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Abstract

Disaggregated Data Center (DDC) is a modern datacenter architecture that decouples hard-

ware resources from monolithic servers into pools of resources that can be dynamically com-

posed to match diverse workload requirements. While disaggregation improves resource

utilization, it could negatively impact workload slowdown due to the latency of accessing

disaggregated resources over the datacenter network. To this end, we consider CPU and

memory disaggregation and conduct measurements to experimentally profile several popu-

lar datacenter workloads in order to characterize the impact of disaggregation on workload

execution slowdown. We then develop a workload placement algorithm, called Iterative

Rounding-based Placement ( IRoP), that given a set of workloads, determines where to place

each workload (i.e., on which CPU) and how much local and remote memory is allocated to

it. The key insight in designing IRoP is that the impact of remote memory latency on slow-

down can be substantially masked by assigning workloads to higher-performing CPUs, albeit

at the cost of higher power consumption. As such, IRoP aims to find a workload placement

that minimizes the DDC power consumption while respecting a bounded slowdown for each

workload. We provide extensive simulation results to demonstrate the flexibility of IRoP in

providing a wide range of trade-offs between power consumption and workload slowdown.

We also compare IRoP with several existing baselines. Our results indicate that IRoP can

reduce power consumption and slowdown in the considered scenarios by up to 8% and 12%,

respectively.
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Chapter 1

Introduction

1.1 Motivation

Today’s data centers (DCs) are designed based on a server-centric model. The building block

of this model is a monolithic server that includes all necessary hardware resources such as

CPU, RAM, and NIC to run typical datacenter workloads. One of the main limitations of

the server-centric model is the difficulty to achieve full resource utilization due to resource

stranding, where a server that has used up one type of resource cannot run more workloads

even though it may still have large amounts of other resources available. Server virtualization

helps improve the utilization of hardware resources, but it cannot eliminate the problem

completely as stranded resources on one server cannot be allocated to virtual machines

running on other servers.

Indeed, measurements in production DCs show that the average utilization of hardware

resources is relatively low. For example, a recent report [31] reveals that 80 percent of the

time datacenter clusters utilize 10− 30% of their CPU capacities and more than half of the

time the average memory utilization is around 50%. Also, Google and Alibaba report that the

memory utilization of their clusters is around 60% [51, 32]. In addition to equipment costs,

this under-utilization results in elevated power consumption, as static power consumption

of fixed-ratio servers is significant [3], which has financial and environmental consequences.
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For example, data centers consumed around 1.5% of the total power consumed in the U.S. in

2018, amounting to $4.5 billion [9]. Addressing the stranded resource problem has become

even more critical as the model of computing is evolving in response to emerging data-

centric workloads such as those in Machine Learning/Artificial Intelligence. These workloads

require large amounts of processing capacity as well as memory to work efficiently. Simply

over-provisioning servers with more hardware resources not only exacerbates the stranded

resource problem but faces practical limitations (i.e., limited DIMM slots for memory on

the server board).

To overcome the limitations of the server-centric model, a resource-centric model is

proposed for datacenters based on resource disaggregation. In a disaggregated datacenter

(DDC), server hardware resources are physically or logically disaggregated into homogeneous

resource pools from which resources can be allocated to workloads on demand. The scale of

disaggregation can be within a single rack, a group of racks (i.e., a cluster), or the entire

datacenter. One of the most crucial components of a disaggregated architecture at any scale

is the network interconnecting resource pools. Recent advances in low-latency networking

demonstrate that microsecond-scale host-to-host latency is achievable in datacenters [14],

with sub-microsecond latency within the host networking stack [21]. Nevertheless, even such

network latencies are still high when accessing remote disaggregated memory, noting that ac-

cessing local memory on the same server box takes the order of tens of nanoseconds [13]. As

memory access latency increases, execution slows down for those workloads that are memory

intensive.

To compensate for the slower memory access, workloads can be assigned to higher-

performing CPUs, e.g., CPUs with higher compute capacity or higher clock frequency.

However, based on the work of the authors in [47], this strategy increases datacenter power

consumption (the higher the frequency, the higher the power consumption), and conse-

quently, infrastructure costs increase. Fig. 1.1 shows how increasing the frequency of a Core

i7 CPU module increases its power consumption.

Different workloads have different levels of sensitivity to memory access latency. In

2



Figure 1.1: Power consumption of SPEC Integer benchmarks on Core i7 SandyBridge. [47]

Fig. 1.2, we have plotted measured slowdown for several popular datacenter workloads (see

Section 3 for details). The slowdown of a workload is defined as below:

Slowdown =
Workload completion time when executed in a disaggregated DC

Worklaod completion time when executed in a traditional DC
(1.1)

The figure clearly shows that some workloads such as Kmeans [50] are highly sensitive to

memory access latency, while others such as WordCount [42] show negligible sensitivity. This

behavior can be exploited to minimize the impact of memory disaggregation on workload

slowdown. Recently, a few works have considered optimizing workload slowdown through

run-time management [24, 34]. However, run-time management alone is not sufficient as it

cannot help during the startup time. For example, workloads with a low ratio of hot to cold

pages severely suffer from insufficient low-latency memory at startup [35]. Moreover, when

the starting resource configuration of a workload is far from optimal, it suffers from work-

load slowdown while the run-time management tries to transition the workload to an optimal

resource configuration. Such approaches incur substantial run-time management. Admis-

sible placement of such jobs requires information about their sensitivity to different types

3
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Figure 1.2: Workload slowdown as remote memory access latency increases. The local
memory ration is fixed at 25%. The x-axis shows the amount of additional latency when
accessing remote memory compared to local memory.

of memory at deployment time. Therefore, methods that follow a run-time management

paradigm and do not provide a mechanism to incorporate performance-related information

at the deployment time can not guarantee a consistent quality of service (QoS). As such, in

addition to run-time management, careful workload placement at the time of deployment is

needed to ensure workload slowdown is not unacceptably degraded due to remote memory

access latency while minimizing datacenter power consumption. The workload placement

determines: i) which CPU should we choose to run the workload on, and ii) how much local

and remote memory should we allocate to it. Several works have considered workload place-

ment in DDC. However, these works focus on either optimizing workload slowdown [57, 4, 14]

or minimizing datacenter power consumption [38, 37, 40, 43, 3, 45], without considering the

trade-off between the two. In this thesis, we aim to study workload placement with bounded

slowdown, i.e., guaranteeing slowdown does not exceed a pre-specified target level based on

service-level agreements (SLAs), while minimizing DDC power consumption.

4



1.2 Thesis Objective

The primary objective of this thesis is to explore the impact of resource disaggregation

on workload slowdown in disaggregated datacenters. Specifically, we focus on CPU and

memory disaggregation and conduct measurements to experimentally profile various data

center workloads. This profiling enables us to characterize the impact of disaggregation on

workload execution slowdown. Then, we propose a novel workload placement algorithm,

called IRoP, which aims to minimize DDC power consumption while ensuring a bounded

slowdown for each workload. The algorithm optimizes the placement of workloads on CPUs

and determines how much local and remote memory should be allocated to each workload,

ultimately helping data center owners reduce their power costs while respecting the service-

level agreements (SLAs). We emphasize achieving a balance between power consumption

and slowdown to enhance data center efficiency. The specific objectives of this thesis are

explained in the following subsections.

1.2.1 Study Workload Slowdown in DDCs

We consider CPU and memory disaggregation in DC, where each CPU is provisioned with

a fixed (small) amount of local memory but can access remote memory modules, which are

considerably larger, over the datacenter network. As it will introduce significantly higher

latency for accessing memory, the first objective is to devise a technique to accurately profile

workloads in order to comprehensively model the impact of remote memory latency and CPU

processing capacity on the workload slowdown. Specifically, we consider several popular

workloads and run each of them in isolation on a modified Linux system which allows us

to change the local and remote memory ratios as well as scale the CPU frequency. We

then measure the completion time of each workload and approximate the impact of remote

memory latency and CPU frequency on workload slowdown using piece-wise linear functions.

5



1.2.2 Develop a Workload Placement Algorithm

In the pursuit of optimizing datacenter operations, two crucial objectives stand at the fore-

front: reducing power costs and ensuring timely completion of workloads. Conventional

datacenters often suffer from resource stranding, where certain resources remain underuti-

lized, leading to increased power consumption. On the other hand, the advent of disaggre-

gated datacenters introduces a new challenge - the slowdown of workloads caused by the

higher latency associated with accessing remote memory. Given these critical concerns, our

thesis aims to address this dilemma by devising a rapid algorithm for power-efficient work-

load placement in disaggregated datacenters, all while ensuring that each workload operates

within a predefined threshold of slowdown. This innovative approach seeks to strike a bal-

ance between power consumption and workload slowdown, offering a practical and effective

solution for enhancing the efficiency and adaptability of datacenter infrastructures.

1.3 Thesis Contribution

In this section, we will provide a comprehensive overview of the significant contributions

made in this research thesis, which addresses the challenges of optimizing resource alloca-

tion in Disaggregated Data Centers (DDCs). Our contributions involve the development

of a novel Workload Profiling Framework and the proposal of an efficient Workload Place-

ment Algorithm, both aimed at minimizing power consumption while ensuring performance

objectives for each workload.

1.3.1 Workload Profiling Framework

The first major contribution of this thesis is the introduction of a robust Workload Pro-

filing Framework. In modern DDC environments, the performance of workloads can be

significantly impacted by remote memory access latency and CPU processing capacity. To

tackle this challenging issue, we designed a profiling framework that accurately models the

sensitivity of various workloads to memory access latency and CPU frequency. We define

6



workload slowdown as the ratio of completion time when the workload is executed under a

disaggregated environment compared to a traditional data center. The key innovation of our

approach lies in the use of piece-wise linear functions to represent the relationship between

workload slowdown and these two critical factors.

We embarked on an in-depth exploration to develop the Workload Profiling Framework.

Our research involved studying and analyzing a diverse range of workloads representative of

real-world applications and scenarios. By carefully capturing the slowdown characteristics

of these workloads under varying conditions of remote memory access and CPU frequency,

we formulated piece-wise linear models that accurately depict the impact of these factors on

workload slowdown.

To validate the effectiveness of our profiling models, we conducted extensive experiments

in a controlled environment. For this purpose, we made intricate modifications to the latest

version of the Linux Kernel (version 6.1), allowing us to inject artificial delays when ac-

cessing the swap area. These delays closely mimic the real-world remote memory latency

experienced in a DDC. The experimental results showcased the high accuracy and reliabil-

ity of our profiling models in characterizing real-world workload slowdown. By enabling us

to understand the sensitivity of different workloads to remote memory and CPU frequency

variations, this framework lays the foundation of an efficient workload placement algorithm

in DDCs.

1.3.2 Workload Placement Algorithm

The second major contribution of this research is the proposal of an innovative Workload

Placement Algorithm. Armed with the valuable insights gained from our Workload Profiling

Framework, we formulated the workload placement problem in DDCs as a mixed-integer

linear problem (MILP). We recognized that while minimizing workload slowdown is crucial,

we must also take into account the overarching objective of reducing power consumption in

the DDC.

The formulation of the MILP is an essential step in addressing the workload placement

7



problem effectively. To this end, we built upon the comprehensive MILP model proposed in

a prior work [3], which accurately represents and models the power consumption of resources

within the DDC. However, we acknowledged that directly solving the MILP would be com-

putationally expensive, as it is inherently NP-hard. As a result, we focused on devising

a fast polynomial-time algorithm, which we named IRoP, to efficiently solve the workload

placement problem while considering both power consumption and workload slowdown.

The design of IRoP is based on transforming the MILP problem into a modified variant of

the multi-dimensional bin packing problem [8]. Leveraging the framework of deterministic

rounding of relaxed integer programs, we ensured that IRoP provides high-quality approxi-

mations while being computationally efficient. By striking an optimal balance between power

consumption and workload slowdown, IRoP efficiently allocates resources in the DDC and

delivers near-optimal solutions to the workload placement problem.

1.3.3 Evaluation and Results

We recognized the paramount importance of evaluating the performance and effectiveness

of our proposed IRoP algorithm. Therefore, we conducted extensive experiments, evaluating

its utility across a wide range of realistic scenarios and workloads. Our evaluation metrics

revolved around power consumption and workload slowdown, both of which are critical

aspects of DDC resource allocation.

The results of our experiments were highly promising, further affirming the strength of

our contributions. The IRoP algorithm demonstrated significant reductions in both power

consumption and workload slowdown, achieving impressive improvements of up to 8% and

12%, respectively, in the considered scenarios. These results not only highlighted the efficacy

of our proposed algorithm but also showcased its practical applicability in real-world DDC

environments.

In summary, the main contribution of this thesis can be summed up as follows:

• We present a framework for profiling workload slowdown with respect to remote memory

and CPU processing capacity using simple piece-wise linear functions. We empirically

8



show that the proposed functions provide a highly accurate estimation of real-world

workload slowdown.

• We formulate workload placement in DDCs as a MILP problem whose objective is to

minimize a combination of total power consumption and workload slowdown. We then

design an efficient approximation algorithm, called IRoP, to solve the MILP problem

based on the deterministic rounding framework and analyze its theoretical performance.

• We conduct extensive experiments to evaluate the performance and utility of IRoP in

terms of power consumption and workload slowdown in a variety of realistic scenarios.

Our results indicate that IRoP reduces both power consumption and slowdown in the

considered scenarios by up to 8% and %12, respectively.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2: Background and Related Works provides a comprehensive overview of

networking protocols, data center interfaces, and related research works in the context of

physically disaggregated data centers. It highlights the challenges posed by high latency

and CPU load in such environments and explores the evolution of networking protocols,

including RDMA and InfiniBand, to address these issues. Additionally, it discusses the cate-

gorization of interfaces into clean-slate and swap-based designs, emphasizing their impact on

workload management. The chapter also delves into the extensive research efforts aimed at

optimizing resource allocation in disaggregated data centers, focusing on minimizing work-

load slowdown, power consumption, and maximizing utilization. This wealth of information

forms a foundational understanding of the key concepts and challenges in the field of resource

disaggregation within data centers.

Chapter 3: Profiling Datacenter Workloads provides a comprehensive overview of

the datacenter model under consideration and focuses on developing workload profiles that

capture the impact of resource disaggregation on workload slowdown. It introduces the key
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elements of the datacenter model, including resource disaggregation, power consumption

modeling, and workload characteristics. The chapter then dives into the detailed profiling

of popular datacenter workloads, analyzing the effects of remote memory access and CPU

frequency on workload performance. This profiling equips datacenter operators with valuable

insights for optimizing resource allocation, enhancing datacenter efficiency, and meeting the

unique requirements of diverse workloads.

Chapter 4: Workload Placement Problem Formulation introduces a thorough

exploration of the fundamental elements and constraints involved in formulating the Disag-

gregated Workload Placement (DWLP) problem. It introduces essential decision variables,

constraints, and the objective function that underpins the optimization framework for allo-

cating workloads to CPU modules in a disaggregated data center. Furthermore, it highlights

the critical considerations related to workload slowdown, power consumption modeling, and

optimization objectives, emphasizing the trade-off between workload performance and power

efficiency. This chapter serves as the foundational framework upon which subsequent chap-

ters will build to address the efficient operation of disaggregated data centers.

