introduced the concept of kinds of

position and kinds of agent. Positions with the same skills are considered to be of the

same kinds. Agents with the same skills are considered to be of the same kinds. For a

given domain, both kinds of agents and kinds of positions are elements of a common set,

denoted by 𝑅.2

Indeed, each position is of some kind 𝑟 P 𝑅 as it has associated a combination of

skills which is one of the subsets of the Ąnite set 𝑆. In other words, 𝑟 is a subset of the

set of skills. As expressed by Eq. 7.1, 𝑅 is the set of all kinds of positions that may be

synthesised for all generated structures. The set 𝑅 can be deĄned as the power set of 𝑆,

so its cardinality is given by 2|𝑆| (Rosen, 2012).

𝑅 “ 𝒫p𝑆q (7.1)

Following the same idea, 𝑅 also represents kinds of agents (Eq. 7.1). For instance,

𝑟 can be the empty set representing a position that requires no skill. When 𝑟 refers to

an agent, the empty set represents an agent with no skill. Positions and agents can also

present skills as any other subset of 𝑆. For this particular motivating scenario, the set 𝑅

is as follows.

𝑅 “ tH, t𝑙𝑖𝑓𝑡u, t𝑚𝑜𝑣𝑒u, t𝑝𝑛𝑝u,

t𝑙𝑖𝑓𝑡, 𝑚𝑜𝑣𝑒u, t𝑙𝑖𝑓𝑡, 𝑝𝑛𝑝u, t𝑚𝑜𝑣𝑒, 𝑝𝑛𝑝u, t𝑙𝑖𝑓𝑡, 𝑚𝑜𝑣𝑒, 𝑝𝑛𝑝uu

To check if an agent can be bound to a position it is considered the functions

𝑝𝑟p𝑝q and 𝑎𝑟p𝑎q. The function 𝑝𝑟p𝑝q maps the set of skills that the position 𝑝 requires.

The function 𝑎𝑟p𝑎q maps the set of skills that the agent 𝑎 has.

𝑝𝑟 : 𝑃 Ñ 𝑅

𝑎𝑟 : 𝐴 Ñ 𝑅

To allocate an agent 𝑎 to a position 𝑝, the agent must have all the skills required

by the position. Thus, if 𝑝𝑟p𝑝q “ 𝑎𝑟p𝑎q the position and the agent have an exact match,

2 A subset of skills can also be seen as a role, see Appendix F for details.

90 Chapter 7. Discussion

i.e., the agent has exactly the skills that the position requires. However, an agent 𝑎 that

has more skills that the required skills of the position 𝑝 is also suitable to be allocated

to 𝑝. The function 𝑚𝑎𝑡𝑐ℎp𝑎, 𝑝q indicates if the agent 𝑎 is able to perform the position 𝑝

(Eq. 7.2). An organisation that has agents to Ąll all its positions is considered feasible.

The feasibility of the organisation 𝑜 is represented as Ùp𝑜q (Eq. 3.1).

𝑚𝑎𝑡𝑐ℎ : 𝐴 ˆ 𝑃 Ñ t0, 1u

𝑚𝑎𝑡𝑐ℎp𝑎, 𝑝q “

$

&

%

1, if 𝑝𝑟p𝑝q Ď 𝑎𝑟p𝑎q

0, otherwise
(7.2)

In the next sections, these deĄnitions are used to explain the organisational adap-

tation procedures and possible costs that are associated with each of them.

7.1.1 Reallocation

A reallocation is a procedure for changing a binding relationship between an agent

and a position. It does not change the structure of the organisation. Many situations

and many purposes may demand a reallocation. For example, for some reason, it may

be required to interchange two agents between their positions. It also may be needed an

agent replacement, for instance, due to an agent failure, as illustrated in Figure 30 in

which the agent D is replacing the failed agent B.

#2

Reallocation situation:
e.g. Agent failure

A
B

C

#2

Running system
after reallocation

A
D

C

Agents

Figure 30 Ű A reallocation by replacing an agent by another.

Although some kinds of agents match some kinds of positions, some of them have

skills that surpass the required skills. An agent that has more skills than required is said

overqualiĄed (SummerĄeld, 2016). The overqualiĄcation is a drawback since agents with

more skills are usually more expensive and often scarce, thus it represents a cost. The

overqualiĄcation cost is denoted by the function 𝑜𝑐.

92 Chapter 7. Discussion

that require exactly the skill they have. The kinds of agents #5, #6 and #7 have two

skills each, thus they match with positions that required any combination of their skills.

The kind of agent #8 is the factotum agent since it has all three skills in this scenario.

The factotum agent can be allocated in any position, including the position that requires

the three skills, in which it is the only kind of agent that matches.

Assuming that there are multiple complete solutions for a given domain, agents

that match multiple positions provide Ćexibility in terms of the place in the organisational

structure that an agent occupies. A structure made up of positions that match with

multiple agents also provides Ćexibility in terms of the agent that is chosen to occupy

a particular position. Besides Ćexibility, such systems can be more robust, considering

that there are agents that can replace others. However, it comes with an overqualiĄcation

cost, which is a drawback that must be contrasted with the beneĄts of Ćexibility and

robustness.

7.1.2 Structure-switching

A structure-switching is the procedure for changing one structure by another can-

didate. In this case, it is expected that a structure from a set of previously designed

candidates is picked. From this set, structures are chosen according to their attributes. In

the case in which the number and kinds of positions change, the binding relationships be-

tween agents and positions are also affected. Even when the new structure has the same

number and kinds of positions as the previous structure, it depends on the switching

strategy whether the binding relationships will be maintained or not.

Since selecting a new structure merely involves creating new bindings between

agents and positions, the process can be completed quickly. Although it is not exploited

in this work, because of its quick responses, such a procedure may suit the online plan-

ning/design concept, i.e., when the planning/design is executed during runtime (Cardoso

and Bordini, 2019).

The structure-switching procedure may be triggered, for instance, due to a change

in the agentsŠ availability. Consider that the structure previously chosen calls for an agent

with two skills, but that agent is no longer available and there is no other agent with

those necessary skills. Considering the availability of more specialised agents, switching

to a more specialised structure can solve this issue, keeping the system running.

This procedure also may occur due to a userŠs preference change. It is illustrated

in Figure 32. In this example, the organisations are re-sorted using the new preferences.

Another feasible structure may become the best choice to be used by the running system.

A revision on the bindings between running agents and positions is usually required if a

new organisational structure is adopted.

7.1. Organisational Adaptation 93

User's preferences Agents

Structure-switching situation:
User's preferences change

#1
#2

#2
#3

#3
#1

Sorted feasible orgs.
after structure-switching

Running system
after structure-switching

A

BC

#3

#2#1

Agents

#1

Figure 32 Ű A required structure-switching due to a change in the userŠs preferences.

A structure-switching may also be applied to make a change only on the hierarchy

places (in the positions relationships) and also to make a small change in the assignment

of goals into positions. For instance, the user may change the preference from a taller

structure to a Ćatter structure. In this case, there are structures with similar positions as

before, but in different places of the hierarchy.

In terms of the userŠs preferences, switching a structure may have little impact on

the organisation. Indeed, according to the current structure in use, it is possible to have

many other structures that have similar attributes. Figure 33 shows a correlation matrix of

the generality of the 26 generated structures for the motivating scenario of this analysis.3

In this example, there is no other candidate with the same generality of structure #1.

In this sense, wether the user prefers more general structures and the structure #1 is

in use, a switching to another means the adoption of a structure with less generality.

However, if another structure is in use, for instance, the structure #2, there are other

options that have similar generality, like the structure #3 (in this case, any structure

between #2 and #10). In terms of generality, all the structures between the structure

#11 and the structure #26 are also similar. In this sense, a change between structures

that are 100% similar, considering a particular attribute, has no difference regarding the

userŠs preference.

However, according to the current structure, a change may have a cost, for instance,

from the structure #1 to structure #11 which are considered with 0% of relative similarity

in terms of generality.4 If the newly adopted structure is less preferred by the user, it has

an unsuitability factor. Such factor depends on the attribute, in this example, it is being

assessed the generality which in GoOrg4Prod model is given by Eq. 4.4. Considering 𝑜𝑖

the previous structure and 𝑜𝑗 the new structure, the unsuitability factor can be simply

given by the relation of a given attribute of the previous and of the new structure. Thus,

3 Appendix A presents correlation matrices for other organisational structure attributes.
4 The relative similarity considers equal attributes as 100% similar and the farthest values as 0% similar.

96 Chapter 7. Discussion

Instead of switching only similar positions, it is also possible to reuse agents of the

previous positions which exceed the required skills of the new positions. The acquisition

cost could not be considered when a position in the previous structure (in the set 𝑃𝑖),

surpasses the requirements of a position in the new structure (in the set 𝑃𝑗). However,

the reuse of such an agent represents an overqualiĄcation cost.

7.1.3 Redesign

Finally, Figure 35 illustrates a complete redesign procedure. A complete process

of synthesising positions and generating structures should be triggered when either the

set of goals or design parameters change. This situation is illustrated in Section 5.4 while

presenting GoOrg4DSN results in different situations in which the number of targets

changes. In those situations, when a target enters or leaves an area (or even passes over

a sector to another), the set of goals changes, requiring a redesign.

#4#3

User's preferencesGoals Agents

Sorted organisations
after redesign

Redesign situation:
e.g. Goals change

Parameters

[?]
[?]

Sorted feasible orgs.
after redesign

Running system
after redesign

A

B
C

Agents

#2

#3 #4

#1 #2#1

#3

Figure 35 Ű A complete redesign after a change to the set of goals.

A redesign brings a design cost, which occurs on generating organisational struc-

ture candidates that depend on the complexity of the problem and the given 𝐺. When

switching the previous structure to a newly designed structure it is also possible to have

overqualiĄcation costs and acquisition costs.

7.2 Assigning Goals to Named Agents, Roles or Positions

Task allocating models (Cardoso and Bordini, 2019; Decker, 1995; Sleight, 2014)

can generate organisations. These models assign goals (or tasks) to named agents, as

illustrated in Figure 36a. For instance, let us consider a marketplace organisation that has

the (root) goal dobusiness. This root goal can be decomposed into the subgoals sellproduct

and buy product, which can be decomposed into other subgoals, and so on. One agent

assigned to sell product interacting with another agent assigned to buyproduct are sharing

7.2. Assigning Goals to Named Agents, Roles or Positions 97

the same root goal, and should cooperate to achieve it. In this sense, the distribution of

subgoals to a group of agents generates organisations. The assignment of goals to named

agents can be simpler to implement compared to impersonal representations of agents,

such as roles and positions. However, the assignment of goals to named agents produces

Ąxed organisations. These organisations are closed as they are formed only by the named

agents. In other words, a change in the set of goals or in agentsŠ availability implies a

redesign.

AgentAssigned to

Goal

n

n

Organisational
Structure

(a) Goals assigned directly to agents.

Role Enact

Agent

Assigned to

Goal

n

n n

n

Organisational
Structure

(b) Goals assigned to roles.

Role

Occupy

Agentassociated with

Position

Goal

Assigned to

n

n

1

1

n

n

Organisational
Structure

(c) Goals assigned to positions.

Figure 36 Ű Different forms of assigning goals to organisational members.

