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Abstract

Transitioning from the current fifth-generation (5G) wireless technology, the ad-

vent of beyond 5G (B5G) signifies a pivotal stride toward sixth generation (6G)

communication technology. B5G, at its essence, harnesses end-to-end (E2E)

network slicing (NS) technology, enabling the simultaneous accommodation of

multiple logical networks with distinct performance requirements on a shared

physical infrastructure. At the forefront of this implementation lies the critical

process of network slice design, a phase central to the realization of efficient

smart city networks. This thesis assumes a key role in the network slicing life

cycle, emphasizing the analysis and formulation of optimal procedures for con-

figuring, customizing, and allocating E2E network slices. The focus extends to

catering to the unique demands of smart city applications, encompassing critical

areas such as emergency response, smart buildings, and video surveillance. By

addressing the intricacies of network slice design, the study navigates through

the complexities of tailoring slices to meet specific application needs, thereby

contributing to the seamless integration of diverse services within the smart city

framework. Addressing the core challenge of NS, which involves the allocation

of virtual networks on the physical topology with optimal resource allocation,

the thesis introduces a dual integer linear programming (ILP) optimization

problem. This problem is formulated to jointly minimize the embedding cost
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and latency. However, given the NP-hard nature of this ILP, finding an efficient

alternative becomes a significant hurdle. In response, this thesis introduces a

novel heuristic approach the matroid-based modified greedy breadth-first search

(MGBFS) algorithm. This pioneering algorithm leverages matroid properties

to navigate the process of virtual network embedding and resource allocation.

By introducing this novel heuristic approach, the research aims to provide

near-optimal solutions, overcoming the computational complexities associated

with the dual integer linear programming problem. The proposed MGBFS

algorithm not only addresses the connectivity, cost, and latency constraints but

also outperforms the benchmark model delivering solutions remarkably close to

optimal. This innovative approach represents a substantial advancement in the

optimization of smart city applications, promising heightened connectivity, effi-

ciency, and resource utilization within the evolving landscape of B5G-enabled

communication technology.
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Chapter 1

Introduction

1.1 Background

The surge in new applications on smart Internet of Things (IoT) devices has

driven the global development of fifth-generation (5G) communication sys-

tems [1], crucial for the realization of future smart cities. However, the existing

5G technology faces challenges posed by the growing demands of bandwidth-

intensive mobile applications and the proliferation of smart devices within smart

city networks. The upcoming beyond 5G (B5G) communication system stands

as a solution to current network limitations, offering superior capabilities in

tailoring networks to specific quality of service (QoS) requirements. While 5G

network slicing (NS) has made strides in this direction, the advantages of B5G

NS lie in its advanced features. B5G not only refines the flexibility established

by 5G but introduces innovative elements such as improved scalability, reduced

latency, and increased NS efficiency. One of the key distinctions lies in B5G’s

ability to achieve efficient network management, particularly when serving

traffic requesting more than one 5G service simultaneously. This addresses
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the evolving demands of diverse applications and ensures optimal resource

utilization. Looking ahead, B5G NS will further enhance its capabilities by

enabling efficient and enhanced inter-slice isolation. This feature is crucial

for supporting real-time allocation of resources to traffic that requires more

resources than currently available. In addition, B5G NS is adept at handling a

significantly larger user base with very high QoS demands. Applications like

holographic video calls or high-quality aerial rescue and surveillance services,

which currently pose challenges for 5G NS without compromising QoS, can

be seamlessly accommodated by the enhanced capabilities of B5G. This em-

phasizes B5G’s capacity to meet the requirements of emerging and demanding

applications, making it a pivotal advancement in the landscape of NS technology.

In response to escalating user demands, B5G’s end-to-end (E2E) network opti-

mization targets higher coverage using the same network topology for diverse

applications [2]. NS emerges as a solution, allowing the creation of multiple

tailored logical networks within shared infrastructure, designed to precisely

address the unique demands of diverse services, industries, and users.

Two key enabling technologies of NS are network function virtualization

(NFV) and software-defined networking (SDN) [3]. Like the current 5G, the

B5G network leverages NS technology to support various user demands on a

single physical infrastructure. This infrastructure adopts an NFV framework

that hosts a range of virtual network functions (VNFs) (e.g., virtualized IP

multimedia services (vIMS), vFireWall, vRouter), along with hardware and

virtual resources like compute random-access memory (RAM), and storage.

Software-based controllers are employed to oversee communication between the

physical infrastructure and network traffic. In NS, the entire physical network is

segmented into multiple independent logical virtual networks of different sizes
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and resources, all based on the QoS requirements of the applications supported

by the individual virtual networks. The NFV framework facilitates the partition-

ing of a single physical network into different virtual networks [1]. Additionally,

it enhances network flexibility while reducing capital and operational costs,

upgrade time, and infrastructure footprint. SDN empowers software-based

control, routing, and traffic management through a centralized server. It also

enables the chaining of multiple service functions in the network based on user

needs [3]. This inevitably enhances the security and scalability of network

management while reducing latency and hardware footprint. NS improves the

overall efficiency of the network system by leveraging the advantages of NFV

and SDN.

The NS problem is the problem of embedding customized VNFs and links

belonging to distinct virtual networks, or slices, on a shared physical infras-

tructure. This process involves the strategic allocation of resources to ensure

optimal performance for each VNF and the tailoring of virtual links to meet

the specific requirements of different services or user groups. The overarching

goal is to create a flexible environment that allows for dynamic scaling and

adaptation of resource utilization in real-time. The orchestration of these slices

encompasses E2E lifecycle management, where adherence to predefined ser-

vice level agreements (SLAs) and the ability to adjust configurations based on

changing conditions play a crucial role. To deliver comprehensive customized

network services, the process of VNFs and their associated required resources

(virtual compute, storage, and network links) being mapped to the physical in-

frastructure is known as virtual network embedding (VNE). The aim of VNE is

to optimize the utilization of physical resources while adhering to service-level

specifications and performance criteria for VNFs. This includes identifying
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the most suitable mapping of virtual resources to their physical counterparts.

The NS problem revolves around crafting virtual networks tailored to specific

service requirements for diverse applications and users. This entails efficiently

allocating network resources and functions from a physical network to handle

the individual VNFs. Essentially, it extends the concept of VNE, wherein a set

of VNFs are placed onto a physical network infrastructure while adhering to

specific resource constraints. In essence, this thesis aims to discover a mapping

that not only fulfills the virtual network’s demands but also minimizes the over-

all embedding costs. This process involves assigning virtual nodes and links to

their corresponding physical counterparts and configuring necessary resources

like bandwidth and processing power to adequately support the VNFs.

1.1.1 A Brief Introduction to the Considered Smart City

Applications

As we propel towards the evolution from 5G to 6G, the interim stage, B5G, plays

a crucial role in this transformative journey. The impact is particularly notable

in urban areas, where the integration of these technologies is turning cities into

smart and automated hubs. Within the context of a smart city, various aspects

of daily life are becoming "smart," offering a plethora of applications. This

thesis focuses on exploring three major categories of smart city applications:

emergency response, video surveillance, and smart building. These categories

encompass a wide range of technological solutions that contribute to the overall

intelligence of urban environments.

Within the emergency response category, the thesis considers four appli-

cations: rescue drones, holographic video communication, HD video calls,
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and VoIP. In the video surveillance category, two applications, namely CCTV

Cameras and surveillance drones, are examined. Lastly, the smart building

category includes two applications: smart home sensors and industrial building

sensors. Each of these applications is treated as an individual slice, allowing

for in-depth analysis and understanding. It is important to note that, as part

of the B5G service framework, each application necessitates a combination of

service categories from the set of enhanced mobile broadband (eMBB), mas-

sive Machine type communications (mMTC), and ultra-reliable low latency

communications (URLLC)- the three 5G service categories.

To ensure the effective functioning of these applications under the B5G

service, the thesis emphasizes the unique requirements of each application

within the eMBB, mMTC, and URLLC service categories. Detailed traffic

characteristics and considerations for each application is thoroughly discussed

in Chapter 3.

1.1.2 Performance Requirements for 5G, B5G, and 6G

The era following 5G, known as B5G, is anticipated to usher in support for

diverse vertical industries, with each developing intelligent solutions to tackle

communication challenges that service providers can incorporate into their

offerings [4]. However, it is worth noting that presently, B5G or 6G are still

relatively new research concepts, while 5G is in the process of commercializa-

tion. As a result, there is limited availability of quantitative details regarding

the QoS requirements for various B5G applications. Instead, researchers have

presented more general and overarching performance expectations for B5G. As

an introduction, it is necessary to understand the QoS prerequisites and their
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defined parameters in existing literature for 5G, B5G, and 6G technologies

before digging deeper into the thesis. The proposed key performance indicators

(KPIs) of 5G, B5G, and 6G are summarized in Table 1.1, where "-" is used to

denote values that were not found. Given that B5G represents the transition

point from 5G to 6G, in some cases, standard values for 5G or 6G can serve

as thresholds for B5G applications if specific B5G values have not yet been

established.

Table 1.1: Proposed KPIs of 5G, B5G, and 6G

KPI 5G B5G 6G
Peak data rate re-
quirements

20 Gbps [5] 100
Gbps [5]

1 Tbps [5]

Experienced data
rate

0.1 Gbps [6] - 1 Gbps [6]

Peak spectral effi-
ciency

30 b/s/Hz [6] - 60 b/s/Hz [6]

Experienced spec-
tral efficiency

0.3 b/s/Hz [5] - 3 b/s/Hz [5]

Bandwidth 1 GHz [6] - 100 GHz [6]
Area traffic capac-
ity

10 Mb/s/m2 [6] - 1 Gb/s/m2 [6]

End-to-End delay 5 ms [5] 1 ms [5] <1 ms [5]
Mobility 500 kmph [6] - 1000 kmph [6]
Reliability 99.999% [6] - 99.9999999% [6]
Jitters - - 1µ s [6]
Energy efficiency - - 1 TbpJ [6]
Connection den-
sity

106 devices/km2

[6]
- 108 devices/km2

[6]
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1.2 Research Questions, Motivation and

Objectives

1.2.1 Research Questions

B5G’s strategic emphasis on network optimization aims to achieve global

coverage in multi-tenant environments. At the heart of this strategy lies NS,

enabling the creation of tailored logical networks within a shared infrastructure.

This breakthrough transforms connectivity provision, benefiting both carriers

and industries. B5G harnesses software-driven and virtualized solutions for

specialized applications, pledging enhancements in capacity, data rates, latency,

security, and QoS compared to 5G. However, this requires efficient resource

management. NS emerged as a pivotal technology in the B5G era, focusing on

the judicious allocation of resources to craft virtual networks tailored to specific

service requirements.

Defining the SLA of a network slice associated with a particular application

demands a thorough understanding of the QoS and the corresponding resource

requisites to fulfill the QoS of that application. This leads to two initial questions.

First is research question 1 (RQ1), what are the SLA requirements specific to a

certain network slice belonging to the smart cities application in the context of

B5G technology? Given these SLA requirements, the second research question

(RQ2) is how much radio and non-radio resources are required by the virtual

networks to achieve that level of SLA? Therefore, comprehending the SLA

prerequisites and calculating the necessary resources is a crucial prerequisite

for designing the network slices.

Meeting the technical benchmarks outlined in the identified SLAs for a given

7



slice necessitates assembling complex network functions from a collection of

fundamental VNFs and PNFs. For instance, fulfilling the requests of a real-

time video surveillance client and managing a building’s smart sensor services

involve distinct QoS demands, network conditions, and rule sets. Orchestrating

the correct VNFs in a suitable sequence for these services, while adding extra

value, is a time-consuming task. Furthermore, there is a plethora of radio access

networks (RAN) and core VNFs available for various purposes within the user

and data planes. Many VNFs possess diverse properties that can be employed

for similar functions, such as providing security, enforcing QoS constraints,

authentication, and more. The third research question then arises (RQ3): which

VNFs and PNFs to select for a specific application? Thus, a fourth research

question (RQ4) arises: what are the most appropriate VNFs and PNFs for the

RAN, core, and transport domains to implement emergency response, smart

building, and video surveillance slice types? Additionally, what constitutes the

optimal sequence of these VNFs and PNFs to serve that purpose? Moreover,

comprehending the entirety of the SLA is imperative for designing the B5G

E2E network slices for the three mentioned smart city applications.

Finally, NS involves the mapping of virtual networks, comprised of VNFs

and virtual links, onto the substrate physical network while considering con-

straints like capacity, connectivity, cost, and latency. This process, known as

VNE, is intricate, involving an extensive search space and demanding com-

putational resources. Efficient optimization techniques play a pivotal role in

determining the optimal network embedding solution within a vast search space.

Tackling the complexity challenge is essential for optimizing resource alloca-

tion and unleashing the full potential of contemporary networking technologies.

This leads us to our fifth and final research question (RQ5): how to optimally
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embed a virtual network onto a provided physical topology ensuring guaranteed

QoS while minimizing both the embedding cost and latency concurrently, and

how to do this in a time-efficient manner for practical scenarios with larger

search spaces?

1.2.2 Motivation

The commercial rollout of the 5G network began in 2019, with a projected surge

in adoption anticipated beyond 2022. The upcoming 6G wireless networks

are gaining significance across various academic domains [7]. B5G is set to

serve as the gateway to this future 6G network. The COVID-19 pandemic has

accelerated the shift of numerous companies online, ushering in a "New Normal"

in global workplaces. This surge in internet usage underscores the imperative for

robust connectivity to meet the escalating demand for networks with stringent

QoS requirements. This is crucial for supporting latency-sensitive emerging

technologies, such as health and disaster-related emergency response [8], [9],

networked autonomous emergency rescue systems [10], smart surveillance

systems [11], and IoT sensors in smart buildings [12], [13]. Unfortunately, these

growing demands exceed the capabilities of the envisioned 5G networks [14].

This underscores the urgency to think and research beyond 5G, towards the

necessity of 6G.

To usher in the era of B5G and anticipate the arrival of future 6G technolo-

gies, a pivotal component is the implementation of NS. This process follows

a distinct life cycle, as depicted in Figure 1.1. The stages encompass various

critical steps: initiating with the receipt of a network slice request, followed

by the careful selection of essential VNFs. These VNFs are then interlinked to
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Figure 1.1: Life Cycle of NS

form a logical network or SFC, subsequently aligning with the physical network

infrastructure through the meticulous computation of required resources for

reservation and allocation. Once allocated, these resources furnish the essential

computing, storage, and networking capabilities to the logical network. Addi-

tionally, the network slice is engineered to dynamically adapt to fluctuations in

application demands, and changes in the network conditions-wireless channel,

mobility, etc., allowing for seamless scaling up or down. Modifications to VNFs

or connections can also be made as needed. Ultimately, when the network slice

reaches the end of its utility, it undergoes deactivation, liberating all allocated
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resources for potential reuse. This meticulous process empowers the creation

and management of bespoke network slices tailored to specific needs and use

cases. The progress of B5G and 6G network technologies is intrinsically linked

to the successful execution of NS, with each stage of the life cycle playing an

equally crucial role. Motivated by this understanding, this thesis focuses on

elucidating the initial five pivotal steps of the NS life cycle.

While current NS solutions exhibit limitations in QoS delivery [15], the

envisioned B5G NS solution is expected to surpass these shortcomings in

LTE and 5G NS. Its inherent capability for the automated management of

SLA commitments as an ongoing orchestration process serves as a primary

motivation for this thesis. Furthermore, the successful implementation of the

envisioned NS solution is anticipated to provide the Canadian industrial IoT

sector with a competitive edge. As of March 23, 2021, Canada had installed

103 smart buildings, resulting in energy cost savings of 3.1 million USD and an

average annual energy reduction of 10% per site [16]. Therefore, the envisioned

NS model is expected to leverage ongoing smart city initiatives in the City of

Calgary. This motivation underscores the significance of the thesis research in

contributing to the advancement of network technologies and their practical

applications in real-world smart cities scenarios.

1.2.3 Objectives

The thesis aims to achieve the following primary objectives: (1) formulate a

constrained weighted integer linear programming (ILP) optimization problem

to attain a balanced minimization of cost and latency, (2) utilize the Python

Gurobipy solver for analytical resolution of the ILP problem, leading to optimal
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virtual network embedding; (3) introduce the novel matroid-based modified

greedy breadth-first search (MGBFS) algorithm based on graphical matroid

principles and breadth-first search to approach near-optimal outcomes with

reduced convergence time; and (4) conduct a performance comparison of the

proposed algorithm with a benchmark metaheuristic: the greedy randomized

adaptive search procedure (GRASP) approach outlined in [17].

1.3 Summary of Thesis Contributions

The International Telecommunication Union (ITU) categorizes 5G into three

essential service dimensions: mMTC, eMBB, and URLLC [18]. These cat-

egories are depicted as the vertices of the 5G service triangle in Figure 1.2a.

However, one of this thesis’s primary contributions goes beyond the established

boundaries of the traditional ITU service triangle. We introduce a transforma-

tive approach, shifting from the rigid triangular structure to a more flexible

Venn diagram. This evolution is pivotal in recognizing and accommodating the

intricate nature of smart city applications, where requirements often span multi-

ple service categories. The resulting adaptability not only facilitates seamless

integration and collaboration among service classes but also optimizes resource

allocation for more efficient support of a diverse array of smart city services.

Moreover, our framework contributes to the implementation of tailored Network

Slices (NS), acknowledging the potential for applications to traverse multiple

service classes. This forward-looking perspective anticipates the dynamic evolu-

tion of smart cities and positions communication networks to efficiently adapt to

emerging technologies and evolving urban needs. In essence, our proposed B5G

service categories provide a comprehensive and flexible framework, ushering in
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a new era for communication networks in smart city environments.

(a) 5G Three Main Service Categories.

(b) B5G Service Categories as Envisioned in this Thesis include B5G
service categories = eMBB with mMTC, eMBB with URLLC, mMTC
with URLLC, URLLC with eMBB and mMTC

Figure 1.2: 5G and B5G service categories

Another primary contribution of this thesis lies in addressing the nascent

stage of B5G and the early development of smart cities by conducting an

in-depth exploration of applications and their associated performance require-

ments. Recognizing the limited existing research in this domain, we conducted
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an extensive literature review to systematically comprehend, analyze, and ar-

ticulate detailed performance prerequisites for diverse smart city applications.

This comprehensive endeavor produced distinctive findings, encapsulated in a

meticulously crafted survey paper currently undergoing peer review [19]. The

significance of these findings extends to their potential to serve as a valuable

foundation for guiding the design of future network slices, specifically tailored

to meet the dynamic and evolving needs of forthcoming smart cities. This

contribution fills a critical gap in current research, providing a framework for

addressing the complexities and intricacies inherent in the intersection of B5G

and smart city development.

In addition to uncovering the performance requirements of various smart city

applications, this thesis makes a substantial contribution by computing the radio

resource requirements and presenting crucial simulation results to compute the

non-radio resource requirements using network simulation software NetSim

[20]. Leveraging the identified performance requirements specific to each traffic

type, the thesis endeavors to model a practical implementation of advanced 5G

technology for the three major smart cities application categories: emergency

responses, video surveillance systems, and smart building applications. By

computing the radio resource requirements and generating synthetic data to

calculate non-radio resource requirements for these applications, the research

contributes significantly, not only to the thesis itself but also to the broader field

for future research. This computed data is particularly valuable for designing

dynamic resource allocation for NS, as practical resource data for advanced 5G

or B5G systems remains limited.

Last but certainly not least, the primary contribution of this thesis lies in the

proposed approaches to solve the NS problem. The research delves into ILP
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optimization and heuristic methodologies to address the embedding challenges

of virtual network slices. The introduced ILP approach strategically optimizes

slice embedding by analytically minimizing both embedding cost and delay,

achieving an optimal trade-off between the two factors. The proposed novel

heuristic approach, embodied in the MGBFS algorithm, demonstrates an effi-

cient and practical method for network embedding, emphasizing time efficiency.

Both models make significant contributions, enabling the successful imple-

mentation of NS. The ILP approach stands out for its precision in analytical

analysis, while the heuristic approach excels in practical adoption. Additionally,

a well-written paper based on the unique contribution and outcomes of these

approaches is currently undergoing peer review [21], further attesting to the sig-

nificance and recognition of the research in the academic community. Together,

these approaches offer a comprehensive toolkit for effectively implementing

NS in diverse smart city environments.

1.4 Thesis Outline

In Chapter 1, we have systematically addressed the research questions and

provided a comprehensive exposition on the contributions of this thesis. The

rest of the thesis is structured to provide a comprehensive exploration of NS for

smart city applications. Chapter 2 initiates the journey with a thorough literature

review, delving into existing works and their limitations in the field of NS. It

also contextualizes the thesis work within the existing research landscape. In

Chapter 3, the focus shifts to the considered smart city applications, offering a

detailed examination of their performance requirements. Chapter 4 unfolds the

network simulation results showing the resource requirements for optimal smart
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cities application performance. The subsequent chapter, Chapter 5, dives into

the intricacies of network slice design. This section encompasses the physical

network model developed within the thesis and provides a detailed description

of the selected VNFs, physical network functions (PNFs), and service function

chains (SFCs) that constitute the virtual network. Chapter 6 is dedicated to

the formulation of the NS problem and the proposed solution approaches.

Following this, Chapter 7 presents the simulation results derived from the

applied solution approaches, accompanied by a comprehensive discussion of

these results across various traffic scenarios. Finally, Chapter 8 serves as

the concluding chapter, summarizing the thesis and proposing avenues for

future research in this dynamic field. This structured outline ensures a logical

progression, from a literature review to the application of simulation results and

solution approaches, ultimately culminating in a comprehensive conclusion and

forward-looking reflections on potential future developments in the realm of

NS for smart cities.
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Chapter 2

Literature Review

This chapter reviews existing literature, identifying gaps in approaches that fail

to fully address the cost, delay, and complexity of the NS problem. The chapter

explains how the shortcomings in previous works underscore the need for a

refined and comprehensive approach, setting the stage for the proposed research

of this thesis.