Chapter 5: Proposed Algorithm for Workload Placement presents a novel al-

gorithm, named ”Iterative Rounding-based Placement” ( IRoP), designed to address the

complex problem of workload placement in disaggregated data centers. It presents a com-

prehensive theoretical analysis of IRoP, including its approximation ratio and runtime com-

plexity. The algorithm’s theoretical guarantees, such as a bounded approximation ratio and

polynomial-time complexity, underscore its effectiveness and efficiency in providing near-

optimal solutions for data center resource allocation challenges. This chapter equips data

center operators and researchers with a powerful tool to optimize performance, power con-

sumption, and resource utilization in modern data center infrastructures.

Chapter 6: Performance Evaluation provides a comprehensive methodology and

analysis framework for assessing the efficacy of different workload allocation strategies within

a large-scale disaggregated data center environment. It describes the environment setup, al-

ternative algorithms for comparison, and evaluates performance based on various metrics
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such as total slowdown, total power consumption, and a weighted sum of both. Addition-

ally, it explores the runtime scalability of the proposed algorithm ( IRoP) in comparison to

an optimization benchmark ( OPT). Overall, this chapter offers a detailed foundation for

understanding and optimizing data center operations in a complex and dynamic context.

Chapter 7: Conclusion and Future Works offers a recapitulation of the key findings

and contributions of the research, emphasizing the effectiveness of the IRoP algorithm in

optimizing workload placement within Disaggregated Data Centers (DDCs). Additionally,

it outlines promising avenues for future research, including the expansion of the power con-

sumption model, development of orchestration strategies, real-world implementation, profil-

ing of different workloads, and the integration of AI and machine learning techniques. This

chapter serves as both a summary of the accomplishments and a roadmap for continued

advancements in the field of DDC resource allocation and management.
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Chapter 2

Background and Related Works

This chapter provides the background knowledge required for understanding the proposed

solutions in this thesis. First, we provide an overview of disaggregation in the datacenters,

networking protocols, and interfaces. Then, we elaborate on the requirements that a resource

allocation algorithm should respect when used in a DDC. Finally, related works are studied

and investigated in this chapter.

2.1 Datacenter Architectures

In this section, we review the main architectures of datacenters and we bring the benefits of

using a disaggregated datacenter over a traditional one.

2.1.1 Traditional Datacenters (TDCs)

TDCs, an abbreviation for traditional data centers, are distinct for their utilization of mono-

lithic servers, where different components such as CPU and memory are densely integrated

into a single hardware unit. This architectural paradigm, clearly illustrated in Fig. 2.1a, gives

rise to a series of limitations that warrant a deeper examination to uncover the potential for

improvement and innovation.

The first noteworthy limitation that arises in this traditional server-centric model is the

12



Figure 2.1: Different Architectures of Data Centers.

challenge of low resource utilization, particularly considering the diverse and varying nature

of workload requests. To elucidate this concern, envision a scenario where a single server is

equipped with an impressive 16 CPU cores and an abundant 64 GB of memory. However,

suppose a specific job only necessitates 16 CPU cores and a modest 16 GB of memory to fulfill

its requirements. In this case, the remaining 48 GB of memory remains largely untapped

and unutilized, representing an inefficiency that translates into increased power consumption

and higher maintenance costs [45].

The second limitation lies in the inherent challenges associated with incorporating or
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updating individual components within this server design. Due to the tightly coupled nature

of these monolithic servers, introducing changes or advancements often entails modifying

the entire server unit. As a result, embracing new and more effective technologies that may

enhance efficiency and optimization becomes cumbersome and cost-prohibitive [11]. The

lack of flexibility in the face of technological advancements poses a substantial obstacle for

data centers seeking to stay on the cutting edge of innovation.

Additionally, the tightly coupled architecture in traditional data centers can lead to sig-

nificant consequences if any of the integrated components within a server encounter a mal-

function or failure. In such instances, the entire server becomes adversely affected, resulting

in downtime and service disruptions [7]. The lack of fault tolerance and redundancy in this

setup poses reliability challenges that may hinder seamless operations in critical situations.

Moreover, the limitations of traditional data centers extend beyond their architectural

design and resource utilization challenges. Another significant concern is their environmental

impact and power consumption. As data centers continue to grow in scale and complexity

to accommodate the escalating demand for digital services, their power requirements have

surged. The power consumption of TDCs not only contributes to higher operational costs for

data center operators but also raises environmental concerns, given the substantial carbon

footprint associated with traditional power sources.

In conclusion, as data centers strive to evolve and adapt to meet the ever-growing de-

mands of modern applications and services, especially with the rapid rise of resource-intensive

technologies such as artificial intelligence (AI) and machine learning (ML) applications, ad-

dressing these limitations becomes imperative. By finding innovative solutions to enhance

resource utilization, improve flexibility, and ensure robustness in the face of potential hard-

ware failures, data centers can aim to achieve higher efficiency, cost-effectiveness, and adapt-

ability in their operations. The exploration of alternative data center architectures, such as

logically or physically disaggregated models, presents promising avenues to overcome these

challenges and embrace a more dynamic and agile approach to meet the diverse needs of

modern computing workloads. Fig. 2.2 shows a more detailed traditional datacenter that
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uses standalone servers in each rack and does not require external communication between

CPU and memory modules. In this architecture, networking is only used for external appli-

cations and it is generally not a vital component for the servers to execute workloads. Also,

as a result of accessing only local memory, there is no slowdown for the workloads running

in TDCs.

Figure 2.2: Traditional datacenter infrastructure. The figure shows two racks in a traditional
DC comprised of servers and a storage area network. [3]

15



2.1.2 Logically Disaggregated DCs

Logically disaggregated data centers, akin to traditional ones, retain servers as the funda-

mental unit of computation, interconnected through low-latency network technologies, as

depicted in Fig.2.1b. Within this architectural model, one global software plays a vital role

in effectively managing access to remote memory, facilitating the utilization of unutilized

memory from other servers by various jobs. Consequently, this logical disaggregated design

enables the software to intelligently allocate the remaining available memory, which would

otherwise go to waste, to cater to other jobs in need of additional memory resources. Addi-

tionally, the fault tolerance and redundancy offered by logically disaggregated data centers

address the reliability challenges of TDCs. With resources distributed across separate units,

a failure in one component does not lead to the collapse of the entire system. Instead, the

affected resource unit can be quickly isolated and replaced, ensuring continuous operations

and maintaining the availability of critical services. The industry has shown increasing inter-

est in this architecture, owing to its promising advantages [27, 16, 2], with previous studies

also having delved into its potential [12].

Despite the benefits it offers, this architecture does not completely eliminate the challenges

faced by traditional data centers. The tightly coupled nature of servers introduces certain

hurdles related to adoption and reliability. As data centers strive to keep pace with the

escalating demands of modern applications and services, tackling these challenges becomes

imperative to achieve heightened efficiency, scalability, and fault tolerance in disaggregated

data center operations. To this end, exploring innovative solutions that optimize resource

utilization, streamline software management, and enhance server interconnectivity will play

an important role in shaping the future of logically disaggregated data centers.

In conclusion, logically disaggregated data centers represent a promising evolution in data

center architecture, maintaining servers as the core units of computation while enhancing

memory allocation through global software management. While this approach addresses

some utilization concerns faced by traditional data centers, the journey toward realizing its

full potential necessitates overcoming challenges related to server coupling. By strategically
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exploring and implementing innovative solutions, data centers can aspire to achieve higher

levels of efficiency, scalability, and reliability, thereby laying a robust foundation for the

seamless execution of modern computing workloads in the digitally transformative landscape.

2.1.3 Physically Disaggregated DCs

Unlike the other two architectures discussed previously, physically disaggregated data cen-

ters take the separation of hardware components to a whole new level. This approach marks

a notable departure from the traditional monolithic server-centric model and the logically

disaggregated architecture. In the case of physically disaggregated data centers, significant

advancements have been made historically in disaggregating data storage, leveraging tech-

nologies such as storage area networks (SANs) and network-attached storage (NAS) systems.

For instance, in a seminal work by the authors of [25], they proposed a flash storage disaggre-

gation method to address complex scenarios where jobs require diverse compute-to-storage

resources. Moreover, as far back as 2015, Facebook introduced Yosemite [30], an innovative

disaggregated system-on-chip (SoC) that harnessed the power of interconnecting storage

components to optimize data handling. Consequently, these architectures, just like the pre-

viously mentioned ones, still utilize SANs as an integral part of their design to effectively

decouple storage from computation resources, as shown in Fig 2.1.

However, the real challenge lies in the disaggregation of CPU and memory components,

which forms the struggle of implementing physically disaggregated data centers. In this ar-

chitecture, the CPU and memory are physically decoupled while remaining interconnected

via a fast, low-latency network. Within this dynamic setup, the memory modules are com-

monly referred to as far [4, 27] or remote [13, 54, 7, 3] memory. This arrangement introduces

a novel concept where CPU modules operate in tandem with remote memory, which may be

situated on separate servers. The notion of remote memory in this context implies that cer-

tain portions of the memory are geographically distant from the CPU, requiring the efficient

orchestration of data transfer and access to ensure seamless performance. In many studies

(i.e., [49, 7]), it is assumed that the CPU modules should retain at least some amount of
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local memory, acting as a cache to the remote memory, while the remote memory primarily

hosts the main workload codes and datasets. Furthermore, to avoid the undesirable impact

of high workload slowdown due to the relatively high access latency of remote memory, the

system may intelligently assign available local memory to workloads. By doing so, the total

number of accesses to remote memory regions can be minimized, contributing to enhanced

overall performance and efficient resource utilization.

The concept of physically disaggregated data centers manifests itself in two distinct scopes,

commonly known as rack-scale and cluster-scale, both depicted in Fig.2.1c and Fig.2.1d, re-

spectively. In the rack-scale model, homogeneous resources (i.e., different modules) are

allocated to single-type resource pools within a rack, and each module remains exclusively

available to other modules situated within the same rack. A notable example of a rack-scale

disaggregated platform is detailed in [19], wherein Huawei presented a novel architecture

tailored for big data applications. This design features single-type pools of each module

(e.g., CPU, memory, I/O) interconnected by a high-throughput network, enhancing commu-

nication and data exchange between components. Fig. 2.3 shows a more detailed rack-scale

disaggregated data center that separates CPU and memory modules in each rack.

While the rack-scale approach undoubtedly offers some advantages, such as localized re-

source management, it does present certain limitations concerning scalability, which might

become more apparent as data center demands continue to grow. As a result, researchers

and data center operators have sought alternative solutions to address scalability concerns

effectively. Cluster-scale architectures adopt a more encompassing approach, where the dis-

aggregation extends across the entire data center. However, in the past, these cluster-scale

architectures faced practical challenges due to the inherent complexity of managing network

requirements and facilitating efficient traffic between CPU and memory modules located in

different racks. This complexity introduced bottlenecks that hindered the widespread adop-

tion of cluster-scale architectures. Nonetheless, recent advancements in high-throughput

low-latency network protocols have proven instrumental in making the cluster-scale archi-

tecture more practical and viable. These improved protocols enable robust communication
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Figure 2.3: Rack-scale Disaggregated DC Infrastructure [3]

and data exchange between various components, mitigating potential bottlenecks and facili-

tating seamless coordination across the entire data center. Therefore, for the purposes of this

thesis and the proposed resource allocation algorithm, we adopt a cluster-scale physically

disaggregated model. The cluster-scale approach aligns well with the demands of mod-

ern data centers, offering increased flexibility, scalability, and potential for future growth.

Fig. 2.4 shows a more detailed cluster-scale disaggregated data center that separates CPU

and memory modules cluster-wide.
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Figure 2.4: Cluster-scale Disaggregated DC Infrastructure [3]

2.2 Networking Protocols in Datacenters

In a physically disaggregated data center, where CPU and memory are decoupled, the com-

pletion time of workloads, especially high latency-sensitive memory-intensive workloads, can

suffer significantly due to the inherent high latency associated with accessing remote mem-

ory [3]. Recognizing the importance of addressing this issue, recent research has extensively

explored the evolution of networking protocols to mitigate the impact of high latency and

improve overall system performance.

One notable study [20] extensively reviewed the evolution of networking protocols, par-

ticularly in traditional data centers where Ethernet technology and TCP/IP are commonly
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Table 2.1: Network Requirements in DDCs [13].

Communication Type Latency (ns)
CPU - CPU 10
CPU - Local Memory 20
CPU - Remote Memory 5 · 103
CPU - Disk 104 − 105

used for data transmission. TCP/IP, being an OS-based networking protocol, imposes tens

of microseconds of delay and leads to high server CPU load, which can adversely affect

workload slowdown. In an interesting observation made in [60], it was pointed out that

dedicating a core to handle high throughput TCP/IP connections, to enhance the workload

slowdown, would render that core unusable as a virtual machine, limiting the overall resource

utilization.

To address these latency and CPU load challenges, researchers have explored alterna-

tive network protocols such as RDMA (Remote Direct Memory Access) over Converged

Ethernet (RoCE). RoCE provides lower access latency and significantly reduces the CPU

overhead compared to traditional TCP/IP-based solutions. Furthermore, InfiniBand [6], as

a dedicated networking stack, offers lower latency, efficient flow control, and reliable lossless

transportation of packets, making it a compelling alternative specifically designed for RDMA

applications [10, 4, 13].

Recent works in the field have demonstrated impressive achievements in hardware-based

memory disaggregation solutions. For instance, the Clio [17] project reported an end-to-end

latency of 2.5 µs at the median and 3.2 µs at the 99th percentile, showcasing its effectiveness

in reducing access latencies. Additionally, Google’s Aquila [14] proposed an extraordinary

4 µs (median) end-to-end latency for Remote Memory Access (RMA) operations within a

high-scale cluster of up to 1152 interconnected hosts. This breakthrough was attributed to

Aquila’s highly integrated NIC (Network Interface Card) and network, enabling ultra-low

latency communication.

In addition to these protocols, there is an important study authored by Peter X. Gao and

his team et al. [13]. This study outlines specific network requirements crucial for resource
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disaggregation, and you can find a concise summary of these requirements in Table 2.1. After

conducting a thorough review of various network protocols and recent advancements, it is

evident that the network prerequisites needed to support resource disaggregation are either

already in place or expected to be available in the near future.

For the purposes of this thesis, we are working with the assumption of an end-to-end

latency of 5 µs for accessing remote memory. This assumption sets the stage for our eval-

uation of the resource disaggregation model and its performance in line with these network

requirements. By making the most of these cutting-edge networking solutions, our goal is to

attain efficient power consumption and optimize workload slowdown within the context of

cluster-scale physically disaggregated data centers.

2.3 DDC Interfaces

In a cluster-scale disaggregated data center, the utilization of local and remote memory by

workloads relies on the interface provided by the system. Interfaces in a resource disaggre-

gated model can be broadly categorized into two types [53]. First, we have the clean-slate

designs that offer application programming interfaces (APIs) to developers, enabling them

to exert control over local and remote memory access within the cluster. This approach is

known for its efficiency, as it bypasses the operating system (OS) and reduces the CPU load.

However, it necessitates developers to modify their workload implementations to accommo-

date the new interface. Notable examples of clean-slate interface providers include Kona [7],

AIFM [48], and Remote Regions [2].

On the other hand, swap-based systems extend swap techniques to the virtual address of

remote memory modules. In this design, the OS takes charge of controlling and managing

memory accesses and instructions, such as Load and Store operations. While this approach

introduces some latency overhead, the interface remains transparent and readily accepts

workloads in their existing form, without requiring extensive modifications. Notably, several

research efforts, including LegoOS [49], FastSwap [4], InfiniSwap [16], and Semeru [52], have
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advocated for the adoption of swap-based interfaces, offering their practicality and cost-

effectiveness.