Other studies (DeLoach and Matson, 2004; Horling and Lesser, 2008; Sims et al.,

2008) use the concept of roles. Roles are largely used in human organisations and have been

adopted by the MAS community. For instance, a person that enacts the role assembler

in a factory is responsible to assemble parts of products in a production line. Sometimes,

there are many-to-many relationships such as when that person concomitantly enacts

another role like the supervisor role, dividing their working hours between assembling

and supervising activities. Figure 36b represents an organisational structure formed by

roles. In this case, the goals are assigned to roles and the agents enact roles, becoming in

charge of their assigned goals. Using the concept of roles, the organisation is decoupled

from the agents. As it allows many-to-many relationships, this approach can be very

Ćexible at runtime, allowing agents to enact roles for the short or long term. Using roles,

a generator is not limited to the availability of agents, i.e., it can generate organisations

that best match design criteria, such as the best distribution of goals. In this sense, this

approach allows a generation of more appropriate solutions according to design criteria,

since it has no concerns about the speciĄcities of agents. Besides, a proper parametrisation

of a generator can avoid the design of organisations that are not Ąllable by the available

agents.

Another characteristic is that the design of the organisation (as an entity) can be

98 Chapter 7. Discussion

separated from the process of binding agents and roles. It simpliĄes the generating process

since the binding part is delegated to another independent process. When these processes

are separated, the redesign can be a lighter procedure, as discussed in Section 7.1. This

approach also avoids redesigning processes, which are usually computationally heavy. To

exemplify how it avoids redesigns, let us compare the approaches represented in Fig-

ure 36a and Figure 36b. In the former, goals are assigned to agents that are Ąxed to the

organisational structure. In that case, if an agent is not able to perform its job, a redesign

is needed. In the latter, the approach uses roles, thus agents are associated with roles.

It makes the organisation and the agents decoupled entities. In this case, if an agent is

unable to achieve the goals assigned to its role, no redesign is required; instead, another

agent must be found to Ąll that role. Thus, an organisation made up of roles can be an

open system, i.e., agents can join, enact roles and leave the organisation at any time.

GoOrg introduces the use of organisational positions. In this approach, goals are

assigned to positions. A position is a place in the organisational structure that has a

one-to-one relationship with an agent. Agents can occupy and leave positions, but an

organisational position can be occupied by only one agent at a time. Like roles, positions

decouple the organisation and agents, supporting the development of open MAS. Besides

having most of the advantages that roles bring, positions foster planning resources, as

discussed in Section 7.3. Indeed, as illustrated in Figure 36c, a position directly reĆects

an agent, i.e., it may have all relevant characteristics an agent has for a design process,

but without naming it.

7.3 Planning Resources of Organisations

In contrast to other models, GoOrg considers that an organisation has a set of

positions rather than a set of roles. Roles and positions within an organisation are roughly

analogous. Both of them are impersonel representations of agents in an organisation. As

discussed in Section 7.2, the use of roles or positions instead of named agents provides

more freedom to the organisationŠs design because roles and positions do not need to

carry restrictions as agents do. In other words, the design process may generate more

possibilities, including an ideal distribution of responsibilities. The adoption of a better

solution can be made at various stages of the organisational life cycle. In this sense, having

more design solutions, even if they are unfeasible at some points, increases Ćexibility.

Roles and positions decouple organisations from agents, making organisationsŠ

speciĄcations independent of agentsŠ constraints. They are also useful to describe the

responsibilities and rights of each member of an organisation. Besides, they support the

development of open systems since they foster membersŠ entrances and exits (Deloach

et al., 2008).

7.3. Planning Resources of Organisations 99

Unlike a position, a role can be performed by multiple agents who are each respon-

sible for achieving the role assigned goals. Additionally, an agent can perform multiple

roles (many-to-many relationships). Models that incorporate the concept of roles offer a

high level of Ćexibility at runtime. For instance, an agent may enact the role assembler

and the role supervisor at the same time. It may also leave one of these roles and keep

the another, and many more combinations over time. When an agent enacts or leaves a

role, it is changing its assigned goals. This Ćexibility can also avoid the need for changing

the structure. For instance, structure-switching is necessary when a different distribution

of goals along positions is needed. In a structure of roles, if a combination of multiple

roles satisĄes the changing needs, no structure-switching is necessary, it is just needed to

change agent enactments. However, such Ćexibility makes the estimation of resources a

tough task, especially when role enactments are very dynamic.

A structure made up of positions (one-to-one relationships), on the other hand,

directly reĆects resource needs. The use of positions is also an intuitive approach for

deĄning sets of responsibilities and relationships. In the example of an assembler that also

supervises the production, a design model can synthesise a position responsible for both

activities. In this sense, this position is reĆecting the actual runtime dynamics but with

the advantage of deĄning it in the design time, which facilitates resource needs estimation.

Positions can be still very Ćexible at runtime, for instance, when in the absence of the

agent that usually occupies a position, an available agent may come to occupy it.

Figure 37 illustrates two structures for the same scenario. In this scenario, there

is a production cell for assembling some products which has three agents in the team.

Figure 37a illustrates a structure using the concept of roles. Agent A enacts two roles and

Agent B and Agent C both enact the same role. Figure 37b illustrates a possible solution

given by a model that extends GoOrg. It is a structure of three positions to be occupied

by the Agent A, Agent B and Agent C. Since only Agent A is able to do both supervising

and assembling activities, it is bound to the supervisor position. Agent B and Agent C are

occupying the other positions. At design time, the need for three agents is only clear in a

structure of positions. Although both structures represent solutions for the same scenario,

only the structure of positions accounts for resource needs, enabling its usage as a resource

planning tool.

An organisational structure made up of roles as shown in Figure 37a adheres to the

standard for organisational charts (organigrams), which does not detail the cardinalities

of roles (Mintzberg and Van der Heyden, 1999). Nevertheless, a model may synthesise

a quantity of roles of a certain kind, as instances. The studies presented by Horling

and Lesser (2008) and Sierra et al. (2004) synthesise instances of roles based on agentsŠ

behaviours. Figure 38 illustrates a structure made up of instances of roles. Still, as demon-

strated in this scenario, the quantity of instances of roles may not infer the quantity of

100 Chapter 7. Discussion

Agent A

supervising
assembling

Agent B
assembling

Agent C
assembling

supervisor

assembler

supervising
Structure of
roles

Agents

assembling

(a) A structure of roles.

Agent A

supervising
assembling

Agent B
assembling

Agent C
assembling

supervisor

assembler 1

supervising
assembling

Structure of
positions

Agents

assembler 2

assembling assembling

(b) A structure of positions.

Figure 37 Ű Comparing a structure of roles and a structure of positions.

required agents, as it does not reĆect resource demands. In fact, for a model based on

roles, resource planning is not facilitated even when using instances.

Agent A

supervising
assembling

Agent B
assembling

Agent C
assembling

supervisor

assembler 1

supervising
Structure of
role instances

Agents

assembler 3

assembling assembling

assembler 2

assembling

Figure 38 Ű A structure of instances of roles.

7.4 Synthesising Positions Instead of Requiring User-deĄned Roles

In other organisation generators (DeLoach and Matson, 2004; Horling and Lesser,

2008; Sierra et al., 2004; Sims et al., 2008), the user (engineer) has to specify roles a

priori. For these studies, Şit is the task of the engineer to determine which roles will be

present at the level of the society design by means of an electronic institutionŤ (Sierra

et al., 2004, p. 3). Usually, for deĄning roles, users conceive an arrangement for the

system and assess some characteristics of goals and behaviours and capabilities of known

agents. To exemplify, for the DSN domain, one may specify the roles sector_manager,

sensor and track_manager, since it is intended to have groups of agents organised into

physical sectors. Basing role deĄnitions on known elements facilitates the speciĄcation

task and may generate coherent structures according to existing elements and to the

userŠs conception of the system. Yet, it may come with biases, for instance, a wrong

assumption on specifying a role may make it infeasible for available agents to play such a

role.

The user-deĄned roles approach presumably produces a smaller number of solu-

tions compared to a model that synthesises positions. A reduced number of candidates

7.4. Synthesising Positions Instead of Requiring User-deĄned Roles 101

should be faster to generate. However, a generator that produces fewer candidates using

deĄned roles that might be speciĄed with biases may not generate feasible solutions. In-

deed, the user-deĄned roles approach may struggle when the system conditions do not

match with the userŠs design assumptions.

Alternatively, the user may set roles with few requirements. This strategy may in-

crease occurrences of agents enacting multiple roles, making it easier to generate feasible

organisations. Indeed, using the concept of roles and allowing many-to-many relationships

between roles and agents, a model that deĄnes a role for each given goal, for instance,

can achieve a higher number of combinations at runtime. However, this option makes the

coordination and resource planning of the system more complex because of the increased

possibilities for an orchestrating system to assess. While complicating the runtime or-

chestrating task, such an approach makes the design less relevant since it delegates what

is arguably a design task to the runtime orchestrating mechanism. The approach of us-

ing roles with little job to do also removes the possibility to plan at design time some

important issues. For instance, if the design model distribute goals to different roles, it

is delegating to the orchestrating mechanism to handle situations like avoiding that the

performer of the goal 𝑔0 be the performer of the goal 𝑔1 (when such goals should not be

performed by the same agent, like assembling and checking quality tasks). When synthe-

sising positions instead, the model that assigns goals to the position is already deĄning

what is expected from the performer of each position.

One may argue that at runtime, the number of combinations can be enlarged

using many-to-many relationships between agents and roles. However, it must be taken

into account that roles deĄned a priori still limit the combinations, since an agent should

be able to perform all deĄned responsibilities of a role. A problem may occur, for instance,

if the user sets a role with too many requirements, in a situation in which there is no agent

that matches all requisites.

For the example illustrated by Figure 13, one can deĄne the following roles: DB

Linkable Elevator, Box Transporter and Picker & Placer. Models based on user-deĄned

roles generate different structures for these given roles. Figure 39 presents examples that

can be generated by each of these approaches.6 In Figure 39a there are two of the possible

structures of user-deĄned roles. In this example, the given set of available agents does not

match the assumption used to deĄne the roles. The role DBLinkableElevator requires two

skills that no agent has, i.e., in both examples, there is no way to Ąll the positions by the

given agents. Other possible solutions beyond these examples are also made up of the same

set of roles. Thus, there is no feasible solution to the exempliĄed condition. As a result, a

design model based on those user-deĄned roles cannot Ąnd a feasible solution without a

6 The assigned goals of the structure of positions are omitted to simplify this example, showing only
skills as a matching feature for both role-based and position-based approaches.

102 Chapter 7. Discussion

user intervention redeĄning the roles and running the process again. Figure 39b, illustrates

two solutions that GoOrg4Prod generates from synthesised positions. The example #1

is a solution presenting the same limitation of Figure 39a examples, exemplifying that

GoOrg4Prod also generates non-feasible solutions. However, since GoOrg4Prod synthesises

positions, among the solutions, there are structures in which the features of the set of

positions match with the given agents as illustrated by the example #2 of Figure 39b.

DB Linkable
Elevator

Box
Transporter

lift
db access

Example #2
move

Picker
& Placer pnp

DB Linkable
Elevator

Box
Transporter

lift
db access

Example #1 Agents

move Picker
& Placer pnp

E
lift

BT
move

PP
pnp

L
db

access

(a) Structures of user-deĄned roles.