2.1 State of the Art of VNE in NS and Problem

Statement

Significant efforts have been made to optimize resource allocation while adher-

ing to QoS requirements in the field of NS for 5G. However, very little work has

been done on this field for B5G or 6G given the fact that they are still relatively

new concepts.
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2.1.1 State of the Art

The incorporation of SLA plays a crucial role in the 5G network landscape [22].

SLA encompasses various QoS aspects such as bandwidth, latency, and security,

setting the standard for the level and quality of service that operators can deliver

to their users. In the modern IT environment, where different services have

unique needs in terms of bandwidth, latency, and priority, the importance of

SLAs continues to grow. The primary aim of SLAs is to guarantee a satisfac-

tory quality of experience (QoE) for users. In the literature [23], a solution is

proposed for the allocation of network resources, enabling autonomous network

management systems to understand and address QoE. This management system

is responsible for autonomously estimating the necessary network resources

to effectively meet traffic demands with the help of machine learning. One

potential drawback of [23] is the ongoing challenge of enforcing adequate

policies over the entire network. While the network resource allocator systems,

leveraging SDN and NFV, offer dynamic allocation of resources and optimize

connectivity performance, ensuring consistent and effective policy enforcement

throughout the network poses a challenge. The difficulty in enforcing poli-

cies may lead to potential issues such as security vulnerabilities, compliance

concerns, or difficulties in maintaining a standardized network behavior. It

emphasizes the need for further developments or solutions to address this aspect

for a more robust and secure network allocation system.

In the realm of NFV, a critical area of research involves improving the

efficiency of VNE by employing deep reinforcement learning (DRL) algorithms.

The incorporation of DRL into VNE algorithms was first introduced in the

work [24]. Traditional VNE approaches often depend on heuristic methods,
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resulting in challenges in achieving an overall optimal solution and accurately

replicating both the base network and the virtual network [25, 26]. In contrast,

DRL leverages artificial neural networks to address decision problems, imitating

the behavioral characteristics of animal brains and facilitating distributed infor-

mation processing. Despite being in its early stages, the application of the DRL

method to address the VNE problem has demonstrated effectiveness. However,

the main limitations of the DRL technology include reduced efficiency, high

resource consumption, and some deviation from the actual network scenario.

The paper [27] addresses challenges in resource allocation for SFCs within

the NFV infrastructures. It proposes a coordinated approach, JoraNFV, to opti-

mize resource allocation across VNF chain composition, VNF forwarding graph

embedding, and VNF scheduling. However, it faces limitations in handling

diverse requirements within NS. Unlike the assumption of similar requirements

for incoming flows, flows from different slices have varied demands, such as

high bandwidth or strict delay guarantees. JoraNFV’s current design struggles

to simultaneously address factors like delicate bandwidth allocation and delay

optimization for these diverse flow requirements. This limitation emphasizes

the need for more nuanced strategies to cater to the varied demands of flows in

NS scenarios.

In the paper [28], the authors aimed to optimize resource allocation in 5G

networks to minimize latency while adhering to QoS requirements. They intro-

duced the joint slicing network and computation approach, which transforms a

complex NP-hard problem into a more solvable format. They introduced two

heuristics for efficient solutions. However, they did not consider node or link

capacity in their optimization formulation. According to various studies done

on matroids [29,30], the greedy algorithm achieves optimal results if and only if
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the problem exhibits the properties of a matroid. The authors from [28] mainly

adopted Prim’s approach for their greedy algorithm which requires a starting

node and the structure used by Prim’s approaches is not matroid [31]. As a

result, they obtained a sub-optimal solution from the greedy algorithm and not

near-optimal [29, 30].

In the domain of VNE, [32] addressed limitations in the current Internet

architecture by proposing a framework for multiple virtual networks coexisting

on a single physical infrastructure. Their algorithms, MaVEn-M and MaVEn-S,

made strides in this area, but the VNE problem was established as NP-hard,

presenting significant computational challenges.

Authors from [33] proposed a virtualized network graph design and embed-

ding (VNDE) tailored for a single-entity scenario to minimize the provisioning

cost of the requested virtual networks. Their model determined the optimal

number of virtual routers and constructed suitable virtual network graphs for

each request, while also defining efficient access paths. Additionally, they

formulated the VNDE model as an ILP problem and developed heuristic algo-

rithms for practical implementation. One potential drawback of this paper is

that it focuses on an offline problem in the context of a single-entity scenario.

The VNDE model, while effective, operates based on predetermined traffic

demands between customer premises, determining the number of virtual routers,

constructing virtual network graphs, and their embedding accordingly. This

limits its applicability in dynamic or real-time network environments.

The main focus of the paper [17] was to place a batch of VNFs onto a

substrate network efficiently. [17] introduced the GRASP meta-heuristic, which

involved generating solutions through a combination of greedy randomized

choices and iterative improvements. The use of the GRASP algorithm, while ef-

20



fective, demands a deep understanding of the specific problem at hand, limiting

its versatility for unrelated issues. Its randomized nature, while offering diver-

sity in solutions, leads to longer search times and potentially overlooks superior

solutions. Additionally, the paper’s assumption of a single-entity scenario did

not adequately address the complexities of end-to-end multi-domain network

settings.

2.1.2 Problem Statement

Despite the considerable advancements in resource allocation strategies for 5G

and the emerging concepts of B5G and 6G, existing approaches have yet to

fully address the intricacies related to cost, delay, and complexity in embed-

ding virtual network components onto physical networks within the context of

NS. The identified gaps in the current literature highlight the necessity for a

more refined and comprehensive approach to resource allocation, specifically

tailored to the challenges posed by B5G NS and VNE. Hence, the primary

challenge lies in developing a solution that can effectively manage the diverse

demands of users, each with unique QoS requirements, all within the constraints

of a shared physical network topology with limited available resources. Ad-

dressing this multifaceted challenge is crucial for optimizing the performance

of next-generation networks and ensuring the successful deployment of NS

technologies.

2.2 Our Contributions

The successful resolution of the NS problem holds significant implications for

service providers, offering them the means to optimize resource utilization,
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deliver tailored services, and effectively address the diverse demands of users

and applications within an economical framework. Recognizing this potential,

it becomes imperative to address the current limitations in research to develop a

robust NS solution.

To address the identified research limitations, our proposed ILP problem

aims at jointly minimizing the total cost and delay in virtual slice creation for

eight smart city applications. This approach seeks to provide a comprehensive

solution that considers both cost and time factors, crucial for the efficient

functioning of network slices.

Acknowledging the time complexity inherent in the ILP problem, we in-

troduce a novel heuristic approach—the MGBFS algorithm. This algorithm

divides the VNE process into two distinct steps: VNF embedding and virtual

link embedding. By leveraging matroid properties for VNF and considering

both capacity and latency during the VNE process from access to the core do-

main, the MGBFS algorithm overcomes the shortcomings identified in previous

work, particularly in [28]. The objective is to ensure not only optimal but also

near-optimal solutions for the network-slicing problem.

Both our ILP and MGBFS approaches aim to develop efficient solutions

capable of allocating network resources while minimizing costs and latency.

They consider resource and connectivity constraints for both offline and online

network scenarios, aligning with the goals of optimizing cost and latency. The

ultimate aim is to achieve an optimal mapping of virtual resources onto physical

resources for real-time practical implementations. This approach addresses

the identified limitations in existing literature, specifically, the constraints men-

tioned in [33] and [34], ensuring a more comprehensive and effective network-

slicing solution for smart city applications.
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Our proposed MGBFS algorithm offers a solution to the challenges associ-

ated with policy enforcement and resource consumption in network allocation

and management. By seamlessly integrating two modified simple heuristic

approaches, the algorithm ensures not only low resource consumption but also

cost and time efficiency. Unlike certain machine learning methods, such as

DRL, our algorithm operates efficiently without relying on extensive datasets.

This aspect is particularly advantageous in the context of B5G or 6G networks,

where datasets are scarce due to the recent introduction of these concepts. Ad-

ditionally, the simplicity and autonomous decision-making nature of MGBFS

contribute to its robustness, addressing the inherent limitations associated with

more complex learning approaches as highlighted in [24] and [23].

In contrast to [27], our proposed MGBFS algorithm goes beyond by con-

sidering the distinct requirements of eight smart city slices, ensuring a more

realistic and adaptable approach. Additionally, both our proposed ILP and

MGBFS algorithms are meticulously crafted to tackle the intricate challenges

of resource allocation. They not only minimize delay but also optimize alloca-

tion costs, providing a comprehensive solution that surpasses the limitations

highlighted in [27].

In conclusion, resolving the network-slicing challenge represents a crucial

milestone for service providers, enabling them to improve resource utilization,

deliver personalized services, and address a variety of user and application needs

economically. Recognizing the significance of overcoming current research

constraints, our proposed ILP solution and the MGBFS algorithm present a

comprehensive approach tailored for eight smart city applications.
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2.3 Summary

The examination of NS in the literature underscores prevailing gaps and limita-

tions in resource allocation strategies, particularly in the context of B5G and 6G.

This chapter critically assessed key papers addressing resource optimization

in 5G networks, elucidating their methodological challenges and underscoring

the imperative for more holistic solutions. By establishing a foundational un-

derstanding, this chapter lays the groundwork for the thesis, elucidating how

the proposed solution addresses the identified shortcomings in the existing

literature. The focus is on achieving optimal resource allocation for practical

implementations in dynamic network environments.
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Chapter 3

The Considered Smart city

applications and Performance

Requirements

In this chapter, we delve into the realm of B5G smart cities application categories

and explore their performance demands. The smart cities application categories

under consideration encompass video surveillance, emergency response, and

smart buildings.

3.1 The Considered Smart city applications

In this thesis, three main smart city applications are considered, namely, video

surveillance, emergency response, and smart buildings.
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3.1.1 Emergency Response

3.1.1.1 The Significance of Emergency Response Applications in Smart

Cities

The global landscape is undergoing significant transformation due to rapid

urbanization and the emergence of smart cities. Every week, three million

individuals relocate to cities worldwide, and projections indicate an additional

2.5 billion people will call cities home by 2050 [35]. With a higher population

density and resource concentration, the frequency and intensity of disasters

may escalate. According to UN estimates, urban areas will house 68% of the

world’s population by 2050 [36]. Consequently, municipalities are investing in

both infrastructure and software to accommodate urban expansion and improve

citizen services and overall urban living conditions. Among the paramount

concerns in smart cities, emergency response takes precedence. This is driven

by the heightened frequency and severity of disasters, compounded by the

dense urban environment. Hence, smart cities necessitate robust and efficient

emergency response systems to safeguard the well-being of residents during

critical situations.

3.1.1.2 Traffic Type to Describe Emergency Response Applications

Emergency response applications demonstrate irregular packet generation pat-

terns and lack a predictable traffic rhythm. The exact timing of packet genera-

tion cannot be reliably anticipated. However, once the packets are created with

specific content, they must adhere to strict latency constraints or time limits gov-

erning their delivery. Additionally, these packets must achieve a high success

rate to ensure the quality, reliability, and consistency of the received data. This
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traffic pattern mirrors the expected behavior of emergency response applications,

which only produce data packets in crisis situations. Consequently, attempting

to forecast the timing of packet generation is unfeasible. Nonetheless, once the

packets are generated, they carry specific information and are bound by precise

transmission latency and reliability requirements, all aimed at ensuring a swift

and secure response. Among the three primary service categories examined in

this thesis, emergency response traffic is accorded the utmost priority. Building

upon this, as outlined in [37], the deterministic aperiodic traffic (DAT) type

provides an apt description of the traffic generated by emergency response

applications.

3.1.1.3 B5G Services Required for Emergency Response Applications

Emergency response applications necessitate comprehensive support for the

B5G service category of URLLC with eMBB and mMTC characteristics (Fig-

ure 1.2). eMBB is crucial for delivering high bandwidth to applications like

HD video calls, holographic video communication, and other data-intensive

operations. URLLC is indispensable for guaranteeing ultra-low latency and

high reliability for mission-critical systems, including rescue drones and real-

time communication during emergencies. Finally, mMTC is imperative to

accommodate the extensive machine-type communication generated by various

emergency response devices and sensors. These three facets collectively form

the backbone of a robust and effective emergency response network in the B5G

framework.
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3.1.1.4 Use Cases

The considered smart city applications (use cases) under the emergency response

category are:

• Rescue drones: Drones equipped with cameras and sensors for search

and rescue operations. In this thesis, this application is considered as the

smart cities slice type 1.

• Holographic video communication: Advanced communication technol-

ogy for immersive and real-time collaboration during emergencies. In

this thesis, this application is considered as the smart cities slice type 2.

• HD video calls: Real-time video communication for emergency response

coordination and remote assistance. In this thesis, this application is

considered as the smart cities slice type 3.

• Voice over internet protocol (VoIP): Internet-based voice communication

for emergency calls and coordination. In this thesis, this application is

considered as the smart cities slice type 4.

3.1.2 Video Surveillance

3.1.2.1 The Significance of Video Surveillance in Smart Cities

Video surveillance has undergone a profound transformation due to advances

in high-definition video technology, augmented reality, virtual reality, mixed

reality, and haptic communication, as well as the integration of big data systems

and machine learning. These innovations have paved the way for the develop-

ment of intelligent and adaptable video surveillance systems, delivering user
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experiences that were once beyond imagination. The role of video surveillance

in law enforcement to assure public safety cannot be overstated, as it plays a

pivotal role in identifying and apprehending perpetrators of crimes. A notable

instance is the widely recognized use of video footage in the aftermath of the

2013 Boston Marathon bombing [38, 39]. Research has demonstrated that the

mere presence of video surveillance acts as a deterrent to criminal activities,

although its effectiveness varies depending on location, with notably higher

advantages observed in areas like parking lots compared to others [40].

3.1.2.2 Traffic Type to Describe Video Surveillance Applications

Video surveillance traffic exhibits the characteristics of deterministic periodic

traffic (DPT) due to the regular and predictable generation of packets [37].

These packets must be received within specific latency constraints. For instance,

security cameras or drones consistently produce data packets in a periodic

manner, designed for continuous 24/7 monitoring. Ensuring the timely delivery

of these packets to the security center is crucial, as time sensitivity is paramount

in security systems. Hence, video surveillance traffic falls under the category of

DPT.

3.1.2.3 B5G Services Required for Video Surveillance Applications

Video surveillance applications cover a range of scenarios, from fixed ground-

based CCTV cameras to dynamic aerial unmanned aerial vehicle (UAV)-based

surveillance drones. These applications necessitate a robust system capacity and

function as mission-critical systems. To adequately support video surveillance,

the B5G service category of eMBB with URLLC characteristics (Figure 1.2)

is indispensable. These services guarantee high bandwidth, minimal latency,
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and exceptional reliability, all of which are vital for the effectiveness of video

surveillance applications.

3.1.2.4 Use Cases

The considered smart city applications under the video surveillance category

are:

• Stationary terrestrial cameras (CCTV Cameras): Stationary terrestrial

cameras serve as a fundamental component of video surveillance systems.

They are typically situated in fixed locations, such as building entrances,

parking lots, public spaces, and critical infrastructure sites. These cam-

eras maintain continuous vigilance over their surroundings, capturing

video footage with various applications, including crime prevention, in-

vestigation, and general security monitoring. The data produced by these

stationary terrestrial cameras must be reliably and promptly transmitted

to a security center or monitoring station for analysis and response. In

this thesis, this application is categorized as the smart cities slice type 5.

• Surveillance drones: Surveillance drones have witnessed a surge in pop-

ularity in recent years for video surveillance applications. These UAVs

come equipped with cameras and can be deployed for monitoring expan-

sive areas, crowd surveillance, event security, and emergency response.

Surveillance drones offer the advantage of flexibility and mobility, en-

abling them to swiftly navigate and capture video footage from various

vantage points. They provide valuable situational awareness, especially

in scenarios where traditional stationary cameras face limitations. In this

thesis, this application is classified as the smart cities slice type 6.
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3.1.3 Smart Buildings

3.1.3.1 The Significance of Smart Buildings in Smart Cities

Smart buildings play a pivotal role in the overarching concept of smart cities,

exerting a substantial influence on the quality of life for their occupants. These

structures prioritize factors such as health, safety, comfort, and overall well-

being [41]. Envisioned as adaptable and interactive entities, smart buildings are

designed to learn from past experiences, further enhancing their functionality

[42]. Within these smart buildings, a range of applications come into play,

including sensors for temperature and humidity control, intelligent locking

systems, and fire alarms. Each of these necessitates robust security, reliability,

and safety measures [43].

The security of IoT devices employed in smart buildings is of paramount

importance, given their limited memory capacity and potential vulnerability

to breaches. B5G NS proves invaluable in this regard, providing effective

slice isolation that serves to mitigate potential security risks [44]. Applications

within smart buildings encompass a wide array, ranging from wireless smart

home systems to sensors deployed in industrial buildings. These demand a

high-capacity system capable of supporting an extensive device density [43,44].

3.1.3.2 Traffic Type to Describe Smart Buildings Applications

Traffic stemming from applications classified as non-deterministic traffic (NDT)

does not adhere to stringent latency requirements for data packet reception [37].

Instead, the primary criterion for this traffic category is to consistently meet the

requested data rate. NDT traffic is specially crafted to replicate the expected

traffic patterns from applications employed in smart buildings. For applications

31



like usage monitoring and asset tracking in smart buildings, prioritizing the

provision of service to a fixed data rate across a multitude of nodes, along

with ensuring ample bandwidth to accommodate them, takes precedence over

minimizing latency. In simpler terms, the emphasis lies in supplying sufficient

bandwidth to meet the data rate demands of all nodes, rather than solely focusing

on reducing data transmission delays.

Consequently, data packets generated by smart buildings applications em-

phasize reliable transmission assurance over strict transmission deadlines. The

objective is to guarantee the dependable delivery of data packets without loss or

errors, rather than insisting on their arrival within a specific timeframe. Hence,

the NDT traffic type is frequently associated with traffic within smart buildings.

Within the spectrum of smart city applications, this traffic class is typically

regarded as having the lowest priority. This implies that in scenarios where

there is competition for network resources, other types of application traffic

may be granted higher precedence over NDT traffic.

3.1.3.3 B5G Services Required for Smart Buildings Applications

Smart buildings applications necessitate a substantial system capacity and the

ability to handle a vast number of devices, making it imperative for them to

harness the capabilities of the pivotal B5G service category: eMBB with mMTC

characteristics shown in Figure 1.2 (in some cases such as for smart home

sensors only the mMTC is required since their required data rate is very low).

mMTC serves as the linchpin for seamless communication among the multitude

of devices and sensors deployed within smart buildings. It facilitates efficient

data exchange and interaction, ensuring the smooth operation of interconnected

systems. In parallel, eMBB, or enhanced Mobile Broadband, delivers high data
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rates and wide coverage, guaranteeing the swift and reliable transmission of data-

intensive applications. These services are indispensable for meeting the stringent

performance requirements of smart buildings applications, underpinning reliable

connectivity, and enabling the deployment of advanced functionalities within

the smart building environments.

3.1.3.4 Use Cases

The considered smart city applications under the smart buildings category are:

• Smart Home Sensors: Smart homes leverage IoT devices and automa-

tion technologies to enhance the living experience and improve energy

management. With smart home systems, residents can remotely control

and monitor various aspects of their homes, such as lighting, heating,

ventilation, security systems, and appliances, using their smartphones or

other connected devices. This level of control and automation not only

provides convenience but also enables energy savings and promotes a

sustainable lifestyle. In this thesis, this application is considered as smart

cities slice type 7.

• Industrial Building Sensors: Industrial building sensors enable real-time

monitoring and control of various parameters, such as temperature, hu-

midity, air quality, and energy consumption, within industrial buildings.

By collecting and analyzing data from these sensors, building operators

can optimize energy usage, improve operational efficiency, and ensure

a safe and comfortable environment for occupants. In this thesis, this

application is considered as smart cities slice type 8.
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Figure 3.1: Considered Smart Cities Application Categories

Figure 3.1 shows the considered smart city applications and the 8 network

slices under them and Table 3.1 presents a summary of the mentioned smart

cities application categories.

3.2 Performance requirements

3.2.1 Performance Requirements for Emergency Response

Applications

The performance requirements for each of the emergency response application

use cases outlined in section 3.1.1.4 can be determined with the help of the

performance capabilities of 5G, B5G, and 6G technologies presented in Table

1.1 and some existing works.

The network connectivity requirements for different applications under the

emergency response category are outlined in Tables 3.2, 3.3, 3.4, and 3.5. Table
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Table 3.1: Summary of the Smart Cities Application Categories

Category Key Points B5G Services
Emergency
Response

- Required for increasing frequency and severity of
disasters

- URLLC
with eMBB
and mMTC

- Unpredictable and stringent latency requirements
- DAT traffic type for emergency response applica-
tions
- Use cases: rescue drones, HD video calls, VoIP,
holographic video
- B5G technologies suitable for performance re-
quirements

Video Surveil-
lance

- Required for law enforcement and crime preven-
tion

- eMBB with
URLLC

- Quality advancements and stringent latency re-
quirements
- DPT traffic type for video surveillance applica-
tions
- Use cases: stationary terrestrial cameras and
surveillance drones
- B5G technologies enhance user experiences

Smart Build-
ings

- Required for occupants’ health, safety, and com-
fort

- mMTC with
eMBB (or
only mMTC)

- Security and dependability requirements for IoT
devices
- NDT traffic type for smart buildings applications
- Use cases: industrial buildings, smart homes
- B5G technologies fulfill performance require-
ments

3.2 pertains to rescue drones, Table 3.3 to holographic video calls, Table 3.4 to

HD video calls, and Table 3.5 to VoIPs.