In conclusion, the choice of interface in a cluster-scale disaggregated data center plays a

pivotal role in determining how workloads leverage both local and remote memory resources.

The clean-slate designs provide developers with direct control and increased efficiency but

at the cost of requiring modifications to workloads. On the other hand, swap-based systems

offer a more transparent and readily adaptable interface, making them a practical and cost-

effective choice. In this thesis, while our proposed models may still remain valid using a

clean-slate interface, we have opted for the latter category, the swap-based approach.

2.4 Related Works

Resource allocation in disaggregated data centers presents a unique set of challenges distinct

from traditional data centers. While conventional data centers focus mainly on minimiz-

ing network power consumption (e.g., Network-Aware Algorithm [36] and MCRVMP [5]),

resource allocation in disaggregated data centers necessitates consideration of various addi-

tional factors. In this context, efficient resource allocation requires addressing the impact of

remote memory latency, CPU processing capacity, and workload characteristics on overall

performance and power consumption.

Unlike traditional data centers, where allocating resources to jobs is relatively straight-

forward, disaggregated data centers introduce complexities due to the physical separation of

resources like memory from compute nodes. This separation results in increased latency for

remote memory access, which can significantly impact the performance of memory-intensive

workloads. Additionally, assigning workloads to CPUs with inadequate processing capacity

can lead to slowdowns and resource inefficiencies.

Power efficiency is another crucial concern in modern data centers, given the substan-

tial power costs associated with data center operations. Resource allocation strategies in

disaggregated data centers must aim to minimize power consumption while ensuring that
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performance objectives are met.

To tackle the resource allocation problem in disaggregated data centers, researchers have

taken a diverse range of approaches. These efforts can be neatly grouped into three primary

categories: i) Minimizing Workload Slowdown, ii) Minimizing Power Consumption, and

iii) Maximizing Utilization. Each of these categories explores specific aspects of resource

allocation, all with the shared aim of elevating the overall performance and efficiency of

disaggregated data centers.

In the following sections, we will delve into these three categories and examine the different

efforts made by researchers to achieve efficient resource allocation in disaggregated data

centers. Through these efforts, we aim to gain a comprehensive understanding of the state-

of-the-art techniques and their respective contributions to the field of resource allocation in

this evolving and critical domain.

2.4.1 Power Consumption

Authors in [45] proposed a novel algorithm with the primary goal of minimizing power

consumption while simultaneously maximizing resource utilization in a rack-scale physically

disaggregated DDC. They consider the presence of optical and electrical interconnects as fast

and generic backplanes, respectively, within the DDC architecture. The proposed model for

power consumption takes into account the utilization of CPU modules and network resources,

attributing 85% of the total power consumption to CPUs and 15% to the network. Despite

its efficacy in optimizing power usage, this algorithm neglects to consider the potential

slowdown of workloads using the mentioned resource allocation algorithm, which may lead

to SLA violations, particularly when allocating more remote memory to latency-sensitive

workloads causing high degradation in performance.

In [38], researchers tackle the power consumption optimization challenge using a mixed-

integer linear programming (MILP) model. Their study encompasses three types of work-

loads: memory-intensive, IO-intensive, and processor-intensive. The results demonstrate

impressive power savings of 42%, 24%, and 11% for memory, IO, and processor-intensive
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applications, respectively, compared to traditional data centers. As the problem scales up,

EERPVMM-DS [37] comes into the picture as a scalable heuristic solution. Employing a

greedy approach, this heuristic tackles the challenge of minimizing power consumption while

assuming a time-slotted model for the arrival of virtual machine (VM) workloads. How-

ever, a potential drawback of this approach lies in the possibility of multiple migrations for

long-life-cycle VMs due to the allocation process in each time slot which causes delays in

workload execution. This means a higher slowdown for the workloads that have a longer

life-cycle which affects the fairness of the algorithm.

Building upon the work of EERPVMM-DS, EERP-DSCF [40] extends the previous heuris-

tic by dropping the time-slotted assumption while maintaining the same underlying model.

The authors aim to address the issue of multiple migrations by optimizing VM allocation

across time slots, resulting in a more stable allocation strategy. Furthermore, the work in

[3] presents a more sophisticated MILP model that accounts for the complex characteristics

of disaggregated architectures, seeking to minimize power consumption more realistically.

To complement the MILP model, the authors propose HEEP, a heuristic that embraces a

greedy approach. This heuristic involves sorting workloads and CPUs in descending order

based on their resource demands and power consumption efficiency, respectively, for optimal

allocation.

Adding to the array of research efforts, [45] introduces another variant of the power con-

sumption model for CPUs, this time considering a physically disaggregated DC with optical

and electrical interconnects as backplanes. In this model, CPUs undergo an iterative filtering

and prioritizing process, incorporating predefined weights associated with power efficiency,

utilization, and communication delay. This iterative process aims to strike a delicate balance

between minimizing power consumption and maximizing resource utilization. Nonetheless,

one common limitation across all these works is the absence of consideration for the potential

slowdown of jobs, which could have significant implications on SLA compliance.

As the research in the domain of power consumption in DDCs continues to unfold, the

quest for comprehensive and efficient solutions remains ongoing. The identified research en-
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deavors present valuable contributions to understanding and optimizing power usage, but

the aspect of workload slowdown and its impact on SLA compliance needs further investiga-

tion. As data centers endeavor to meet the ever-increasing demands of modern applications

and services, addressing power consumption challenges becomes a critical aspect in ensuring

sustainable and cost-effective data center operations. Novel solutions that strike a balance

between power efficiency and workload slowdown will undoubtedly pave the way for the next

generation of power-efficient and resilient data center architectures.

2.4.2 Workload Slowdown

In the context of slowdown in disaggregated data centers (DDCs), several innovative ap-

proaches have been investigated to optimize system performance and minimize the impact

of workload slowdown on critical applications. As the demand for higher computational

power and memory capacity increases, DDCs have gained popularity due to their scalability

and flexibility. However, the separation of resources in DDCs, mainly memory and CPU,

can introduce communication delays which results in workload slowdown. Researchers and

industry experts have devoted considerable efforts to address this challenge and enhance the

overall efficiency of DDCs.

One notable approach proposed by Nvidia in [57] involves the development of an inte-

grated system within the operating system (OS) to efficiently optimize workload slowdown.

By minimizing the time spent on data transfers and streamlining memory access, this ap-

proach aims to reduce workload slowdown and improve the responsiveness of workloads

running in a disaggregated environment. Also, the authors propose four additional opti-

mizations: native support for transparent huge page migration, multi-threaded migration of

a page, concurrent migration of multiple pages, and symmetric exchange of pages. Through

experimental evaluations using x86, Power, and ARM64 systems, Nvidia demonstrates the

potential benefits of their approach, reducing kernel software overheads and improving raw

page migration throughput over 15× leading to lower workload slowdown by up to 40%.

Another research effort, highlighted in [4], focuses on examining the impact of the remote
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memory to local memory ratio in DDCs and its correlation with workload slowdown. First,

a faster swapping mechanism that makes it possible to support remote memory at rack-scale

is proposed as an RDMA-based swapping system which is called FastSwap. Then, the au-

thors also develop a polynomial model and introduce a latency-based workload placement

algorithm called CFM. By carefully allocating an appropriate amount of local memory to

meet the slowdown requirements (i.e., SLAs) of workloads, CFM aims to proactively address

slowdown concerns before they significantly impact critical tasks. They review different

memory allocation policies including uniform policy (i.e., using a fixed local memory ratio

for all the jobs), variable policy (i.e., using a variable ratio), and memory-time policy (i.e.,

using a memory-time product to determine the best local memory ratio for each job). They

use the last configuration as the main policy to decide how much of local and remote mem-

ory should be assigned to each workload. This intelligent resource allocation strategy also

improves success rates in meeting future demand, contributing to enhanced system stability

and responsiveness.

In addition to software-level optimizations, architectural proposals have also emerged to

address slowdown challenges in DDCs. One such proposal is Aquila, presented by Google in

[14], an experimental data center network fabric that prioritizes ultra-low latency. Aquila

incorporates the GNet protocol and custom ASIC with low-latency Remote Memory Access

(RMA), achieving remarkable sub-10 µs execution times for data transfers. By reducing

communication delays and optimizing data access, Aquila effectively minimizes workload

slowdown, making it an attractive solution for high-performance DDCs.

Following a similar approach to [4], HoPP [29] proposes a revised operating system for

DDCs that significantly improves memory management. The novel operating system decou-

ples address capture from page faults by recording all memory access logs in the memory

controller. This design optimizes memory access and reduces unnecessary overhead, leading

to potential reductions in workload slowdown and improved workload slowdown.

While the aforementioned approaches have demonstrated promising results in minimiz-

ing slowdown and enhancing the efficiency of DDCs, it is essential to consider the broader
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implications of such optimizations. For instance, some of the explored approaches, including

those mentioned in [4] and [49], have primarily focused on optimizing performance without

considering the implications of power consumption. In DDCs, where resource allocation

and usage directly affect power efficiency, overlooking the power aspect can have significant

financial and environmental impacts.

In summary, the increasing demand for computational power and memory capacity has

led to the widespread adoption of Disaggregated Data Centers (DDCs) due to their scalabil-

ity and flexibility. However, the separation of resources within DDCs, particularly memory

and CPU, can result in communication delays and subsequent workload slowdowns. To

mitigate this, innovative approaches have been investigated, such as Nvidia’s integrated sys-

tem within the operating system, aimed at optimizing data transfer and memory access

to minimize workload slowdown. Additionally, research efforts have focused on examining

the impact of remote memory to local memory ratios, proposing intelligent resource allo-

cation strategies to proactively address slowdown concerns. Architectural proposals like

Aquila and HoPP have also emerged, prioritizing ultra-low latency and optimizing memory

management to reduce unnecessary overhead and improve workload responsiveness. While

these approaches demonstrate promising results in enhancing DDC efficiency, it’s crucial

to consider broader implications, including power consumption, to ensure sustainable and

cost-effective operations.

2.4.3 Utilization

In the quest for optimizing resource utilization and performance in data centers, researchers

have explored various algorithms and models to efficiently allocate resources and meet the

demands of modern workloads. In [59], the authors propose two algorithms, namely NULB

and NALB, aimed at realizing globally optimized IT (i.e., CPU, memory, and storage) re-

sources in disaggregated data centers. NULB introduces the concept of Contention Ratio

(CR), which specifies the demand for each resource type. The algorithm then initiates a

search for IT resources based on their CR scores and utilizes a breadth-first search (BFS)
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algorithm to find other compatible IT resources surrounding the allocated one. Building on

this foundation, the improved algorithm, called NALB, incorporates a modified version of

BFS that also considers available network bandwidth when searching for network resources

after allocating IT modules. By considering both IT and network resources, NALB aims to

achieve even higher levels of resource utilization and performance optimization. However,

it is worth noting that in these algorithms and research, the authors focused on workload

rejection rates and resource utilization, while other important aspects such as power con-

sumption of the resources or the workload slowdown (i.e., Service Level Agreements) were

not explicitly taken into account.

In [44], another approach to resource allocation is presented, employing a simulated

annealing-based algorithm within a rack-scale architecture. The primary objective of this

algorithm is to minimize the rejection rate of workloads while maximizing overall resource

utilization. By simulating the annealing process, the algorithm explores different resource

allocation configurations, allowing it to gradually reach an optimal solution. Through this

approach, it aims to strike a balance between accommodating as many workloads as possible

while making efficient use of available resources. By considering both workload rejection

rates and resource utilization, this method strives to enhance data center efficiency while

ensuring a lower rejection rate.

Furthermore, in [1] and [41], a more comprehensive model based on Mixed Integer Linear

Programming (MILP) is proposed to address resource allocation challenges in a cluster-scale

architecture. The model considers multiple objectives, including the power consumption of

the data center (i.e., the total cost of the data center maintenance) and the utilization of

individual resources including memory, CPU, and networking modules. By formulating the

resource allocation problem as a MILP, the authors can optimize resource allocation across

the entire data center infrastructure while considering various constraints and objectives

simultaneously. This approach allows for more holistic decision-making, where the trade-offs

between power efficiency and resource utilization can be carefully balanced.

In summary, researchers have explored a diverse range of algorithms and models to tackle
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the resource utilization challenges in data centers. From contention-based algorithms that

optimize IT and network resource allocation to simulated annealing techniques that min-

imize workload rejection rates, each approach contributes to enhancing the efficiency and

performance of data centers. Additionally, MILP-based models provide a comprehensive and

systematic approach to resource allocation, considering multiple objectives and constraints

simultaneously.
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Chapter 3

Profiling Datacenter Workloads

In this section, first, we present the datacenter model considered in our work. Then, we focus

on developing workload profiles that succinctly capture the impact of resource disaggregation

on workload slowdown. Table 6.2 summarizes the main notations used throughout the paper.

3.1 Datacenter Model

Datacenters play a critical role in supporting a wide range of applications and services, from

cloud computing to big data analytics. As the demand for data processing and storage

continues to grow, datacenter operators are constantly seeking ways to improve efficiency,

performance, and resource utilization. One promising approach that has garnered significant

attention is resource disaggregation, which involves physically separating computing and

memory resources, offering greater flexibility in resource allocation.

In this section, we present the datacenter model considered in our work, with a particular

focus on developing a workload model that captures the impact of resource disaggregation

on workload slowdown. Understanding the interplay between resource allocation, workload

characteristics, and power consumption is essential for optimizing datacenter operations and

delivering enhanced performance.
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Table 3.1: Important Notations.

Datacenter Notations

Symbol Definition
C Set of all computation-cable modules
Fc Frequency of CPU cores in module c
Nc Number of CPU cores in module c
Lc Amount of local memory in module c
Isc Static power consumption of module c

Idc Dynamic power consumption of module c
M Total amount of remote memory in DDC

Workload Notations

Symbol Definition
W Set of all workloads
νw Number of cores requested by workload w
ϕw Processor frequency requested by workload w
µw Total amount of memory requested by workload w

P f
w(.) Model to show the effect of frequency on slowdown of workload w

Pm
w (.) Model to show the effect of memory on slowdown of workload w
∆w Maximum acceptable slowdown of workload w

3.1.1 Disaggregation Model

Generally shown in Fig. 3.1, we consider a physically disaggregated datacenter consisting

of two distinct types of modules, each contributing to the overall computing and memory

capacity of the system. The first type, denoted by C, represents the computing modules

responsible for delivering the processing capacity. Each of these computing modules, denoted

by c ∈ C, is equipped with a specific number of CPU cores, denoted as Nc, and operates

at a maximum frequency of Fc. The CPU cores’ clock frequency plays a crucial role in

determining the processing capacity of these modules which affects the overall performance

of our disaggregated datacenter.

Moreover, the computing modules are equipped with a certain amount of local memory,

commonly referred to as Dynamic Random-Access Memory (DRAM). This local memory,

represented as Lc, is exclusively accessible by the CPU cores residing within the same com-

puting module. The presence of local memory provides a significant advantage in terms of

access latency since data can be fetched and stored directly without traversing the datacen-

ter network. This proximity between the CPU cores and their corresponding local memory
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Figure 3.1: Disaggregation model used in this paper.

enhances the performance of memory-intensive workloads.