Example #2 p0
lift

p1

p3p2
db access

move

pnp

Agents

E
lift

BT
move

PP
pnp

L
db

access

lift
db access

Example #1

move pnp

p0

p1 p2

(b) Structures of synthesised positions.

Figure 39 Ű Comparing examples of user-deĄned roles and synthesised positions structures.

The importance of synthesising positions is also highlighted when comparing struc-

tures by their attributes. Figure 40 shows a correlation matrix considering efficiency,

height and generality of the 26 generated structures of the scenario Feed Production with

three goals. This Ągure presents averages of differences between every attribute of each

structure comparing them to other structures. It shows that there are structures that are

equal to others even considering all the GoOrg4Prod attributes. For instance, Candidates

#2, #3 and #4 are equal in terms of their attributes.

It is worth going into detail comparing some of the structures that are pointed

as similar by Figure 40. It exempliĄes small differences between synthesised positions.

Although small, it is essential to synthesise these differences and generate a range of

candidates combining similar positions into different shapes and also different positions

into some particular shapes. Considering all these possibilities, the chance of Ąnding a

suitable and feasible solution for a domain is increased. Taking candidates #2, #3 and

#4 as an example, all these candidates have two positions and one hierarchy level, differing

only in terms of the assigned goals as illustrated in Table 4.

Indeed, considering GoOrg4Prod transformations, these are the possible assign-

ments of the three given goals into structures with two positions and one level. It encom-

passes a range of possibilities of kinds of agents for this particular structure conĄguration

(with two positions and one hierarchical level). For instance, if the most skilful agent has

104 Chapter 7. Discussion

Besides the presented examples that illustrate that user-deĄned inputs bring biases

and limit the set of possibilities, it is arguably complex and demanding to provide a

priori deĄnition of roles as input to a model. It is illustrated in this work that although

not requiring a priori deĄnitions, a model that automatically synthesises positions (or

roles) can reach similar (or more) results compared to user deĄnitions. For instance, it

was not deĄned a priori that a sector manager role/position should exist in the DSN

situation illustrated in Figure 22, but the solution presented in Figure 23 has generated

positions that have this purpose. As GoOrg4DSN may Ąnd similar solutions with fewer

input parameters, it can be simpler to parametrise, easing the job of the user that is setting

up the organisation generator. The parametrisation of models and their demanded design

effort are discussed in Section 7.5.

The drawback of synthesising positions is the computational cost. Indeed, the

automated design model have to put in the work instead of the user, who is now freed

from having to specify roles or positions.

7.5 Using Goals as Input Instead of Roles and Behaviours

The deĄnition of the system goals is often a very early step in a design. One may

say that stating the goals of the system is the Ąrst step of a design since other deĄnitions

depend on it, including the deĄnition of agentsŠ behaviour. GoOrg and other works such

as the organisation generators presented by DeLoach and Matson (2004) and Sims et al.

(2008) are based on this assumption.

In contrast, the organisation generators presented by Horling and Lesser (2008) and

Sierra et al. (2004) are based on roles and their expected behaviours. Their models require

roles behaviours expressed by equations in which their models can calculate different

situations to generate a suitable organisational structure. A behaviour is the course of

actions an agent playing a particular role takes to achieve a goal. In their models, the

deĄnition of such actions should be given by the user (engineer) as input to the generator,

and they are used by the generator to constrain the search for possible organisational

structure descriptions.

If the userŠs deĄnitions are correct, these models can generate precise and coherent

organisations for a MAS. In such a case, the search is supposed to be more constrained

and faster when compared to generators that tend to create wider search spaces such as

GoOrg. Although it is sometimes not explicit, one can say that generators which require

roles and their expected behaviours are also based on goal deĄnitions. Indeed, roles are

associated with a set of responsibilities (goals) an agent is supposed to be committed to,

and behaviours are actions agents should take to achieve their responsibilities (goals).

Figure 41 illustrates sets of userŠs deĄnitions that should be provided as input

7.6. Summary of this discussion 105

to different generators. Figure 41a represents an organisation generator model such as

Horling and Lesser (2008)Šs and Sierra et al. (2004)Šs models in which goals are previously

deĄned (even if not explicitly), and then roles and behaviours are deĄned by the user and

given as inputs. Figure 41b represents an organisation generator model based on GoOrg

such as GoOrg4DSN in which goals and features are user-deĄned and given as inputs.

Goals
Roles

Generator

Behaviours

Organisations

(a) Roles and behaviours as inputs.

Goals

Generator

Features

Organisations

(b) Goals and features as inputs.

Figure 41 Ű Comparing generators with roles and goals as input.

In the approach of Figure 41a, since roles and behaviours deĄnition depends on

goals, it may require a wider revision of inputs if the system goals change. For instance, in

the DSN domain one may suggest replacing the sector approach with a less hierarchical

approach in which the agent that has the stronger signal of the target follows it until

passing over this duty to another agent that becomes to have the stronger signal. In

this case, the goal manage_sector would not exist and the goal manage_track would

be performed differently.7 With such a change to the system goals, for a generator that

requires roles as input, a revision to the roles and expected behaviours is necessary. In a

model based on GoOrg, a change to the system goals requires only a revision to goals and

their features, which is supposed to be a simpler job.

The kinds of inputs in the approaches presented in Figure 41 are also different.

The inputs goals and features are both about what should be done. The input behaviours

is about how things should be done. The speciĄcation of how things should be done

must be accurate according to system runtime behaviour, which brings an extra concern

when using models that require such inputs.

7.6 Summary of this discussion

To sum up what has been discussed in this chapter, it is highlighted the following

aspects:

• Decoupling agents from organisations: GoOrg uses impersonal representations for

agents, which decouples the organisation and the agents, allowing generating more

structure candidates. It also makes the design process more Ćexible since it has no

concern with agentsŠ speciĄcities and with the agentsŠ availability.
7 In the less hierarchical approach suggested, the agent in charge of manage_track would also have to

communicate to other agents to compare their signal strength and negotiate a possible delegation of
the goal manage_track.

106 Chapter 7. Discussion

• Planning organisational resources: GoOrg uses positions as place-holders for agents,

which have one-to-one relationships with agents. Positions directly reĆect resource

needs. On a generated structure, each synthesised position represents a required

resource, i.e., an agent that must occupy that position. While bringing the advantage

of allowing the planning of resources and making the design process more relevant,

when compared to the variety of relationships that roles and agents can present,

the drawback of only providing one-to-one relationships is the loss of Ćexibility at

runtime. Indeed, this might require organisational adaptations (such as redesigns)

more often.

• Design bias: GoOrg synthesises positions instead of requiring user-deĄned roles.

It reduces the effect of the userŠs (engineer) bias over the organisational design.

However, it incurs a computational cost because a larger search space must be

traversed in order to synthesise positions.

• Design inputs: GoOrg requires goals as input. Goals are essential parameters for

a design since they represent what the organisation must achieve. GoOrg avoids

inputs that are related to how the organisationŠs members must perform something

since it is usually more complex to deĄne and frequently has more bias.

• Design outputs: GoOrg generates organisational structures with attributes. The

attributes are used to sort the generated structures and allow the user to pick one

of the generated structures as preferred.

• Supporting organisational adaptations: GoOrg supports structure-switchings, real-

locations and redesigns, giving more options for making an appropriate adaptation

when needed. The beneĄts and costs associated with each procedure must be taken

into account.

Ű When the available agents are full of skills, they can be (re)allocated into

different positions, and they can take over other agentsŠ duties if necessary. It

gives the system Ćexibility and robustness. However, it brings overqualiĄcation

costs.

Ű In the case of structure candidates that require the same resources as oth-

ers, structure-switching can be a quick adaptation procedure. However, it may

represent a less suitable solution according to the userŠs preferences (possibly

affecting the systemŠs overall behaviour).

Ű A structure that satisĄes the userŠs preferences presumably has important at-

tributes. However, the best structure according to the userŠs preferences fre-

quently requires agents that are not available, resulting in an acquisition cost.

This cost must be balanced against the beneĄts of having the structure exactly

as desired.

107

8 Conclusion

Organisational design has been reĄned continuously over the years. Many studies

in the Administration Research Field propose theories and frameworks for this task. In

the 2000s, studies on Automated Organisational Structure Generators have gained traction

spurred on by challenges like the DSN. One may think that automating the design process

could make the task easier for users. However, it is crucial to make such a process simple

to be parametrised by the user. Indeed, the parametrisation complexity of some existing

models may require high logic and programming skills from the user. For addressing

this issue, GoOrg aims for simplicity. It is extendible for dealing with the speciĄcity

and complexity of each domain. Besides, GoOrg has great concern for simplifying its

parametrisations, in which the automated position synthesising approach is highlighted.

Other models such as DeLoach and Matson (2004); Horling and Lesser (2008);

Sierra et al. (2004); Sims et al. (2008) rely on the strategy of delegating to the user the

deĄnition of roles. On the one hand, these generators can prevent the generation of some

incoherent structures, since the provided roles may support only feasible sets of respon-

sibilities. On the other hand, it makes the parametrisation more complex, and constrains

the range of possibilities. Indeed, such an approach would not be able to generate proper

solutions if the assumptions used to deĄne the roles are wrong. Besides, synthesising po-

sitions may generate more candidates in which feasible solutions can be Ąltered by its

attribute.

This study adopted positions instead of roles for designing organisational struc-

tures. The reason is that positions carry the same advantage of the roles in respect to

being detached from named agents, while numerically reĆecting the need for resources.

It means that the feasibility for a speciĄc state of an organisation can be checked during

the design.

To evaluate GoOrg, this thesis presents two specialisations. The specialisations

added elements, attributes and relationships as required to generate structures for different

domains. Some of the added items are similar to both specialisations, showing that existing

specialisations can help to accelerate the development of extensions for other domains.

The specialisations can generate sets of structures which are candidates when

considering a range of possible agents to occupy positions. The generated candidates

have quantiĄed attributes which enables a multi-criteria approach to choosing the ŞbestŤ

organisation. For both specialisations, distinguishing processes were deĄned. For instance,

108 Chapter 8. Conclusion

the generating and binding (matching) processes are separated from each other, which

supports lighter adaptation procedures. Indeed, having this distinction is crucial to foster

organisation adaptation in dynamic environments and when the availability of resources

is volatile. A reallocation and a structure-switching may have little or no impact on the

userŠs preferences, and they are arguably simpler and computationally cheaper procedures

if compared to a complete redesign. The proposed algorithms can solve simple problems

in a satisfactory time.

However, time is not the only variable that should be taken into account on an

organisation adaptation such as a switch between structures. Indeed, the impact is small

when the new structure has the same number and kind of positions, in which the agents

may remain in similar positions just being placed in another hierarchical arrangement.

However, they still may bring extra costs considering the overqualiĄcation cost and the

acquisition cost. As long as the new positions allow the maintenance of previous bindings,

a reallocation is preferred to avoid extra costs. Considering possible reĄnement of the

deĄnitions of the goal, features and attributes, the beneĄts of a more suitable solution

according to the userŠs preferences may justify the design cost. To help with the decision

of changing or not the organisational structure, it is necessary to calculate other costs

according to the attributes of the domain and to assign a weight to the different kinds of

costs.