Table 3.2: Requirements for Rescue Drones [45]

KPI Rescue Drone Requirements
Air Latency 10 to 100 µs/device
Reliability 99.999999%
Density 107 devices/km2

Mobility 100 km/hr
Peak Data Rate 1 Tbps
Flight Time 30 minutes/mission

Based on these performance requirements, and, compared to the KPIs
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Table 3.3: Requirements for Holographic Video Call [45, 46]

KPI Holographic Video Call Requirements
Latency < 1 µs
Reliability 99.9999999%
Peak Data Rate 1 Tbps
Experienced Data Rate 10 Gbps
Download Speed 6 Mbps

Table 3.4: Requirements for HD Video Call [47–49]

KPI HD Video Call Requirements
DiffServ Code Point Best:AF41

Others:AF42\AF43
Data Rate H.320: 64-1920K

H.323: 64X K
H.324: <64K

Required BW H.320: 80K-2M
H.323: 80X K
H.324: <80K

SNR Range 25 dB - 40 dB
Packet Reliability ≥ 99%
End-to-End Delay < 150 ms
Jitter < 30 ms
Reliability 99.99%

Table 3.5: Requirements for VoIP [46, 50, 51]

KPI VoIP Requirements
Air Latency 1 to 4 ms
Data Rate 5 to 25 Mbps
Download Speed 12 Mbps
Upload Speed 4.71 Mbps/device
Packet Reliability ≥ 99%
Jitter < 30 ms
Max One-Way Latency ≤ 150 ms
Guaranteed Bandwidth 150 bps/phone

36



of 5G, B5G, and 6G as listed in Table 1.1, it can be concluded that B5G

technologies and the upcoming 6G, are suitable for supporting emergency

response applications. B5G fills the gap between 5G and 6G, offering the

necessary performance capabilities to meet the requirements of applications

such as rescue drones, holographic video communication, HD video calls, and

VoIP.

The increasing complexity and demands of smart cities emergency response

systems require the adoption of B5G technologies because they provide any

combination of the 5G three main service categories. With near-instantaneous

communication, ultra-reliable links, and the ability to handle vast amounts of

data, B5G ensures the effectiveness and efficiency of emergency response in

smart cities. The integration of B5G is crucial to support and enhance smart

city applications, particularly in the realm of emergency response, leading to

safer and more responsive urban environments.

3.2.2 Performance Requirements for Video Surveillance

Applications

When evaluating the performance requirements for video surveillance applica-

tions, it is beneficial to refer to the QoS measures for applications under the

Video Surveillance slice.

The network connectivity requirements for different applications under the

video surveillance category are outlined in Tables 3.6 and 3.7. Table 3.6 pertains

to CCTV Cameras, and Table 3.7 to surveillance drones.

Comparing these performance requirements of video surveillance appli-

cations and the capabilities of 5G, B5G, and 6G technologies listed in Table
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Table 3.6: Performance Requirements for CCTV Cameras [52–55]

KPI CCTV Camera Requirements
Data Rate (Economic Video) 2-4 Mbps
Data Rate (High-end Video) 7.5-25 Mbps
Latency < 500 ms
Reliability 99% to 99.9%
Traffic Pattern Heavy Uplink
Density Depending on Camera Coverage
Upload and Download Speeds > 2 Mbps
Required Bandwidth 0.15-4 Mbps
Battery Life 2 years
Jitter < 25 ms

Table 3.7: Performance Requirements for Surveillance Drones [45, 52, 56]

KPI Surveillance Drone Requirements
Reliability 99.999999%

Density 107 devices per sq. km
Mobility 100 km/hr

Peak Data Rate 1 Tbps
Flight Time (Avg.) 30 minutes

Data Rate HD: 7.5 Mbps
8K: 10 Mbps

Reliability (Video) 99.9%
Density (Cameras) 400,000 cameras

1.1, it can be concluded that both B5G and future 6G technologies are suitable

for supporting these applications. B5G technologies bridge the gap between

5G and 6G, offering the necessary performance capabilities, such as high data

rates, low latency, high reliability, and support for mission-critical systems

like video surveillance. Therefore, the integration of B5G is vital to ensure

comprehensive support for video surveillance applications and pave the way for

a smooth transition to 6G in the future.
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3.2.3 Performance Requirements for Smart Buildings

Applications

The performance requirements of smart buildings applications can be compared

with the capabilities of the 5G, B5G, and 6G wireless technologies (Table 1.1)

to determine the most suitable technology for each use case.

In the case of wireless smart home systems, the required attributes vary for

different devices. Some of the examples and their requirements are given in

Table 3.8. For this thesis, we considered smart home water meters or water

sensors. B5G technologies, with their capacity to handle mMTC, are well-suited

for these diverse requirements.

Table 3.8: Performance Requirements for Wireless Smart Home Systems [57,
58]

KPI Smart Home Sensor Requirements
Data Rate per device Water Meter: 0.02 Mbps

Wi-Fi Hotspot: 0.06 Mbps
Smart light bulb: 0.417 Mbps
Smart thermostat: 0.417 Mbps
Smart door lock: 0.417 Mbps
Security Camera: 5 Mbps (depending on resolution)

Battery Life 15-30 years

The data rate requirements for big industrial building devices can vary

widely depending on the specific application and industry. Some industrial

processes may require very high data rates for real-time monitoring and control,

while others may have more relaxed requirements. For example, in industries

like manufacturing, power generation, and chemical processing, there may be a

need for high-speed data transmission to monitor and control complex systems.

In these cases, data rates can range from hundreds of Kbps to Gbps or even

higher, depending on the complexity and scale of the operation. In contrast,

39



other industrial applications may have lower data rate requirements. For ex-

ample, in some agricultural settings, monitoring soil conditions or controlling

irrigation systems may require lower data rates compared to high-speed manu-

facturing processes. Ultimately, the specific data rate requirements for industrial

buildings depend on factors such as the nature of the industrial process, the

level of automation and control needed, and the type of sensors and actuators

involved. For this thesis we considered industrial buildings sensors and their

requirements are given in Table 3.9.

Table 3.9: Performance Requirements for Industrial Building Sensors [52]

KPI Industrial Building Sensor Requirements
Data Rate 2 Mbps per device
End-to-End Latency 100 ms
Battery Life 10-15 years
Reliability 99.99%
Device Density 107 devices per sq. km
Traffic Pattern Heavy Uplink

By comparing the performance requirements of smart buildings use cases

with the capabilities of different generations of wireless technologies from Table

1.1, it becomes evident that B5G is best suited to support the diverse needs of

smart buildings.

3.3 Summary of the Smart Cities Network Slices

Communication Requirements

Based on the discussions thus far, we have established individual QoS require-

ments for the considered eight smart cities slices. This enables us to compile a

comprehensive summary of the QoS demands for these considered applications,
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which will be used in the subsequent chapter to conduct simulations for comput-

ing the necessary radio and non-radio resources. However, due to the relative

novelty of the B5G and smart cities concepts, precise QoS requirements are not

available for certain KPIs across some applications. In these cases, we utilized

established 5G values with practical implementation history, and in instances

where this information was also unavailable, we relied on values envisioned for

future 6G networks.

The determined QoS requirements for the considered 8 smart city applica-

tions are presented in Table 3.10. Taking knowledge from the existing appli-

cation standard, these values have been adjusted according to the QoS require-

ments envisioned for B5G and 6G. It is imperative to discern the purpose of a

specific application to determine its corresponding slice. This is particularly crit-

ical for emergency response and video surveillance slices. For instance, drones

can be utilized for both emergency rescue missions and aerial surveillance. The

QoS requirements and priority factors for emergency rescue and surveillance

differ. In terms of priority, emergency rescue takes precedence over surveillance

systems and necessitates lower latency. Thus, it is vital to ascertain the intended

purpose of the drone. As indicated in Table 3.10, when drones are employed

for emergency purposes, they require a latency of less than 0.1 ms. However, if

their purpose shifts to aerial surveillance, the latency limit extends to 0.5 ms.

3.4 Summary

This chapter outlined the selected smart city applications and their specific QoS

requirements. The chapter also underlines the pivotal role of B5G technologies

in meeting the demanding QoS requirements of smart city applications. These
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values play a pivotal role in simulating a realistic scenario for calculating the

necessary radio and non-radio resources, a task that will be undertaken in the

subsequent chapter. This chapter forms the cornerstone for establishing the

network model and configuration.
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Chapter 4

Radio and Non-radio Resource

Requirements

This chapter undertakes the essential computation and simulation to assess

the resource requirements for the identified eight smart city network slices.

Additionally, the chapter serves as an introduction to radio and non-radio re-

sources, and NetSim [20]. Drawing insights from the performance requirements

outlined in Chapter 3 for specific applications and referencing standard KPIs

from Table 1.1 related to 5G, B5G, and 6G, a comprehensive computation is

done to determine the radio resource requirements for the considered 8 smart

city applications. A sample simulation is executed using NetSim to replicate

a smart city scenario to compute the non-radio resource requirements. The

chapter includes the computation and simulation outputs that provide detailed

information on the requisite radio and non-radio resources.
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4.1 Radio and Non-Radio Resources in B5G

In the context of NS, radio resources, managed by the RAN, are fundamental

elements that govern the wireless connectivity within a communication network.

These resources include radio resource blocks or physical resource blocks

(PRBs) and transmission time intervals (TTIs), which are pivotal for the effective

transmission and reception of signals. The allocation and management of radio

resources are key considerations in the design of network slices, influencing

factors such as bandwidth, latency, and overall communication performance.

In the realm of PRBs, sub-carrier spacing (SCS) refers to the frequency gap

between adjacent subcarriers within a PRB, playing a pivotal role in the design

and setup of wireless communication systems, especially in the realm of 5G

and B5G technologies.

In a network, a PRB serves as the foundational unit for allocating resources

in wireless communication systems, notably in cellular networks like 4G, 5G,

B5G, and 6G. A PRB denotes a time-frequency resource block within the

system’s bandwidth and temporal scope, utilized for transmitting user data,

control information, or reference signals. In the context of 5G New Radio

(NR), a PRB spans 12 contiguous sub-carriers in the frequency domain and one

OFDM symbol duration in the time domain. The utilization of PRBs facilitates

effective resource management, enabling the adaptable allocation of resources

to diverse users and services, contingent on the network’s requirements and

prevailing traffic conditions. The separation between individual subcarriers

within a PRB, determined by SCS, significantly influences factors such as data

rate, and the overall performance of the system. The selection of different

SCS values can be tailored to the specific needs of a communication system,
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striking a balance between considerations like spectral efficiency and resistance

to interference.

On the other hand, non-radio resources play a crucial role in supporting the

computational and storage aspects of network slices. These resources, located

in edge and central cloud environments, encompass computing power, storage

capacity, cache resources, and VNFs. They contribute to the intelligence and

processing capabilities essential for handling diverse smart city applications

efficiently.

Effective NS involves a delicate orchestration of both radio and non-radio

resources to meet the unique requirements of different slices. For instance,

mission-critical applications such as emergency response may benefit from

dedicated radio resources to ensure optimal performance, while less critical

applications might leverage shared resources for improved efficiency. The syn-

ergy between these two types of resources is central to achieving the flexibility,

efficiency, and customization required in the dynamic landscape of smart city

networks.

4.2 Radio Resource Calculation

4.2.1 Radio Resource Calculation During Slice Preparation

Phase

Prior to executing NS, it is imperative to ascertain the minimum number of

PRBs needed to meet the QoS requirements for each slice. This determination

serves several crucial purposes. Firstly, it aids in the design and preparation

of the physical network by providing insights into the total PRBs required to
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support applications, especially in worst-case scenarios where all eight slices

may simultaneously experience service requests during the operation phase.

Secondly, by knowledge of the required PRB values, we can estimate the number

of slice requests that can be accommodated within the available PRBs in the

physical network. Moreover, the determined PRB values enable us to assess how

many PRBs need to be reserved to fulfill a specific slice request before the actual

VNE. Lastly, calculating resource requirements helps to anticipate network

costs in advance especially to prepare for worst-case scenarios. Calculating

the required PRBs before defining the slice or application requirements and

initiating the NS operation is a key aspect of slice preparation, encompassing

stages 2, 3, and 4 in the network slice life cycle (Figure 1.1).

In this dissertation, our goal is to determine the necessary number of PRBs

for each network slice, in accordance with the QoS standards outlined in Chap-

ter 3. It is crucial to note that our analysis encompasses applications that may

request multiple 5G service types (as per Figure 1.2b). Given this multifaceted

scenario, the computation of required PRBs is contingent upon the specific

combination of 5G services sought by the application. For instance, in B5G,

emergency response applications necessitate all three 5G service types simul-

taneously. Consequently, we calculate the PRBs separately for each service

type and then add them to determine the total PRBs needed for each emergency

response application. These calculations rely on the minimum data rate and

delay requirements specified for each application, as outlined in Table 3.10.

We employ Equation 4.1 to compute the effective data rate per PRB assigned

to support a service type requested by a single UE [64].
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Data rate per PRB = 10−6×
J

∑
j=1

(
v( j)

Layers×Q( j)
m × f ( j)×Rmax×

1×12
T µ

s

× (1−OH( j))
)

(4.1)

Where:

• Data rate per PRB: Effective data rate per PRB assigned

• J: Number of aggregated component carriers

• Rmax: Max code rate

• v( j)
Layers: Number of MIMO layers for carrier j ∈ J, where a MIMO layer

is the minimum of the number of transmit antennas and number of receive

antennas of a MIMO radio link

• Q( j)
m : Modulation order for carrier j ∈ J

• f ( j): Scaling factor for UE capability for carrier j ∈ J

• µ: Numerology

• T µ
s : OFDM symbol duration for numerology µ (Calculated by Length of

a subframe (1 ms) / Number of OFDM symbols in a subframe)

• OH: Overhead due to signaling information for carrier j ∈ J

The number of PRBs required to support an eMBB service request by a

single UE is calculated by Equation 4.2.

PRBeMBB =

⌈
Minimum data rate of eMBB service

Data rate per PRB

⌉
(4.2)

Where the Minimum data rate of eMBB service is specified in Table 3.10, the

data rate per PRB is calculated using Eqn. 4.1, and ⌈·⌉ is the ceiling function.
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Equation 4.3 is utilized to calculate the PRBs required for a URLLC service

type for a single UE.

PRBURLLC =

⌈
Packet Size in bits

DLi
MAX ×Data Rate Per PRB

⌉
(4.3)

Where DLi
MAX is the maximum latency threshold value for the 8 smart city

network slices For UE indices i in the set {1,2,3,4,5,6} supporting URLLC

service in Table 3.10, the data rate per PRB is calculated using Equation 4.1.

Given that mMTC service-type applications necessitate very low data rates

much less than the data rate per PRB, it follows that a single PRB is sufficient

to support this service type for a single UE depicted in Equation 4.4.

PRBmMTC = 1 (4.4)

4.2.1.1 Example Numerical Calculation of Number of PRBs required by

a single UE

For illustration, we consider 2 numerologies: numerology 0 (µ=0) and numerol-

ogy 2 (µ=2). One aggregated component carrier (J) is considered. The Max

code rate is computed as (948/1024)= 0.926. The number of MIMO layers

was assumed as 4, typical for today’s deployed 5G system. The scaling factor,

accounting for UE capability, is set to 1, reflecting a highly capable UE able

to support all the considered smart city applications. Since we considered the

frequency range FR1, the OH is considered 0.14 for DL and 0.08 for UL. We

considered 64QAM modulation scheme, meaning there are 6 bits per OFDM

symbol. Taking reference from [65–71], the packet sizes for the applications 1

to 8 are assumed as {1200, 1500, 1000, 160, 800, 1000, 32, 32} B, respectively.

The computed required PRBs for all the considered 8 smart city applications

(slices) for numerology 0 and 2 are given in Tables 4.1 and 4.2, respectively.
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The cells in Tables 4.1 and 4.2 with "-" signify that this particular application

does not necessitate the use of the specified 5G service type, as shown in Figure

1.2b) and Table 3.10

Table 4.1: Computed PRB Requirements for 8 Smart city applications (Slices)
for numerology 0

Slice Type PRBeMBB PRBURLLC PRBmMTC Total PRBs
Slice 1 8 30 1 39
Slice 2 32 374 1 407
Slice 3 5 50 1 56
Slice 4 2 4 1 7
Slice 5 3 8 - 11
Slice 6 4 5 - 9
Slice 7 - - 1 1
Slice 8 1 - 1 2
Total Required PRBs/UE Across the 8 Slices 532

Table 4.2: Computed PRB Requirements for 8 Smart city applications (Slices)
for Numerology 2

Slice Type PRBeMBB PRBURLLC PRBmMTC Total PRBs
Slice 1 2 8 1 11
Slice 2 8 94 1 103
Slice 3 2 13 1 16
Slice 4 1 1 1 3
Slice 5 1 2 - 3
Slice 6 1 2 - 3
Slice 7 - - 1 1
Slice 8 1 - 1 2
Total Required PRBs/UE Across the 8 Slices 142

The computed values in Tables 4.1 and 4.2 pertain to a single node (i.e., UE,

sensor device, etc.) requesting these services. In practical scenarios, there can

be up to thousands of nodes making requests for slices. When a service request

is initiated, these values signify the number of PRBs that must be reserved

in the slices during the stage 4 (Figure 1.1) of the NS life cycle. During the
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operational phase, when actual slicing and embedding occur, these PRBs can be

adjusted during the stage 6 (Figure 1.1) of the NS life cycle based on changes

in slice requests and network conditions, e.g., node mobility.

Let U denote the number of nodes requesting slice type i, Ki denote the

number of PRBs to be reserved in slice i, and Zu signifies the PRBs required by

node u to achieve its desired data rate, then Ki can be calculated in two ways:

• If all the U nodes requesting slice i requires the same number of PRBs,

then Ki =U×Zu

• If all the U nodes requesting slice i each requires a distinct number of

PRBs, then Ki = ∑
U
u=1 Zu

Tables 4.1 and 4.2 depicts the computed PRB requirements for the consid-

ered 8 smart city applications across numerology 0 and 2 within a B5G network.

The aggregate PRB needs across all slices witness a notable reduction from 532

PRBs in numerology 0 to 142 PRBs in numerology 2, reflecting a substantial

73% decrease. The lower PRB values required by slices in numerology 2,

compared to numerology 0, stem from the fundamental differences in SCS and

spectral efficiency between the two numerologies in a 5G network. Numerology

2, characterized by a larger subcarrier spacing, enhances spectral efficiency,

allowing for higher data rates per subcarrier (in other words higher data rate per

PRB) and more effective utilization of the frequency spectrum. This increased

efficiency translates into a reduction in the number of PRBs needed for a given

data transmission rate or service quality. From Equation 4.1, the data rate per

PRB increases by a factor of four going from µ = 0 to µ = 2. From Equations

4.2 and 4.3, the number of PRBs required is inversely proportional to the data

rate per PRB for the eMBB and URLLC service, respectively. Hence, for the
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eMBB and URLLC services, PRBs required by a single UE listed in Table

4.2 (µ = 2) are a factor of four lower than those listed in Table 4.1 (µ = 0).

Numerology 2’s flexibility in resource allocation and optimized utilization of

frequency resources contribute to a more fine-grained and efficient distribution

of resources, further diminishing the overall PRB requirements for each slice.

In essence, Numerology 2’s architectural advantages lead to a more resource-

efficient allocation, resulting in lower PRB values compared to Numerology 0.

Moreover, the detailed examination of PRB requirements per slice underscores

that slice type 2 consistently commands the highest number of PRBs in both

numerologies. This is due to the high data rate and low latency requirements of

slice type 2.

4.2.1.2 Number of PRBs available in a gNB channel bandwidth

For a given gNB channel bandwidth, the maximum number of PRBs available

in the channel bandwidth is calculated by Equation 4.5.

Max number of PRBs in the gNB channel BW =⌊
Channel BW− (2×Guardband)

PRB bandwidth

⌋
(4.5)

Where the "Channel BW" depends on the frequency range of operation, which,

for 5G NR, can be frequency range 1 (FR1) or frequency range 2 (FR2) at the

sub-6 GHz or millimeter-wave frequency band, respectively. PRB bandwidth

is a product of the 12 sub-carriers per PRB and SCS, where the latter is given

by 15×2µ KHz and µ is the numerology. Equation 4.5 assumes a symmetric

guard band at the two edges of the gNB channel bandwidth, and the ⌊x⌋ denotes

the floor of x.
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For an example numerical calculation, we consider a gNB channel band-

width of 50 MHz. The guard band is assumed as 692 KHz. The PRB bandwidth

is computed for two values of numerology µ: 0 and 2. Recall that the PRB

bandwidth increases with µ , we expect the maximum available PRBs to de-

crease with µ for a given gNB channel bandwidth according to Equation 4.5.

Substituting the assumed values into Equation (4.5) gives 270 available PRBs

and 109 available PRBs for µ = 0 and µ = 2, respectively. Comparing the

calculated available PRBs with the total required PRBs across the 8 slices (i.e.,

the last row of Tables 4.1 and 4.2) shows that the total required PRBs exceed the

maximum available PRBs. This highlights the need for an inter-slice resource

allocation optimization problem, whose objective is to determine the optimal

allocation of the maximum available PRBs in a given gNB channel bandwidth

to the 8 network slices to maximize the utilization of the available PRBs while

adhering to the constraints of not exceeding the maximum available PRBs and

the per slice configured PRBs. However, the solution to this inter-slice resource

allocation problem is beyond the scope of this thesis.

4.3 Non-Radio Resource Calculation

NetSim represents an advanced network simulation software meticulously

crafted to empower engineers, researchers, and networking professionals by

providing a dynamic and authentic platform for the examination, evaluation,

and enhancement of network protocols and configurations. Developed by Tet-

cos [20], NetSim distinguishes itself as a versatile and user-friendly solution,

presenting a virtual space where users can reproduce intricate network scenarios

and evaluate the performance of diverse networking components. With its
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user-friendly interface and extensive array of functionalities, NetSim allows

users to replicate a broad spectrum of network topologies, evaluate the effects of

various parameters, and acquire valuable insights into the intricacies of complex

networks. Whether employed for educational objectives, research initiatives, or

practical applications in network design and issue resolution, NetSim proves to

be an essential tool, providing a simulated yet nearly-realistic environment for

refining networking expertise and making well-informed decisions.