The second type of module in the datacenter is specialized in providing memory capacity

rather than computational power. These memory modules, notated separately, cater to the

memory requirements of the computing modules. Unlike the local memory associated with

the computing modules, these memory modules can be accessed by any CPU core present

within the datacenter through the datacenter network. The total memory capacity offered by

these remote memory modules is denoted byM . By efficiently managing the remote memory

and its accessibility, the datacenter can effectively balance the overall memory availability

and improve memory-intensive workload slowdown.

The remote memory modules, acting as the memory pool for the computing modules,

introduce a trade-off in terms of access latency. While local memory enjoys the lowest access

latency due to its proximity to the CPU cores, accessing remote memory introduces higher

latency as data must traverse the datacenter network. Therefore, the proposed resource
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allocation algorithm within the datacenter must take into account this higher latency and

accurately distribute memory-intensive tasks between local and remote memory to optimize

the overall performance. The trade-off happens when the system tries to minimize power

consumption by allocating more workloads to the same CPU module (i.e., allocating more

remote memory to each of the workloads in order to save local memory for other workloads on

the datacenter) which minimizes the power consumption by limiting the number of powered-

on CPUs. Fig. 3.2 shows how one CPU module is connected to the local and remote memory

modules in our disaggregation model. Based on previous research in the literature [14, 13],

the end-to-end latency for CPU to local memory communication is in the order of tens of

nanoseconds while remote memory has a 100x higher communication latency which affects

the slowdown of workloads.
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Latency: 
- CPU to Local Memory: ~20 ns

- CPU to Remote Memory: ~5 µs

Figure 3.2: Connection between CPU and memory modules.
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3.1.2 Power Consumption Model

Previous studies have provided valuable insights into the power consumption patterns within

datacenters, revealing that servers are responsible for a significant portion of the overall

power usage. Specifically, datacenter servers account for approximately 85% of the total

power consumption [45]. Among the various server components, the CPU modules emerge

as the primary power consumers, contributing to approximately 90% of the overall server

power consumption [45]. In addition, Fig. 3.3 shows that the utilization of networking com-

ponents such as switches does not significantly impact its power consumption [33]. Therefore,

this observation underscores the importance of optimizing the power consumption of CPU

modules to achieve significant gains in overall datacenter power efficiency.

Figure 3.3: Power consumed by a 48-port switch as a function of the load (traffic) through
the switch. [33]

Power optimization in datacenters is a multifaceted challenge, primarily due to the in-

terplay of various factors, including resource disaggregation, network utilization, workload

characteristics, and more. As mentioned, while addressing power consumption concerns

related to network resources is undoubtedly important, the higher potential for power opti-
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mization lies within the CPU modules. Thus, in our exploration of resource disaggregation

and its impact on datacenter performance, we narrow our focus to the CPU modules as the

primary target for power optimization efforts.

To model the power consumption of each CPU module c ∈ C, we take into account both

static and dynamic power components. The power consumption, denoted as Ec(x, y), is

expressed as a combination of the static power consumption (Isc ) and the dynamic power

consumption (Idc ) [45], and is formulated by:

Ec(x, y) = Isc · x+ Idc · y, (3.1)

Here, x is an indicator variable that signifies whether module c ∈ C is powered off (x = 0)

or powered on (x = 1). The variable y represents the utilization or load of the module,

capturing the actual computational activity taking place. Notably, when a CPU module is

powered off (x = 0), its utilization (y) must also be zero, as no processing occurs in this

state and no power is consumed.

The coefficient Isc represents the static power consumption when the CPU module is

powered on, regardless of its utilization. This component embodies the power consumed by

the module even when it is idle or lightly loaded, reflecting the baseline power consumption

attributed to the CPU module’s operational state. On the other hand, the coefficient Idc

signifies the maximum dynamic power consumption of the CPU module when operating at

full load. At maximum utilization, the CPU module consumes power proportional to Idc , on

top of the baseline static power consumption.

Considering the maximum power consumption (Ec(1, 1)) of a CPU module, which occurs

when it operates at full load and is fully powered on, we find that it equals the sum of the

static and dynamic power components. Specifically, Ec(1, 1) = Isc+I
d
c . It is worth noting that

the static power consumption (Isc ) typically constitutes around 75% of the maximum power

consumption [45, 3]. This suggests that even during idle or low-load periods, a significant

portion of the power is consumed by the CPU module.
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By understanding the power consumption model of the CPU modules, we gain valuable

insights into their power characteristics, enabling us to develop strategies for optimizing

power consumption and enhancing the overall power efficiency of the datacenter. Through

thoughtful resource allocation, workload management, and power management policies, we

can capitalize on the inherent trade-offs and dynamics of the datacenter environment to

achieve substantial power savings while meeting the performance demands of diverse work-

loads. In the subsequent sections, we delve deeper into the workload characteristics and the

interplay of remote memory and CPU frequency on workload slowdown, aiming to optimize

the power consumption of the datacenter and ensure efficient resource allocation.

3.1.3 Workload Model

Within our datacenter model, we consider a diverse batch of workloads denoted by W .

Each workload w ∈ W is characterized by a comprehensive tuple comprising four essential

parameters denote by the following:

⟨νw, µw, ϕw,∆w⟩, (3.2)

Understanding these workload characteristics is crucial for effective resource allocation and

power optimization within the datacenter environment.

The first parameter, νw, denotes the requested number of CPU cores for workload w ∈ W .

Different workloads demand varying amounts of computational cores, and by considering

this parameter, we can align the resource allocation to match the specific requirements of

each workload. This targeted allocation ensures that workloads receive the necessary CPU

resources to execute efficiently while minimizing any potential resource waste.

The second parameter, µw, is a critical factor related to the total amount of requested

memory by workload w ∈ W . Workloads have varying memory requirements, and efficiently

managing memory resources is essential for optimal datacenter performance. Proper alloca-

tion of memory ensures that each workload has access to the necessary memory capacity,
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avoiding potential performance bottlenecks and contention issues. The ability to properly as-

sign requested memory of each workload according to the available local and remote memory

in the datacenter improves the overall workload slowdown in DDCs.

The third parameter, ϕw, represents the requested frequency of CPU cores for workload

w ∈ W . CPU frequency significantly impacts workload slowdown, and higher frequencies

generally lead to faster execution. However, operating at higher frequencies may also incur

higher power consumption. By understanding the frequency preferences of each workload,

we can optimize the datacenter power efficiency while maintaining the predefined bounded

threshold of each workload slowdown which is detailed next.

Lastly, the parameter ∆w plays a crucial role in workload slowdown management. This

parameter represents the maximum allowable slowdown that workload w ∈ W is willing to

tolerate as part of its service level agreement (SLA). Workload slowdown occurs when the

completion time of a workload is adversely affected due to the resource contention, limited

CPU frequency, or remote memory access delays. By allowing workloads to specify their

tolerance for slowdowns, the datacenter can tailor resource allocation strategies to meet

individual workload requirements.

In our datacenter model, we take into account the diverse nature of workloads found in

modern datacenters. We understand that these workloads often come with different pri-

orities and performance expectations. Consequently, our datacenter operator has devised

a strategy that offers incentives to workloads capable of accommodating a certain degree

of slowdown. For instance, the operator might provide lower pricing or other advantages

to these adaptable workloads, encouraging them to be more flexible in terms of their per-

formance requirements. This approach allows the datacenter to strike a balance between

optimizing its power consumption and efficiently utilizing the available resources, all while

ensuring that the distinctive needs of each workload are catered to.

In summary, by characterizing the workloads with the tuple ⟨νw, ϕw, µw,∆w⟩, we equip

ourselves with valuable insights into the resource demands, performance preferences, and

flexibility thresholds of each workload. Leveraging this knowledge, we can devise intelligent
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Table 3.2: Profiled Workloads.

Workload Implementation Dataset Size Memory Usage
Kmeans Python-TensorFlow [50] 200MB 2GB
WordCount Java SE [42] 10GB 8GB
HPCG C++ [22] 1GB 12GB

resource management strategies and power optimization techniques within the datacenter.

In the subsequent sections, we delve deeper into the impact of remote memory and CPU

frequency on workload slowdown, aiming to maximize datacenter efficiency and ensure that

workloads receive the optimal resource allocation that aligns with their individual slowdown

and resource expectations.

3.2 Evaluation of Slowdown Characterizations

In this section, we delve into the comprehensive analysis of workload slowdown within our

datacenter model. We assume that workloads are versatile and can effectively function with

CPU cores operating at frequencies different from their requested ϕw. Additionally, they

can adapt to varying amounts of both local and remote memory, as long as the total mem-

ory received, matches their memory requirement, denoted by µw. The datacenter employs

modern operating systems equipped with mechanisms to seamlessly handle heterogeneous

memory latency, leveraging the support for Non-Uniform Memory Access (NUMA).

To optimize the datacenter’s performance and resource utilization, we aim to characterize

the effect of remote memory and CPU frequency on the slowdown experienced by various

workloads. To achieve this, we embark on a profiling journey where we meticulously exam-

ine the behavior of three widely used and popular datacenter workloads. These workloads

include (1) K-means clustering [50], (2) WordCount on a sizable 10 GB dataset obtained

from web crawling of Project Gutenberg [42], and (3) the High-Performance Conjugate Gra-

dient (HPCG) benchmark [22]. Each workload has distinct computational requirements and

memory usage patterns, making them suitable candidates for our investigation.

In the profiling process, we measure the slowdown characteristics of these workloads by
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executing them under various configurations. For this purpose, we utilize a computer with

a well-defined hardware setup, consisting of 16 GB of DDR4 RAM, an Intel(R) Core(TM)

i9-12700 processor running at 2.4 GHz, and operating Linux Ubuntu 22.04 LTS. This well-

controlled environment ensures that we can precisely monitor and analyze the impact of

different parameters on workload slowdown.

One of the main objectives of our research is to enable the datacenter operator to make

informed decisions regarding resource allocation and workload placement. To achieve this,

we consider two strategies for workload profiling and slowdown characterization.

The first approach is a proactive profile-building method, where the datacenter opera-

tor generates profiles for popular workloads in an offline manner. This proactive strategy

is particularly relevant for large-scale workloads that benefit significantly from the advan-

tages of disaggregated memory. By analyzing the behavior of these workloads under various

scenarios, the datacenter operator can gain valuable insights into their resource demands,

frequency adaptability, and sensitivity to remote memory. Armed with this knowledge, the

operator can optimize resource allocation and design effective techniques to enhance overall

datacenter performance.

On the other hand, we also mention a passive profile construction strategy, which leverages

runtime management for workload characterization. In this scenario, when a new workload

arrives at the datacenter without an existing profile, it is initially treated with zero toler-

ance during the workload placement phase. Subsequently, the runtime management system

diligently attempts to identify an appropriate resource configuration for the workload while

concurrently constructing a profile during the process. This approach allows the datacen-

ter to continuously learn and adapt to the unique requirements of each workload, ensuring

optimal resource allocation and performance enhancement.

In the following sections, we present the results of our slowdown characterization for each

of the three popular datacenter workloads: K-means clustering, WordCount, and HPCG

benchmark. Through detailed analyses and modeling, we aim to provide valuable insights

into the effect of remote memory and CPU frequency on workload slowdown, empowering
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Figure 3.4: Workload slowdown as the assigned remote memory ratio increases. The injected
latency for remote memory is fixed at 5 µs.

the datacenter operator to make well-informed decisions and optimize datacenter efficiency.

3.2.1 Effect of Remote Memory

In this subsection, we delve into the profound impact of memory configuration on workload

slowdown within our datacenter model. To accurately characterize the influence of remote

memory, we perform a series of meticulously designed experiments, systematically varying the

ratio of remote to local memory for each workload. To simulate local and remote memories,

we employ the powerful Ramdisk feature in Linux, allowing us to designate a portion of the

local memory as a disk representing remote memory. Additionally, to emulate the network

latency experienced when accessing remote memory in DDCs, we implement a carefully

crafted artificial delay during major page swaps by modifying the page swap procedure in

Linux Kernel version 6.1, which is the latest version of the kernel today.

In each experiment, we introduce an artificial delay of 5 µs as the remote memory latency

and meticulously measure the completion time of each workload using the time library in

the Linux Kernel. To ensure the robustness and reliability of the results, each workload’s
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completion time is measured 10 times, and the averaged outcomes are presented in Fig. 3.4.

As expected, the results clearly demonstrate that as the ratio of remote memory is in-

creased from zero to 75%, the slowdown experienced by the workloads also increases. How-

ever, intriguingly, different workloads exhibit varying levels of sensitivity to remote memory.

Specifically, K-Means clustering and HPCG benchmark workloads experience slowdowns of

approximately 4x and 3.5x, respectively, when confronted with 75% remote memory allo-

cation. Conversely, the variations of WordCount encounter a relatively minor slowdown of

less than 1.5x under the same conditions. This observation highlights the importance of

workload-specific memory allocation strategies in optimizing datacenter performance.

To effectively model and understand the observed slowdown patterns, we explore different

regression approaches. Among them, we find that a piece-wise linear function provides an

accurate approximation of the impact of remote memory on workload slowdown. This finding

is further validated through the fitting of piece-wise functions with one, two, and three

segments to the data points of each workload. The results indicate that a three-piece linear

function yields the most precise estimation of the slowdown behavior. Table 3.3 showcases

the Mean Squared Errors (MSE) of all three types of linear functions, including the average,

minimum, and maximum values, underscoring the superiority of the three-piece linear model.

For the sake of conciseness and clarity, we introduce the function Pm
w (r) as the piece-wise

linear approximation of the impact of remote memory on workload slowdown. To mitigate

significant workload slowdown and maintain datacenter efficiency, we enforce a minimum of

25% local memory allocation, following similar strategies adopted in previous studies and

researches [29, 13]. Leveraging three segments with breakpoints at 25%, 50%, and 75% for

the ratio of remote memory, Pm
w (r) is mathematically expressed as follows:

Pm
w (r) =


a1 · r + c1 0 ≤ r ≤ 0.25

a2 · r + c2 0.25 ≤ r ≤ 0.5

a3 · r + c3 0.5 ≤ r ≤ 0.75,

(3.3)
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Table 3.3: MSE of Piece-Wise Linear Approximation for the Impact of Remote Memory
Model.

Application Function Type Error

Min Avg Max

Kmeans 1-Segmented 8.3 36.6 61.7

2-Segmented 0.2 1.8 4.3

3-Segmented 10−7 1.7 4.3

HPCG 1-Segmented 7.6 35 68

2-Segmented 2.9 7.6 19.0

3-Segmented 10−8 0.9 3.3

Spark-WordCount 1-Segmented 1.1 4.4 9.6

2-Segmented 10−7 0.3 0.6

3-Segmented 10−9 0.09 0.3

Hadoop-WordCount 1-Segmented 0.7 0.8 1.7

2-Segmented 0.1 0.4 1.3

3-Segmented 10−8 0.2 0.6

Table 3.4: MSE of Linear Approximation for CPU Frequency Effect.

Application Error

Min Avg Max

Kmeans 0.8 1.7 2.4

HPCG 1.0 1.6 2.0

Spark-WordCount 0.9 1.5 2.1

Hadoop-WordCount 0.8 1.6 2.0

where r represents the percentage of total requested memory allocated remotely for the work-

load, while ai and ci are workload-specific coefficients obtained from profiling. Importantly,

when no remote memory is assigned to a workload (r = 0), we anticipate zero slowdown,

allowing us to set c1 to zero. This detailed piece-wise linear model provides the datacenter

operator with invaluable insights into the intricate relationship between memory configura-

tion and workload slowdown, enabling smart decisions for efficient resource allocation.