As future work, it is planned to: (i) test organisation runtime adaptations in situa-

tions that require simple reallocations to complex redesigns, and the modelŠs applicability

as an online design tool; (ii) adopt an existing solution or implement an algorithm that

uses heuristics combined with an anytime approach which may produce faster answers for

the search algorithm and make it suitable for more complex problems (Dean and Boddy,

1988);1 (iii) implement a better algorithm for binding agents and positions or adopt an

existing one (to determine feasibility and perhaps offer a solution to the runtime orchestra-

tion mechanism); (iv) implement more specialisations of the model to test its applicability

in other domains, in practical situations and designing other kinds of structures; (v) syn-

thesise organisational roles, their relationships, organisational norms and organisational

missions; (vi) test organisational aspects such as power, span of control, accountability,

and trust; (vii) Ąnish the development and make available GoOrg integrated with JaCaMo

platform (Boissier et al., 2016); and (viii) allow the use of a Directory Facilitator (DF) to

retrieve the available agents and their features that can be used in the binding process.

1 This and other planned improvements on GoOrg implementation are detailed in Appendix E.

109

Bibliography

Amaral, C.J., J.F. Hübner, and T. Kampik (2020a), ŞTowards jacamo-rest: A resource-

oriented abstraction for managing multi-agent systems.Ť In Proceeding of 14th

Workshop-School on Agents, Environments, and Applications (WESAAC 2020), 140Ű

151, URL https://arxiv.org/abs/2006.05619. Citado na página 139.

Amaral, Cleber J., Vitor Luis Babireski Furio, Robson Zagre Junior, Timotheus Kampik,

Maiquel de Brito, Maicon R. Zatelli, Tiago L. Schmitz, Jomi F. Hübner, and Mauri Fer-

randin (2021), ŞJacamo builders: Team description for the multi-agent programming

contest 2020/21.Ť In In proceedings of MAPC 2021: The Multi-Agent Programming Con-

test 2021, 134Ű157, URL https://doi.org/10.1007/978-3-030-88549-6_6. Citado

na página 140.

Amaral, Cleber Jorge (2018), ŞEmbedding multi-agent system frameworks : A bench-

marking.Ť In Anais do Computer on the Beach, 939Ű941, Univali, Florianópo-

lis, URL https://periodicos.univali.br/index.php/acotb/article/download/

12867/7362. Citado na página 139.

Amaral, Cleber Jorge, Sérgio Pereira Bernardes, Mateus Conceição, Jomi Fred Hüb-

ner, Luis Pedro Arenhart Lampert, Otávio Arruda Matoso, and Maicon Rafael Zatelli

(2019a), ŞFinding new routes for integrating multi-agent systems using apache camel.Ť

In 13th Workshop-School on Agents, Environments, and Applications (WESAAC 2019),

Florianópolis, URL http://arxiv.org/abs/1905.10490. Citado na página 139.

Amaral, Cleber Jorge, Stephen CraneĄeld, Jomi Fred Hübner, and Mario Lucio Roloff

(2020b), ŞIntegrating industrial artifacts and agents through apache camel.Ť URL

https://arxiv.org/abs/2006.11694. Citado na página 139.

Amaral, Cleber Jorge, Stephen CraneĄeld, Jomi Fred Hübner, and Mário Lucio Roloff

(2019b), ŞGiving camel to artifacts for industry 4.0 integration challenges.Ť Lecture

Notes in Computer Science (including subseries Lecture Notes in ArtiĄcial Intelligence

and Lecture Notes in Bioinformatics), 11523 LNAI, 232Ű236, URL http://doi.org/

10.1007/978-3-030-24209-1_20. Citado na página 139.

Amaral, Cleber Jorge and Jomi Fred Hübner (2019), ŞGoorg: Automated organisational

chart design for open multi-agent systems.Ť In PAAMS (Fernando De La Prieta, Alfonso

González-Briones, Pawel Pawleski, Davide Calvaresi, Elena Del Val, Fernando Lopes,

110 Bibliography

Vicente Julian, Eneko Osaba, and Ramón Sánchez-Iborra, eds.), 318Ű321, Springer In-

ternational Publishing, Cham, URL http://doi.org/10.1007/978-3-030-24299-2_

28. Citado 2 vezes nas páginas 32 and 139.

Amaral, Cleber Jorge and Jomi Fred Hübner (2020a), ŞFrom goals to organisations: Auto-

mated organisation generator for mas.Ť In Engineering Multi-Agent Systems (Louise A.

Dennis, Rafael H. Bordini, and Yves Lespérance, eds.), 25Ű42, Springer International

Publishing, Cham, URL https://doi.org/10.1007/978-3-030-51417-4_2. Citado

2 vezes nas páginas 32 and 139.

Amaral, Cleber Jorge and Jomi Fred Hübner (2020b), ŞJacamo-web is on the Ćy: An inter-

active multi-agent system ide.Ť In Engineering Multi-Agent Systems (Louise A. Dennis,

Rafael H. Bordini, and Yves Lespérance, eds.), 246Ű255, Springer International Pub-

lishing, Cham, URL https://dl.acm.org/doi/10.5555/3398761.3399086. Citado

na página 140.

Amaral, Cleber Jorge, Jomi Fred Hübner, and Stephen CraneĄeld (2022), ŞGenerating and

choosing organisations for multi-agent systems.Ť URL https://doi.org/10.21203/

rs.3.rs-1825069/v1. Citado na página 139.

Amaral, Cleber Jorge, Timotheus Kampik, and Stephen CraneĄeld (2020c), ŞA framework

for collaborative and interactive agent-oriented developer operations.Ť In Proceedings of

the 19th International Conference on Autonomous Agents and MultiAgent Systems, AA-

MAS Š20, 2092Ű2094, International Foundation for Autonomous Agents and Multiagent

Systems, Richland, SC, URL https://dl.acm.org/doi/10.5555/3398761.3399086.

Citado na página 140.

Bellifemine, Fabio, Agostino Poggi, and Giovanni Rimassa (2001), ŞDeveloping multi-

agent systems with a Ąpa-compliant agent framework.Ť Software: Practice and Experi-

ence, 103Ű128. Citado na página 135.

Boissier, Olivier, Rafael H Bordini, Jomi F Hübner, Alessandro Ricci, and Andrea Santi

(2013), ŞMulti-agent oriented programming with JaCaMo.Ť Science of Computer Pro-

gramming, 78, 747Ű761. Citado 3 vezes nas páginas 25, 67, and 132.

Boissier, Olivier, Jomi F Hübner, and Alessandro Ricci (2016), ŞThe JaCaMo Framework.Ť

Governance and Technology Series, 30. Citado 4 vezes nas páginas 25, 37, 80, and 108.

Bordini, Rafael H., Jomi Fred Hübner, and Michael Wooldridge (2007), Programming

Multi-Agent Systems in AgentSpeak using Jason, 1st edition. Series in Agent Technol-

ogy, Wiley-Interscience. Citado na página 25.

Bibliography 111

Burns, Tom and G. M. Stalker (1994), ŞMechanistic and Organic Systems of Manage-

ment.Ť In The Management of Innovation, volume 21, 96Ű125, Oxford University Press.

Citado na página 37.

Burton, Richard M, Børge Obel, and Gerardine Desanctis (2011), Organizational design:

a step-by-step approach. Cambridge University Press. Citado na página 31.

Cardoso, Rafael C and Rafael H Bordini (2019), ŞDecentralised Planning for Multi-Agent

Programming Platforms.Ť In AAMASŠ19: Proceedings of the 18th International Con-

ference on Autonomous Agents and Multiagent Systems, 799Ű807. Citado 3 vezes nas

páginas 33, 92, and 96.

Cardoso, Rafael C. and Angelo Ferrando (2021), ŞA review of agent-based programming

for multi-agent systems.Ť Computers, 10, 1Ű15. Citado na página 25.

Daft, Richard L. (2009), Organization Theory and Design, 10th edition. South-Western

College Pub, Centage Learning. Citado 4 vezes nas páginas 25, 36, 41, and 137.

Dastani, Mehdi, Virginia Dignum, and Frank Dignum (2003), ŞRole-assignment in open

agent societies.Ť Proceedings of the second international joint conference on Autonomous

agents and multiagent systems - AAMAS Š03, 489. Citado na página 36.

De Pinho Rebouças De Oliveira, Djalma (2006), Estrutura Organizacional: Uma Abor-

dagem Para Resultados e Competitividade. ATLAS EDITORA. Citado na página

31.

Dean, Thomas and Mark Boddy (1988), ŞAn analysis of time-dependent planning.Ť In Pro-

ceedings of the Seventh AAAI National Conference on ArtiĄcial Intelligence, AAAIŠ88,

49Ű54, AAAI Press. Citado na página 108.

Decker, Keith, Katia Sycara, and Mike Williamson (1997), ŞCloning for intelligent adap-

tive information agents.Ť Lecture Notes in Computer Science (including subseries Lec-

ture Notes in ArtiĄcial Intelligence and Lecture Notes in Bioinformatics), 1286, 63Ű75.

Citado na página 34.

Decker, Keith S. (1995), Environment Centered Analysis and Design of Coordination

Mechanisms. PhD Thesis, University of Massashusets. Citado 2 vezes nas páginas

33 and 96.

DeLoach, Scott A. (2002), ŞModeling organizational rules in the multi-agent systems en-

gineering methodology.Ť In Advances in ArtiĄcial Intelligence (Robin Cohen and Bruce

Spencer, eds.), 1Ű15, Springer Berlin Heidelberg, Berlin, Heidelberg. Citado na página

25.

112 Bibliography

DeLoach, Scott A and E Matson (2004), ŞAn Organizational Model for Designing Adap-

tive Multiagent Systems.Ť In The AAAI-04 Workshop on Agent Organizations: Theory

and Practice (AOTP 2004), 66Ű73, AAAI Press. Citado 8 vezes nas páginas 25, 26,

37, 87, 97, 100, 104, and 107.

Deloach, Scott A., Walamitien H. Oyenan, and Eric T. Matson (2008), ŞA capabilities-

based model for adaptive organizations.Ť In Autonomous Agents and Multi-Agent Sys-

tems, 13Ű56. Citado 2 vezes nas páginas 37 and 98.

Durfee, Edmund H., Victor R. Lesser, and Daniel D. Corkill (1987), ŞCoherent Coop-

eration Among Communicating Problem Solvers.Ť IEEE Transactions on Computers,

C-36, 1275Ű1291. Citado na página 36.

Ferber, Jacques and Olivier Gutknecht (1998), ŞA meta-model for the analysis and design

of organizations in multi-agent systems.Ť Proceedings - International Conference on

Multi Agent Systems, ICMAS 1998, 128Ű135. Citado 2 vezes nas páginas 32 and 36.

Fink, S.L., R.S. Jenks, and R.D. Willits (1983), Designing and Managing Organizations,

1st edition. Irwin Series in Financial Planning and Insurance, R.D. Irwin. Citado 2

vezes nas páginas 33 and 36.