The estimation of virtual central processing unit (vCPU), memory, disk size,

etc for a cloud server necessitates a meticulous analysis of specific applica-

tion requirements. Understanding the nature of the workload is essential, and

careful consideration should be given to the unique resource needs of various

applications. Taking into account the CPU demands of these applications is

crucial, and the selection of an instance type with an appropriate number of

vCPUs becomes necessary. The evaluation of memory requirements is essen-

tial, ensuring that the chosen configuration provides adequate RAM to prevent

performance bottlenecks. Determining storage needs, encompassing both disk

size and type (e.g., SSD or HDD), is a key step. Additionally, considering

network bandwidth requirements is important, and anticipating scalability for

future growth is recommended. Online calculators provided by cloud providers

can be employed to estimate the costs of each application based on different

configurations [72].

Before we delve into the details, let us clarify what a vCPU is. The term

vCPU denotes a fraction or allocation of the underlying physical CPU assigned

to a specific virtual machine (VM). Now, turning to the concept of a hypervisor,

a hypervisor is a software designed to create and manage VMs, enabling a single

host computer to support multiple guest VMs by virtually sharing resources
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like memory and processing power. Threads, defined as paths of execution

within a process, play a crucial role. Threads within the same process share

memory space, distinguishing them from processes, which operate in separate

memory spaces. Additionally, we introduce the concept of physical cores within

the CPU, with logical cores enabling a single physical core to execute two

or more actions simultaneously through hyper-threading. To calculate vCPU,

Equation4.6 is used [73].

Number of vCPU = (Threads×Cores)×Physical CPU (4.6)

To provide an illustration of the non-radio resource requirements computa-

tion per UE, we have constructed a sample non-complex simulated B5G network

environment within NetSim. The simulation setup was tailored to adhere to the

network performance requirements specific to each application, aligned with the

KPIs outlined in the 5G network standard. To address the constraints within the

NetSim software, which involves several threshold value ranges, we adjusted

our parameter values accordingly. It is important to note that the specific vCPU

requirements per application are not entirely fixed and predominantly hinge on

the capabilities of the computational machine on which they are executed or

processed. Additionally, the vCPU value is subject to variation based on the

mobility of users. For the purposes of this simulation, we have opted to simplify

the scenario by assuming static users, thereby excluding the intricacies intro-

duced by user mobility. The resultant values are intended to provide insights

into the patterns of requirements, indicating which application categories may

necessitate a higher vCPU allocation for processing. In scenarios involving

alterations in mobility and traffic, the implementation of a machine learning

approach to predict vCPU requirements for applications emerges as a highly
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promising and effective strategy. However, such an approach would be most

impactful with real-time datasets for training models. The efficacy of the model

is expected to significantly improve when utilizing more practical datasets,

which may become available in the future.

The NetSim model for our Beyond 5G (B5G) network simulation is depicted

in Figure 4.1. Further information regarding the simulation is provided in the

Appendix.

In our simulation, we addressed service provisioning for three distinct

categories of smart city applications, including a video server for emergency

response applications, another video server dedicated to video surveillance

applications, and sensor servers tailored for smart building applications. Within

this framework, we examined a total of 8 user types associated with these service

categories, with each server catering to two or four users. We considered one

user from each of the eight smart city applications under the service categories.

Such as one rescue drone user, an HD video call user, one holographic video call

user, and a VoIP call user under the emergency response category. In the video

surveillance category, we considered one CCTV camera and one surveillance

drone. Additionally, in the smart building category, we included one industrial

building sensor and one smart building sensor in our simulation. Due to software

limitations, we considered a single 5G gNB at the radio access domain, with

three major 5GC domain VNF embedded nodes operating access and mobility

management function (AMF), session management function (SMF), and user

plane function (UPF). Three transport domain L2 switches and a single router

were considered to connect the network to the servers.

Considering the specifications and requirements outlined by the manufac-

turer, we conducted a practical demonstration employing an Intel Xeon E-2288G
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Figure 4.1: The NetSim Network Simulation Model for Non-Radio Resource
Allocation.
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CPU featuring 8 cores and 16 threads. This yielded 128 vCPU [73]. To deter-

mine the core utilization, thread count, and the number of physical CPUs for

each application, we executed individual network simulation models for each

application. Subsequently, we monitored the resource usage of each application

using the resource monitor in the task manager. The resulting values are detailed

in Table 4.3. Considering the computing machine used for the simulation is a

12th Gen core i7 processor with a base speed of 2.10 GHz, the eight applica-

tions, each with a single user, consumed an average of 2900 MB of memory and

utilized 17% of the physical CPU per second in total. The maximum number of

vCPU counts this machine can provide is (12×20)×1 or 240 (using Equation

4.6) vCPUs where the thread count is 20 and the physical CPU core count is 12

for 1 physical CPU.

Table 4.3: Obtained vCPU Demand from Simulation (1 user per application)

Application Threads Cores Physical CPU vCPU Count
Rescue Drone
Holographic Video Call
HD Video Call 10 5 1 50
VoIP
CCTV
Surveillance Drone 10 4 1 40
Smart Home Sensor
Industrial Building Sensor 9 3 1 27

Table 4.3 clearly illustrates that emergency response applications necessitate

a higher vCPU allocation for operation compared to smart building applications,

which require fewer vCPUs. This discrepancy was anticipated due to the higher

minimum data rate required by emergency response applications, contrasting

with the smart building applications’ lower minimum data rate. Video surveil-

lance applications fall in between these extremes. Recognizing this pattern is
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crucial for comprehending the vCPU requirement trends. It is important to

highlight that the maximum number of vCPUs a machine can support represents

the threshold beyond which the machine cannot fulfill application demands.

For this scenario with one user per application, yielding four users in the

emergency response category, two users in the video surveillance category, and

two users in the smart building category, a total of eight users can be effortlessly

supported simultaneously. This utilization entails a total of 117 vCPUs (50

for emergency response, 40 for video surveillance, and 27 for smart building),

leaving the machine with a surplus capability of 123 vCPUs (240 - 117) for

supporting additional applications. To illustrate, on the employed computational

machine, it is feasible to concurrently serve two users per application, utilizing

up to 234 vCPUs.

To mitigate computational complexity, the data rate demand of the eight ap-

plications obtained in this chapter is adjusted and normalized without changing

the pattern for the case study in Chapter 7.

4.4 Summary

This chapter conducts essential computations and simulations to assess the

resource requirements for the considered eight smart cities network slices. It

introduces radio and non-radio resources, emphasizing their roles in NS. The

NetSim simulation, designed for non-radio resource calculation, is explained

along with its results. Overall, it sets the stage for the subsequent discussion on

NS models in Chapter 7.
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Chapter 5

Network Slice Design

In this chapter, we explore the critical role of selecting the right VNFs for the

considered smart city applications. Additionally, we explore the set of SFCs

per smart cities application category to aid network slice design, highlighting

potential conflicts and security risks. Incorrect sets and sequences of VNF

selection can lead to failures, impacting service delivery and network slices.

This chapter aims to provide tailored VNF sets and sequences for three key smart

city application categories and the 8 applications under them in the advanced

B5G network.

5.1 Physical Network Model

Figure 5.1 provides a visual representation of the assumed underlying physical

network discussed in this thesis. This network encompasses physical nodes

interconnected by links spanning the RAN, edge, transport, and core network do-

mains. These nodes can be categorized into two subsets: i) NFV-enabled nodes,

where VNFs are deployed, and ii) switch/router nodes responsible for traffic
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forwarding. Each node and link possesses finite resource capacities, giving rise

to per-node processing delays and per-link transmission and propagation delays.

The physical network is formally modeled as a graph G = (V,E,β ,c) [74],

where V stands for the set of nodes v ∈V , E represents the set of physical links

(u,v), u, v ∈V , β = (βv,β(u,v)) denotes the vector of βv and β(u,v), representing

the capacity of nodes v and links (u,v), respectively, and c = (cv,c(u,v)) signifies

the vector of cv and c(u,v), representing the capacity unit cost of nodes v and

links (u,v), respectively. Let M denote the set of NFV-enabled nodes, such that

M ⊂V , and then V \M encompasses the set of forwarding nodes. Additionally,

V is further divided into two subsets, S and D, denoting the source nodes and

destination nodes, respectively.

5.2 List of PNFs and VNFs for the Considered

Smart city applications

5.2.1 List of RAN VNFs and PNFs

The utilization of RAN slicing allows for tailored function allocation and re-

source optimization, influencing network bandwidth [75]. Both central unit

(CU) and distributed unit (DU) functions operate as virtual software on commer-

cial off-the-shelf (COTS) hardware, making them deployable in any RAN data

center located in the edge cloud, thanks to a fully virtualized architecture [76].

Various functional split options are available and, for this thesis, we chose

Split option 5G/NR-Split7.x. This choice is made to optimize performance and

provide greater flexibility to the network model [77].
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Figure 5.1: The Assumed Physical Network Model
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• Radio Front (RF): The RF comprises 2 parts: RF front end (RFFE) and

digital front end (DFE). The RFFE comprises the RF front-end component

within the RAN’s radio unit (RU) section. Consequently, all functions

within this category are PNFs. This user plane function block includes

PNFs like digital to analog converter (DAC), analog to digital converter

(ADC), power amplifier (PA), low noise amplifier (LNA), and remote

radio unit (RRU) filters. The DFE is the RF back-end component within

the RAN’s RU section. Therefore, all functions within this block are

PNFs. This function block encompasses PNFs like digital up converter

(DUC), digital down converter (DDC), crest factor reduction (CFR),

passive inter-modulation cancellation (PIMC), and digital pre-distortion

(DPD).

• PHY Functions: The PHY function comprises 2 parts: low PHY

functions and high PHY functions. The low PHY function block en-

compasses VNFs such as digital buffer, analog buffer, cyclic prefix (CP)

insertion/extraction, fast fourier transform/inverse fast fourier transform

(FFT/IFFT), combination, beamforming, precoding, and prefiltering [78].

The high PHY function block includes VNFs such as resource element

(RE) mapping, layer mapping, channel estimation, modulation/demodula-

tion, modulation compressor, scrambling/descrambling, rate matching,

encoding/decoding, encryption, and precoding [78].

• Media Access Control (MAC) Functions: It comprises user plane VNFs

[79] for tasks such as channel data transfer, HARQ, CP, multiplexing, and

de-multiplexing.

• Radio Link Control (RLC) Functions: RLC consists of user plane

63



VNFs [79], which handle functions like transmission buffer, RLC, re-

transmission buffer, segmentation, and duplicate detection, as well as

RLC header management.

• Packet Data Convergence Protocol (PDCP): The PDCP is responsible

for tasks such as handling handovers, discarding duplicates, header com-

pression, security functions including ciphering and verification, and user

plane data discard due to timeout [77].

• Service Data Adaptation Protocol (SDAP): The user plane VNF SDAP

is responsible for QoS management. It facilitates mapping between

QoS flows and data radio bearers and marks packets with QoS flow IDs,

extending up to the 5G core.

• Radio Resource Control (RRC): The RRC belongs to the control plane

and is responsible for tasks such as broadcasting system information,

paging, establishing/releasing an RRC connection, non-access stratum

(NAS) data transfer, access spectrum (AS) security configuration, trans-

ferring UE radio access capability, configuring measurements, reporting

measurements, and controlling mobility [80].

5.2.2 List of TN VNFs and PNFs

TN plays an important role in classifying and forwarding the user traffic through

the correct set of physical nodes for the associated network slice.

• Transit Routers: Route control and network communication options are

offered by transit routers. Transit routers can be used, for instance, to
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link network instances, build unique route tables, add routes, and apply

routing policies.

• Aggregation switches: The aggregation switch, which serves as the point

of convergence for access switches, must be able to handle information

from the access layer and send it to the core layer’s upstream chain.

• Time Sensitive Networking Functions (TSNFs): This function block

includes VNF such as precision time protocol (PTP) and PNF such as

SyncE.

• Security Functions: Fronthaul transport network of the BENSSCA smart

city slices must include some security VNFs at the access level on the

TN domain to provide B5G envisioned reliability for emergency response

and video surveillance. These will include network address translation

(NAT), Antivirus, and Spam protection.

• L4 Load Balancer: Utilizing the UDP and TCP protocols, fundamental

data like response times and server connections, a straightforward load

balancing algorithm, and basic information such as these, a layer 4 load

balancer handles transaction traffic at the transport layer.

• Classifier: We propose to use a classifier as a VNF at the user end to

identify the three types of incoming traffic: DPT, NDT, and DAT.

• NGAP: Between the NG-RAN node and the AMF, the next-generation

application protocol (NGAP) VNF provides the control plane signaling.
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Table 5.1: Selected 5G Core Network Function Elements and Their Functionali-
ties

Core VNFs Plane Prime Functionalities
AMF Control - Registration management

- Connection management

- Reachability and mobility management

- RAN Control plane interface (N2) termination
SMF Control - PDU session management

- IP address allocation

- GTP-U tunnel management

- Down link notification management
UPF User - Routing and forwarding packets

- Packet inspection and QoS handling

- Connecting to the Internet Point of Presence

- Traffic statistics reporting and maintenance, etc

5.2.3 List of Core Network VNFs

SDN-enabled 5G core network includes only VNFs. It includes both the user

plane and control plane VNFs. The components of the B5G core architec-

ture include UPF, AMF, authentication server function (AUSF), SMF, network

slice selection function (NSSF), network exposure function (NEF), NF reposi-

tory function (NRF), policy control function (PCF), unified data management

(UDM), and application function (AF). Except for UPF, the other network

functions are control plane functions. For modeling simplicity, in this thesis, we

have considered only 3 of them: AMF, SMF, and UPF. To obtain a clear view

of the main tasks of the selected functions, Table 7.2a is provided. Except for

UPF, the other network functions are control plane functions. UPF is a data or

user plane function. The core network may contain additional UPF VNFs such

as NGFW, load balancer, traditional firewalls, diverse optimizers, etc depending

on the user application requirements.
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5.3 Proposed Sets of VNFs and PNFs for the

Considered Eight Smart city applications

We have curated distinct sets of VNFs and PNFs from the available options

in the RAN, TN, and Core domains. To address the latency sensitivity for

some of the applications, certain VNFs from their core domains have been

strategically proposed to be placed at the edge domain, optimizing for reduced

delay. These carefully chosen VNF sets are specifically designed to fulfill

the unique requirements of eight smart city applications. The details of these

proposed VNFs for the considered eight smart city applications can be found in

Tables 5.2, 5.3, and 5.4.

In the realm of network architecture, SFCs hold paramount importance.

They dictate the orchestrated flow of VNFs and PNFs within a network slice,

ensuring seamless service delivery. It is imperative to select the right combi-

nation of VNFs, as an incorrect choice can lead to resource exhaustion and

subsequent VNF failures, ultimately affecting the chain’s overall performance

and the integrity of the network slice. On the contrary, a judicious selection of

VNFs can circumvent such issues, underscoring the pivotal role of precise VNF

selection. The selection of VNFs and their interconnection to build a logical

network is performed in Stages 2 and 3 of the NS lifecycle (Figure 1.1).

In this section, we conducted a comprehensive examination of the proposed

VNFs and PNFs customized for the smart city applications in question. This

in-depth exploration furnished a solid grounding in the architectural elements

of the network. Now, as we move forward into the next section, our focus

shifts towards the sequencing of these carefully chosen components. This
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section provides a detailed insight into how these components collaboratively

function within each application and span across all eight smart city slices. This

methodical approach enables us to construct a service chain that intricately links

the network functions to their integrated applications in real-world scenarios.

5.4 Proposed SFCs for the Considered Smart city

applications

In the preceding section, we identified the essential VNFs and PNFs for the

three distinct smart city slices. In this section, we will delve into the sequence

of the chosen VNFs and PNFs for every application, supported by each of the

eight smart city slices under consideration.

5.4.1 SFC for Rescue Drones (Slice Type 1)

Rescue drones serve as a vital component in the realm of emergency response

within smart cities. Whether faced with natural calamities, man-made disas-

ters, medical emergencies, or security crises, these specialized drones play a

crucial role in attending to victims swiftly. They offer a range of functionalities

including aerial medical deliveries, establishing temporary connectivity [81],

enhancing disaster preparedness and recovery, search-and-rescue operations,

critical incident management, and much more. Building on the selected VNFs

and PNFs outlined in the previous section, their sequencing is as follows:

NAT→ Antivirus (AV)→ Spam Protection (SP)→ L4 Load Balancer→

DU VNFs → CU VNFs → PTP → NGAP → AMF → SMF → UPF Edge

(NGFW→ Deep Packet Inspection (DPI)→ Lawful Intercept (LI)→ Policy
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and Rule Enforcement (PRE) → Packet Duplication Elimination (PDE) →

Packet Buffering (PB))→ UPF Core (Global Server Load Balancer (GSLB)

→ L7 Load Balancer → Routing and Forwarding (R&F) → Traffic Usage

Reporting (TUR)→ Flight Server (Flight S)→ QoS Monitor (QoS M)→ QoS

Handling (QoS H)).

Since the rescue drone application is part of an emergency response system,

it’s crucial to ensure that users requesting this specific slice receive service with

minimal latency. To achieve this, we propose splitting the UPF VNFs into two

segments: UPF edge and UPF core. This division allows for some of the UPF

VNFs to be processed at the edge, significantly reducing the time required to

serve the respective users. Furthermore, in order to further minimize processing

time and packet loss, we propose handling both the DU and CU VNFs at the

edge.

5.4.2 SFC for Holographic Video Call (Slice Type 2)

The holographic video call application stands as a remarkable advancement in

communication technology, particularly in emergency response scenarios within

smart cities. This innovative tool transforms remote interactions by projecting

realistic three-dimensional images of callers in real-time. In critical situations

where face-to-face communication is imperative, such as medical consultations

or professional collaborations during emergencies, holographic video calls

provide an unparalleled experience. By harnessing augmented reality and

leveraging advanced networking capabilities, this application ensures a seamless

and immersive communication experience for users, utilizing advanced B5G

technologies. Its potential impact spans across various industries, including
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healthcare, education, disaster recovery, and beyond, unlocking new dimensions

of connectivity and collaboration within smart city environments. Building upon

the selected VNFs and PNFs outlined in the previous section, their sequencing

is as follows:

NAT→ AV→ SP→ L4 Load Balancer→ DU VNFs→ CU VNFs→ PTP

→ NGAP→ AMF→ SMF→ Video Cache→ UPF Edge (NGFW→ DPI→

LI→ PRE→ PDE→ PB)→ UPF Core (GSLB→ L7 Load Balancer→ R&F

→ TUR→ Video Optimizer (VO)→ VoNR→ SIP Server (SIP)→ 3D Data

Processing (3D DP)→ QoS M→ QoS H).

Holographic video calls demand real-time data processing with extremely

low transmission, processing, and propagation delay. In line with the approach

of leveraging edge computing to minimize network latency for holographic

video call requests, we propose executing a portion of the UPF, as well as both

RAN DU and CU functions, at the edge.

5.4.3 SFC for HD Video Calls (Slice Type 3)

HD video calls represent a pivotal application within smart cities, particularly

in the context of emergency response. This technology offers an enhanced

level of visual communication, enabling clear and detailed interactions between

individuals or groups. In emergency situations where precise information

exchange is crucial, such as medical consultations, crisis management, or

urgent decision-making, HD video calls provide a crucial lifeline. Leveraging

high-definition video and audio, this application ensures that critical details

are conveyed accurately and efficiently. It plays a vital role in facilitating

rapid response and informed decision-making, ultimately contributing to more
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effective emergency services within smart city environments. Furthermore, the

utilization of HD video calls extends beyond emergencies, serving as a valuable

tool for various professional and personal communication needs in the modern

urban landscape. Building upon the selected VNFs and PNFs outlined in the

previous section, their sequencing is as follows:

NAT→ AV→ SP→ L4 Load Balancer→ DU VNFs→ CU VNFs→ PTP

→ NGAP→ AMF→ SMF→ Video Cache→ UPF Edge (NGFW→ DPI→

LI→ PRE→ PDE→ PB)→ UPF Core (GSLB→ L7 Load Balancer→ R&F

→ TUR→ VO→ VoNR→ SIP→ QoS M→ QoS H).

In a manner similar to the previous application, for handling HD video call

requests, we recommend processing a portion of the UPF, along with both RAN

DU and CU functions, at the edge.

5.4.4 SFC for VoIP (Slice Type 4)

VoIP is a transformative technology in the realm of communication within smart

cities. It enables the transmission of voice and multimedia content over internet

protocols, replacing traditional telephone networks. This digital approach

enhances efficiency and flexibility in communication, offering cost-effective

solutions for both individuals and businesses. VoIP has a significant impact

on emergency response, providing a reliable means of communication during

crises. Its versatility allows for seamless integration with other applications,

and supporting features like video calls, conference calls, and messaging. In

smart cities, VoIP plays a crucial role in building a connected and responsive

urban environment, revolutionizing how people communicate and collaborate

in both routine and emergency situations. Building upon the selected VNFs and
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PNFs outlined in the previous section, their sequencing is as follows:

NAT→ AV→ SP→ L4 Load Balancer→ DU VNFs→ PTP→ NGAP→

CU VNFs→ AMF→ SMF→ UPF Core (NGFW→ DPI→ LI→ PRE→

PDE→ PB)→ GSLB→ L7 Load Balancer→ R&F→ TUR→ VoNR→ SIP

→ QoS M→ QoS H).