3.2.2 Effect of CPU Frequency

The CPU frequency serves as a critical factor in determining the performance and execu-

tion speed of workloads within our data center model. To gain a deeper understanding of
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Figure 3.5: Workload slowdown as the assigned CPU frequency increases. The lower slow-
down means faster execution.

the impact of CPU frequency on workload slowdown, we conducted a series of experiments.

These experiments involved measuring the completion time of various workloads at differ-

ent CPU frequencies, ranging from the base frequency of 1.6 GHz to the maximum of 2.4

GHz. The frequency adjustments were dynamically made using the powerful Linux Ker-

nel module cpupower, enabling precise control over CPU frequencies which is called CPU

scaling. The results of our comprehensive experiments, as depicted in Fig. 3.5, revealed an

intriguing trend: the slowdown of workloads displayed a nearly linear decrease as the CPU

frequency was increased from 1.0 to 1.5 times the originally requested frequency. This obser-

vation suggests that by appropriately allocating CPU modules with higher frequency rates

than initially requested, significant improvements in workload performance and mitigation

of slowdown can be achieved.

To gain further insights into the relationship between CPU capacity and workload slow-

down, we performed regression analysis on the experimental data. For each workload, we

fitted a linear function to the data points obtained from varying CPU frequencies and cal-

culated the Mean Squared Error (MSE) of the linear approximation. The results of the

regression analysis, presented in Table 3.4, demonstrate the reasonable level of accuracy
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achieved by using a linear function to model the impact of CPU frequency on workload

slowdown.

Building upon the observations and regression analysis, we propose the function P f
w(x)

to quantitatively measure the effect of CPU frequency on workload w. The function P f
w(x)

is defined as follows:

P f
w(x) =

ϕw
x
, (3.4)

where ϕw represents the originally requested CPU frequency by workload w ∈ W , and x

denotes the received frequency. This function offers a valuable tool for data center opera-

tors to accurately assess the impact of varying CPU frequencies on individual workloads,

facilitating informed decisions for workload placement and resource allocation.

In summary, by thoroughly analyzing the effects of both remote memory access latency

and CPU frequency on workload slowdown, our comprehensive profiling of popular data

center workloads empowers data center operators to optimize resource utilization and en-

hance overall data center performance. The generated profiles provide a powerful basis for

proactive decision-making, enabling the data center to offer tailored service-level agreements

(SLAs) that align with the unique requirements of diverse workloads.
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Chapter 4

Workload Placement Problem

Formulation

4.1 Workload Placement

Table 4.1: Decision Variables.

Symbol Definition

zc Activation of module c

yw,c Assignment of workload w to module c

xw Fraction of local to total requested memory of workload w

fw Frequency of allocated CPU to workload w

uc CPU utilization of module c

Ñc Number of allocated cores of module c

L̃c Amount of allocated local memory of module c

Let W denote the set of workloads that are planned for deployment. We introduce the

binary decision variable yw,c to indicate whether workload w is assigned to CPU module c.

Previous studies such as [54, 4, 45, 39] have demonstrated that current networking technolo-

gies cannot fulfill the network requirements for CPU-to-CPU communications. This fact also

is mentioned in Table 2.1, where the CPU-CPU communication requirement is measured in

the order of less than 10 ns which can not be met using the current networking technologies.

Therefore, in DWLP, workloads are assigned to a single CPU module with a sufficient num-
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ber of cores. Constraint (4.1b) ensures that each workload is assigned to exactly one CPU

module. It is worth noting that the mentioned assumption is not limiting the flexibility of

our proposed placement algorithm as today’s workloads are mainly executed in one single

CPU module and they don’t need to be assigned to different CPUs in the placement phase.

Let the decision variable xw ∈ [0, 1] represent the proportion of the memory requirement

of workload w that is allocated locally. Constraints (4.1c)-(4.1f) ensure that the processing

and local memory loads of all assigned workloads to a CPU module comply with its capacity.

Here, zc is an indicator variable that shows whether processing module c ∈ C is powered

on or off. A workload can only be assigned to powered-on modules. Recall that νw and µw

denote the number of CPU cores and the total amount of memory requested by workload

w, respectively.

The constraint in (4.1e) ensures that the total number of cores assigned to the workloads

in processing module c ∈ C does not exceed its total number of cores. Equation (4.1f)

serves a similar purpose but for the local memory capacity of processing module c ∈ C.

Constraint (4.1g) ensures that the total remote memory assigned to workloads does not

exceed the capacity of remote memory modules.

In the optimization problem DWLP, we aim to minimize the objective function (4.1a).

This objective function considers two components: the first part aims to minimize the

weighted sum of the fractions of allocated CPU resources for each workload, where θw rep-

resents the fraction of CPU resources allocated to workload w ∈ W ; the second part aims

to minimize the power consumption of the active CPU modules, where η is a parameter

that controls the trade-off between workload slowdown and power consumption. The con-

straint in (4.1b) ensures that each workload is assigned to exactly one CPU module, and

constraints (4.1c) and (4.1d) guarantee that the processing and memory loads of each CPU

module do not exceed their capacities. Constraints (4.1e) and (4.1f) introduce the binary

variable zc, which indicates whether a CPU module c ∈ C is activated or turned off. This

ensures that workloads can only be assigned to activated CPU modules. Additionally, con-

straint (4.1g) limits the total remote memory assigned to workloads based on the capacity
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Problem 1: DWLP: Disaggregated Workload Placement.

Min. (1− η) ·
∑
w∈W

θw + η ·
∑
c∈C

Ec(zc, uc) (4.1a)

s.t.
∑
c∈C

yw,c = 1, ∀w ∈ W (4.1b)

∑
w∈W

yw,c · νw ≤ Ñc, ∀c ∈ C (4.1c)

∑
w∈W

yw,c · xw · µw ≤ L̃c, ∀c ∈ C (4.1d)

Ñc ≤ Nc · zc, ∀c ∈ C (4.1e)

L̃c ≤ Lc · zc, ∀c ∈ C (4.1f)∑
w∈W

(1− xw) · µw ≤M, (4.1g)

0.25 ≤ xw, ∀w ∈ W (4.1h)

θw =
∑
c∈C

yw,c

(
Pm
w (1− xw) · P f

w(Fc)
)
, ∀w ∈ W (4.1i)

θw ≤ ∆w, ∀w ∈ W (4.1j)

uc =
Ñc

Nc
, ∀c ∈ C (4.1k)

zc ∈ {0, 1}, yw,c ∈ {0, 1}, xw ≤ 1 . (4.1l)

of remote memory modules. Constraint (4.1h) restricts the values of xw to be greater than

or equal to 0.25 for all workloads. By using this constraint, we ensure that each work-

load at least gets some amount of local memory to avoid high and unpredictable workload

slowdowns. The variable uc in constraint (4.1k) represents the CPU utilization of module

c ∈ C.

Overall, the DWLP addresses the placement of workloads on different CPU modules while

considering their memory requirements and processing capabilities. The objective is to find

an assignment that minimizes both the fraction of allocated CPU resources and the power

consumption of the active CPU modules, ensuring that all assigned workloads fit within the
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capacity of their respective modules.

4.2 Workload Slowdown

Workload slowdown is a critical metric that directly impacts the overall system performance.

It is influenced by various factors, including remote memory access latency and the allocated

CPU frequency. To optimize the system’s performance, it is essential to carefully manage

the slowdown experienced by each workload.

In our optimization framework, we adopt a holistic approach to address the workload

slowdown problem. First and foremost, we aim to reduce the impact of remote memory

access latency on workload slowdown. To achieve this, we introduce Constraint (4.1h),

requiring that each workload must receive at least 25% of its requested memory allocation

locally. The mentioned constraint is designed to minimize the reliance on remote memory

modules, which tend to have higher access latency compared to local memory.

To capture the effect of resource allocation decisions on workload slowdown, we introduce a

novel variable, denoted as θw, for each workload w ∈ W . The variable θw quantifies the total

change in slowdown experienced by workload w ∈ W due to the allocation decisions made

during the workload placement process. Constraint (4.1i) plays a central role in optimizing

the value of θw for each workload.

The calculation of θw relies on two crucial functions, Pm
w (·) and P f

w(·), as given in Con-

straint (4.1i). These functions capture the intricate relationship between memory allocation

and CPU frequency on the slowdown of a workload. More precisely, Pm
w (1− xw) represents

the impact of memory allocation on workload w. When a fraction (1 − xw) of its total

requested memory is allocated from remote memory modules, it can lead to increased access

latencies and, consequently, a higher slowdown for the workload.

Similarly, P f
w(Fc) represents the effect of CPU frequency on the workload slowdown. It

captures how the slowdown (or speedup) of a workload is influenced by the CPU processing

capacity Fc of the allocated processing module. The significance of this function lies in
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optimizing the assignment of workloads to processing modules to maximize overall system

performance.

While evaluating the slowdown, it is crucial to consider the specific requirements and

performance constraints of each workload. To this end, we assume that each workload has

a maximum acceptable slowdown, denoted as ∆w. This value serves as a threshold beyond

which the slowdown of the workload is considered unacceptable. Therefore, Constraint (4.1j)

ensures that the final slowdown of each workload does not exceed this predefined threshold.

Our optimization problem’s primary aim is to minimize the collective slowdown across

all workloads while upholding memory allocation constraints and considering the impact of

CPU frequency on workload slowdown. By introducing slowdown-related variables and con-

straints, our approach presents a comprehensive and efficient workload placement strategy.

This strategy optimally balances system resources (i.e., power consumption of CPU modules

which is detailed next) and workload requirements, ultimately leading to improved overall

system efficiency and a better user experience.

4.3 Power Consumption

Managing power consumption is a critical aspect of running data centers efficiently, both in

terms of cost-effectiveness and environmental sustainability. In this section, we try to dive

into how we model the dynamic power consumption of CPU modules within our disaggre-

gated datacenter (DDC).

To get started, we use the concept of CPU utilization to estimate how much power CPU

modules consume. CPU utilization for a processing module c ∈ C is defined as the ratio of

active cores within that module to the total number of available cores. This is expressed

mathematically as uc and is governed by Constraint (4.1k). Understanding this utilization

value provides us with valuable insights into how efficiently each CPU module is using its

resources.

With the utilization information, we can now compute the power consumption of each
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CPU module. The power consumption model used in our optimization framework is based

on the power model as represented by Equation (3.1). The power model characterizes the

relationship between the CPU frequency, the number of active cores, and the power con-

sumption.

The total power consumption of the entire disaggregated data center, denoted as EDDC ,

is determined by summing the power consumed by each individual CPU module. The ex-

pression for EDDC is formulated as follows:

EDDC =
∑
c∈C

(Isc + Idc ×
∑

j∈J w
j
c ×Nj

Ac
) . (4.2)

In this equation, Isc and I
d
c represent the static and dynamic power consumption of processing

module c ∈ C, respectively. The static power consumption refers to the power consumed

by a CPU module when it is idle or powered on but no workload is assigned to it. On

the other hand, dynamic power consumption corresponds to the power consumed while

actively executing tasks. The term
∑

j∈J w
j
c×Nj in the denominator of the dynamic power

component accounts for the total number of active cores across all workloads assigned to

module c ∈ C. The factor
∑

j∈J w
j
c ×Nj

Ac
represents the average utilization of module c ∈ C,

which scales the dynamic power component.

In addition to the bounded slowdowns of workloads, it is essential to highlight a key aspect

of our model that enables enhanced efficiency and simplicity in workload placement. Our

model allows for the possibility of each CPU module simultaneously serving different work-

loads, effectively leveraging the potential of multitasking within the datacenter. However,

we recall the fundamental assumption that each workload can be entirely processed by a

single CPU module, thereby neglecting any considerations for CPU-to-CPU communication

in this specific scenario.

This assumption brings several advantages to the overall optimization process. By iso-

lating each workload to a single CPU module, we simplify resource allocation and avoid

the complexities that would arise from managing and coordinating communication between
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multiple CPU modules. This streamlined approach significantly reduces the computational

overhead, allowing our algorithm IRoP to achieve its efficiency in run-time complexity.

Moreover, the single-CPU-per-job assumption aligns well with literature [3, 4, 13] and

many real-world applications and workloads, where tasks are often designed to be inde-

pendent and can be efficiently executed by a single processor core. This allows datacenter

operators to tailor the allocation of resources for individual workloads while optimizing the

overall performance and power consumption of the system.

By incorporating the power consumption model into our optimization framework, we

can make informed decisions on workload placement and resource allocation to minimize

overall power consumption, effectively promoting power efficiency and sustainable data center

operations. Properly managing power consumption not only reduces operational costs but

also contributes to environmental conservation by optimizing resource usage and reducing

carbon footprints.

4.4 Optimization Objective

The optimization objective plays a crucial role in guiding our workload placement algorithm

within the disaggregated data center (DDC). It essentially helps us make strategic decisions

when it comes to resource allocation.

This objective function, outlined in (4.1a), comprises two distinct components, each ad-

dressing vital aspects of data center performance. The first component is all about quanti-

fying the total slowdown experienced by the workloads within the data center. As we have

discussed earlier, slowdown is a critical metric that has a direct impact on the quality of

service delivered to our users and, consequently, the overall user experience. By minimizing

this total slowdown, our data center can ensure the efficient and timely execution of tasks,

meeting the performance expectations of our clients.

On the other hand, the second component of the objective function focuses on the total

power consumed by the active CPU modules in the DDC. Power consumption is a significant
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concern in modern data centers, and optimizing power usage is vital for achieving cost-

effectiveness and environmental sustainability. By minimizing the total power consumption,

the data center can operate more efficiently, leading to reduced operational costs and reduced

environmental impact.

It is important to recognize the inherent trade-off between these two components of the

objective function. As coefficient 0 ≤ η ≤ 1 is introduced to the objective function, it allows

for adjusting the relative importance of the two components. When η is set to 0, the opti-

mization prioritizes minimizing the total slowdown of workloads, neglecting the impact on

power consumption. Conversely, when η is set to 1, the optimization focuses solely on min-

imizing power consumption, disregarding the impact on workload slowdown. Intermediate

values of η allow for finding a balance between these two competing objectives, striking an

optimal trade-off between workload slowdown and power consumption efficiency.

While Constraint (4.1j) guarantees that the maximum slowdown of each workload is

within the acceptable Service Level Agreement (SLA) requirements ensuring that each work-

load is maintained within acceptable limits, the inclusion of the total slowdown component

in the objective function serves a critical purpose. It provides the workload placement

algorithm with the flexibility to further improve the slowdown of workloads, beyond the

minimum SLA requirements, when such improvements do not disproportionately impact the

power costs of the DDC. For instance, in situations where power consumption is of lesser

importance compared to the overall workload slowdown, the algorithm can opt to reduce

workload slowdowns even further, optimizing user experience and service quality. Several

workloads in today’s datacenters need a timely execution and they can not tolerate work-

load slowdowns [46]. In these scenarios, the administrator of the datacenter can aggressively

adjust the parameters in order to optimize the total slowdown of workloads for a specific

period of time without considering the power consumption of the DDC until the real-time

latency-sensitive workloads are completed executing.