Furio, Vitor Luis Babireski, Maiquel de Brito, Tiago L. Schmitz, Cleber J. Amaral, Rob-

son Zagre Junior, Maicon R. Zatelli, Mauri Ferrandin, and Timotheus Kampik (2021),

ŞDescoberta de tamanho de mapas ilimitados através da cooperação entre agentes.Ť In

15th Workshop-School on Agents, Environments, and Applications (WESAAC 2021),

178Ű188, Rio de Janeiro, URL https://doi.org/10.5281/zenodo.5774181. Citado

na página 140.

Galbraith, Jay R. (1995), Designing organizations: an executive brieĄng on strategy, struc-

ture, and process. Jossey-Bass Publishers - San Francisco. Citado na página 31.

Gasser, Les (2001), Perspectives on Organizations in Multi-agent Systems, 1Ű16. Springer,

Berlin, Heidelberg. Citado na página 25.

Grossi, Davide, Frank Dignum, Virginia Dignum, Mehdi Dastani, and Làmber Royakkers

(2007), ŞStructural aspects of the evaluation of agent organizations.Ť Lecture Notes

in Computer Science (including subseries Lecture Notes in ArtiĄcial Intelligence and

Lecture Notes in Bioinformatics), 4386 LNAI, 3Ű18. Citado na página 86.

Hatch, M.J. (1997), Organization Theory: Modern, Symbolic, and Postmodern Perspec-

tives. Oxford University Press. Citado 4 vezes nas páginas 25, 32, 35, and 37.

Horling, Bryan and Victor Lesser (2004), ŞA survey of multi-agent organizational

paradigms.Ť Knowledge Engineering Review, 19, 281Ű316. Citado 3 vezes nas páginas

41, 64, and 85.

Bibliography 113

Horling, Bryan and Victor Lesser (2008), ŞUsing quantitative models to search for ap-

propriate organizational designs.Ť Autonomous Agents and Multi-Agent Systems, 16,

95Ű149. Citado 12 vezes nas páginas 25, 26, 38, 67, 68, 75, 97, 99, 100, 104, 105,

and 107.

Hübner, Jomi Fred, Olivier Boissier, Rosine Kitio, and Alessandro Ricci (2010), ŞInstru-

menting multi-agent organisations with organisational artifacts and agents: "Giving the

organisational power back to the agents".Ť Autonomous Agents and Multi-Agent Sys-

tems, 20, 369Ű400. Citado na página 36.

Hübner, Jomi Fred and Jaime Simão Sichman (2003), ŞOrganização de sistemas mul-

tiagentes.Ť III Jornada de MiniCursos de Inteligência ArtiĄcial JAIA03, 8, 247Ű296.

Citado 2 vezes nas páginas 32 and 79.

Hübner, Jomi Fred, Jaime Simão Sichman, and Olivier Boissier (2002), ŞA Model for

the Structural, Functional, and Deontic SpeciĄcation of Organizations in Multiagent

Systems.Ť In SBIA Š02: Proceedings of the 16th Brazilian Symposium on ArtiĄcial In-

telligence: Advances in ArtiĄcial Intelligence, 118Ű128, Springer. Citado na página

25.

Hübner, Jomi Fred, Jaime Simão Sichman, and Olivier Boissier (2006), Ş𝒮-ℳ𝑜𝑖𝑠𝑒`: A

middleware for developing organised multi-agent systems.Ť In Coordination, Organiza-

tions, Institutions, and Norms in Multi-Agent Systems (Olivier Boissier, Julian Padget,

Virginia Dignum, Gabriela Lindemann, Eric Matson, Sascha Ossowski, Jaime Simão

Sichman, and Javier Vázquez-Salceda, eds.), 64Ű77, Springer Berlin Heidelberg, Berlin,

Heidelberg. Citado na página 87.

Ishida, Toru, Les Gasser, and Makoto Yokoo (1992), ŞOrganization Self-Design of Dis-

tributed Production Systems.Ť IEEE Transactions on Knowledge and Data Engineering,

4, 123Ű134. Citado na página 34.

Kamboj, Sachin and Keith S. Decker (2007), ŞOrganizational self-design in semi-dynamic

environments.Ť AAMAS, 5, 1. Citado na página 34.

Kampik, Timotheus, Cleber Jorge Amaral, and Jomi Fred Hübner (2021), ŞDeveloper

operations and engineering multi-agent systems.Ť In Engineering Multi-Agent Systems:

9th International Workshop, EMAS 2021, Virtual Event, May 3Ű4, 2021, Revised Se-

lected Papers, 175Ű186, Springer-Verlag, Berlin, Heidelberg, URL https://doi.org/

10.1007/978-3-030-97457-2_10. Citado na página 140.

Katz, Daniel and Robert Kahn (1987), Psicologia Social da Organizações, 3rd edition.

Atlas. Citado na página 36.

114 Bibliography

Kilmann, Julie, Michael Shanahan, Andrew Toma, and Kuba Zielinski (2010), ŞDemysti-

fying Organization Design.Ť Technical report, Boston Consulting Group - BCG White

Paper. Citado 2 vezes nas páginas 37 and 65.

Kota, Ramachandra, Nicholas Gibbins, and Nicholas R. Jennings (2012), ŞDecentral-

ized approaches for self-adaptation in agent organizations.Ť ACM Transactions on Au-

tonomous and Adaptive Systems, 7, 1Ű28. Citado na página 34.

Krausburg, Tabajara, Jürgen Dix, and Rafael H. Bordini (2021), ŞComputing sequences

of coalition structures.Ť In 2021 IEEE Symposium Series on Computational Intelligence

(SSCI), 01Ű07. Citado na página 34.

Kühne, Thomas (2006), ŞMatters of (meta-) modeling.Ť Journal on Software and Systems

Modeling, 5, 369Ű385. Citado na página 31.

Labella, Thomas H., Marco Dorigo, and Jean-Louis Deneubourg (2007), ŞDivision of

labor in a group of robots inspired by antsŠ foraging behavior.Ť ACM Transactions on

Autonomous and Adaptive Systems, 1, 4Ű25. Citado na página 34.

Lesser, Victor, Charles L. Ortiz, and Milind Tambe, eds. (2003), Distributed Sensor Net-

works: A Multiagent Perspective. Springer US. Citado na página 67.

Martínez-Berumen, Héctor A., Gabriela C. López-Torres, and Laura Romo-Rojas (2014),

ŞDeveloping a method to evaluate entropy in organizational systems.Ť Procedia Com-

puter Science, 28, 389Ű397. Citado na página 87.

Matoso, O.A., L.P.A. Lampert, J.F. Hübner, M. Conceição, S.P. Bernardes, C.J. Amaral,

M.R. Zatelli, and M.L. de Lima (2020), ŞAgent programming for industrial applications:

some advantages and drawbacks.Ť Citado na página 139.

Matson, Eric T. and Scott A. Deloach (2005), ŞAutonomous organization-based adap-

tive information systems.Ť 2005 International Conference on Integration of Knowledge

Intensive Multi-Agent Systems, KIMASŠ05: Modeling, Exploration, and Engineering,

2005, 227Ű234. Citado na página 37.

McAuley, John, Joanne Duberley, and Phil Johnson (2007), Organizational Theory: Chal-

lenges and Perspectives, 1st edition. Prentice-Hall. Citado na página 35.

Mintzberg, H. and L. Van der Heyden (1999), ŞOrganigraphs: drawing how companies

really work.Ť Harvard Business Review, 77. Citado 2 vezes nas páginas 47 and 99.

Mintzberg, Henry (1983), Structure in Ąves, 1st edition. Prentice-Hall. Citado na página

36.

Newman, Derek A. (1973), Organization Design: An analytical approach to the structuring

of organisations, 1st edition. Edward Arnold. Citado na página 37.

Bibliography 115

Ohta, Naoki, Atsushi Iwasaki, Makoto Yokoo, Kohki Maruono, Vincent Conitzer, and

Tuomas Sandholm (2006), ŞA compact representation scheme for coalitional games in

open anonymous environments.Ť Proceedings of the National Conference on ArtiĄcial

Intelligence, 1, 697Ű702. Citado na página 34.

Pattison, H. Edward, Daniel D. Corkill, and Victor R. Lesser (1987), ŞChapter 3 - instan-

tiating descriptions of organizational structures.Ť In Distributed ArtiĄcial Intelligence

(Michael N Huhns, ed.), 59 Ű 96, Morgan Kaufmann. Citado na página 35.

Pettigrew, Andrew M. and Evelyn M. Fenton (2000), The Innovating organization, 1st

edition. SAGE Publications. Citado na página 37.

Rahwan, Talal, Tomasz P. Michalak, Michael Wooldridge, and Nicholas R. Jennings

(2015), ŞCoalition structure generation: A survey.Ť ArtiĄcial Intelligence, 229, 139Ű174.

Citado 2 vezes nas páginas 25 and 34.

Robbins, Stephen and Mary Coulter (2012), Management, 11th edition. Prentice-Hall.

Citado na página 37.

Rosen, Kenneth H (2012), Discrete mathematics and its application, 7th edition. McGraw-

Hill. Citado na página 89.

Seidewitz, Ed (2003), ŞWhat models mean.Ť IEEE Software, 20, 26Ű32. Citado na página

43.

Shehory, O., K. Sycara, P. Chalasani, and S. Jha (1998), ŞAgent cloning: an approach

to agent mobility and resource allocation.Ť IEEE Communications Magazine, 36, 58,

63Ű67. Citado na página 34.

Sierra, Carles, Jordi Sabater, J. Augusti, and Pere Garcia (2004), ŞThe SADDE Methodol-

ogy: Social agents design driven by equations.Ť Methodologies and software engineering

for agent systems. Springer - Boston. Citado 8 vezes nas páginas 25, 26, 37, 99, 100,

104, 105, and 107.

Sims, Mark, Daniel Corkill, and Victor Lesser (2004), ŞSeparating domain and co-

ordination in multi-agent organizational design and instantiation.Ť Proceedings -

IEEE/WIC/ACM International Conference on Intelligent Agent Technology. IAT 2004,

155Ű161. Citado na página 32.

Sims, Mark, Daniel Corkill, and Victor Lesser (2008), ŞAutomated organization design

for multi-agent systems.Ť Autonomous Agents and Multi-Agent Systems, 16. Citado 9

vezes nas páginas 25, 26, 34, 35, 38, 97, 100, 104, and 107.

116 Bibliography

Slade, Samantha (2018), Going Horizontal: Creating a Non-Hierarchical Organization,

One Practice at a Time, 1st edition. Berrett-Koehler Publishers, Inc. Citado na

página 26.

Sleight, Jason (2014), ŞAgent aware organizational design (doctoral consortium).Ť In Pro-

ceedings of the 2014 International Conference on Autonomous Agents and Multi-agent

Systems, AAMAS Š14, 1739Ű1740, Paris, France. Citado 2 vezes nas páginas 33 and 96.

Sleight, Jason Lee, Edmund H Durfee, Satinder Singh Baveja, Associate Amy E M Cohn,

and Emeritus Victor R Lesser (2015), Agent-Driven Representations, Algorithms, and

Metrics for Automated Organizational Design. Ph.D. thesis, University of Michigan.

Citado na página 34.

So, Young-Pa and Edmund H Durfee (1998), ŞDesigning Organizations for Computa-

tional Agents.Ť Computational Organization Theory (Simulating Organizations), 2, 47Ű

64. Citado 5 vezes nas páginas 25, 26, 34, 36, and 86.

Stoner, J.A.F. and R.E. Freeman (1992), Management, 1st edition. Prentice-Hall. Citado

2 vezes nas páginas 31 and 37.