Given that VoIP is an application with lower complexity compared to other

applications in the emergency response category, and it does not require as low

latency and bandwidth, we propose a different pattern in the SFC. Specifically,

we propose processing only the RAN DU part following the PTP and NGAP

at the edge, with RAN CU, AMF, SMF, and UPF at the core. This approach

ensures that the QoS for VoIP is met, as the latency requirement is not as

stringent. Simultaneously, it allows for a reduced workload on the physical

edge domain, ensuring that other emergency response applications with stricter

latency requirements can be efficiently processed.

5.4.5 SFC for CCTV Camera (Slice Type 5)

CCTV) cameras are a fundamental component of the video surveillance applica-

tion within smart cities, providing an essential layer of security and monitoring.

These cameras operate on a closed-loop system, capturing real-time visual data

within specific areas and transmitting it to a central monitoring station. In the

context of smart cities, CCTV cameras play a pivotal role in enhancing public

safety and security. They serve as vigilant guardians, continuously observing

public spaces, critical infrastructure, and high-traffic areas. Building upon the

selected VNFs and PNFs outlined in the previous section, their sequencing is as

follows:
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NAT→ AV→ SP→ L4 Load Balancer→ DU VNFs→ PTP→ NGAP→

CU VNFs→ AMF→ SMF→ UPF Core (NGFW→ DPI→ LI→ PRE→

PDE→ PB)→ GSLB→ L7 Load Balancer→ R&F→ TUR→ VO→ QoS

M→ QoS H).

CCTV Cameras fall under the video surveillance category in smart cities,

requiring both low latency connectivity and high reliability. However, similar

to VoIP in emergency response, CCTV surveillance has latency requirements

that are not as stringent as other applications in the video surveillance category.

Therefore, we propose handling only the RAN DU VNFs, following the PTP

and NGAP, at the edge, while managing RAN CU VNFs, AMF, SMF, and

UPF at the core. As mentioned earlier, this load distribution approach ensures

that other video surveillance applications with stricter latency demands can be

efficiently processed at the edge.

5.4.6 SFC for Surveillance Drones (Slice Type 6)

Surveillance drones are indispensable assets in the realm of video surveillance

applications within smart cities. These unmanned aerial vehicles are equipped

with advanced imaging technology, allowing them to capture high-resolution

visuals from vantage points that traditional cameras cannot reach. In smart cities,

surveillance drones serve as dynamic eyes in the sky, providing comprehensive

coverage of large areas and offering crucial situational awareness. Building upon

the selected VNFs and PNFs outlined in the previous section, their sequencing

is as follows:

NAT→ SP → L4 Load Balancer → DU VNFs → CU VNFs → PTP →

NGAP→ AMF→ SMF→ UPF Edge (NGFW→ DPI→ LI→ PRE→ PDE
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→ PB)→ UPF Core (L7 Load Balancer→ R&F→ TUR→ VO→ Flight S

→ QoS M→ QoS H).

Given that surveillance drones have more stringent requirements for latency,

speed, capacity, and mobility compared to CCTV cameras, we propose process-

ing some of the UPF VNFs at the edge, along with the RAN DU and CU VNFs,

to ensure faster connectivity.

5.4.7 SFC for Smart Home Sensors (Slice Type 7)

Smart home sensors play a crucial role in the smart building application within

the context of smart cities, effectively monitoring and responding to environ-

mental and occupancy conditions in residential or commercial spaces. These

advanced sensors utilize cutting-edge technology and connectivity to elevate

energy efficiency, bolster security, and enhance overall comfort for occupants.

When integrated into building infrastructure in smart cities, they contribute

significantly to the creation of sustainable and intelligent urban environments.

Through real-time data analysis, building systems can autonomously make

adjustments to heating, ventilation, lighting, and other parameters, ultimately

optimizing energy consumption while ensuring occupant comfort. Building

upon the selected VNFs and PNFs outlined in the previous section, their se-

quencing is as follows:

NAT→ DU VNFs→ CU VNFs→ NGAP→ AMF→ SMF→ Data Cache

→ UPF Core (Firewall→ Intrusion Detection System (IDS)→ LI→ PRE→

PDE→ PB→ L7 Load Balancer→ R&F→ TUR→ QoS M→ QoS H).

Smart home sensors, categorized under smart building applications in smart

cities, have slightly less stringent requirements for latency, speed, and bandwidth
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compared to the other applications across all the considered three smart city

categories. However, they do require broader user coverage. Therefore, we

propose a slightly more lenient SFC structure to prioritize coverage over strict

latency constraints. Specifically, we suggest processing the RAN DU and CU

VNFs at the edge, while handling the remaining VNFs in the core. Given that

the core domain can handle a higher load compared to the edge, and smart home

sensors have low bandwidth demands without very strict latency limitations,

processing most of the VNFs in the core domain enables the network to cover a

larger number of smart home sensor requests.

5.4.8 SFC for Industrial Buildings Sensors (Slice Type 8)

Sensors in industrial buildings are essential components of smart city infras-

tructure. Building upon the selected VNFs and PNFs outlined in the previous

section, their sequencing is as follows:

NAT→ DU VNFs→ NGAP→ CU VNFs→ AMF→ SMF→ UPF Core

(Firewall→ IDS→ LI→ PRE→ PDE→ PB→ L7 Load Balancer→ R&F

→ TUR→ QoS M→ QoS H).

Industrial building sensors within the smart building application category

in smart cities have higher bandwidth requirements compared to simple smart

home sensors. This is due to the operation of heavy machinery in industrial

buildings. For instance, a temperature sensor in a residential home has lower

demands compared to a temperature sensor for a water boiler in a power plant.

As a result, the SFC structure differs for industrial building sensors compared to

smart home sensors. To accommodate these higher requirements, we propose

processing RAN VNFs along with NGAP at the edge, while handling the rest
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of the VNFs at the core. This configuration allows for efficient management of

the increased bandwidth demands in industrial settings.

5.5 The Assumed Simplified SFCs for Analysis

While the proposed SFCs are intended for practical implementation, we have

taken a pragmatic and streamlined approach to crafting slices for the 8 des-

ignated smart city applications. To simplify the mathematical analysis and

simulation, we designed each of the slices with two types of blocks. One type

contains the VNFs to be embedded and processed at the edge, while the other

contains VNFs for processing at the core. Taking reference from [74], each

slice consists of three instances of the edge block and one instance of the core

block. All of these blocks comprise the selected suite of VNFs, arranged in

accordance with the proposed SFCs. These composite blocks are then treated

as unified VNF entities. This strategy effectively reduces design complexity

without compromising the core conceptual foundations of SFC.

Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9 depict the simplified SFC

diagrams for various slices, including a rescue drone, holographic video call,

HD video call, VoIP call, CCTV camera, surveillance drone, smart home sensor,

and industrial building sensor, respectively.

The significance of SFCs does not end with VNF selection alone. The

sequence in which these functions are deployed holds equal weight. Incorrect

sequencing can introduce conflicts between functions, potentially compromising

security and performance objectives. For instance, deploying a cache before

a firewall might inadvertently expose sensitive content to unauthorized users.

This concern is amplified in real-time applications like emergency response and
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Figure 5.2: Simplified SFC for a Rescue Drone (Slice Type 1)

Figure 5.3: Simplified SFC for a Holographic Video Call (Slice Type 2)

video surveillance, where precision in function sequencing is paramount.
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Figure 5.4: Simplified SFC for an HD Video Call (Slice Type 3)

Figure 5.5: Simplified SFC for a VoIP Call (Slice Type 4)

5.6 Network Slice Model

The physical network serves as the substrate network shared among a collection

I of smart cities network slices (i.e., three virtual networks), where each element

i, i ∈ I, represents a specific slice type i tailored for one of the eight smart city
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Figure 5.6: Simplified SFC for a CCTV Camera (Slice Type 5)

Figure 5.7: Simplified SFC for a Surveillance Drone (Slice Type 6)

applications outlined in Chapter 3. A request for slice type i is formalized as a

six-tuple Hi = (Pi,Ni,LNi,α
i,M,DLmax

i ). In this context, Pi denotes its priority,

Ni signifies the set of VNFs n ∈ Ni, and LNi represents the set of virtual links

(m,n),m,n ∈ Ni. The parameter α i = (α i
n,α

i
(m,n)) stands for the vector of α i

n

and α i
(m,n), signifying the capacity requirement or demand of VNF n and virtual
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Figure 5.8: Simplified SFC for a Smart Home Sensor (Slice Type 7)

Figure 5.9: Simplified SFC for an Industrial Building Sensor (Slice Type 8)

link (m,n), respectively. Furthermore, DLmax
i denotes the maximum tolerable

E2E latency requirement for slice type i. The combination (Ni,LNi) defines the

directed acyclic graph specifying the execution order of the VNFs for network

slice type i, where the presence of a virtual link (m,n) ∈ LNi implies that VNF

n is executed after VNF m. In this thesis, we assume Ni = {BBUi,UPi},∀i ∈ I
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(which is the SFC for network slice type i), with BBUi and UPi representing

the baseband unit and user plane VNFs for slice type i, respectively. In a

typical cellular base station, the BBU is responsible for processing baseband

signals and performing tasks such as modulation, demodulation, channel coding,

decoding, and various other digital signal processing functions. It is a separate

component from the RAN domain that manages the VNFs of the RAN, enabling

more centralized and efficient resource management, better coordination, and

optimization across the overall network. Hence, to denote the set of VNFs

of the RAN and edge domains, we are using the notation BBUi. The former

implements both DU and CU functionalities of a gNB, while the latter handles

the 5G core network functions for slice type i. Taking reference from [74],

we assume that, for each request of slice type i, three instances of BBUi are

placed in the physical network, due to its inherent complexity. Thus, Ni =

{(BBU(i,1),BBU(i,2),BBU(i,3)),UPi} (which is the SFC for network slice type

i), where BBU(i, j) denotes the j-th instance of BBUi, with j = 1,2,3. Lastly,

we denote by Mn ⊆V , the set of candidate physical nodes where VNF n ∈ Ni

can be deployed. The elements of Mn depend on each node’s capabilities

and the maximum latency requirement DLmax
i of slice type i. Consequently,

M =
⋃
∀n∈Ni

Mn.

5.7 Summary

This chapter is pivotal in designing network slices. It introduced the physical net-

work model and 8 smart city slices, each tailored to a specific application. The

proposed VNFs and PNFs, along with the SFCs, form the basis for customized

network slices, crucial for the B5G network’s success in smart cities.
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Chapter 6

NS Problem and Proposed Solution

This chapter focuses on formulating the NS problem and proposing a solution

approach. It begins by formulating the constrained weighted ILP that balances

cost and delay considerations and ends with the proposed MGBFS heuristic

approach to address the same NS problem.

6.1 Weighted ILP Problem Formulation

Let the set of processing delay of VNF n at the physical node v for slice i ∈ I be

DLprocessing,i
n,v ,∀n ∈ Ni,v ∈Mn, i ∈ I. It can be computed using the Equation 6.1.

DLprocessing,i
n,v =

Packet Sizei

βv
(6.1)

Where Packet Sizei is the size of the packet being processed (in bits) by the

VNFs of slice i ∈ I and βv is the capacity of the physical node. For example,

VoIP slice with codec G.711 typically uses 20 milliseconds of audio per packet

resulting in a packet size of around 160 B when using the default settings [82].
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Let the set of transmission delays at the physical link (u,v) for embedding

virtual link (m,n) for slice i∈ I be denoted by DLT x,i
(m,n)(u,v),∀(m,n)∈ LNi,(u,v)∈

E, i ∈ I and the size of the packet being transmitted be Packet Sizei. It can be

computed using the Equation 6.2.

DLT x,i
(m,n)(u,v) =

Packet Sizei

β(u,v)
(6.2)

Where β(u,v) is the capacity of the physical link (u,v).

Let the set of the propagation delay of the physical link (u,v) ∈ E be

denoted by DLpropagation
(u,v) . Considering the speed of light in vacuum (approxi-

mately 299,793 kilometers per second) within the fiber, the propagation delay

in seconds can be computed using Equation 6.3.

DLpropagation
(u,v) =

Link Distance
299,793

(6.3)

Where Link Distance corresponds to the distance of the physical links in km,

which can be quantified as the Euclidean distance between the physical nodes u

and v, u,v ∈V , that the link connects.
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Decision Variables:

xn,v =


1, if the VNF n ∈ Ni is placed on the physical node v ∈V

0, otherwise
(6.4)

y[s,d]
(m,n)(u,v) =



1, if traffic demand of virtual link (m,n) ∈ LNi

flows through the physical link (u,v) ∈ E which

belongs to the physical path between the physical

nodes s and d embedding the VNFs m and n,

respectively

0, otherwise

(6.5)

zi =


1, if slice i ∈ I is selected to be serviced

0, otherwise
(6.6)

Objective Function: The objective function aims to balance cost and delay

in placing the VNFs and virtual links of the considered 8 smart cities network

slices on the physical network. The objective function has four components: two

components addressing processing denoted by DLprocessing,i
n,v , and transmission

and propagation delays denoted by DLT x,i
(m,n)(u,v) and DLpropagation

(u,v) , respectively,

(i.e., the first two summation terms in Equation 6.7); and two components

dealing with costs related to placing the VNFs and virtual links (i.e., the last two

summation terms in Equation 6.7). To streamline the dual-objective problem,

we introduce weight factors Γ and (1− Γ ), where (0≤ Γ ≤ 1), which determine

the importance of delays and costs, respectively. These weights allow us

to prioritize either minimizing latency or reducing the cost. The problem is

formulated as follows:
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F = min
x,y,z ∑

i∈I
zi ·

(
∑

n∈Ni,v∈V
Γ ·DLprocessing,i

n,v · xn,v

+ ∑
(m,n)∈LNi ,(u,v)∈E

Γ · (DLT x,i
(m,n)(u,v)+DLpropagation

(u,v) )

· y[s,d]
(m,n)(u,v)+ ∑

n∈Ni,v∈V
(1− Γ ) · cn,v · xn,v

+ ∑
(m,n)∈LNi ,(u,v)∈E

(1− Γ ) · c(u,v) ·α i
(m,n) · y

[s,d]
(m,n)(u,v)

)
(6.7)

Subject to:

Constraint C1: Each VNF is placed in at most one physical node. For each

VNF n ∈ Ni, exactly one physical node v ∈V must be selected for embedding:

∑
v∈V

xn,v = 1, ∀n ∈ Ni, i ∈ I (6.8)

Constraint C2: Let M be the set of all NFV-enabled physical nodes in V

where, M =
⋃
∀n∈Ni

Mn,∀i ∈ I. Then each VNF is placed at only the NFV-enabled

nodes:

∑
v∈V\M

xn,v = 0, ∀n ∈ Ni, i ∈ I (6.9)

Constraint C3: Each VNF is placed at only certain NFV-enabled nodes:

∑
v/∈Mn

xn,v = 0, ∀n ∈ Ni, i ∈ I (6.10)

Constraint C4: Virtual link placement constraint. A virtual link can be

embedded with the help of one or more than one physical link.

∑
(u,v)∈E

y[s,d]
(m,n)(u,v) ≥ 1, ∀(m,n) ∈ LNi, i ∈ I (6.11)
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Constraint C5: Slice selection constraint. To ensure that one slice is

selected for servicing one request.

∑
i∈I

zi = 1 (6.12)

Constraint C6: Priority Constraint. The constraint ensures that higher

priority slices are selected before lower priority slices.

Pi · zi ≥ Pi+1, ∀i ∈ I (6.13)

Constraint C7: Physical node capacity constraint (or physical node stability

constraint). For each physical node v ∈ V , the total resource demand of the

embedded VNFs cannot exceed the capacity of that physical node.

∑
n∈Ni

α
i
n · xn,v ≤ βv · zi, ∀v ∈V, i ∈ I (6.14)

Constraint C8: Physical link capacity constraint. For each physical link

(u,v) ∈ E, the total resource demand of the embedded virtual links (m,n) ∈ LNi

cannot exceed the capacity of that physical link.

∑
(m,n)∈LNi

α
i
(m,n) · y

[s,d]
(m,n)(u,v) ≤ β(u,v) · zi,

∀(u,v) ∈ E, i ∈ I (6.15)

Constraint C9: Flow conservation constraint for the Source Node, u ∈ S:

All the originated traffic at u = ∑ All the outgoing link traffic from u:

xm,u = ∑
(u,v)∈E

y[s,d]
(m,n)(u,v),

∀(m,n) ∈ LNi, i ∈ I,m ∈ Ni,u ∈ S,zi = 1 (6.16)
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Constraint C10: Flow conservation constraint for the Relay Node, u ∈

V −(S∪D): ∑ All the incoming link traffic to u = ∑ All the outgoing link traffic

from u:

∑
(v,u)∈E

y[s,d]
(m,n)(v,u) = ∑

(u,v)∈E
y[s,d]
(m,n)(u,v),

∀(m,n) ∈ LNi, i ∈ I,u ∈V − (S∪D),zi = 1 (6.17)

Constraint C11: Flow conservation constraint for the Destination Node,

u ∈ D: ∑ All the incoming link traffic to u = All the terminated traffic at u:

∑
(v,u)∈E

y[s,d]
(m,n)(v,u) = xm,u,

∀(m,n) ∈ LNi, i ∈ I,m ∈ Ni,u ∈ D,zi = 1 (6.18)

Constraint C12: Delay constraint. For ensuring that the total end-to-end

delay of a network slice does not exceed a given maximum delay threshold

value of DLi
MAX from the QoS requirement for the associated slice i ∈ I:

∑
n∈Ni,v∈Mn

DLprocessing,i
n,v · xn,v

+ ∑
(m,n)∈LNi ,(u,v)∈E

(DLT x,i
(m,n)(u,v)+DLpropagation

(u,v) ) · y[s,d]
(m,n)(u,v)

≤ DLi
MAX · zi, ∀i ∈ I (6.19)

Constraint C13: Decision variable value constraints. All decision variables

are binary:

xn,v ∈ {0,1} ∀n ∈ Ni,v ∈V, i ∈ I (6.20)

y[s,d]
(m,n)(u,v) ∈ {0,1} ∀(m,n) ∈ LNi,(u,v) ∈ E, i ∈ I (6.21)

z1 ∈ {0,1} ∀i ∈ I (6.22)
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Since all the unknown variables are integer and binary and the objective

function Equation 6.7 and constraints Equations 6.8 to 6.22 are linear equations

or inequalities involving the variables, it is concluded that the formulated

problem is an ILP problem.

6.1.1 Complexity of the Formulated ILP Problem F

Theorem 6.1 is provided to prove the NP-complexity of the ILP problem F .

Theorem 6.1. The optimization problem described by the given objective func-

tion in F and constraints is NP-hard.

Proof. To prove the NP-hardness of the formulated ILP problem F , we will

perform a reduction from a known NP-hard problem, namely the generalized

assignment problem (GAP) [83]. We will show that the GAP can be reduced to

the proposed WILP problem, implying that the WILP problem is also NP-hard.

6.1.1.1 GAP instance

The GAP can be stated as follows: given a set of agents and a set of tasks, each

with a cost, find an assignment of tasks to agents that minimizes the total cost

of the assignment, subject to the following constraints:

• each task must be assigned to exactly one agent, and

• the total capacity absorbed by the assigned tasks for each agent must not

exceed the agent’s available capacity.

The standard generalized assignment problem (GAP) is defined as follows [83]:

min
xt,a

∑
t∈T

∑
a∈A

ct,a · xt,a (6.23)
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s.t.:

∑
t∈T

xt,a = 1 ∀a ∈ A (6.24)

∑
t∈T

wt · xt,a ≤Wa ∀a ∈ A (6.25)

xt,a ∈ {0,1} ∀t ∈ T,a ∈ A (6.26)

where T defines a set representing the tasks in the GAP instance and A defines a

set representing the agents in the GAP instance. Each element t ∈ T corresponds

to a task in the GAP instance. Each element a ∈ A corresponds to an agent in

the GAP instance. ct,a represents the cost associated with assigning task t ∈ T

to agent a ∈ A in the GAP instance. xt,a is the binary decision variable for each

pair (t,a), where t belongs to T and a belongs to A. This decision variable

represents the assignment of tasks t to agents a. Wa is the capacity of agent

a ∈ A, wt · xt,a is the capacity absorption after a task t ∈ T is assigned to agent

a ∈ A, and assignment variable xt,a equals 1 if task t ∈ T is assigned to agent

a ∈ A and 0 otherwise.

6.1.1.2 Simplified F

Let us examine the scenario where the weight parameter is set to Γ = 0. This

simplifies our formulated objective function F to focus solely on the cost term,

with a weight of 1− Γ = 1 attributed to cost. Given that Γ = 0 implies a

disregard for delay minimization, we can consequently omit the constraints

related to delays. With this, we proceed to demonstrate the NP complexity of

the simplified version of our formulated ILP F , wherein the primary objective

is to minimize the total slice embedding cost.
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6.1.1.3 Reduction from GAP to Simplified F

In the context of our proposed ILP problem F , the tasks T correspond to the

VNFs Ni and virtual links LNi , the agents A correspond to the physical nodes V

and links E, the agent capacity Wa is equivalent to the physical node capacity

βv and the link capacity β(u,v), and the capacity demand of a task wt correspond

to the VNF demand α i
n and virtual link demand α i

(m,n). The cost of assigning a

task t to agent a in the GAP ct,a corresponds to the sum of the node and link

costs cn,v and c(u,v), respectively.

We can reduce the decision variables and constraints of the GAP to the

decision variables and constraints of the simplified ILP problem as follows:

In the GAP, the decision variable xt,a represents the assignment of task t to

agent a, where xt,a equals 1 if the assignment is made and 0 otherwise. We can

directly map this decision variable to the decision variables xn,v and y[s,d]
(m,n)(u,v)

in the reduced ILP problem (Γ = 0), where xn,v equals 1 if VNF n is embedded

on physical node v and 0 otherwise, and y[s,d]
(m,n)(u,v) equals 1 if virtual link (m,n)

is embedded on physical link (u,v) and 0 otherwise. Since zi from F is also

a binary variable (taking values of either 0 or 1), it can also be mapped to the

decision variable xt,a in the GAP.