The flexibility afforded by the proposed objective function allows the optimization al-

gorithm to adapt its decision-making process based on varying priorities and requirements.
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This adaptability enables the DDC owner to cater to diverse scenarios and operational goals,

ensuring that resource allocation decisions align with the data center’s specific needs and

objectives. Ultimately, the optimization objective empowers the workload placement algo-

rithm to strike an optimal balance between workload slowdown and power efficiency, paving

the way for a highly efficient and sustainable disaggregated data center.
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Chapter 5

Proposed Algorithm for Workload

Placement

The DWLP presents a challenging task involving the joint allocation of memory and CPU

frequency, making it inherently difficult to solve. To tackle this complexity, we introduce a

key idea that simplifies the problem significantly. Our approach is rooted in the observation

that when a workload’s achieved slowdown precisely matches its slowdown requirement,

denoted as ∆j , the workload slowdown needs are fully satisfied. Leveraging this insight, we

transform DWLP into a more manageable variant, named DWLP with Fixed Memory Ratios

( F-DWLP). By doing so, we shift our focus to solving F-DWLP as a proxy for the original

DWLP problem.

Although F-DWLP is relatively simpler to solve compared to DWLP, it remains a chal-

lenging extension of the multi-dimensional bin-packing problem [8], which is a well-known

NP-complete problem. Consequently, devising an exact solution for F-DWLP is computa-

tionally infeasible, necessitating the development of an efficient approximation algorithm to

obtain a feasible solution within polynomial time.

In response to this challenge, we propose a novel approximation algorithm, aptly named

Iterative Rounding-based Placement ( IRoP). The algorithm builds upon the deterministic

rounding framework [55], a powerful technique for obtaining approximation solutions with
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provable guarantees. By strategically applying iterative rounding techniques, IRoP provides

a computationally efficient and effective solution to the placement problem, yielding results

that are close to the optimal solution.

The key strength of IRoP lies in its ability to strike a balance between computational

complexity and solution quality (i.e., results should be near-optimal). While the algorithm

may not guarantee an exact optimal solution, its provable approximation guarantees ensure

that the solution obtained is of high quality and close to the optimal solution. This feature

makes IRoP an excellent choice for large-scale real-world scenarios where finding an exact

solution is intractable, and an approximate but high-quality solution is more practical and

actionable.

By utilizing IRoP to solve the transformed F-DWLP, we achieve significant progress to-

wards tackling the original DWLP problem. The successful application of the deterministic

rounding framework and the innovative iterative rounding techniques employed in IRoP allow

us to handle the memory and CPU frequency allocation challenges efficiently, significantly

enhancing the data center’s performance and resource utilization.

In the way of solving the DWLP problem, the subsequent subsections present a com-

prehensive and systematic exploration of our approach’s key components. In the first two

subsections, we delve into the intricacies of the algorithm, with each subsection dedicated to

a specific phase that advances us closer to achieving an efficient and effective solution. In the

first subsection, Phase 1: Fixing Memory Ratios, we elaborate on the process of transforming

the original DWLP problem into the simplified variant called F-DWLP. By meticulously fix-

ing the memory ratios for the workloads, we successfully streamline the problem complexity,

setting the stage for the subsequent steps of the algorithm. In the second subsection, aptly

titled Phase 2: Workload Placement Phase, we shift our focus to the crux of the workload

placement problem. Here, we harness the power of the approximation algorithm IRoP to

conduct an optimized and strategic allocation of workloads to CPU modules. The algorithm

adeptly takes into account both the fixed memory ratios and the intricate relationship be-

tween CPU frequency and workload slowdown, offering a detailed account of IRoP’s iterative
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rounding approach and its vital role in obtaining a feasible solution for F-DWLP.

In the final subsection, Algorithm Analysis, we embark on a comprehensive theoretical

journey that illuminates the performance and characteristics of our innovative approach.

This critical phase involves an in-depth examination of the algorithm’s theoretical underpin-

nings, including the derivation and analysis of its approximation ratio and run-time com-

plexity. Through theoretical evaluations, we elucidate the algorithm’s scalability, solution

quality, and computational tractability, thereby gaining a profound understanding of its

practicality and effectiveness in real-world scenarios. Furthermore, we compare the results

obtained by IRoP with established lower bounds to ascertain the quality of the solutions

it produces and the degree to which it approximates the optimal solution. This detailed

theoretical analysis provides valuable insights into its strengths, limitations, and potential

for broad applicability in addressing the resource allocation challenges faced by modern data

centers.

In summary, by dissecting each phase of our approach and complementing it with com-

prehensive theoretical analysis, we present a holistic and robust methodology for resolving

the intricate resource allocation problem in the disaggregated data center. Armed with a

deeper understanding of the algorithm’s inner workings and theoretical guarantees, we can

confidently assert its potential to transform data center operations and optimize resource uti-

lization, ultimately fostering a more intelligent, adaptive, and high-performance data center

infrastructure. The knowledge and insights gained from these subsequent subsections pave

the way for efficient and sustainable data center management, empowering data center op-

erators to meet the diverse demands of workloads and deliver exceptional performance while

minimizing power consumption and adhering to critical performance guarantees. Finally,

the proposed algorithm is evaluated in the next chapter to measure the effectiveness of IRoP

as well as the accuracy of the theoretical analysis.
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5.1 Fixing Memory Ratios

To transform DWLP into F-DWLP, we embark on a critical step that involves computing the

minimum local memory ratio for each workload w ∈ W and every computing module c ∈ C.

The objective is to determine the local memory allocation strategy that is sufficient to satisfy

the slowdown constraint of each workload under any CPU allocation strategy determined by

yw,c. The computation of this ratio follows a meticulous process, outlined as follows:

xw,c ← max

{
1− (Pm

w )−1
(

∆w

P f
w(Fc)

)
, 0.25

}
, (5.1)

Here, the memory slowdown function, denoted as (Pm
w )−1(·), is linear and easily computed.

This function is proposed and evaluated in Subsection 3.2.1 and it is a piece-wise approxi-

mation for the impact of the remote memory assignment ratio on the workload slowdown.

A notable aspect is that we guarantee the allocated local memory ratio to be no less than

25%, as mandated by Constraint (4.1h) in the original DWLP problem formulation. By

considering the minimum local memory assignment, we retain a carefully selected subset of

placement options where the slowdown of workloads can be better than ∆w since we can

assign workloads to a higher-performing CPU module. This particularly comes into play

with powerful CPUs, i.e., modules possessing higher processing capacity, that require only a

small amount of local memory to satisfy slowdown constraints. In such scenarios, it becomes

possible to place workload w ∈ W on a more powerful CPU, yielding a slowdown that is

less than what was acceptable by the workload (i.e., ∆w) in exchange for consuming more

power).

To reflect the updated memory allocation strategy, we introduce Constraints (5.2g),

(5.2h), and (5.2i) in the transformed version of DWLP, denoted as F-DWLP. These con-

straints replace the original Constraints (4.1d), (4.1g), and (4.1i), respectively, with the

computed value xw,c in place of the variable xw. Constraint (5.2g) ensures that the sum

of local memory usage of workloads assigned to the same module respects the local mem-

ory capacity of that module. Similarly, Constraint (5.2h) enforces the capacity constraint
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for the remote memory in the DDC, utilizing the constant value xw,c and variable yw,c to

compute the remote memory of workloads based on their assigned CPU modules. Lastly,

Constraint (5.2i) plays a crucial role in computing workload slowdowns, wherein xw,c remains

constant, and the only variable is yw,c.

Problem 2: F-DWLP: DWLP with Fixed Memory Ratios.

Min. (1− η) ·
∑
w∈W

θw + η ·
∑
c∈C

Ec(zc, uc) (5.2a)

s.t.
∑
c∈C

yw,c = 1, ∀w ∈ W (5.2b)

∑
w∈W

yw,c · νw ≤ Ñc, ∀c ∈ C (5.2c)

Ñc ≤ Nc · zc, ∀c ∈ C (5.2d)

L̃c ≤ Lc · zc, ∀c ∈ C (5.2e)

uc =
Ñc

Nc

, ∀c ∈ C (5.2f)

∑
w∈W

yw,c · xw,m · µw ≤ L̃c, ∀c ∈ C (5.2g)

∑
w∈W

∑
c∈C

yw,c · (1− xw,c) · µw ≤M, (5.2h)

θw=
∑
c∈C

yw,c(P
m
w (1− xw,c) · P f

w(Fc)),∀w ∈ W (5.2i)

By adopting this innovative approach of fixing memory ratios and formulating F-DWLP,

we simplify the resource allocation challenge while preserving crucial performance guarantees.

This transformation empowers our approximation algorithm IRoP to effectively navigate the

multi-dimensional bin-packing problem, optimizing the allocation of workloads and CPU

modules. The careful consideration of memory and CPU frequency allocation, coupled with
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the iterative rounding techniques of IRoP, sets the stage for an efficient and provably good-

quality near-optimal solution for the DWLP problem, enabling data center owners to achieve

enhanced performance, reduced power consumption, and adaptable workload management.

5.2 Workload Placement Phase

Algorithm 1 presents the pseudocode of IRoP, which employs the deterministic rounding

framework to solve F-DWLP. The algorithm takes an instance of the problem, denoted by

M, and starts its procedure by relaxing the integrality constraints in line 1. This relaxation

transforms F-DWLP into a linear program (LP), denoted by M̃, that can be efficiently

solved using interior point methods. After solving M̃, IRoP obtains fractional values for yw,c

and zc that respect all constraints except for the integrality constraints (i.e., the decision

variables have fractional values rather than achieving binary - 0 or 1 - results). We denote

the fractional value of these decision variables with ỹw,c and z̃c, respectively.

To obtain a feasible solution forM, IRoP rounds the fractional values to either zero or one

in a manner that maintains the feasibility of constraints without significantly increasing the

objective value. We mainly focus on the decision variables yw,c in the following discussions,

as the value of zc can be directly computed from the value of decision variable yw,c. If the

value of yw,c is rounded to one for workload w and module c, then the value of zc for the

corresponding module must also be rounded to one.

The algorithm proceeds to round the variables iteratively, considering the workloads one

by one. For each workload w ∈ W , IRoP examines modules in an order based on the value

of decision variables yw,c. In line with this, it finds the module with the maximum value of

ỹw,c, denoted by c′, as follows:

c′ ← argmax
c∈C

ỹw,c . (5.3)

Next, IRoP fixes the value of decision variable yw,c′ to one and solves the problem again,

starting from the current values of other decision variables. Due to the small change in

the value of decision variables, the linear program solver finds the next solution quickly or
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Algorithm 1: IRoP: Iterative Rounding-based Placement.

Input :M: Instance ofF-DWLP

Output: {zc, yw,c}: Activation and Assignment Decisions

1 M̃ ← relax(M)

2 {z̃c, ỹw,c} ← solve(M̃)

3 for w ∈ W do

4 Cw ← {}

5 while Cw ̸= C do

6 c′ ← argmaxc∈C−Cw
ỹw,c

7 yw,c′ ← 1

8 {z̃c, ỹw,c} ← solve(M̃)

9 if M̃ is feasible then

10 break
11 else
12 yw,c′ ← 0

13 Cw.add(c′)

14 if |Cw| = |C| then
15 return FAIL

16 return {zc, yw,c}

determines that the problem has become infeasible.

If M̃ remains feasible, IRoP retains the allocation of module c′ ∈ C for workload w ∈ W

and terminates the current iteration to handle the next workload in the following iteration

(see lines 9 and 10). However, if the problem becomes infeasible, IRoP concludes that it is

impossible to allocate module c′ ∈ C to workload w ∈ W . Consequently, IRoP reverts the

change to variable yw,c and solves M̃ again to select another processing module to assign it

to the workload.

To ensure that a processing module is not repeatedly selected, IRoP maintains a set Cw,

which starts empty at the beginning of each iteration. When M̃ becomes infeasible, IRoP

fixes the value of decision variable yw,c′ to zero and adds c′ ∈ C to set Cw. If the size of

Cw becomes equal to the number of available modules |C|, it is impossible to allocate any
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CPU module to workload w ∈ W , and the algorithm fails. In such a situation, lower-

priority workloads can be eliminated, and the process can be repeated with a reduced set of

workloads.

Once IRoP successfully completes the iterative rounding process, it obtains a feasible solu-

tion for F-DWLP, which respects the slowdown constraints of all workloads. The solution may

not be optimal, as the rounding process introduces some degree of sub-optimality. However,

the approximation ratio of IRoP indicates how close the solution is to the optimal solution.

In the next subsection, we will present the theoretical analysis of IRoP and mathematically

prove its approximation ratio.

5.3 Algorithm Analysis

In this section, we undertake a thorough theoretical analysis of IRoP, aiming to gain insights

into its performance guarantees and computational efficiency. We commence our exploration

by focusing on the algorithm’s approximation ratio and its implications on solving F-DWLP.

One crucial observation is that in our formulated problem, the slowdown of each workload

w ∈ W is intrinsically bounded by the constant ∆w, proposed in Constraint (4.1j). This

inherent constraint ensures that the essential slowdown requirement of each workload remains

satisfied throughout the algorithm’s execution, preserving the overall quality of the solution

and respecting the service level agreement. Our rounding procedure, which plays a significant

role in obtaining feasible solutions, does not impact the slowdowns of the workloads, adding

to the stability and reliability of the approach.

5.3.1 Approximation Ratio

In this subsection, we embark on deriving the theoretical approximation ratio of IRoP. The

obtained approximation ratio is characterized by a combination of key factors, including the

number of cores and demands ratio, denoted as N̂ , the maximum ratio between static power

coefficients, represented by Ŝ, and the maximum ratio between dynamic power coefficients
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among any two modules in the datacenter, denoted as D̂. Theorem 5.1 establishes that the

approximation ratio ψ achieved by IRoP is bounded by max {C · N̂ · Ŝ, D̂}, providing an

essential theoretical guarantee on the performance of the algorithm.

Theorem 5.1. Algorithm IRoP attains the approximation ratio

ψ = max{C · N̂ · Ŝ, D̂}, (5.4)

where N̂ = max c∈C
w∈W
{Nc/νw} is the maximum ratio between the number of cores and de-

mands, Ŝ = maxc,c′∈C{Isc/Isc′} is the maximum ratio between static power coefficients, and

D̂ = maxc,c′∈C{Idc /Idc′} is the maximum ratio between dynamic power coefficients among any

two modules in the DDC.

Proof. The power consumption term in the objective is given by:

∑
c∈C

Isc · zc + Idc · uc . (5.5)

In the worst-case scenario, the value of each zc can increase by a factor of C×Nc

Ñw

. This

increase occurs because the value of Ñc can increase by a factor of C, and z̃c can be as small

as Nw/Ñc to be larger than the left-hand side of the constraint. However, the value of zc does

not necessarily increase to exactly one. Therefore, the first term in (5.5), i.e., the static power

consumption of powered-on modules, can increase by a factor of C×Nc

Ñw

compared to its value

in the solution of the linear problem. We should note that the static power consumption

is not identical for all modules. Consequently, during rounding, a module with the highest

static power consumption might be selected among modules with a positive value of zc. As

a result, the static power consumption increases by at most a factor of Ŝ.

To characterize the increase of the second term, we note that if the load due to each

workload in one of the modules (i.e., module c′ that was selected in (5.3)) increases by a

factor of α, its combined load in other modules (i.e., c ̸= c′) will decrease by a factor of

1
α . Therefore, the overall dynamic load characterized by the second term in (5.5) does not
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change. The only difference stems from the variations between dynamic power consumption

coefficients. Similar to the static power consumption case, the dynamic power consumption

increases at most by a factor of D̂.