SummerĄeld, Fraser (2016), ŞMatching skill and tasks: Cyclical Ćuctuations in the

overqualiĄcation of new hires.Ť Citado na página 90.

Tambe, Milind (1997), ŞTowards Flexible Teamwork.Ť Journal of ArtiĄcial Intelligence

Research, 7, 83Ű124. Citado na página 32.

Uez, Daniela Maria and Jomi Fred Hübner (2014), ŞEnvironments and organizations in

multi-agent systems: From modelling to code.Ť In Engineering Multi-Agent Systems

(Fabiano Dalpiaz, Jürgen Dix, and M. Birna van Riemsdijk, eds.), 181Ű203, Springer

International Publishing, Cham. Citado na página 37.

von Bertalanffy, Ludwig (1968), General System Theory: Foundations, Development, Ap-

plications. Penguin University Books. Citado na página 87.

Wu, Zhaohui, Shuiguang Deng, and Jian Wu (2015), ŞChapter 7 - service composition.Ť

In Service Computing (Zhaohui Wu, Shuiguang Deng, and Jian Wu, eds.), 177Ű227,

Academic Press, Boston, URL https://www.sciencedirect.com/science/article/

pii/B9780128023303000072. Citado 2 vezes nas páginas 31 and 32.

Ye, Dayong, Minjie Zhang, and Danny Sutanto (2014), ŞCloning, resource exchange, and

relation adaptation: An integrative self-organisation mechanism in a distributed agent

network.Ť IEEE Transactions on Parallel and Distributed Systems, 25, 887Ű897. Citado

na página 34.

Bibliography 117

Ye, Dayong, Minjie Zhang, and Athanasios V Vasilakos (2016), ŞA Survey of Self-

organisation Mechanisms in Multi-Agent Systems.Ť IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 47. Citado na página 34.

121

APPENDIX B Ű XML speciĄcation of Feed

Production with four goals

One of the motivating examples used in this work speciĄes the Feed Production

scenario with four goals. It generates 1646 candidates, which illustrates how a consider-

able quantity of candidates can be generated, and how they differ from each other. The

workload grain is smaller than the workload associated with the goal MoveBox, so it is

split into two parts. Figure 10 illustrates the set of goals of this scenario in which it is nec-

essary to access a database to get requests (represented by the goal FeedProduction),

then GetBox from shelves, MoveBox to near a conveyor belt in which the goal Place-

Box must be achieved. The dataloads speciĄed do not constrain the search for solutions,

since the grain size is larger than the speciĄcation of this particular example. Figure 13

illustrates the available agents of this speciĄcation. This organisation speciĄcation is used

to generate candidates executing the following command:

$./ gradlew run --args="examples/Feed_production_line.xml \

FLATTER EFFICIENT GENERALIST"

Listing B.1 shows the content of the Ąle examples/Feed_production_line.xml

of GoOrg4Prod project. The nested elements in automated-design-parameters specify de-

sign parameters such as the maximum workload and dataload allowed per position and

the grain size of these features. The nested elements in functional-speciĄcation specify

the organisational goals (the set 𝐺). The nested elements in available-agents specify the

available agents (the set 𝐴).

Listing B.1 Ű Feed Production 4 goals XML ℳ𝑜𝑖𝑠𝑒` like speciĄcation.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <?xml -stylesheet href="http: //moise.sourceforge.net/xml/os.xsl"

4 type="text/xsl" ?>

5

6 <organisational -specification id="organisation" os -version="0.8"

7

8 xmlns=Šhttp: //moise.sourceforge.net/osŠ

9 xmlns:xsi=Šhttp: //www.w3.org /2001/ XMLSchema -instance Š

10 xsi:schemaLocation=Šhttp: //moise.sourceforge.net/os

11 http: //moise.sourceforge.net/xml/os.xsdŠ>

12

13 <automated -design -parameters >

122 APPENDIX B. XML speciĄcation of Feed Production with four goals

14 <parameter id="maxWorkload" value="24.0"/>

15 <parameter id="maxDataLoad" value="1000.0"/>

16 <parameter id="workloadGrain" value="4.0"/>

17 <parameter id="dataLoadGrain" value="1000.0"/>

18 <parameter id="oneSolution" value="false"/>

19 </automated -design -parameters >

20

21 <functional -specification >

22 <scheme id="scheme">

23 <goal id="FeedProduction">

24 <workload id="db_access" value="0.10"/>

25 <dataload id="request box" value="8.00" recipient="GetBox"/>

26 <plan operator="sequence">

27 <goal id="GetBox">

28 <workload id="lift" value="4.00"/>

29 <dataload id="box ready" value="8.00" recipient="MoveBox"/>

30 </goal>

31 <goal id="MoveBox">

32 <workload id="move" value="8.00"/>

33 <dataload id="items ready" value="8.00" recipient="PlaceBox"/>

34 </goal>

35 <goal id="PlaceBox">

36 <workload id="pnp" value="1.00"/>

37 </goal>

38 </plan>

39 </goal>

40 </scheme >

41 </functional -specification >

42

43 <available -agents >

44 <agent id="bt">

45 <skill id="move"/>

46 </agent>

47 <agent id="pp">

48 <skill id="pnp"/>

49 </agent>

50 <agent id="ie">

51 <skill id="db_access"/>

52 <skill id="lift"/>

53 </agent>

54 </available -agents >

55

56 </organisational -specification >

123

APPENDIX C Ű XML speciĄcation of DSN

with 4x5 sensors and 3 tar-

gets

For the DSN domain, a motivating example used in this work speciĄes a scenario

with Ąve sensors in each of the four sectors, and three targets being detected. Figure 26

illustrates the Ąrst candidate generated for this scenario. The set of goals for this scenario

is an extension of the set 𝐺 illustrated in Figure 22. In this case, there are seven goals,

the four goals illustrated in the mentioned Ągure, plus three goals for tracking three

targets. To generate candidates in the order that this work has shown, it is being used the

default preferences criteria which are the nearest agents and most idle structure. Thus, this

organisation speciĄcation is used to generate candidates executing the following command:

$./ gradlew run --args="examples/dsn.xml IDLE NEAREST"

Listing C.1 shows the content of the Ąle examples/dsn.xml of GoOrg4DSN project.

The nested elements in functional-speciĄcation specify the organisational goals (the set

𝐺). The nested elements in available-agents specify the available agents (the set 𝐴).

Listing C.1 Ű DSN 4x5 sensors + 3 targets XML ℳ𝑜𝑖𝑠𝑒` like speciĄcation.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <?xml -stylesheet href="http: //moise.sourceforge.net/xml/os.xsl"

4 type="text/xsl" ?>

5

6 <organisational -specification id="house_contruction" os -version="0.8"

7

8 xmlns=Šhttp: //moise.sourceforge.net/osŠ

9 xmlns:xsi=Šhttp: //www.w3.org /2001/ XMLSchema -instance Š

10 xsi:schemaLocation=Šhttp: //moise.sourceforge.net/os

11 http: //moise.sourceforge.net/xml/os.xsdŠ>

12

13 <functional -specification >

14 <scheme id="dsn_sch">

15 <goal id="manage_sector_NW">

16 <workload id="manage_sector" value="0.6"/>

17 <sector id="nw"/>

18 <plan operator="sequence">

124 APPENDIX C. XML speciĄcation of DSN with 4x5 sensors and 3 targets

19 <goal id="manage_sector_NE">

20 <workload id="manage_sector" value="0.6"/>

21 <sector id="ne"/>

22 </goal>

23 <goal id="manage_sector_SW">

24 <workload id="manage_sector" value="0.6"/>

25 <sector id="sw"/>

26 </goal>

27 <goal id="manage_sector_SE">

28 <workload id="manage_track" value="0.6"/>

29 <sector id="se"/>

30 </goal>

31 <goal id="track_1">

32 <workload id="manage_sector" value="0.2"/>

33 <sector id="se"/>

34 </goal>

35 <goal id="track_2">

36 <workload id="manage_sector" value="0.2"/>

37 <sector id="se"/>

38 </goal>

39 <goal id="track_3">

40 <workload id="manage_sector" value="0.2"/>

41 <sector id="nw"/>

42 </goal>

43 </plan>

44 </goal>

45 </scheme >

46 </functional -specification >

47

48 <available -agents >

49 <!-- 5 sensor on Sector nw -->

50 <agent id="sensor_02_12">

51 <sector id="nw"/>

52 </agent >

53 <agent id="sensor_02_18">

54 <sector id="nw"/>

55 </agent >

56 <agent id="sensor_05_15">

57 <sector id="nw"/>

58 <intent id="manage_sector"/>

59 </agent >

60 <agent id="sensor_08_12">

61 <sector id="nw"/>

62 </agent >

63 <agent id="sensor_08_18">

64 <sector id="nw"/>

65 </agent >

125

66 <!-- 5 sensor on Sector ne -->

67 <agent id="sensor_12_12">

68 <sector id="ne"/>

69 </agent>

70 <agent id="sensor_12_18">

71 <sector id="ne"/>

72 </agent>

73 <agent id="sensor_15_15">

74 <sector id="ne"/>

75 <intent id="manage_sector"/>

76 </agent>

77 <agent id="sensor_18_12">

78 <sector id="ne"/>

79 </agent>

80 <agent id="sensor_18_18">

81 <sector id="ne"/>

82 </agent>

83 <!-- 5 sensor on Sector sw -->

84 <agent id="sensor_02_02">

85 <sector id="sw"/>

86 </agent>

87 <agent id="sensor_02_08">

88 <sector id="sw"/>

89 </agent>

90 <agent id="sensor_05_05">

91 <sector id="sw"/>

92 <intent id="manage_sector"/>

93 </agent>

94 <agent id="sensor_08_02">

95 <sector id="sw"/>

96 </agent>

97 <agent id="sensor_08_08">

98 <sector id="sw"/>

99 </agent>

100 <!-- 5 sensor on Sector se -->

101 <agent id="sensor_12_02">

102 <sector id="se"/>

103 </agent>

104 <agent id="sensor_12_08">

105 <sector id="se"/>

106 </agent>

107 <agent id="sensor_15_05">

108 <sector id="se"/>

109 <intent id="manage_sector"/>

110 </agent>

111 <agent id="sensor_18_02">

112 <sector id="se"/>

126 APPENDIX C. XML speciĄcation of DSN with 4x5 sensors and 3 targets

113 </agent>

114 <agent id="sensor_18_08">

115 <sector id="se"/>

116 </agent>

117 </available -agents >

118

119 </organisational -specification >

127

APPENDIX D Ű XML speciĄcation and out-

puts for Feed Production

with three goals

Listing D.1 shows the content of the Ąle Feed_production_line_evaluation.xml

of GoOrg4Prod project, which speciĄes the Feed Production scenario with three goals

used as a motivating example in this work. It speciĄes three goals with some workload

associated. This is a suitable example to depict the way GoOrg4Prod synthesises positions

and searches for 26 candidates it generates. From the parameters the goals are not split,

they remain as original. The parameters also allow assigning all goals to a unique position

since the maxWorkload is 24 and each workload is 8. Figure 28 illustrates this scenario in

which it is necessary to GetBox from shelves, MoveBox to near a conveyor belt in which

the goal PlaceBox must be achieved. The two dataloads speciĄed do not constrain the

search for solutions, since the grain size is larger than the speciĄcation of this particular

example. Although the speciĄcation of available agents is not being discussed in this

work, from the Ąle description it can be inferred that only feasible structures are the

most specialised ones (with three positions), since each agent has only one skill. This

organisation speciĄcation is used to generate candidates executing the following command:

$./ gradlew run --args="examples/Feed_production_line_evaluation.xml \

FLATTER EFFICIENT GENERALIST"

Listing D.1 Ű Feed Production 3 goals XML ℳ𝑜𝑖𝑠𝑒` like speciĄcation.