Now, let’s examine the constraints The constraint (Equation 6.24) ∑
t∈T

xt,a = 1

in the GAP can be translated to the constraint C1 in the F problem ∑
v∈V

xn,v = 1,

which limits the assignment of a VNF of a slice to at most one physical node

at a time, and the constraint (Equation 6.25) ∑
t∈T

wt · xt,a ≤Wa in the GAP can

be translated to the simplified version of the constraints C7 and C8 in the

ILP problem ∑n∈Ni,i∈I α i
n · xn,v ≤ βv and ∑(m,n)∈LNi ,i∈I α i

(m,n) · y
[s,d]
(m,n)(u,v) ≤ β(u,v),

which ensures that the available capacity of each physical node and link is
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not exceeded while embedding the slice VNFs and virtual links. The decision

variable constraint (Equation 6.26) xt,a ∈ {0,1} in the GAP enforces the binary

nature of the decision variable. To establish the relationship between xt,a and

xn,v, y[s,d]
(m,n)(u,v), and zi, we can define a linear transformation or mapping among

them. We can define the mapping as follows:

xt,a ≡ xn,v

xt,a ≡ y[s,d]
(m,n)(u,v)

xt,a ≡ zi

This mapping states that the decision variables in the WILP problem is equiv-

alent to the decision variable xt,a in the GAP. All these mappings represent a

linear relationship between the decision variables in both problems. Further-

more, it is important to note that the objective function and constraints of the

simplified ILP problem can be formulated using linear equations and inequali-

ties. This characteristic reinforces the linearity of the relationship among the

decision variables.

6.1.1.4 Complexity of the Reduction

The linearity of the objective function and constraints in the simplified ILP

problem, coupled with the linear mapping between the decision variables,

provides conclusive evidence of the relationship between the decision variables

in the simplified ILP problem and the GAP. The reduction from the GAP to the

simplified ILP problem can be executed in polynomial time due to the nature of

the linear transformation involved in the objective function and constraints [84].

Furthermore, solving a linear system of equations, as necessitated by the

simplified ILP problem, exhibits polynomial complexity. The complexity of
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solving a linear system of equations in N variables is O(N3), indicating that

it can be solved efficiently in polynomial time [85]. This reinforces the feasi-

bility and practicality of establishing the correspondence between the decision

variables in the simplified ILP problem F and the GAP. In other words, the

polynomial-time translation from the GAP to simplified F is facilitated by the

linear system of equations, which offers an efficient and viable approach to

tackle these optimization problems.

6.1.1.5 NP-hardness of the ILP

The GAP is a well-known NP-hard problem, proven in the literature [83].

Therefore, by reducing the NP-hard GAP to the simplified ILP problem F ,

we establish the NP-hardness of the ILP problem F . Hence, based on the

reduction from the GAP, we can conclude that the formulated ILP problem is

NP-hard.

In the realm of NS, where the demands for customized network services

continue to surge, accommodating thousands of slice requests on a larger phys-

ical network topology presents a formidable computational challenge. The

formulated ILP problem, at its core, is proved as NP-hard, signifying that

finding an optimal solution demands computational resources and the runtime

grows exponentially with the scale of the problem. In practical terms, this

means that attempting to address the NS problem exhaustively for a multitude

of slice requests representative of practical scenarios, each with its unique set

of constraints and requirements, is simply infeasible within reasonable time

frames. To circumvent this computational bottleneck, the adoption of heuristic

algorithms becomes imperative. These algorithms, while not guaranteed to
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find the absolute best solution, offer a pragmatic compromise. They provide a

means to swiftly generate high-quality solutions that are remarkably close to op-

timal, effectively striking a balance between solution quality and computational

efficiency. In this context, the necessity of heuristic algorithms, exemplified

by the proposed matroid-based modified greedy breadth-first search (MGBFS)

approach, becomes evident. It is through these heuristic techniques that the NS

paradigm can be practically implemented on a large scale, ensuring the timely

and equitable allocation of resources to meet the diverse demands of network

slices across expansive physical infrastructures.

6.2 The Proposed MGBFS Algorithm

In order to address the time complexity limitation of the NP-hard ILP problem

F , in this thesis we present a novel algorithm, MGBFS, for VNE in NS. MGBFS

combines a matroid-based greedy algorithm with a modified breadth-first search.

We decompose the VNE into two distinct problems: VNF embedding and

virtual link embedding. We choose the matroid-based greedy approach for

VNF embedding because of the observation that VNF embedding on physical

nodes follows graphical matroid properties. Additionally, previous studies on

matroids [29, 30] affirm that the greedy algorithm yields near-optimal results

when the problem aligns with matroid properties. Subsequently, we propose

a modified breadth-first search for virtual link embedding to ensure minimal

latency and cost.
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6.2.1 The Graphical Matroid Properties

The VNF embedding of the proposed MGBFS approach relies on the properties

of graphical matroids, which are represented by a pairM= (J, Ĵ), where J is a

finite set of possible links in the structure, and Ĵ is the collection of independent

subsets of J. Let {p} denote the subsets of Ĵ, and {q} denote the subsets of {p}.

Following the principles of combinatorics, the structure satisfies the following

properties [86]:

6.2.1.1 Hereditary Property

The hereditary property is a fundamental characteristic of matroids, including

graphical matroids. It states that if a subset of elements from a larger set is

independent, then any subset of the original subset is also independent. More

formally, let p be an independent subset of Ĵ. If q ⊆ p, then q is also an

independent subset of Ĵ. This property underscores the idea that once a set

is deemed independent, any smaller collection of its elements will also be

independent.

6.2.1.2 Exchange Property

The exchange property is another crucial aspect of matroids, affirming that for

any independent set p and any element e outside of p but in the spanning set Ĵ,

there exists an element f in p such that p− f ∪ e is also an independent set. In

simpler terms, it means that if an element can be added to an independent set

without violating independence, then it can also be replaced by another element

not in the set while preserving independence.
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6.2.1.3 The Closure of the Empty Set Property

The closure of the empty set property is an intrinsic characteristic of matroids

that underscores the concept of closure operations. Closure operations are

fundamental concepts in matroid theory and related fields of mathematics [87].

They are a way of characterizing and manipulating subsets of a given set,

particularly with respect to properties like independence or spanning. In the

context of matroids, a closure operation takes a subset of elements and "closes"

it under certain rules, resulting in the smallest independent set that contains

the original subset. In other words, the smallest possible independent set in a

matroid is the empty set. Formally, Ĵ( /0) = /0, where Ĵ( /0) represents the closure

of the empty set.

These properties together, hereditary, exchange, and closure of the empty

set, contribute to the definition and behavior of matroids, including graphical

matroids. They provide a foundational framework for understanding and manip-

ulating independent sets within the context of matroid theory, which is integral

to various optimization and allocation problems, including the VNF embedding

process in the MGBFS algorithm.

To ascertain the suitability of applying the proposed MGBFS approach to

the sets of VNFs and the physical nodes, it is necessary to demonstrate that these

sets adhere to the properties of graphical matroids. Specifically, if the sets of

VNFs and the physical nodes satisfy the three fundamental matroid properties,

the (VNF, physical node) pairs can be considered to possess a graphical matroid

structure, thereby making the proposed MGBFS approach applicable.
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6.2.2 Proof of Graphical Matroid Properties for VNF

Embedding Problem

Graphical matroid properties—independence, heredity, and exchange prop-

erty—are crucial for VNF embedding. Independence validates feasible con-

figurations, heredity optimizes resource allocation and the exchange property

allow for dynamic adaptation. These properties guide a matroid-based greedy

approach, ensuring efficient placement for near-optimal solutions.

6.2.2.1 Proof of Hereditary Property

The hereditary property, within the context of matroids and VNF embedding,

states that if a specific set of elements can be embedded without violating certain

constraints, then any subset of that set can also be embedded. This property is

crucial for VNF embedding as it enables resource optimization. It ensures that

if a smaller set of VNFs can be successfully placed on physical nodes, then any

subset of that smaller set can also be embedded.

Theorem 6.2. If a set of VNFs Ni in a slice i ∈ I can be mapped onto a set of

physical nodes M, then any subset of that set can also be mapped onto the same

set of physical nodes.

Proof. Let a set of VNFs Ni for slice i be successfully mapped onto the set of

physical nodes M. Now, consider any subset SNi of Ni (i.e.,SNi ⊂ Ni). Since

Ni has been successfully mapped to M, it implies that there exists a mapping

of VNFs in SNi to nodes in M such that the capacity constraints and delay

thresholds are satisfied. Therefore, the hereditary property holds.
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This property ensures that if, for instance, N1 (e.g., {BBU1,1,BBU1,2,

BBU1,3,UP1
core}) can be successfully mapped onto a subset of physical nodes

(e.g., {1,11}), then any smaller subset of N1 (e.g., {BBU1,1,UP1
core}) can also

be mapped onto the same subset of physical nodes (e.g., {1,11}).

6.2.2.2 Proof of Exchange Property

The Exchange Property in matroids allows for adding elements from a larger

independent set to a smaller one without violating independence. In VNF

embedding, this property is crucial for dynamic adaptation. It ensures that if

a set of VNFs is successfully embedded and more needs to be added, this can

be done without violating network constraints. This adaptability is vital for

accommodating changing network requirements while maintaining integrity

and functionality.

Theorem 6.3. If we have two independent sets of VNFs from a slice i ∈ I, NiA

and NiB, where NiA is a proper subset of NiB, then there exists a VNF in NiB that

can be added to NiA while still keeping the combined set of VNFs (NiA∪NiB)

independent on the same set of physical nodes.

Proof. Let NiA and NiB be independent subsets of VNFs Ni of slice i, and assume

that NiA ⊂ NiB. Here, NiA = {BBU i,1,UPi} and NiB = {BBU i,1, BBU i,2,UPi}.

Since NiA and NiB are independent, it implies that each set can successfully be

mapped to the same set of physical nodes M without violating capacity or delay

constraints.

Now, let’s consider the set NiB \NiA, which contains at least one VNF not

present in NiA (e.g., {BBU i,2}). Due to the independence of NiA and NiB, it is

guaranteed that this additional VNF ({BBU i,2}) can be mapped to the same
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set of physical nodes M without causing conflicts. Therefore, the exchange

property holds.

This property ensures that if for instance, we can successfully map N1A

(e.g., {BBU1,1,UP1
core}) and N1B (e.g., {BBU1,1, BBU1,2,UP1

core}) indepen-

dently onto the same set of physical nodes, we can also combine them (i.e.,

N1A∪N1B) and still map them onto the same set of physical nodes.

6.2.2.3 Proof of the Closure of the Empty Set Property

Theorem 6.4. The empty set ( /0) is independent.

Proof. The empty set ( /0) corresponds to not mapping any VNFs. This means

that no resources of the physical nodes are being used and, hence, no conflicts

or dependencies arise.

Mathematically, this translates to having an empty set of VNFs, i.e., Ni = /0

for a particular slice i ∈ I. In this scenario, since there are no VNFs to be

mapped, there are no constraints to satisfy. Therefore, the empty set is always

considered independent.

This property is crucial as it provides flexibility in the mapping process. It

allows for scenarios where a slice does not require any VNFs to be mapped.

KwOutput

6.2.3 Description of the MGBFS Algorithm

The proposed MGBFS algorithm (Algorithm 1) is a heuristic way to solve the

NS problem to minimize the embedding cost and latency. The algorithm starts

by taking input parameters related to the physical network G and each slice i,
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Algorithm 1 The Proposed MGBFS Algorithm
Input: G, Hi, DLprocessing,i

n,v , DLT x,i
(m,n)(u,v), DLpropagation

(u,v) , DLi
MAX , ki

Output: V NF i
emb, V Linki

emb

1 Sort I in descending order of Pi
2 Sort M in descending order of βv
3 for i ∈ I do
4 for j ∈ {1,2, ...,ki} do
5 Initialization:
6 V NF i

emb← /0/* Closure of the Empty Set Property */
7 A set visited← /0 to keep track of visited nodes
8 A queue, q for the breadth-first search /* the initial value of q is the

starting node from which the search begins */
9 DLi[ j] = 0 /* DLi[ j] = end-to-end delay of request j of slice i

*/
10 for n ∈ Ni[i] do
11 if |V NF i

emb[i][n]|== 0 then
/* Hereditary Property */

12 for v ∈Mn[i][n] do
/* Hereditary Property */

13 if α i
n[i][n]≤ βv[v] then
/* Exchange Property */

14 DLi[ j] = DLi[ j]+DLprocessing,i
n,v [i][n][v]

15 if DLi[ j]≤ DLi
MAX [i] : then

/* Exchange Property */
16 V NF i

emb[i][n]← v
17 βv[v] = βv[v]−α i

n[i][n]

18 for m = the source VNF and n = the destination VNF and m,n ∈V NF i
emb[i] do

19 for u =V NF i
emb[i][m] and v =V NF i

emb[i][n] do
20 Enqueue V NF i

emb[i][n][u] as the initial path
21 while q in not empty do
22 Dequeue a link from the queue and retrieve the last element of the list q

as the current node
23 if The current node is V NF i

emb[i][n][v] then
24 A successful path has been found from source node u to destination

node v!
25 β(u,v)[(u,v)] = β(u,v)[(u,v)]−α i

(m,n)[i][(m,n)]
26 Break
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The Proposed MGBFS Algorithm (Cont’d)
/* For loops from lines 3, 4, 18, and 19 and While loop from line

21 continues */
27 else
28 for neighbor ∈ E[current node] do
29 if neighbor /∈ visited then
30 Form a link between the current node and the neighbor
31 if β(u,v)[current node,neighbor]> α i

(m,n)[i][(m,n)] then
32 DLi[ j] = DLi[ j]+DLT x,i

(m,n)(u,v)+DLpropagation
(u,v)

33 if DLi[ j]≤ DLi
MAX [i] then

34 visited.add(neighbor)
35 Create a new path by making a copy of the current path
36 Append neighbor to the new path, representing the extended path
37 Enqueue the new path in q for further exploration (from line 27)

Hi,∀i ∈ I. A new parameter ki denoting the number of requests for slice i ∈ I is

also specified. The goal is to find embeddings for VNFs and virtual links for

each slice i denoted by V NF i
emb and V Linki

emb, respectively that satisfy the slice

E2E latency requirement DLi
max. In line 1, the algorithm starts sorting the set

of slices I in descending order of priority Pi. This ensures that higher-priority

slices are processed first, potentially allowing for faster resource allocation for

the emergency services. In line 2, the set of NFV-enabled physical nodes M

is sorted in descending order of available capacity βv. This prioritizes nodes

with higher processing capacity when embedding VNFs, potentially improving

the efficiency of the embeddings. Lines 3 to 37 of the algorithm iterates over

each slice i in the set I. Within this loop, the algorithm handles each individual

network slice one by one, ensuring that embeddings are computed for each one.

In lines 4 to 37, for each slice i, the algorithm also iterates over each request j

associated with that slice. This allows the algorithm to handle multiple requests

for the same slice, potentially accommodating variations in traffic patterns.

Lines 5 to 9 are for the initialization of variables and data structures performed
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for each request j of slice i. This includes setting V NF i
emb to an empty set,

creating a set visited to keep track of visited nodes, and initializing a queue

q for the breadth-first search. In lines 10 to 17, for each VNF n in slice i, the

algorithm checks if VNF n has not been embedded yet (|V NF i
emb[i][n]|== 0).

If VNF n has not been embedded, the algorithm iterates over physical nodes

v in Mn[i][n], which are nodes compatible with n in slice i. In lines 11 to 15,

for each compatible node v, the algorithm checks if the capacity of the node

(βv[v]) is sufficient to accommodate n (α i
n[i][n]≤ βv[v]). If so, the processing

delay (DLi[ j]) is updated to include the processing delay of n on v. In lines

16 to 17, if the updated delay (DLi[ j]) is within the maximum allowed delay

(DLi
MAX [i]), n is embedded on v and the capacity of v is updated. This step

effectively assigns n to v in the embedding altering the available physical node

resources for the online scenario. In line 18, the algorithm sets u and v to be

the physical nodes corresponding to m and n, respectively. These nodes u and

v obtained from line 16, will serve as the endpoints of the desired path for the

virtual link (m,n). In lines 19 to 37, after the VNF embeddings are determined,

the algorithm proceeds to find physical links from the source physical node

to the destination physical node to embed the virtual links. This is done by

iterating over source and destination VNFs m and n, respectively, both of which

are embedded. In line 20, the algorithm enqueues the starting node u of the

path from u to v as the starting point for the breadth-first search. In lines 21 to

26, the breadth-first search loop continues until all possible paths are explored

or a successful path is found from the source physical node to the destination

physical node. In lines 22 and 23, the algorithm dequeues a path from the queue

and checks the last element as the current node to determine if the destination

node is reached or not. If the current node is the destination node v, in line 24,
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a successful path from source to destination has been found. The capacity of

the links (β(u,v)[u,v]) that makes the path is updated, effectively assigning the

virtual link to them. If the current node is not the destination, the algorithm

explores neighboring nodes to continue the search in lines 27 to 37. In lines 28

to 35, the algorithm creates a new path from the source to the destination by

forming a link between the current node and a neighbor. If the capacity allows

for the virtual link (β(u,v)[current node,neighbor]> α i
(m,n)[i][m,n]), the delay is

updated in line 32 and the path is enqueued in line 37 for further exploration

repeating the process from lines 21 to 26 until the destination node is reached.

6.2.4 Complexity Analysis

The intricacy of the proposed MGBFS approach is contingent on various ele-

ments, encompassing the magnitude of the input collections and the number

of iterations within the loops. The sorting of I based on Pi (line 1) requires

O(|I| log |I|) operations [88], sorting of M based on βv (line 2) also requires

O(|M| log |M|) operations [88], and the inner and outer loops (lines 3 to 37)

overall complexity is O(|I| · ki · (|Ni| · |Mn|+ |V |+ |E|)). Putting it all together,

the overall complexity of the Algorithm 1 can be approximated as:

O(|I| log |I|+ |M| log |M|+ |I| · ki · (|Ni| · |Mn|+ |V |+ |E|))

This complexity expression combines logarithmic and linear terms, as well

as some constant factors from the inner loop operations. It is important to note

that the complexity is not strictly categorized into a well-known class (e.g.,

polynomial, logarithmic, exponential), but it represents the computational cost

of running the algorithm in terms of the size of the input set I and M, the number
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of requests ki, and the sizes of Ni, Mn, V , and E. In the worst-case scenario, we

want to identify the dominating factor in the complexity expression:

• |I| ·ki ·(|Ni| · |Mn|+ |V |+ |E|) is the most significant term in the expression.

This term represents the operations within the loops and is likely to

dominate the overall complexity.

• |I| log |I| and |M| log |M| are logarithmic terms, which grow slower com-

pared to the polynomial term |I| · ki · (|Ni| · |Mn|+ |V |+ |E|) for large

values of |I|, |M|, |Ni|, |Mn|, |V |, and |E|.

Therefore, in the worst-case scenario, the dominant factor is |I| ·ki · (|Ni| · |Mn|+

|V |+ |E|), which makes the overall complexity:

O(|I| · ki · (|Ni| · |Mn|+ |V |+ |E|))

This means that the worst-case complexity of the algorithm is polynomial in

terms of the input sizes and number of requests. Specifically, it is a polynomial

of degree 2 because it is a quadratic polynomial. This means that the computa-

tional cost of running the algorithm grows at most quadratically with respect

to the input sizes and the number of requests. Recall that the formulated ILP

model F’s complexity is NP-Hard (Theorem 6.1), which means it belongs to a

class of problems that are believed to require exponential time to solve in the

worst case. This sharp contrast in the complexity underscores the practicality

and efficiency of the MGBFS algorithm, making it a promising solution in the

complexity compared to solving the problem using the NP-Hard ILP model,

especially in practical scenarios with a significant number of physical nodes

and links, slice, and requests.
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6.3 Summary

In this chapter, we formulated the ILP for addressing the NS problem. We

defined key parameters related to processing and transmission delays, which are

essential for determining the placement of VNFs and virtual links. The decision

variables and objective function were introduced to guide the optimization

process, striking a balance between cost and delay. We introduced the necessary

constraints for the formulated weighted ILP. We proved the NP complexity of

the formulated ILP and proposed a novel MGBFS heuristic approach to solve

the NS problem in a time-efficient manner. The chapter lays the groundwork

for further study of the proposed MGBFS heuristic approach through numerical

analysis, which forms the topic of Chapter 7.
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Chapter 7

Numerical Solution to the NS

Problem

In this chapter, we implement the solution approaches to address the NS problem

formulated in the previous chapter. We begin by elucidating the case study

environment of this thesis, providing insights into the rationale for adopting NS

based on proof of cost-effectiveness. Subsequently, an analysis of the weight

factor is conducted to determine the optimal trade-off between cost and delay

minimization. The identified optimum weight is then employed to solve the

NS problem across various traffic scenarios. The chapter concludes with a

comprehensive and in-depth discussion of the obtained results.

7.1 Case Study Environment

A set of smart cities network slices I = {1, 2, 3, 4, 5, 6, 7, 8} is considered to

share a 15-node physical network (Figure 5.1) assumed for the case studies.

Among these nodes, 6 are NFV-enabled, given by M = {1, 4, 6, 11, 13, 15},

108



as shown in Figure 5.1. Half of these NFV-enabled nodes are allocated in

the edge cloud, and the other half in the core cloud [74]. The edge nodes

are considered to be uniformly distributed within a 3.14159 square kilometer

area, covering users within a 1 km radius [89]. Optical multi-mode fiber

is assumed to be used with a maximum span of 550 meters [90]. Hence,

node placement ensures that adjacent nodes are positioned between 100 and

550 meters apart. The transport and B5G core network nodes are positioned

based on a similar approach, with core network nodes located 100 to 200 km

from base stations [89]. We assume 5000 as the normalized capacity of the

physical links, with 2 Mbps being the normalization factor. Similar to [74]

we consider the same processing capacity for the nodes. For computational

simplicity, node capacity unit costs (cv) are standardized as 1 for all physical

nodes. The unit cost of physical link capacity for B5G networks is assumed to

be uniformly distributed random numbers within a range of 100 to 600 [74].