Let OM and OM̃ denote the power consumption of the optimal solution of M and M̃

used in IRoP. Also, define OIRoP to be the power consumption of the solution obtained by

IRoP after rounding the decision variables of M̃. We have:

OIRoP ≤
∑
c∈C

{
C ×Nc

Ñc

· Ŝ · Isc · z̃c + D̂ · Idc · uc
}

(5.6)

≤ max
{
C · N̂ · Ŝ, D̂

}
×
∑
c∈C

{
Isc · z̃c + Idc · uc

}
(5.7)

= ψ ×OM̃ ≤ ψ ×OM, (5.8)

which, establishes the theorem.

In conclusion, the derivation of the approximation ratio involves a comprehensive anal-

ysis of the power consumption terms, revealing how the values of decision variables impact

the overall power consumption of the datacenter. In the worst-case scenario, the round-

ing procedure may increase the static power consumption of powered-on modules, but it

is constrained by the maximum factor of C×Nc

Ñw

. A careful examination of dynamic power

consumption coefficients further contributes to bounding the approximation ratio, ensuring

that the performance of IRoP remains within a provable range. By establishing the theo-

retical foundation for the algorithm’s approximation ratio, we gain valuable insights into its

performance and set the stage for further analysis of its computational complexity.

5.3.2 Run-time Complexity

Next, we delve into the analysis of IRoP’s runtime complexity, a crucial aspect that sheds

light on its computational efficiency. Theorem 5.2 establishes that our algorithm runs in

polynomial time, which is a highly desirable property for practical solutions when it comes

to resource allocation and workload placement problems.
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Theorem 5.2. IRoP runs in polynomial time.

Proof. The rounding procedure consists of calling the linear program solver at most n ×m

times, where n and m represent the number of workloads and CPU modules, respectively. In

[23], the authors prove that the complexity of solving a linear program with n×m variables

using the interior point method is O((n×m)3.5). Therefore, in the worst-case scenario, the

complexity of IRoP is O((n×m)4.5), ensuring its polynomial-time complexity.

In conclusion for run-time analysis, the polynomial-time complexity of IRoP significantly

enhances its computational efficiency. As a polynomial-time algorithm, IRoP scales effec-

tively, even when dealing with large-scale instances, a critical trait in the era of massive

datacenters and ever-growing workloads. The ability to handle complex optimization prob-

lems efficiently sets IRoP apart as a potent and promising algorithm in the field of datacenter

management.

As a summary of this subsection, the theoretical results obtained thus far yield invaluable

insights into the performance of IRoP. One crucial metric, the approximation ratio ψ, serves

as a yardstick for measuring the proximity of IRoP’s solutions to the optimal ones which

comes from solving the original NP-Hard problem denoted by DWLP. A smaller ψ value

indicates a more accurate approximation, underscoring the reliability and effectiveness of

our algorithm in providing solutions that are remarkably close to the best possible outcomes.

This enhanced approximation capability reinforces the practicality and relevance of IRoP in

the context of datacenter management, where achieving near-optimal results is of utmost

importance. The theoretical approximation ratio ψ, and the polynomial-time complexity

make IRoP an attractive and powerful solution for tackling the multifaceted challenges in

datacenter resource allocation. By striking a balance between computational efficiency and

solution quality, IRoP emerges as a practical and effective approach for solving F-DWLP

and advancing the state-of-the-art in datacenter optimization. In the next chapter, the

effectiveness of the proposed workload placement algorithm is extensively evaluated while

comparing the results in different metrics with the baselines coming from the recent literature.
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Also, the completion time of the IRoPis compared to the optimal solution (i.e., Gurobi

solution for DWLP) for different datacenter scenarios, and the theoretical run-time analysis

proposed in this section is evaluated.
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Chapter 6

Performance Evaluation

In this section, we present a comprehensive evaluation of our proposed workload placement

algorithm, IRoP. To provide an in-depth understanding of IRoP’s effectiveness and operation,

we have structured the evaluation into distinct subsections. Section 6.1 outlines the method-

ology of our experiments, detailing the setup of the testing environment and the alternative

algorithms, referred to as our baselines, against which we will compare IRoP.

In Section 6.2, we assess the performance of our proposed algorithm based on the first

metric, total workload slowdown, and compare its results with CFM, which is the most

relevant baseline in this regard. Section 6.3 focuses on evaluating the performance of IRoP

in terms of DDC power consumption, with a comparison against HEEP, which emphasizes

this objective.

Combining the results, Section 6.4 elaborates on the primary objective of IRoP, optimiz-

ing the weighted sum of slowdown and power consumption while adhering to service level

agreements. This section also provides a comparative analysis of IRoP’s results with all other

baselines.

Finally, in Section 6.5, we conduct a detailed assessment of the run-time complexity of

IRoP, comparing its completion time with that of the most optimized algorithm, OPT, which

utilizes the Gurobi solver and solves the NP-Hard MILP model outlined in Problem 1.
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Table 6.1: CPU Modules Used in Evaluations.

CPU Modules Used in Evaluations

Model # Cores Processing Capacity TDP

AMD EPYC 9654 192 2 2.2
AMD EPYC 7763 128 1.5 1.7
Intel Xeon E7-8890 48 1 1

6.1 Methodology

In this section, we delve into the detailed methodology and setup that underpin our sim-

ulations, aimed at evaluating the performance and efficiency of different workload alloca-

tion algorithms in the context of a large-scale (i.e., cluster-scale) disaggregated data center

(DDC) environment. Our approach encompasses the emulation of Google’s Aquila archi-

tecture, known for its capacity to house up to 1152 servers within a single cluster [14]. By

replicating key facets of Google’s data center architecture, we ensure the relevance of our

analysis is comparable to other baselines detailed in the following subsections.

6.1.1 Environment Setup

This section provides a comprehensive description of the environment and setup employed for

conducting the simulations in our study. The simulations were executed within a large-scale

disaggregated data center (DDC) environment based on Google’s Aquila architecture, which

is recognized for its capability to accommodate up to 1152 servers in a single cluster [14].

To establish realistic workload requirements, which delineate the resource prerequisites of

diverse tasks executed within the data center, we draw upon the extensive analysis conducted

by Glawion et al. [15]. This analysis encompasses a comprehensive range of prevalent work-

loads that are typically encountered in data center operations, thus imbuing the simulated

scenarios with authenticity. The simulated data center is equipped with three distinctive

types of processors, each endowed with specific specifications and capabilities. The charac-

teristics of these processor types are outlined in Table 6.1.

The development of the proposed IRoP algorithm and the associated baseline algorithms
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Table 6.2: Datacenter and Workload Parameters.

Datacenter Parameters

Symbol Absolute Value or Range

C 1200

Fc Based on the Table 6.1

Nc Based on the Table 6.1

Lc 64 GB (Latency is considered to be 20 nanoseconds)

Isc 75% of TDP (see Table 6.1)

Idc 25% of TDP (see Table 6.1)

M 20 TB (Latency is considered to be 5 microseconds)

Workload Parameters

Symbol Absolute Value or Range

W 150

νw 1 - 48

ϕw 1 - 2 (Normalized)

µw 4 - 64 GB

P f
w(.) Based on the results in Section 3.2.2

Pm
w (.) Based on the results in Section 3.2.1

∆w 5% - 25%

necessitated the creation of an approximately 1500-line codebase utilizing Python version

3.11. These algorithms were formulated to orchestrate the allocation of workloads to the

available processors within the simulated DDC environment. The parameters governing

the data center’s configuration and the specific parameters of the simulated workloads are

summarized in Table 6.2.

For each distinctive experimental configuration, a comprehensive suite of simulations was

executed employing diverse algorithms, including the proposed IRoP algorithm and the es-

tablished baselines. The principal objective of these simulations was to dissect and evaluate

the performance implications of different allocation strategies within the system. The out-

comes garnered from these simulations encapsulated two distinct categories of data: the

prevailing state of the disaggregated data center, encompassing attributes such as available

local memory and CPU utilization, and the completion times of all the simulated workloads.

To bolster the credibility and robustness of the results, each configuration underwent

rigorous testing across a repertoire of 100 randomized scenarios. The final results were
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Figure 6.1: Flowchart of HEEP.

distilled by computing the averages across these diverse scenarios. To facilitate effective

comparison and nuanced analysis, the aggregated outcomes were subsequently normalized

by dividing each individual value by its corresponding maximum value among all the tested

scenarios.

6.1.2 Alternative Algorithms

In addition to the proposed IRoP algorithm, a suite of baseline algorithms were implemented

to serve as benchmarks for comparison and evaluation. These alternative algorithms encom-
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Figure 6.2: Best component selection in HEEP.

pass a diverse spectrum of strategies for workload allocation within the complex landscape

of the DDC environment which are mitigated from recent literature:

• OPT: This algorithm calculates the optimal solution for the intricate workload place-

ment problem ( DWLP). Its realization hinges on leveraging the capabilities of the

Gurobi optimizer [18]. However, it is worth acknowledging that the resolution of the

Integer Linear Programming (ILP) problem intrinsic to DDC placement entails a time-

intensive problem. Consequently, relaxation and rounding techniques are employed to

generate an approximate solution in the proposed algorithm while the OPT is attempt-

ing to solve the pure MILP formulations proposed in Section 4.1 and called DWLP using

the Gurobi interface in Python.

• HEEP [3]: HEEP uses a greedy algorithm engineered to minimize the collective power

consumption of different IT resources (i.e., CPU, RAM, and networking resources such
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Figure 6.3: How CFM minimizes workload slowdown

as switches) within the physically disaggregated data center. This feat is accomplished

through the meticulous sorting of workloads and resources based on their respective

power efficiency and performance requirements. Fig. 6.1 shows the flowchart of this

baseline while Fig. 6.2 shows how HEEP chooses the best power-efficient CPU module

for each request. We recall the fact that the authors proposing HEEP have also formu-

lated the power consumption of different resource types as a MILP model. However,

since solving their proposed model is NP-hard, they proposed HEEP that mitigates the

optimized solution while executing faster. Additionally, to make HEEP comparable to

IRoP, our proposed algorithm, we do not consider the power consumption of other re-

sources such as memory and networks when implementing HEEP and we only focus on

the power efficiency of the CPU modules. All the other details of this algorithm are

taken into account such as the utilization factors or the power efficiency level for the

three types of CPU modules.

• CFM [4]: The CFM algorithm pivots its focus on the optimization of workload slowdown

by modulating the allocation of local and remote memory. It tries to maximize the

memory-time products attributed to each workload, which includes the minimization

of remote memory usage. Fig. 6.3 shows how CFM tries to minimize the workload

slowdown by reducing the remote memory time product. As shown in Fig. 6.3, A is

the original memory-time product when no remote memory is used and workloads are
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using 100% local memory (i.e., the scenario which happens when assigning workloads to

traditional data centers or lightly loaded disaggregated data centers which have lots of

available free local memory per CPU module). B+C is the new memory-time product

when the workload is assigned to a disaggregated data center that is highly loaded or

forced to use remote memory. In this scenario, B is the local portion of memory time,

and C is the remote portion of the product. It is also noteworthy to mention that the

authors in [4] have profiled some of the popular workloads and their results are similar

to our profiling framework detailed in Section 3.2. The result of their work also proves

that different workloads have different reactions to the remote memory latency which

causes various workload slowdowns. However, they have not provided any evaluations

or information on the accuracy of their profiling method and fitting function.

• First-Fit: The First-Fit algorithm is characterized by a simplistic strategy, wherein each

workload is assigned to the first available CPU module that boasts an adequate reser-

voir of local memory. In scenarios where local memory is not sufficient, the algorithm

seamlessly transitions to allocating remote memory to the workload. Therefore, in this

baseline, all the available local memory is consumed at first before remote memory is

assigned to any workloads, causing more power consumption and also high workload

slowdown in some scenarios. For example, if a batch of less time-sensitive workloads,

such as WordCounts, arrive at the datacenter first, and subsequently, a batch of more

time-sensitive workloads, such as Kmeans, request to join, there might not be any

available local memory to allocate to them while all the local memory is assigned to

the first batch of the workloads. However, First-Fit is known for its simplicity and fast

execution. Also, it is observable that there is always a sequence of workloads which if

found properly, First-Fit will generate the optimum solution. In our experiments and

testings, we also faced some scenarios where First-Fit generated the best solutions since

the random shuffling of the workloads was accidentally creating the best sequence of

workloads requesting resources from the datacenter.
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In summary, the cumulative effect of these baseline algorithms, complemented by the pro-

posed IRoP algorithm, engenders a comprehensive array of approaches catering to workload

allocation within the the disaggregated data center environment. OPT serves its purpose as

the optimal solution of the MILP formulation of the workload placement problem. Its results

are comparable in two ways. The optimality of the results and the completion time (i.e.,

run-time complexity) of IRoP. On the other hand, HEEP and CFM serve as the baselines

for the power efficiency and workload slowdown optimality compared to IRoP, respectively.

Finally, First-Fit complements the other baselines as the most simple approach for workload

placement. In the following subsections, we extensively evaluate IRoPwith the above base-

lines using different metrics such as power consumption, total workload slowdown, weighted

sum of slowdown and power consumption, and run-time complexity of the algorithms.

6.2 Total Slowdown of Workloads

As detailed in Section 3.2, one important disadvantage of physically disaggregated datacen-

ters is the fact that utilizing remote memory introduces higher latency compared to the local

memory used in traditional datacenters. In our proposed algorithm, we have taken this issue

into account in three steps as follows:

• First, we established an accurate workload profiling methodology which creates an of-

fline profile for each workload regarding how remote memory affects workload slowdown.

This profiling framework is detailed in Chapter 3.

• Second, we considered a constraint that forces IRoP to always ensure that the slowdown

each workload experiences is less than its service level agreement denoted by ∆w and

presented in Problem 1.

• Lastly, we considered the total slowdown of workloads in the objective of our proposed

workload placement problem which is also presented in Problem 1. We should recall

that θw denotes the final slowdown of each workload. In Chapter 5, this objective is

also presented in Problem 2 and then used to optimize the output in the Algorithm 1.

74



In this section, first, we run IRoP in a DDC environment with different parameters using

different scenarios, and then we evaluate the efficiency of IRoP in minimizing the total

slowdown of workloads by comparing its results to the related baseline called CFM, detailed

in the previous section.

To present a detailed assessment of IRoP’s performance on controlling the slowdown of

workloads, we embark on a journey through a spectrum of scenarios defined by varying

values of ∆w, specifically drawn from the set {0.5, 0.10, 0.15, 0.20, 0.25}. The focal point of

our investigation lies in understanding the normalized slowdown results achieved by IRoP

across this range of ∆w values. The normalized slowdown for each workload is calculated

using the following definition:

Normalized Slowdown =
Slowdown of the workload

Maximum slowdown of workloads between all scenarios
(6.1)

dividing the slowdown of each workload by the maximum slowdown between all the tested

scenarios. Our evaluation extends beyond this scope as we also utilize η, a critical parameter

that governs the equilibrium between power consumption and workload slowdown. We chart

the trajectory of normalized slowdown values as η changes from zero to one.

Notably, the interplay between η and the normalized slowdown is a key aspect of this ex-

ploration. The relationship becomes apparent as we observe an intuitive trend: an increase

in η corresponds to an escalation in the normalized slowdown. This outcome aligns with

expectations, as higher η values signify a heightened emphasis on power conservation (i.e.,

trying to minimize the power consumption of CPU modules by compressing workloads into

less number of CPUs and maintaining CPU modules powered-off as much as it can), con-

sequently allowing for larger results for workload slowdown. This dynamic interdependence

between η and normalized slowdown provides a versatile framework for datacenter operators

to calibrate IRoP’s performance in alignment with their specific priorities.