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <?xml -stylesheet href="http: //moise.sourceforge.net/xml/os.xsl"

4 type="text/xsl" ?>

5

6 <organisational -specification id="organisation" os -version="0.8"

7

8 xmlns=Šhttp: //moise.sourceforge.net/osŠ

9 xmlns:xsi=Šhttp: //www.w3.org /2001/ XMLSchema -instance Š

10 xsi:schemaLocation=Šhttp: //moise.sourceforge.net/os

11 http: //moise.sourceforge.net/xml/os.xsdŠ>

12

13 <automated -design -parameters >

14 <parameter id="maxWorkload" value="24.0"/>

128 APPENDIX D. XML speciĄcation and outputs for Feed Production with three goals

15 <parameter id="maxDataLoad" value="1000.0"/>

16 <parameter id="workloadGrain" value="8.0"/>

17 <parameter id="dataLoadGrain" value="1000.0"/>

18 <parameter id="oneSolution" value="false"/>

19 </automated -design -parameters >

20

21 <functional -specification >

22 <scheme id="scheme">

23 <goal id="GetBox">

24 <workload id="lift" value="8.00"/>

25 <dataload id="box ready" value="8.00" recipient="MoveBox"/>

26 <plan operator="sequence">

27 <goal id="MoveBox">

28 <workload id="move" value="8.00"/>

29 <dataload id="items ready" value="8.00"

30 recipient="PlaceBox"/>

31 </goal>

32 <goal id="PlaceBox">

33 <workload id="pnp" value="8.00"/>

34 </goal>

35 </plan>

36 </goal>

37 </scheme >

38 </functional -specification >

39

40 <available -agents >

41 <agent id="bt">

42 <skill id="move"/>

43 </agent>

44 <agent id="pp">

45 <skill id="pnp"/>

46 </agent>

47 <agent id="ie">

48 <skill id="lift"/>

49 </agent>

50 </available -agents >

51

52 </organisational -specification >

As presented previously in this work, Table 3, shows the statistic output Ąle that

was generated for this particular scenario. In the following, Listing D.2 shows a JCM Ąle

generated for Candidate #11. For this candidate, the agents pp, ie and bt are lined up

for the organisation.1

Listing D.2 Ű A JCM Ąle generated by GoOrg.

1 /* JCM created automatically by GoOrg */

1 As discussed in Appendix E, GoOrg current implementation is not fully compatible with JaCaMo.

129

2 mas Feed_production_line {

3 agent pp

4 agent bt

5 agent ie

6 }

131

APPENDIX E Ű Improving GoOrg

To bind agents and positions, GoOrg specialisations presented in this work have

used the FirstFit algorithm (Algorithm 3). This algorithm registers the Ąrst match of a

requirement and a resource. It is not optimal and it is not complete, since the Ąrst match

may not be the best match. For instance, if the Ąrst match is between an agent with

many capabilities and a position that can be occupied by many other agents, there may

have no agent left to occupy another position that requires more capabilities. For a more

elaborated matching process, other algorithms can be added. It is necessary to extend the

class Fit and to implement the method ĄtRequirements/3

The search for states approach that GoOrg presented specialisations uses is the

Breadth-First algorithm. This algorithm is optimal and complete, but computationally

expensive in terms of memory and consumed time for Ąnding solutions. GoOrg project

already provides many other algorithms such as Depth-First, Hill Climbing and A* search

algorithms. Other search algorithms can also be added. However, the Organisation class

on the package organisation.search, which deĄnes a search state have to be adapted for

the chosen search technique.

GoOrg does not orchestrate a running MAS, it assumes that this task is performed

by another mechanism. In this sense, it is necessary to improve the integration between

GoOrg and an orchestrating mechanism. A mechanism that can be used for orchestrating

agents is ℳ𝑜𝑖𝑠𝑒`, which is part of the JaCaMo project. ℳ𝑜𝑖𝑠𝑒` has many possible con-

Ągurations for different organisational compositions, constraints and behaviours. At least

in a limited range of conĄgurations, the following improvements provide better integration

between GoOrg and ℳ𝑜𝑖𝑠𝑒` (JaCaMo).

• synthesise organisational roles, their relationships and groups of roles;

• synthesise organisational missions;

• synthesise organisational norms;

• export a ℳ𝑜𝑖𝑠𝑒` XML Ąle with the systhesised elements.

ℳ𝑜𝑖𝑠𝑒` uses the concepts of roles and missions. A role is deĄned as a set of

missions. A mission is a set of constraints that must be respected in achieving a set of

132 APPENDIX E. Improving GoOrg

goals. Roles are bound with missions through norms. As an example, it is considered the

building a house example (Boissier et al., 2013). In this example, the mission paint_house

expects a minimum of one agent and a maximum of one agent to achieve the goals

exterior_painted and interior_painted. A role painter is deĄned as belonging to a group

called house_group, and there must have a minimum of one agent and a maximum of one

agent playing the role painter. There is a norm to obligate the role painter to accomplish

the mission paint_house. Therefore, the only agent that plays the role painter should be

committed (actually, it is seen as obligated) to achieving the goals exterior_painted and

interior_painted, accomplishing the mission paint_house.

For synthesising roles a preliminary study is presented in Appendix F. In a ℳ𝑜𝑖𝑠𝑒`

XML Ąle, the organisational roles are deĄned in the structutal-speciĄcation as simple iden-

tiĄers. In a JaCaMo MAS, an agent can be associated with an identiĄed role in the JCM

Ąle or it may also be hardcoded in the agentŠs code. In both cases, it is necessary that

the organisation and the agent use the same role identiĄcation. For instance, an organi-

sational speciĄcation may deĄne the role transporter and on the JCM or on the agentŠs

code, the agent is deĄned to play the role transporter. Following the preliminary study

about synthesising roles, it is also possible to establish authority relationships between

roles based on the authority relationships of synthesised positions. From the number of

times that a role appears in an organisational structure of positions, the cardinality of

each role can be inferred to form a single group.

After synthesising roles from positions, each role is associated with a set of goals

which can be used to synthesise missions. Indeed, a mission has assigned a set of goals.

Then, a norm is synthesised to bound a mission with a role. A simplistic method can infer

the cardinality associated with a mission as the cardinality of the role.

To illustrate all the mentioned possible improvements, it is considered Candidate

#15 of the Feed Production scenario which is shown in Figure 44. In Figure 44a, the

candidate is represented as a structure of positions with assigned goals and the necessary

skills to achieve them, a result produced by GoOrg. Figure 44b illustrated synthesised

roles and relationships of the mentioned candidate using either of the methods described

in Appendix F. The assigned goals and necessary skills are also present. The cardinality

of each role is added as a result of the number of positions that refers to each synthesised

role. In this example, there is no situation with two or more positions of the same role,

which should produce a cardinality of this role greater than one. Besides, the structures

are similar since each position is associated with a unitary and distinct sets of goals.

To export the structural-speciĄcation of ℳ𝑜𝑖𝑠𝑒` it is considered the synthesised

roles r0, r1 and r2 in Figure 44b. The ℳ𝑜𝑖𝑠𝑒` XML nested elements in role-deĄnitions

can be deĄned just with the mentioned identiĄers. Every role in this example has the

cardinality equals one. With roles cardinalities the nested elements in roles of group-

133

GetBox

p0
lift

Candidate #15 (positions)

PlaceBox

p2pnp

MoveBox

p1

move

(a) Candidate #15 as a structure of positions.

GetBox

r0lift

PlaceBox

r2pnp

MoveBox

r1

move
#1

#1

#1

Candidate #15 (roles)

(b) Candidate #15 as a structure of roles.

Figure 44 Ű Synthesing roles, relationships, missions and norms from a GoOrgŠs output.

speciĄcation can also be deĄned. The only relationship in this example is an authority of

r0 over r2, which deĄnes the nested elements in links of group-speciĄcation The nested

element in formation-constraints of group-speciĄcation can be an option to be deĄned by

the user at design time. Listing E.1 shows how these exported ℳ𝑜𝑖𝑠𝑒` XML elements

may looks like.

Listing E.1 Ű A ℳ𝑜𝑖𝑠𝑒` XML structural-speciĄcation from synthesised roles and relationships.

1 <structural -specification >

2 <role -definitions >

3 <role id="r0" />

4 <role id="r1" />

5 <role id="r2" />

6 </role -definitions >

7

8 <group -specification id="g0">

9 <roles>

10 <role id="r0" min="1" max="1"/>

11 <role id="r1" min="1" max="1"/>

12 <role id="r2" min="1" max="1"/>

13 </roles>

14 <links>

15 <link from="r0" type="authority" to="r2" scope="intra -group" />

16 </links>

17 <formation -constraints >

18 <compatibility from="org" to="org" scope="intra -group" />

19 </formation -constraints >

20 </group -specification >

21 </structural -specification >

Considering that the functional-speciĄcation has already a scheme given as in-

put, the rest of this speciĄcation can also be exported from the synthesised elements. An

approach may consider that each mission is formed by the goals associated with a syn-

thesised role, and the cardinality is the same cardinality of the related role, as illustrated

134 APPENDIX E. Improving GoOrg

in Listing E.2. The minimal and maximum cardinalities in these cases are equal values

based on the cardinality of the synthesised roles.

Listing E.2 Ű A ℳ𝑜𝑖𝑠𝑒` XML functional-speciĄcation from synthesised roles and relationships.

1 <functional -specification >

2 <scheme id="scheme">

3 <!-- This should be given as input -->

4 <goal id="GetBox">

5 <workload id="lift" value="8.00"/>

6 <dataload id="box ready" value="8.00" recipient="MoveBox"/>

7 <plan operator="sequence">

8 <goal id="MoveBox">

9 <workload id="move" value="8.00"/>

10 <dataload id="items ready" value="8.00" recipient="PlaceBox"/>

11 </goal>

12 <goal id="PlaceBox">

13 <workload id="pnp" value="8.00"/>

14 </goal>

15 </plan>

16 </goal>

17

18 <!-- This can be synthesised -->

19 <mission id="m0" min="1" max="1">

20 <goal id="GetBox"/>

21 </mission >

22 <mission id="m1" min="1" max="1">

23 <goal id="MoveBox"/>

24 </mission >

25 <mission id="m2" min="1" max="1">

26 <goal id="PlaceBox"/>

27 </mission >

28 </scheme >

29 </functional -specification >

The normative-speciĄcation bound the related role to each mission, as illustrated

in Listing E.3.

Listing E.3 Ű A ℳ𝑜𝑖𝑠𝑒` XML normative-speciĄcation from synthesised roles and relationships.