Priority values for the considered 8 smart cities network slices are assigned as

Pi = {3,3,3,3,2,2,1,1} for rescue drone, HD video call, holographic video call,

VoIP, surveillance drone, CCTV, smart home sensors, and industrial building

sensors, respectively. According to references [65–71], the mean packet size

values for the 8 network slices are considered {1200, 1500, 1000, 160, 800,

1000, 32, 32} B, respectively. The maximum delay threshold values per VNF

for the 8 smart city network slices under consideration are assumed to be

DLi
MAX = {0.1,0.01,0.05,0.1,0.25,0.50,5,1}ms taken from Table 3.10. Some

of these values have been chosen directly from the performance requirements

outlined in Table 3.10 and certain threshold values have been adjusted and made

more stringent to reflect the latency conditions expected in the context of B5G

and 6G. These adjustments were made based on practical values from Table
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3.10 and anticipated characteristics of future B5G or 6G networks. It is clear

that if the models perform well under these stringent modified limits, they will

certainly function effectively under the more flexible threshold conditions as

well. Figures 7.1a,7.1b, 7.1c, and 7.1d are network slices under the emergency

response application category, Figures 7.2a and 7.2b are network slices under

the video surveillance application category, and Figures 7.3a and 7.3b show the

network slices under the smart building application category along with their

node and link demands.

This thesis explores three distinct traffic scenarios, both online and offline.

In the first scenario, all the 8 slices exhibit equal traffic demand, following

a 1:1:1:1:1:1:1:1 distribution. In the second scenario, representing an initial

market penetration scenario, requests for slice types 1 to 8 follow a distribution

of 1:2:1:1:1:1:1:1. For each traffic scenario, the third scenario reflects a sce-

nario where slicing has become the prevailing standard, with requested slices

distributed in a proportion of 2:1:2:2:2:2:2:2. The number of slice resource

requests has been progressively increased from 10 to 100 requests. The resource

requirements for each slice are adjusted and scaled accordingly. Additionally,

an offline baseline traffic scenario mirroring the demand ratio of scenario 1,

but without NS adoption, is considered to demonstrate the cost-effectiveness

of implementing NS in the network. In this traffic, all the network slices are

treated as traffic from slice type 2.

7.2 Solution Approach

We employed the Gurobi Optimizer [91] to address the ILP optimization prob-

lem for all three types of traffic for both online and offline scenarios. Gurobi

110



(a) Virtual Network Topology of Rescue Drones (Slice Type 1)

(b) Virtual Network Topology of Holographic Video Calls (Slice Type 2)
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(c) Virtual Network Topology of HD Video Calls (Slice Type 3)

(d) Virtual Network Topology of VoIPs (Slice Type 4)

Figure 7.1: Virtual Network Topologies for the Emergency Response Slice
Types
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(a) Virtual Network Topology of CCTVs (Slice Type 5)

(b) Virtual Network Topology of Surveillance Drones (Slice Type 6)

Figure 7.2: Virtual Network Topologies for the Video Surveillance Slice Types
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(a) Virtual Network Topology of Smart Homes (Slice Type 7)

(b) Virtual Network Topology of Industrial Buildings (Slice Type 8)

Figure 7.3: Virtual Network Topologies for the Smart Building Slice Types
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was chosen for its robustness and high-performance capabilities, which are

crucial for effectively addressing the complexities inherent in our formulated

ILP model. Gurobi’s gurobipy module primarily employs a combination of

advanced techniques including the branch and bound method, as well as LP

relaxation and cutting plane methods. The branch and bound method systemati-

cally explores the solution space, dividing it into smaller regions or "branches,"

and using bounds on the objective function to prune branches that cannot contain

optimal solutions. At each node of the branch and bound tree, Gurobi applies

LP relaxation, converting integer variables to continuous variables, thus finding

an optimal solution within the relaxed LP problem, providing a lower bound on

the optimal integer solution. Furthermore, Gurobi also employs sophisticated

cutting plane methods to tighten that LP relaxation, dynamically introducing

additional constraints (cuts) that eliminate fractional solutions from the feasible

set, thereby improving the lower bound. Prior to initiating the branch and bound

process, Gurobi applies extensive solution techniques to simplify the problem,

including tasks like removing redundant constraints, detecting infeasibility,

and fixing variables to their optimal values. By combining these techniques,

Gurobi efficiently navigated the solution space, progressively refining its search

to find the optimal solution for the formulated ILP problem. This approach

enabled Gurobi to handle the ILP optimization problem with high efficiency

and accuracy.

Subsequently, the same problem is solved using the proposed MGBFS

algorithm and a well-established benchmark meta-heuristic, the GRASP, as

detailed in [17]. GRASP is a metaheuristic optimization technique employed to

tackle combinatorial optimization problems. It functions through two distinct

stages: construction and local search. During construction, GRASP incremen-
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tally forms a solution by utilizing a heuristic to judiciously pick components,

incorporating a randomization aspect for variety. Following this, the algorithm

engages in a local search to refine the solution, systematically probing the

solution space surrounding the constructed outcome. This iterative process

continues for a designated number of cycles or until a predetermined stopping

criterion is satisfied.

A 64-bit operating system with an x64-based processor has been used to

perform all the simulations. A set of uniformly distributed random numbers

between 0 and 1 is generated, with the number of elements matching the number

of slice requests. Each value in this set is then used to determine the probability

of the request belonging to one of the 8 slice types. The determination is

based on threshold values specific to each slice type, which are calculated using

the given slice request ratios for each traffic scenario. To introduce flexibility

into the solution approach, we initially employed the use of random variate

generation. However, this method also introduced a level of randomness in the

results. In order to mitigate this randomness and achieve more reliable outcomes,

we implemented an iterative optimization process. For each number of slice

requests in all the three traffic scenarios, we solved the model and determined

the optimum costs of NS through 100 iterations. From these iterations, we

calculated the average costs to obtain a more stable estimate. These average

costs were then identified as the final cost of each scenario for the corresponding

number of slice requests.
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7.3 Cost-Effectiveness Analysis with NS

The cost comparison between this baseline traffic scenario, devoid of NS, and

scenario 1, which maintains a similar traffic ratio but embraces NS, is depicted

in Figure 7.4. The results presented in the figure were obtained from solving

the formulated ILP problem F , utilizing a weight setting of Γ = 0.5.
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Figure 7.4: Cost effectiveness for Adopting NS

It is evident from the cost graph that adopts NS proves to be more cost-

efficient for the network than that without. This is because, when all requests are

treated uniformly in baseline and provided with an equal allocation of resources,

requests with lower resource demands receive more resources than needed,

resulting in resource wastage. Furthermore, even though a network slice with

lower resource requirements costs less to embed, it incurs the same cost as a

slice with higher resource demands. As a result, the cost escalates significantly

in the baseline for not adopting NS. On the other hand, Scenario 1 exhibits

lower embedding cost as a consequence of adopting NS as the number of slice
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requests increases.

7.4 Weight Sensitivity Analysis

We conducted a sensitivity analysis on the weight parameter (Γ ) within the

formulated ILP problem, focusing on scenario 1 traffic type in an offline setting.

Cost and delay value changes for weight value Γ = 0 to 1 with a 0.2 interval for

10, 50, and 100 slice requests have been observed. A lower Γ value signifies a

higher priority on cost minimization over delay, while a higher Γ value indicates

a higher priority on delay minimization over cost. When Γ=0.5, both cost and

delay are equally prioritized, resulting in an embedding solution that strikes an

equal priority balance between the two objectives.

As the range of values for the embedding cost differs significantly from that

of the delay, we opted to normalize the output values between 1 and 10 for a

fair comparison. To achieve this, we employed the following normalization

procedure:

Let the set of obtained results (cost and delay) be x = (x1,x2,x3, . . . ,xN), where

xi is the value of the i-th element in the result set x and N is the number

of elements in the set x. Let xmin = min(x) be the minimum value of x and

xmax = max(x) be the maximum value of x. Let x′i be the normalized value of

xi. Then normalization formula can be written as Equation 7.1.

x′i = a+
(xi− xmin)(b−a)
(xmax− xmin)

(7.1)

where, a is selected as 1 and b is selected as 10. Figures 7.5, 7.6, and 7.7
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illustrate the impact of varying Γ values on normalized average embedding cost

and delay for the 10, 50, and 100 slice requests, respectively.
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Figure 7.5: Weight Sensitivity Analysis for 10 Slice Requests
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Figure 7.6: Weight Sensitivity Analysis for 50 Slice Requests

The sensitivity analysis on the weight parameter (Γ ) provides crucial insights

into the trade-off between delay and cost optimization in our formulated ILP

problem. Γ serves as the factor determining the weight assigned to minimizing

delay, with its complement (1-Γ ) representing the weight factor for cost. Upon
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Figure 7.7: Weight Sensitivity Analysis for 100 Slice Requests

examining all three plots (refer to Figure 7.5, 7.6, and 7.7), it becomes evident

that as we increase Γ , the emphasis on minimizing delay intensifies, resulting

in a decrease in delay values. Conversely, the emphasis on minimizing cost

diminishes, leading to an increase in cost values. This trend persists until we

reach a Pareto optimal point around Γ = 0.89. At this juncture, the delay and

cost plots intersect, signifying the most balanced weight distribution. While

this may not yield the absolute minimum cost or delay, it aims to achieve an

optimal compromise.

Setting Γ = 0.89 implies allocating 89% priority to minimize delay and 11%

priority to minimize cost. The Pareto optimal point at Γ = 0.89 indicates the

limit beyond which further improvements in cost and delay cannot be achieved

solely by adjusting Γ . After this saturation point, the difference between delay

and cost begins to increase. The choice of the weight value ultimately depends

on the user’s preferences and objectives. The analysis plots and the Pareto

optimal point of Γ serve as a reference guide for selecting the appropriate Γ

values to attain the desired outcome. Since our overarching objective is to
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minimize both delay and cost concurrently, for subsequent simulations, we have

chosen to use Γ = 0.89. This choice results in a solution where both objectives

are fairly minimized. While this may not yield the absolute minimum cost

or delay, it endeavors to attain an optimal compromise that aligns with our

objective of jointly minimizing delay and cost.

7.5 Offline Scenarios

In an offline scenario, the physical network resources remain static after each

slice embedding. Each embedding operation assumes that the entire pool of

resources is available to fulfill the slice request. Consequently, there is no

opportunity to observe the real-time resource utilization as more embeddings

are performed, because the available resources are assumed to remain at the

maximum value after each embedding.

7.5.1 Scenario 1 Results and Discussion

The ensuing results, encompassing the average cost, delay, and runtime for all

solution approaches, are shown in Figures 7.8, 7.9, and 7.10, respectively.

In Figure 7.8, it is evident that the formulated ILP consistently produces opti-

mal embeddings with the lowest cost across varying levels of slice requests. The

MGBFS algorithm, proposed as an alternative, achieves an average cost closely

aligned with the ILP, indicating nearly optimal performance. This alignment

was anticipated due to the matroid properties inherent in VNF embedding. The

matroid-based greedy approach of MGBFS provides optimal or near-optimal

solutions, resulting in minimal costs from a heuristic perspective. Conversely,

the benchmark GRASP meta-heuristic consistently yields embeddings with
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Figure 7.8: Average Cost Performance for Offline Scenario 1
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Figure 7.9: Average Delay Performance for Offline Scenario 1
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Figure 7.10: Average Runtime Performance for Offline Scenario 1

the highest average cost over 100 randomization iterations, underscoring the

superior performance of MGBFS.

Examining Figure 7.9, the ILP consistently attains the lowest embedding

delay for all the slice requests, showcasing its effectiveness in minimizing

both cost and delay. This choice aligns with our design decision to prioritize

delay minimization at 89%, achieving an optimal trade-off between delay and

cost minimization. It is important to note that individually, the cost and delay

achieved by the ILP may not represent the absolute minimum values, but they

provide an optimal solution that jointly minimizes embedding delay and cost.

These values cannot be further improved or minimized when considered together.

Simultaneously, in Figure 7.9, the proposed MGBFS exhibits delay values close

to those of the ILP. This alignment was anticipated, as the breadth-first search

in the proposed MGBFS opts for the lowest distance path between embedded

nodes, resulting in embeddings with lower delay. In contrast, the metaheuristic

GRASP performs poorly leading to higher average embedding delay values
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among the three approaches.

In Figure 7.10, it is apparent that ILP’s computational demand surges with

an increase in the number of slice requests. Despite offering an optimal trade-off

between delay and cost, this extensive computation time renders it impractical

for the latency-sensitive smart city applications with high volumes of slice

requests. The GRASP algorithm, while computationally more efficient than

ILP, still falls short in terms of solution efficiency. Notably, the runtime of

GRASP is heavily contingent on the range of randomization iterations, with

higher values resulting in longer runtimes. Conversely, the proposed MGBFS

delivers highly effective solutions in the shortest amount of time, establishing

itself as a more practical approach for B5G NS for smart city applications.

Notably, the runtime of MGBFS remains consistently low, irrespective of the

number of slice requests, highlighting its scalability and efficiency in handling

high-demand scenarios.

7.5.2 Scenario 2 Results and Discussion

As mentioned earlier, this scenario encompasses a traffic demand ratio with

1:2:1:1:1:1:1:1 distribution among all eight network slices. The ensuing results,

encompassing the average cost, delay, and runtime for all solution approaches,

are shown in Figures 7.11, 7.12, and 7.13, respectively.

Similar to the scenario 1, Figure 7.11 demonstrates that the proposed MG-

BFS consistently outperforms GRASP, providing near-optimal solutions for

minimizing average embedding costs. Furthermore, it is evident that the ILP

consistently yields optimal solutions with the lowest embedding costs for all

slice requests. Simultaneously, the ILP achieves the lowest delay solutions, as
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Figure 7.11: Average Cost Performance for Offline Scenario 2
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Figure 7.12: Average Delay Performance for Offline Scenario 2
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Figure 7.13: Average Runtime Performance for Offline Scenario 2

depicted in Figure 7.12. The cost solutions derived from the ILP’s embedding

process represent a trade-off that optimally and equitably minimizes delay.

In Figure 7.12, the delay values obtained from the proposed MGBFS algo-

rithm are closer to those from ILP compared to the GRASP algorithm. Both

Figures 7.11 and 7.12 reveal that, while the proposed MGBFS and benchmark

GRASP initially perform comparably with lower slice requests, MGBFS consis-

tently delivers lower delays and costs for a larger number of slice requests. This

outcome is anticipated, given that GRASP begins with a randomly selected node

for VNF embedding and gradually refines its solution. With a lower number of

slice requests, the impact of randomization is limited due to fewer candidate

options. However, as the number of requests increases, the effect of randomiza-

tion intensifies, influencing both the exploration and exploitation of candidate

options. It may be argued that increasing the iteration count for adaptive im-

provement in GRASP might enhance its performance, but this improvement

comes at the cost of longer runtimes. In the context of B5G, where rapid action
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and results are crucial, compromising runtime is not a viable option.

In Figure 7.13, it is evident that the computational requirements of ILP

escalate as the number of slice requests increases. This is as expected because

the ILP has been proven to have NP-complexity. Hence, despite providing an

optimal balance between delay and cost, the extensive computation time associ-

ated with ILP makes it impractical for latency-sensitive smart city applications

dealing with high volumes of slice requests. While the GRASP algorithm is

computationally more time-efficient than ILP, it falls short in terms of solution

quality. Remarkably, the runtime of GRASP is closely tied to the number of

randomization iterations, with higher values resulting in prolonged runtimes.

Conversely, the proposed MGBFS consistently delivers highly effective solu-

tions in the shortest possible time, positioning itself as a more practical approach

for B5G NS in smart city applications. Notably, the runtime of MGBFS remains

consistently low, regardless of the number of slice requests, underscoring its

scalability and efficiency in addressing high-demand scenarios.

7.5.3 Scenario 3 Results and Discussion

As mentioned earlier, scenario 3 encompasses a traffic demand ratio with

2:1:2:2:2:2:2:2 distribution among all the eight network slices. The ensuing

results, encompassing the average cost, delay, and runtime for all solution

approaches, are shown in Figures 7.14, 7.15, and 7.16, respectively.

From Figures 7.14 and 7.15, it is evident that the ILP model consistently

yields the lowest embedding cost and delay across all the number of slice

requests. The proposed MGBFS achieves cost and delay values very close to

the ILP solutions in both plots. On the other hand, the GRASP approach results
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Figure 7.14: Average Cost Performance for Offline Scenario 3
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Figure 7.15: Average Delay Performance for Offline Scenario 3
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Figure 7.16: Average Runtime Performance for Offline Scenario 3

in higher delay and cost values compared to the proposed MGBFS approach.

In Figure 7.16, it is observed that although ILP delivers optimal solutions,

the runtime required is impractical. In contrast, the proposed MGBFS may not

provide the exact optimal solution, but it offers a near-optimal solution within a

practical time frame. While GRASP takes less time than ILP and more time

than the proposed MGBFS algorithm to provide a solution, the solution is not as

close to optimal as the proposed MGBFS. Therefore, after analyzing the results,

it is evident that the proposed MGBFS is the most practical and best option for

solving the NS problem for offline scenarios.

7.6 Online Scenarios

In the online scenario, the case study environment remains consistent with

the offline scenario, but the embedding process is dynamic. This means that

after each slice request is fulfilled, the available resources in the NFV-enabled
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physical nodes and physical links are updated. Unlike the offline scenario, the

models in the online scenario permit requests to be served as long as there are

sufficient resources available at the physical nodes and physical links. After each

slice request embedding, as the resources undergo updates, we can examine

the resource utilization of all three approaches by assessing the remaining

available resources in each physical node and physical link. As a result, in the

online scenario, in addition to the performance comparison involving cost, delay,

and runtime, there is an additional performance evaluation metric— average

resource utilization performance.

The terms "usage" and "utilization" denote distinct facets. Resource usage

refers to the actual amount of resources employed by the physical network

whereas resource utilization is a measure of how efficiently resources are being

used relative to the total available resources. High resource utilization indicates

efficient use, while low utilization may suggest underutilization or inefficiency

in resource allocation. Resource utilization takes into account the relationship

between the actual resource usage and the total available resources. These

principles are applicable in both online and offline scenarios. However, the

key distinction lies in the real-time updating of remaining available resources

during resource allocation and deallocation for satisfying slice requests in

online scenarios. Whereas, in offline scenarios, every slice request assumes the

maximum available resources.

We can compute the resource usage using the Equation 7.2.

Resource Usage = (Max Available Resources−Total Remaining Unused Resources)

(7.2)

Then we can use that resource usage to compute the resource utilization
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using Equation 7.3

Resource Utilization (%) =
Resource Usage

Max Available Resources
×100 (7.3)

7.6.1 Scenario 1 Results and Discussion

Similar to offline scenario 1, this scenario encompasses a traffic demand ratio

with equal distribution among all eight network slices. The ensuing results,

encompassing the average cost, delay, runtime, and percentage of resource

utilization for all solution approaches, are shown in Figures 7.17, 7.18, 7.19,

and 7.20, respectively. In this scenario, all sets of slice requests were served

and none of the requests were rejected due to lack of resources.
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Figure 7.17: Average Cost Performance for Online Scenario 1

Similar to the results of the offline Scenario 1, Figures 7.17 and 7.18 clearly

indicate that the ILP provides optimal embedding solutions even for the online

scenario, resulting in the lowest embedding cost and delay for all slice requests.

Simultaneously, the proposed MGBFS approach yields near-optimal solutions
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Figure 7.18: Average Delay Performance for Online Scenario 1
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Figure 7.19: Average Runtime Performance for Online Scenario 1

132



10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

Number of Slice Requests

A
ve

ra
ge

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

ILP (Γ = 0.89)
MGBFS
GRASP

Figure 7.20: Average Resource Utilization Performance for Online Scenario 1

with cost values nearly identical to those of the ILP and delay values close to

those of the ILP, outperforming the benchmark GRASP. In both figures, it is

evident that the GRASP provides the highest average embedding cost and delay

values among all the approaches.

Figure 7.19 reaffirms the NP complexity of the ILP model, with impractical

and exponentially increasing runtime for reaching optimal solutions. Conversely,

both the MGBFS and GRASP approaches achieve their solutions in a very low

runtime, with the proposed MGBFS even surpassing the benchmark GRASP,

showcasing its superiority.

In Figure 7.20, the resource utilization percentages for the three approaches

are illustrated, emphasizing a preference for higher utilization. The ILP con-

sistently exhibits the lowest resource utilization, while the proposed MGBFS

shows the highest, and GRASP falls in between with a very low difference

from the values of the MGBFs. Initially, at a low number of slice requests,

e.g., 10 slice requests, both the GRASP and MGBFS exhibit about the same
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average resource utilization. As the number of slice requests increases, MGBFS

surpasses GRASP, proving its superiority, particularly in practical implementa-

tions with a significant volume of slice requests. This observation highlights a

trade-off between resource utilization percentage and average embedding delay

for MGBFS compared to the ILP model. Despite not providing delay values

as close to optimal solutions, MGBFS achieves the highest resource utilization

with the lowest runtime, emphasizing its practical advantage in scenarios with a

substantial number of slice requests.

7.6.2 Scenario 2 Results and Discussion

Similar to the offline Scinario 2, this scenario encompasses a traffic demand

ratio with 1:2:1:1:1:1:1:1 distribution among all the eight network slices, re-

spectively. The ensuing results, encompassing the average cost, delay, runtime,

and percentage of resource utilization for all the solution approaches, are shown

in Figures 7.21, 7.22, 7.23, and 7.24, respectively. In this traffic scenario, the

number of type 2 slice requests is considered to be doubled, and their resource

demand is the highest among all the eight slices. Consequently, in this particular

scenario, some slice requests went unfulfilled due to insufficient resources. The

count of rejected or unattended requests varies among the different solution

approaches.

In line with the offline Scenario 2, Figures 7.21 and 7.22 illustrate that the

ILP achieves optimal online embedding, resulting in the lowest cost and delay

for all slice requests. Simultaneously, the proposed MGBFS approach provides

near-optimal solutions, closely matching ILP’s cost and delay values. Notably,

GRASP exhibits the highest average embedding cost and delay values. Figure
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Figure 7.21: Average Cost Performance for Online Scenario 2
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Figure 7.22: Average Delay Performance for Online Scenario 2
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Figure 7.23: Average Runtime Performance for Online Scenario 2
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Figure 7.24: Average Resource Utilization Performance for Online Scenario 2
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7.23 shows ILP’s extensively increasing runtime, while both the MGBFS and

GRASP achieve solutions swiftly, with MGBFS surpassing GRASP. Resource

utilization, depicted in Figure 7.24, shows ILP with the lowest utilization,

MGBFS with the highest, and GRASP with the second-highest value with a

very low difference from the values of the MGBFS. This also indicates the

superiority of the proposed MGBFS over the GRASP and ILP.

In this particular scenario, the plotted data encompasses cost, delay, runtime,

and resource utilization values only up to a requested slice number of 70.

This limitation is imposed because, starting from 70 onward in Scenario 2, all

approaches initiate the rejection of some slices due to insufficient resources at

the optimum candidate physical nodes. As per our methodologies, if a physical

node fails to accommodate even one VNF out of all the VNFs in a slice, the

entire slice request is rejected to safeguard the integrity of the SFCs. If the

link or node latency requirements are not met, the slice request is also dropped.

However, in our current case study environment, this situation did not occur.

For this particular scenario, in this specific traffic ratio and case study

environment, ILP can handle up to 80 slice requests without any rejection,

resulting in a 20% rejection rate when the total number of slice requests is 100.

The proposed MGBFS can handle up to 75 slice requests without any rejection,

resulting in a 25% rejection rate. In contrast, GRASP can handle up to 70 slice

requests without any rejection, resulting in a 30% rejection rate. This highlights

that ILP has the minimum rejection rate, followed by the proposed MGBFS

with the second-lowest rejection rate, while GRASP performs poorly with the

highest rejection rate.
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7.6.3 Scenario 3 Results and Discussion

Similar to the offline scenario 3, this scenario encompasses a traffic demand

ratio with 2:1:2:2:2:2:2:2 distribution among all the eight network slices, respec-

tively. The ensuing results, encompassing the average cost, delay, runtime, and

percentage of resource utilization for the three solution approaches, are shown

in Figures 7.25, 7.26, 7.27, and 7.28, respectively. In this scenario, all sets of

slice requests were served and none of the requests were rejected due to lack of

resources.
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Figure 7.25: Average Cost Performance for Online Scenario 3

In a parallel vein to Scenarios 1 and 2, the results from Scenario 3 reveal

that the ILP consistently achieves optimal online slice embedding, leading to

the lowest cost and delay across all slice requests. Simultaneously, the proposed

MGBFS approach demonstrates near-optimal performance, closely mirroring

ILP’s cost and delay values and outperforming the benchmark GRASP. On

the other hand, GRASP consistently exhibits the highest average embedding
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Figure 7.26: Average Delay Performance for Online Scenario 3
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Figure 7.27: Average Runtime Performance for Online Scenario 3
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Figure 7.28: Average Resource Utilization Performance for Online Scenario 3

cost and delay values in this scenario. Figure 7.27 further underscores the NP

complexity of the ILP model, presenting unrealistic runtime, while both MG-

BFS and GRASP efficiently achieve their solutions, with MGBFS showcasing

superiority over GRASP. The resource utilization pattern in Figure 7.28 follows

a similar trend, with ILP demonstrating the lowest utilization. As in previous

scenarios, both MGBFS and GRASP exhibit higher utilization than ILP. In

some slice request numbers (e.g., 50, 60, 90, and 100) in this particular scenario,

GRASP displays a higher utilization value with a negligible difference from

that of the MGBFS. However, since MGBFS outperforms GRASP in terms

of cost, delay, and runtime, GRASP fails to present a valid trade-off. Hence,

MGBFS overall performs better than GRASP.
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7.7 Summary

This chapter delved into evaluating the performance of the formulated ILP, the

proposed MGBFS, and the benchmark GRASP approaches in addressing the

NS problem. Both offline and online traffic scenarios were examined to analyze

and compare the effectiveness and robustness of these three approaches. The

simulation results align closely with the anticipated logic outlined in this thesis,

validating the expected outcomes of the study.
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Chapter 8

Conclusion and Future Work

8.1 Thesis Summary and Conclusions

8.1.1 Thesis Summary

This thesis represents a significant progression in B5G communication tech-

nology, specifically concentrating on the crucial elements of E2E NS for smart

city applications. The foundational phase initiates with the proposition of

performance criteria for eight distinct smart city slices (e.g., rescue drones, holo-

graphic video calls, HD video calls, VoIP, CCTV drones, surveillance drones,

smart home sensors, and industrial building sensors), derived from an extensive

literature review. Employing network simulation software, we meticulously

emulate practical 5G scenarios for these applications, calculating precise re-

source requirements essential for meeting the proposed network performance

benchmarks.

This study provides meticulously curated sets of VNFs and SFCs tailored

for all the considered eight smart city applications to augment practical imple-
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mentation. These configurations are intricately designed to cater to diverse QoS

demands and network conditions associated with each application, establishing

a valuable framework for real-world deployment within the dynamic landscape

of B5G technology.

The exploration extends to formulating the NS ILP problem, which is the

embedding of the virtual network on a physical network topology according

to their application-specific requirements in the context of B5G. This entails

addressing critical inquiries regarding the allocation of node and link resources

across radio access, edge, transport, and core network domains. This initially

poses a challenge for practical implementation since the formulated ILP has NP

complexity.

In confronting these challenges, this thesis introduces the innovative novel

MGBFS algorithm. Outcomes reveal that MGBFS consistently approaches

near-optimal results, minimizing cost and delay while ensuring high resource

utilization across diverse scenarios. Comparative analyses underscore the al-

gorithm’s superiority over the benchmark GRASP method, offering a practical

and time-efficient strategy for virtual network embedding challenges.

Beyond the algorithmic contributions, this thesis presents a comprehensive

understanding of the intricacies involved in the network embedding process,

underscoring the necessity for efficient optimization techniques to harness

the potential of B5G technologies fully. The proposed MGBFS algorithm,

combined with carefully curated sets of VNFs and SFCs, collectively comprises

a comprehensive toolkit for efficient resource utilization and optimal network

performance.
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8.1.2 Thesis Conclusions

The findings of this thesis contribute significantly to the advancement of B5G

communication technology, with a specific focus on E2E NS for smart city

applications. The key conclusions drawn from this research are as follows:

• Performance Criteria and Resource Requirements: This thesis defined

the performance criteria for eight distinct smart city slices, computed

their associated radio resource requirements, and employed them on a

practical B5G environment using NetSim to compute their non-radio

resource requirements. These findings provide a comprehensive and

well-informed basis for understanding the smart cities slice types, their

performance requirements, and their corresponding resource needs within

the context of B5G communication technology.

• Customized VNFs and SFCs: This thesis determined specific sets of

VNFs and SFCs tailored for each of the smart city applications. These

findings provide the basis for creating the slice instances to design the 8

slices.

• NS ILP Problem and MGBFS Algorithm: This thesis formulated the

NS ILP problem and introduced the innovative novel MGBFS algorithm.

Comparative analyses highlighted that the ILP model provides the op-

timal solution but with an impractical runtime. The proposed MGBFS

algorithm, on the other hand, offered a near-optimal solution with a prac-

tical runtime, proving its superiority over the benchmark GRASP method.

These findings provide a novel solution to the NS problem with valid

proof.
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• Optimized Resource Utilization: This thesis emphasizes the need for

efficient resource utilization to fully exploit the potential of NS in B5G

technology. The findings of the comparative computational analyses of

the proposed MGBFS algorithm also confirmed that the algorithm is a

valid solution for better resource utilization.

8.2 Engineering Significance

This thesis introduces the MGBFS algorithm, a powerful approach for VNE in

B5G communication technology, particularly in the realm of E2E NS for smart

city applications. The engineering significance and practical applications of the

proposed algorithm are succinctly outlined below:

8.2.1 MGBFS Algorithm Utilization

• Network Optimization: The MGBFS algorithm can be used as a prac-

tical solution for optimizing B5G NS, ensuring near-optimal results in

terms of cost, delay, and resource utilization.

• Dynamic Resource Allocation: The algorithm can be used for real-time

dynamic allocation of network resources, aligning with service requests

while meeting SLA guarantees.

• Agile Service Innovation: Its time-efficient nature can be utilised for

rapid and agile innovation in smart city services, reducing time-to-market

for novel applications.
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8.2.2 Practical Applications for Stakeholders

• Telecommunication Network Infrastructure Vendors (NIV):

– Integration and Enhancement: NIVs can integrate the MGBFS

algorithm into their network infrastructure solutions, enhancing the

efficiency of resource allocation and service provisioning.

– Competitive Edge: Offering the MGBFS algorithm as part of their

solutions, NIVs can provide a competitive advantage, especially in

the smart cities market.

• Mobile Network Operators (MNOs) and Virtual Network Operators

(VNOs):

– QoS Enhancement: MNOs and VNOs can leverage the MGBFS

algorithm to enhance QoS for tailored smart city applications, im-

proving user experience (e.g., improving the current public safety

app).

– Efficient Deployment: MNOs and VNOs can use the algorithm’s

practical runtime for real-world B5G deployment, ensuring efficient

network operation.

• Municipal Governments:

– Smart City Planning: Municipalities (e.g., City of Calgary) can

use the findings to inform smart city planning, tailoring network

solutions to meet the specific needs of emergency response, smart

building, and video surveillance applications.

• Cloud Service Providers:
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– Resource Management: Cloud service providers (e.g., Telus, Rogers,

and Bell) can integrate the MGBFS algorithm for better resource

management in B5G networks, offering more efficient services to

their clients.

8.2.3 Deployment Models and Market Accessibility

• Business-to-Business (B2B):

– Licensing and Collaboration: The algorithm can be licensed or sold

directly to telecom network infrastructure vendors and cloud service

providers, fostering collaboration and innovation in the industry.

• Business-to-Consumer (B2C):

– End-User Accessibility: The algorithm can be made directly acces-

sible to end users and consumers, providing a direct solution for

those engaging with smart city applications.

• Business-to-Business-to-Consumer (B2B2C):

– Intermediary Collaboration: Collaborative partnerships with busi-

nesses, such as telecom providers, can act as intermediaries to

deliver the algorithm to end consumers, ensuring flexibility in de-

ployment.

8.3 Limitations and Future Work

While this thesis boasts several strengths, it is essential to acknowledge certain

limitations. For instance, in the process of computing resources to achieve the
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proposed application performance within the context of B5G, we employed

a 5G network simulation with sequential traffic generation. This approach

involved implementing applications in a predetermined order based on their

priority levels. Although this ensured prioritized service for emergency response

applications, followed by video surveillance and smart building applications,

it does not necessarily reflect real-world scenarios where emergencies might

occur unpredictably. To address this, future simulations should incorporate

more detailed and realistic scenarios, possibly utilizing deficit round-robin

scheduling.

Additionally, the limitations of the current version of the NetSim software

(e.g., NetSim lacks HD video compression) led to alterations in some of the

envisioned values for application performance parameters while computing the

non-radio resource requirements. Future improvements in the NetSim software,

allowing for more precise adjustment of threshold values, will enable more

accurate computations of non-radio resources.

Moreover, the proposed MGBFS algorithm, in its current state, rejects or

drops slice requests if the physical nodes or links lack sufficient resources

or the delay requirement is not met. This could potentially disrupt network

service flow, especially in critical scenarios like emergency responses. To

mitigate this, future modifications to the MGBFS algorithm can be explored,

enhancing its capability to handle situations where resources are insufficient.

These adjustments represent potential avenues for future research to refine and

expand upon the current work.

In addition, in this thesis, we employed ILP and a heuristic approach to

address the NS problem. In the future, as more practical data becomes accessible

regarding B5G traffic, we can adopt an ML or AI approach, such as animal-
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inspired neural networks, to enhance the accuracy of solving the NS problem.

This would be particularly effective in dynamic traffic scenarios where slice

provisioning becomes harder for unknown traffic.

In this thesis, the computation of PRB counts does not account for user mo-

bility and relies on standard calculation values within a static scenario. However,

in real-world scenarios, user mobility influences the computed PRB require-

ments as SINR values change. Therefore, in the future, ML approaches could

be employed to predict traffic patterns. This prediction can aid in estimating

the required PRB values per user in advance, facilitating effective resource

reservation for each network slice. Additionally, our existing NS model pre-

dominantly concentrates on resource allocation under the assumption that the

necessary PRB values do not surpass the maximum PRB count accommodat-

ing the channel bandwidth. However, as highlighted in Chapter 4, real-world

scenarios, especially for B5G services demanding stringent QoS measures,

may deviate from this assumption. Such instances necessitate optimization in

inter-slice resource allocation. In future endeavors, expanding the scope of our

work involves addressing the challenges associated with inter-slice resource

allocation optimization, ensuring the preservation of slice isolation.

The thesis does not currently address the optimality factor or the relationship

between the results produced by the proposed MGBFS algorithm and the

formulated ILP model. A comprehensive analysis comparing the output patterns

of the proposed MGBFS model and GRASP models with the results of ILP

models has not been provided in this work. Future endeavors will focus on

expanding this area of investigation, exploring and presenting a detailed analysis

of these comparisons.
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Appendix A

NetSim Simulation

To analyze the vCPU utilization pattern, we conducted a practical simulation

scenario in NetSim with users exhibiting no mobility.

Simulation Model

Due to limitations in the NetSim software, we simulated a scenario with a

single 5G gNB in the radio access domain, adjusting 5G parameter values to the

maximum extent allowed by the software to mimic a Beyond 5G (B5G) gNB.

As discussed in Chapter 4, we considered three distinct 5GC domain VNF-

embedded nodes responsible for operating AMF, SMF, and UPF independently.

Additionally, three transport domain L2 switches and a single router were

incorporated to establish network connections with the servers.

To ensure alignment with the NetSim reference model, we utilized one of the

built-in 5G NR network models provided by NetSim version 13.1, incorporating

applications such as smartphone video calls, smartphone audio calls, and CCTV

camera applications. We pruned unnecessary applications and introduced addi-

tional ones to reflect our chosen set of eight smart city applications. Since our
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goal is to impose B5G requirements on a 5G configuration, we set all available

and adjustable parameters to their maximum values. We chose this specific

model because it incorporates two crucial servers required for our envisioned

applications: the video server and the sensor server.

For instance, the maximum numerology that NetSim can support is 2. Rec-

ognizing that higher numerology offers better spectral efficiency and is more

suitable for higher bandwidth applications, we configured the numerology to

2. The distances between application users were predefined by the NetSim

model, maintaining their original locations. To enhance the impact of MIMO

technology, we set the antenna count for the gNB to 128 for both transmission

and reception. This specific value was chosen as it represents the maximum

number of antennas supported by the NetSim gNB.

The interference model was selected as the "urban macro" scenario with two

buildings (one indicating a smart home and the other indicating a smart industry

building) to replicate a smart city environment. In the chosen interference

model, NetSim has pre-built interference appropriate for an urban scenario,

and it cannot be altered through the backend source code. All configurations

(e.g., node locations, parameter values, node number, functions, etc) for the

model design were performed by referencing the NetSim 5G-LTE-NR-mmWave

manual.

Simulation Parameters

The application layer of the gNB contains NGAP and GTP-U, each with a count

of 1. The NGAP count refers to the N1-N2 interfaces of the AMF in the 5G

core architecture, which varies based on the number of gNBs connected to the
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AMF. The GTP-U count refers to the number of N3 interfaces in the gNB. As

the current version of NetSim supports only a single UPF, the GTP-U count in

the gNB is set to 1. The rest of the major parameter values of the model’s gNB

node are given in Table 1.

Table 1: Simulation Parameter Values for the gNB

Parameter Value
Protocol UDP
PRB Frame Duration 10 ms
PRB Sub-frame Duration 1 ms
Number of Subcarriers per PRB 12
gNB Frequency Range FR1
gNB Operating Band n40, n41
PRB Count 107
Channel Guard Band 1450 kHz
PRB SCS 60 kHz
PRB BW 720 kHz
Number of PRB Slots per Frame 40
Number of PRB Slots per Subframe 4
Number of PRB Slot Duration 0.25 ms
PRB Symbols Per Slot 14
PRB Symbol Duration 0.01786 ms
Cyclic Prefix Normal
Number of Tx and Rx Antennas 128
Modulation Order QAM64

For modeling error and selecting MCS, we considered the Ideal Shannon

Theorem, where the spectral efficiency is computed using Equation 8.1. The

number of total available PRBs at the gNB is automatically predefined by the

software itself based on the standard of 5G and channel bandwidth, and we

cannot edit it in the GUI. The node and link capacity are determined by NetSim

to be 10000 Mbps. This value is later used for the network model in Chapter 5.

Spectral Efficiency = log(1+SINR) (8.1)

where SINR is the received signal-to-interference plus noise ratio. The

parameter values for the nodes in the core network domain and the transport

network (TN) domain of the model are given in Tables 2 and 3, respectively.
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Table 2: Simulation Parameter Values of the Core Network Nodes

Node Parameter Value
AMF, SMF, and UPF Em-
bedding Node

Protocol UDP

Initial SSThreshold 65535 B
MSS 1460 B
Max SYN Retries 3

Table 3: Simulation Parameter Values of the TN Nodes

Node Parameter Value
L2 Switches Buffer Size 1 MB

Switch Priority 1
Spanning Tree IEEE 802.1D
STP Cost 2

Router MSS 1460 B
Initial SSThreshold 65535 B
Max TCP SYN ACK 3
Routing Protocol Open Shortest Path First
SPF Calc Delay 1 ms
Flood Timer 33 ms

Simulation Steps

Now, let us delve into the steps taken to conduct the simulation and obtain

the thread and core values per application category. Initially, we obtained

the NetSim built-in model from the list, adjusting node numbers, application

numbers, and servers based on our specific requirements. For instance, in

the emergency response scenario, we removed all CCTV nodes and sensor

servers and kept only the video server. We modified the gNB to have 128

transmission and reception antennas with an urban macro interference model,

accommodating a total of four individual users for the four emergency response

applications. Since each category was run separately, the inclusion of buildings

in the simulation was unnecessary.

In the next step, we added applications and their requirements for each of the

nodes. Parameters such as packet size, protocol type, inter-arrival time, mobility,
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location, etc., were adjusted. After modifying the application requirements, we

set the simulation runtime limit. According to NetSim standards (confirmed by

the NetSim Help Desk), applications start to send and receive packets from 0

seconds. Therefore, we could select any time limit for the simulation without

concerns about reaching a steady state, as applications continue to transmit and

receive packets as long as the simulation is running, with time serving as the

stopping criteria.

Once the simulation runtime was set, the simulation ran for a specified

time period. Simultaneously, on the computing machine, we opened the Task

Manager’s resource observation tab to monitor the number of threads and cores

NetSim utilized for a particular simulation. Despite the simulation using various

thread values within a certain simulation window due to the interference model,

we selected the maximum thread and core values that the simulation used while

running a specific application category.

After observing the maximum thread and vCPU values for an application

type, we used Equation 4.6 to calculate the required vCPU count for that

application type. This process was repeated for the remaining two application

categories as well.

Tables 4, 5, and 6 provide details on the considered 8 applications’ altered

parameter values for reference.
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Table 4: Emergency Response Application Parameter Values for NetSim Simu-
lation

Application Parameter Value
Rescue Drone Transport Protocol UDP

QoS UGS (High Priority)
Packet Distribution Exponential
Inter Arrival Time Distribution Exponential
Packet Size 1200 B
Mobility No Mobility
Location Outdoor

Holographic Video Call Transport Protocol UDP
QoS UGS (High Priority)
Packet Distribution Exponential
Inter Arrival Time Distribution Exponential
Packet Size 1500 B
Mobility No Mobility
Location Outdoor

HD Video Call Transport Protocol UDP
QoS UGS (High Priority)
Packet Distribution Exponential
Inter Arrival Time Distribution Exponential
Packet Size 1000 B
Mobility No Mobility
Location Outdoor

VoIP Transport Protocol UDP
QoS UGS (High Priority)
Packet Distribution Exponential
Inter Arrival Time Distribution Exponential
Codec G.711
Service Type CBR (pre-defined by NetSim)
Mobility No Mobility
Location Outdoor
Packet Size 160
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Table 5: Video Surveillance Application Parameter Values for NetSim Simula-
tion

Application Parameter Value
CCTV Transport Protocol UDP

QoS RTPS (Medium)
Packet Distribution Constant
Inter Arrival Time Distribution Constant
Packet Size 800 B
Mobility No Mobility
Location Outdoor

Surveillance Drone Transport Protocol UDP
QoS RTPS (Medium)
Packet Distribution Constant
Inter Arrival Time Distribution Constant
Packet Size 1000 B
Mobility No Mobility
Location Outdoor

Table 6: Smart Buildings Application Parameter Values for NetSim Simulation

Application Parameter Value
Smart Home Sensor Transport Protocol UDP

QoS BE (Low)
Packet Distribution Constant
Inter Arrival Time Distribution Constant
Packet Size 32 B
Mobility No Mobility
Location Indoor (Building 1)

Industrial Building Sensor Transport Protocol UDP
QoS BE (Low)
Packet Distribution Constant
Inter Arrival Time Distribution Constant
Packet Size 32 B
Mobility No Mobility
Location Indoor (Building 2)
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