1 <normative -specification >

2 <norm id="n1" type="obligation" role="r0" mission="m0" />

3 <norm id="n2" type="obligation" role="r1" mission="m1" />

4 <norm id="n3" type="obligation" role="r2" mission="m2" />

5 </normative -specification >

With this improvement, GoOrg may provide more outputs without requiring other

inputs. Indeed, the XML Ąle provided to GoOrg having only the scheme (in the functional-

speciĄcation), could be Ąlled with the structural-speciĄcation with role-deĄnitions, group-

135

speciĄcation and links representing relationships. It also can be Ąlled with the missions

in the functional-speciĄcation and with the normative-speciĄcation.

However, there would have still missing data. A role in ℳ𝑜𝑖𝑠𝑒` is usually a simple

identiĄcation with no more data associated, which could bring a challenge for designed

agents to be bound with automated synthesised roles. For instance, in Listing 6.1, the

goal MoveCrate can be assigned to the synthesised position identiĄed as p1, which could

be synthesised as a role identiĄed by r1. However, r1 would have no meaning for a

designed agent. In fact, r1 is an arbitrary identiĄer that has no special meaning and does

not provide information to understand what is behind such a role. In this sense, besides

synthesising roles from positions it is also necessary to provide a way correlate agents and

roles.

To address this issue, it is necessary to bind agents to roles (instead of positions).

This information can be extracted from the bindings between agents and positions. For

instance, the agent a1 that is bound with the position p1 which is associated with the

roles r1 and r2, should be bound with r1 and r2. Thus, the bindings between agents and

roles can be exported to the JaCaMo project Ąle (JCM). Currently, GoOrg only generates

a Ąle with the name of the agents that are bound with any synthesised position. With

this improvement, GoOrg should also export an organisation instance speciĄcation which

may contain an arbitrary organisation identiĄer, a reference to the synthesised group that

should be responsible to achieve the goals scheme given as input and that contains the

bindings between agents and roles.

Another possible improvement is to make GoOrg retrieve the set of available agents

from a DF. A DF as speciĄed by Foundation for Intelligent Physical Agents (FIPA) has

registers of agents and the services they provide (Bellifemine et al., 2001).1 In the DF an

agent should have only one entry, but its entry may have multiple services. Thus, among

possibilities of the use of the DF, in an approach, the services of DF can be used as

capabilities that must match with features associated with organisational positions. For

instance, the agent bob can be registered in the DF with the service send_budget and

send_invoice, meaning that bob is able to send_budget and to send_invoice. In GoOrg,

the services send_budget and send_invoice must be added to the set of goals, for instance,

as workloads. Considering that the given set of goals uses the same identiĄers regarding

agentsŠ capabilities, a function can Ąnd the DF published service that matches with each of

the synthesised positions by their associated workloads (skills). The use of other optional

Ąelds of the DF can also make possible to Ąnd meaningful role identiĄers. For instance,

the services send_budget and send_invoice can be both registered with the service type

seller, referring to an associated role. Using a DF, the set of available-agents does not

1 The document FIPA Agent Management SpeciĄcation is available at http://www.fipa.org/specs/
fipa00023/SC00023K.html.

136 APPENDIX E. Improving GoOrg

need to be given in the XML ℳ𝑜𝑖𝑠𝑒` Ąle.

137

APPENDIX F Ű Synthesizing organisational

roles

The concept of roles is also present in a structure made up of positions. Among

other characteristics, a role is a set of responsibilities (Daft, 2009). In this sense, from the

goals that are assigned to a position, it is possible to synthesise the role(s) an agent bound

to this position plays. This section presents a motivating scenario and possible methods

that can be applied to synthesise roles from sets of goals.

To illustrate how to synthesise roles, it is considered the marketplace organisa-

tional structure of Figure 45 which has four positions and no hierarchy. Positions_1 and

Position_2 have the same goals to achieve: Pack and Send Product. Position_3 has to

achieve the goal Buy. Position_4 has to achieve the goals Buy and Store Product. Each

role is a set of goals (responsibilities). This Ągure also illustrates two possible methods

that can be used to synthesise roles from positions.

Position_1
Pack

Send Product

Position_2
Pack

Send Product

Position_3

Buy

Position_4
Buy

Store Product

Role_1 Role_2 Role_3

Positions

Roles
(method 2)

Role_1 Role_2 Role_3Roles
(method 1)

Figure 45 Ű The identiĄcation of the roles associated with positions.

The Ąrst method considers that a role can be synthesised considering the whole set

of goals each position is associated with. In this method, a role is identiĄed on Position_1

and Position_2 which share the same associated goals Pack and SendProduct. Position_3

has another speciĄc set of goals (containing the goal Buy), which makes this set another

role. The last role is synthesised from the set of goals present in Position_4 which has

the elements Buy and Store Product.

Finding sets of goals that along positions are always together can be another

138 APPENDIX F. Synthesizing organisational roles

method to synthesise roles. The Ąrst synthesised role using this method is, again, the set

of goals formed by the elements Pack and Send Product that are present in Position_1

and Position_2. A second role is associated with a set to a unique element, the goal

Buy, which is found alone in Position_3. Position_4 is also associated with this second

role. The third role is associated with the remaining goal Store Product associated with

Position_4, which apart of the goal Buy forms another set of an unique element. Notice

that the Position 4 is associated with two roles (named Role_2 and Role_3).

In this example, both methods generated the same number of roles (three each).

The second method tends to generate roles with fewer goals associated with each and

tends to foster situations in which agents should enact more roles simultaneously.

139

APPENDIX G Ű Works developed during the

PhD

The motivation and plan to solve the problem addressed by this thesis were Ąrst

presented by Amaral and Hübner (2019) as an ongoing work at the 17th International

Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS) - in

Ávila (Spain) 2019 - with the title ŞGoorg: Automated organisational chart design for

open multi-agent systemsŤ. The work was reĄned and presented by Amaral and Hübner

(2020a) in the 10th workshop on Engineering Multi-Agent Systems (EMAS) - Montreal

(Canada) 2019 - with the title ŞFrom goals to organisations: Automated organisation

generator for MASŤ. Amaral, Hübner, and CraneĄeld (2022) have gathered the most

relevant achievements and conclusions of this thesis in a journal paper that is currently

under review.

Other works were also developed since the beginning of this PhD research, in Oc-

tober 2017. Amaral (2018) has published a benchmarking among Multi-Agent System

platforms that were embedded in a Raspberry Pi2. This research was performed while

attending classes on Multi-Agent Systems at UFSC. Later, motivated by the project AG-

BR of Petrobras, which aimed to check possible applications of agents in the Oil and

Gas industry, a team of researchers worked especially on the integration of agents and

other existing software and hardware artefacts. Based on a previous background, Ama-

ral, CraneĄeld, Hübner, and Roloff (2019b) and Amaral, CraneĄeld, Hübner, and Roloff

(2020b) have continued studies on integrating a MAS with external non-autonomous enti-

ties, in the context of Industry 4.0, publishing these two research about the development

of an Apache Camel component for CArtAgO software artefacts. Amaral, Bernardes,

Conceição, Hübner, Lampert, Matoso, and Zatelli (2019a) have designed a new Apache

Camel component for integrating both non-autonomous and autonomous (agents) exter-

nal software artefacts. Matoso, Lampert, Hübner, Conceição, Bernardes, Amaral, Zatelli,

and de Lima (2020) published the main achievements and conclusions of this project, sum-

marising the advantages and drawbacks of using MAS in the context of the Oil and Gas

industry. The integration challenges and also the lack of some programming facilities for

developing MAS have motivated other studies that followed the project AG-BR of Petro-

bras. Amaral, Hübner, and Kampik (2020a) worked in Jacamo-REST, a resource-oriented

abstraction for managing MAS, which provided endpoints to access a MAS from external

software artefacts. This tool associated with the previous works on Apache Camel compo-

140 APPENDIX G. Works developed during the PhD

nents provides tooling for the MAS to act as a server to be consumed by external entities,

and as a client for consuming external services. Besides providing endpoints for external

entities consuming a MAS services, Jacamo-REST also provides tools for managing the

MAS, allowing the development of a system interactively while it is running. Following

this concept, Amaral and Hübner (2020b) presented Jacamo-WEB, an Integrated Devel-

opment Environment (IDE) that facilitates the development of MAS on-the-Ćy. Amaral,

Kampik, and CraneĄeld (2020c) have extended Jacamo-WEB providing new tooling for

collaborative and interactive development of MAS. During this time, another team has

joined to participate in the 2020/21 Multi-Agent Programming Contest (MAPC), as regis-

tered by Amaral, Furio, Junior, Kampik, de Brito, Zatelli, Schmitz, Hübner, and Ferrandin

(2021) and by Furio, de Brito, Schmitz, Amaral, Junior, Zatelli, Ferrandin, and Kampik

(2021). GoOrg has been taken into consideration in the MAPC, and a few strategies have

been proposed to parametrise the model. However, the team spent its effort developing

the systemŠs fundamental elements, leaving no time to apply an orchestrating mechanism

like ℳ𝑜𝑖𝑠𝑒`. The new challenges that collaborative development has brought, which were

experienced during the MAPC, such as testing properly autonomous entities (agents) and

integrating parts of a whole system that are developed by different programmers, have

motivated the work published by Kampik, Amaral, and Hübner (2021).

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Resumo Expandido
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	Introduction
	Motivation
	Problem and Research Questions
	Objectives
	Contribution and Relevance
	Document Structure

	Organisation Design Models
	Automated Organisational Design by Task Planning
	Self-organisation Approaches
	Automated Organisational Structure Generators
	Structure Generators' Background
	State of the Art
	Comparing Structure Generators

	GoOrg Model
	GoOrg Elements
	Attributes of an Organisational Structure
	GoOrg Highlighted Characteristics

	GoOrg4Prod: A Specialisation for a Factory Production Line Domain
	GoOrg4Prod Elements
	GoOrg4Prod Added Attributes
	GoOrg4Prod Processes
	Preparing goals for assignments
	Generating organisations
	Binding agents and positions
	Choosing organisations
	Computational complexity

	GoOrg4Prod Results

	GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain
	GoOrg4DSN elements
	GoOrg4DSN Added Attributes
	GoOrg4DSN Processes
	Generating organisations
	Binding agents and positions
	Choosing organisations
	Computational complexity

	GoOrg4DSN Results

	GoOrg: Implementation
	Tools and Programming Languages
	GoOrg Implementation Architecture
	Executing GoOrg Implementation
	GoOrg Implementation Inputs
	GoOrg Implementation Outputs

	Extending GoOrg

	Discussion
	Organisational Adaptation
	Reallocation
	Structure-switching
	Redesign

	Assigning Goals to Named Agents, Roles or Positions
	Planning Resources of Organisations
	Synthesising Positions Instead of Requiring User-defined Roles
	Using Goals as Input Instead of Roles and Behaviours
	Summary of this discussion

	Conclusion
	Bibliography
	Comparing organisational attributes among candidates
	XML specification of Feed Production with four goals
	XML specification of DSN with 4x5 sensors and 3 targets
	XML specification and outputs for Feed Production with three goals
	Improving GoOrg
	Synthesizing organisational roles
	Works developed during the PhD

		2023-01-28T06:29:47-0300

		2023-01-29T21:09:36-0300