In our pursuit of comparative insights, we extend our gaze to incorporate the perfor-
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Figure 6.4: Total slowdowns of IRoP for different values of slowdown threshold compared to
CFM.

mance of CFM, another algorithm that serves as a benchmark for evaluation. A decisive

criterion in this context is the focus on the slowdown. Consequently, our analysis only per-

mits meaningful comparisons at η = 0, since CFM exclusively prioritizes workload slowdown

optimization and ignores the power consumption of the DDC completely. However, to render

the comparison more holistic, we depict the result of CFM for all different values of η which is

represented by a dashed line. As CFM is not dependent on the value of η, the output of this

workload placement is fixed through the range of eta, creating a straight line on the chart.

This technique is used only as a help in providing a broader perspective while acknowledging

the algorithm’s behavior beyond its exclusive focus on the workload slowdown.

In the presented data in Fig. 6.4, we observe a compelling pattern. IRoP consistently out-

performs CFM across the range of ∆w values. This observation underscores IRoP’s superior

adaptability and efficiency in diverse scenarios. Nonetheless, a critical eye will recognize a

few exceptions. Specifically, when ∆w = 0.25 and η > 0.3, IRoP’s performance exhibits a

higher normalized total workload slowdown in contrast to CFM. This divergence in outcomes
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Figure 6.5: Total power consumption of IRoP for different values of slowdown threshold
compared to CFM.

can be attributed to the interplay between the loose slowdown bounds imposed by IRoP and

the substantial significance assigned to power conservation. In these instances, IRoP demon-

strates its willingness to make certain trade-offs, favoring power efficiency at the cost of a

slightly higher workload slowdown.

A comprehensive analysis, encompassing over a hundred randomized experiments with

η = 0, yields insightful statistics. Comparing IRoP to CFM, we uncover a slowdown reduction

of up to 12% at its maximum, with an average reduction of 5% and a minimum of 2%.

Note that any comparison between IRoP and CFM with η set to any values rather than 0

is not reasonable as it causes IRoP to lose the workload slowdown to compensate for the

power consumption considerations. These figures testify to the consistent results of IRoP in

outperforming its benchmark counterpart, CFM.

In addition, Fig. 6.5 shows the normalized power consumption of the CPU modules when

IRoP is utilized compared to the scenario where the CFM is used as the workload placement

algorithm. Normalized power consumption is calculated using the following definition:
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Normalized Power =
Total power consumption of CPUs

Maximum total power consumption between scenarios
(6.2)

the total power consumption of CPUs by the maximum power consumption between

tested scenarios. We observe that CFM does not consider the power consumption of the

DDC as an important factor that causes large amounts of power consumption, costs, and

a highly negative impact on the environment. In the following section, this aspect of IRoP

is evaluated while compared to HEEP, the placement algorithm designed to minimize the

power consumption of DDC.

In summary, in our study of workload slowdown in physically disaggregated datacenters,

conducted by extensive experiments across various scenarios with different values of ∆w and

η, we found that IRoP consistently outperformed the CFM approach, achieving an average

slowdown reduction of 5% and a maximum reduction of 12%. However, we observed that

IRoP occasionally prioritized power conservation over minimizing workload slowdown, espe-

cially when ∆w was high and η exceeded 0.3. The findings in this section emphasize the

adaptability of IRoP compared to CFM, showcasing its capability to minimize total work-

load slowdowns when serving latency-sensitive workloads, while also accommodating higher

slowdowns for cases where workloads are less sensitive to latency and power conservation is

more important.

6.3 Total Power Consumption of DDC

In Subsection 3.1.2, we explained the importance of considering the power consumption

of DDC resources as part of the objective of our proposed algorithm, IRoP. Throughout

this thesis, we include the aspect of the power consumption of the DDC resources into our

objective function in the three steps summarized below:

• First, resulting from the literature, we assumed that the main power consumers are
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the CPU modules and we ignored the consumption of the other components such as

memory, networking modules, and cooling system. This assumption is based on the

fact that servers are responsible for around 85% of the total power consumption of

the DDCs and also, CPU modules are responsible for 90% of the power consumption

of the servers. [45] Additionally, authors in [33] claimed that optimizing the power

consumption of networking switches may not be effective, which is shown in Fig. 3.3.

• Second, after thoroughly considering the recent state-of-the-art literature [45, 38, 3, 45],

we found a complete MILP model and formulation for the power consumption of the

CPU modules based on their static (Isc ) and dynamic power (Idc ) consumption. The

formulation proposed by [45] and [3] is presented in Equation (3.1) and is fully detailed

in Subsection 3.1.2.

• Lastly, we used the utilization of CPUs as a factor for dynamic power usage. We

assumed that CPUs can be powered off when there are no workloads assigned to them

and the more active cores, the higher utilization and power consumption will be. Using

the mentioned assumptions, we finally conclude our power consumption model presented

in Equation (4.2) which is detailed in Section 4.3.

In this section, we evaluate the effectiveness of minimizing power consumption in IRoP while

comparing it with HEEP, which is detailed in Subsection 4.3.

As mentioned in the previous subsection, we run IRoP in a pre-defined DDC environment

with the same parameters and scenarios, and we calculate the total power consumption of the

powered-on CPU modules based on Equation (4.2). To ensure comparability of the results,

we use the same scenarios and environment to calculate the power consumption of the DDC

when utilizing HEEP as the workload placement algorithm. To ensure fairness in the results,

we conducted the experiments 100 times for each algorithm. Then, we calculate and report

the average results for the total power consumption.

There are two parameters that affect the results of IRoP: ∆w and η. As mentioned in the

previous subsection, the value of ∆w is drawn from the set {0.5, 0.10, 0.15, 0.20, 0.25}, while
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Figure 6.6: Power consumption of IRoP for different values of slowdown threshold compared
to HEEP.

the value of η ranges from 0 to 1, determining the importance level of power consumption,

from complete disregard to high consideration. These parameters not only influence the

total slowdown of the workloads, as observed in the previous subsection, but also impact the

overall power consumption of the DDC. Therefore, IRoP provides the datacenter owner with

the flexibility to select the desired output based on the type of workloads assigned to the

DDC at any given time. Fig. 6.6 not only sheds light on the interplay between normalized

power consumption and the parameters ∆w and η but also unravels deeper insights into the

performance characterization of IRoP. This visual representation offers a rich canvas upon

which we can paint a detailed narrative of how IRoP responds to varying conditions and

priorities.

As observed in Fig. 6.6, an increase in the value of ∆w, which determines the thresh-

old of the maximum slowdown for each workload, results in a decrease in the total power

consumption of the DDC. This phenomenon can be explained by the fact that when us-

ing higher slowdown thresholds, IRoP has more flexibility in selecting power-efficient CPUs
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with lower processing capacities, leading to reduced power consumption despite higher work-

load slowdown. This trade-off enables IRoP to achieve lower power consumption by keeping

high-power consumer CPUs powered off, a feat impossible when dealing with inflexible or

latency-sensitive workloads that exhibit a low tolerance for workload slowdown. It is evident

that when ∆w is set to 0.05 or 0.10, the system lacks flexibility in managing power consump-

tion, leading to a significant disparity in total power consumption compared to the values of

∆w set to 0.15, 0.20, and 0.25.

Furthermore, when varying the value of η, it is evident that completely disregarding

power consumption (i.e., η = 0) leads to significantly higher power consumption, and any

increase in this parameter will markedly affect the performance of IRoP in this regard. This

observation can be explained by the way the objective of IRoP is defined in Problem 2. When

η = 0, the power consumption-conservative behavior of IRoP is entirely eliminated, allowing

the selection of CPU modules that fulfill other terms and constraints of the IRoP objective

without considering the power efficiency of these modules. As the value of η increases,

IRoP endeavors to utilize more power-efficient modules while adhering to other constraints,

resulting in a linear decrease in total power consumption once this aspect is taken into

account (i.e., for η > 0).

Considering that our comparable baseline, HEEP, focuses solely on the power consumption

of DDC resources without minimizing workload slowdown, a comparison between HEEP and

IRoP is only relevant when η = 1. It should be noted that even in this specific scenario, there

exists a distinction between HEEP and IRoP: the constraint that alters the behavior of IRoP

by restricting the maximum allowed slowdown for each workload, denoted as ∆w. Hence,

to accurately capture the differences between these two workload placement algorithms, we

utilize the same values for ∆W as depicted in Fig.6.6. Notably, it is evident that HEEP

outperforms our proposed algorithm when ∆w < 0.15, regardless of the value of η. This

outcome can be attributed to the fact that imposing a limitation on workload slowdown

compels IRoP to utilize highly powerful CPU modules, thereby sacrificing power consumption

efficiency. In contrast, HEEP does not take workload slowdown into consideration and selects
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Figure 6.7: Total slowdown of workloads when using IRoP for different values of slowdown
threshold compared to HEEP.

the most power-efficient modules in the DDC through an accurate and calculated procedure

outlined in Fig 6.1 and Fig. 6.2. However, when utilizing ∆w ≥ 0.20, IRoP outperforms HEEP

by selecting a more power-efficient combination of CPU modules that ensures lower power

consumption while adhering to the service level agreements. It is noteworthy that since the

output of HEEP remains constant when altering ∆W or η, the fixed output of this algorithm

is illustrated by a pentagon in Fig. 6.6. However, to ensure a comprehensive comparison, we

represent the result of HEEP for all different values of η with a dashed line, similar to the

previous subsection.

Finally, to quantify the comparison between the results generated by both algorithms,

we observe the superiority of IRoP over HEEP. Specifically, IRoP achieves a maximum power

reduction of up to 8% and an average reduction of 2.5%, while also delivering lower total

workload slowdown in all tested scenarios, irrespective of the combination of ∆w and η.

These findings are clearly depicted in Fig. 6.7.

In summary, we conducted over 100 trials to test the performance of IRoP with various
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values for ∆W and η, employing different randomized settings as outlined in Table 6.1 and

Table 6.2. Subsequently, we computed the total power consumption of CPU modules, based

on Equation (4.2), to compare the results with HEEP, which is designed to minimize power

consumption in a greedy manner, as elaborated in Fig.6.1 and Fig6.2. The findings reveal the

superiority of IRoP over HEEP in terms of power consumption savings when suitable values

for ∆W are used. Furthermore, IRoP outperforms HEEP in terms of workload slowdown

across all tested scenarios. The flexibility and superiority of IRoP are also evident in Fig.6.6

and Fig.6.7 with regard to power consumption and workload slowdown, respectively. Finally,

we reported a maximum power reduction of 8% and an average reduction of 2.5% compared

to HEEP, calculated based on the average result of 100 experiments.

6.4 Weighted Sum of Slowdown and Power Consumption

To this end, we compared the individual objectives of total workload slowdown and the

power consumption of DDC in Subsections 6.2 and 6.3, respectively. While the evaluations

demonstrated how IRoP outperforms the respective baselines for each objective by exhibiting

a lower total workload slowdown compared to CFM and achieving a more optimized power

consumption compared to HEEP, the primary objective of IRoP has not been thoroughly

explored and explained in the preceding subsections. As indicated in Problem 2, the objective

of our proposed algorithm incorporates both the minimization of total workload slowdown

and power consumption, with a balance achieved by manipulating a factor known as η. In

this subsection, we delve into the combined results when employing IRoP and other baselines

( CFM, HEEP, and First-Fit), concluding that IRoP provides a superior balance between the

two aspects of the objective in most scenarios.

To maintain consistency with the previous subsections in this chapter, we utilize the

same values of ∆w drawn from the set 0.5, 0.10, 0.15, 0.20, 0.25, while the value of η ranges

from 0 to 1. We also replicated the aforementioned scenarios randomly selected from the

parameters and notations outlined in Table 6.1 and Table 6.2. Furthermore, we executed the
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First-Fit algorithm under the same settings and variables, incorporating the results of this

simple greedy method in our analysis to gain a comprehensive understanding of the differing

performances offered by each workload placement algorithm.

It should be noted that, as explained in Subsection 6.1.2, we assume that this algorithm

fills the available local memory in a greedy manner and only resorts to remote memory when

no local memory is left in any of the CPU modules installed in the DDC environment. Under

this assumption, we assert that this behavior is somewhat akin to that of CFM, with the

initial aim being to minimize the workload slowdown by allocating all available local memory

before resorting to remote memory allocation. Consequently, we consider this algorithm to

be more relevant to IRoP when using η = 0 as an input parameter, effectively disregarding

power consumption.

However, in cases where CPU modules or the requesting workloads are not arranged

in an optimized manner (which is typically unknown to the algorithm or the datacenter

owner), it is highly likely for First-Fit to allocate a substantial amount of local memory to

latency-insensitive workloads. This may result in insufficient local memory allocation for

latency-sensitive workloads, ultimately leading to a significant increase in the total workload

slowdown within the DDC.

Figure 6.8 illustrates how the objective of the weighted sum of workload slowdown and

power consumption varies across different values of ∆w and η for our proposed algorithm

as well as other baselines. It is important to note that we omitted the results for IRoP-0.10

and IRoP-0.20 to enhance the readability of the plot, as the general trend remains consistent

across different values of ∆w. Furthermore, as previously mentioned, the results for CFM and

First-Fit are represented as solid points at η = 0, while HEEP is depicted as a solid point at

η = 1. We computed both the workload slowdown and power consumption of each of these

mentioned baselines. Considering that the outputs remain the same across different values

of ∆w and η, we used the linear summation of these two terms, resulting in a continuous

dashed line for each of these alternative algorithms.

To provide further clarity on Figure 6.8, in line with the objective outlined in Problem 2,
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Figure 6.8: Weighted sum of slowdown and power of IRoP for different values of slowdown
threshold compared to baselines.

the aim is to minimize the summation of the two terms. Consequently, in our plot, lower

values indicate a superior performance of the algorithm. It is evident that IRoP outperforms

all the other baselines in this objective, as it consistently delivers lower values across almost

all the values of ∆w and η. However, in scenarios where η ≥ 0.7 and ∆w = 0.05 (i.e., a

situation characterized by stringent slowdown thresholds for IRoP), HEEP exhibits superior

performance in terms of the objective value. It is important to note that in such scenarios,

the use of a strict threshold for IRoP is not recommended if power consumption takes prece-

dence, and the datacenter should introduce incentives for end-users to encourage them to

be more flexible and tolerate higher workload slowdowns. For example, during peak power

consumption hours when power costs are at their highest, datacenter owners can implement

a cost-effective approach by offering cheaper plans or discounts to users who are willing to

accept workload slowdowns. This strategy not only minimizes costs but also reduces the

datacenter’s carbon footprint, demonstrating a heightened concern for the environment.

In addition to the objective results visualized in Fig. 6.8, Fig. 6.9 also demonstrates how
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Figure 6.9: Normalized average power consumption versus the average slowdown of each
workload when using IRoP compared to CFM and HEEP.

the two objectives of IRoP, namely power consumption and workload slowdown, vary as

the datacenter administrator adjusts the system parameters: workload slowdown threshold

(∆w) and the importance factor (η). While the other two baselines lack flexibility and have

fixed results, IRoP is capable of producing different outputs by carefully selecting parameters

based on the preferences of the datacenter owner. Notably, in this Pareto front plot, we are

illustrating the average slowdown for each workload and the average power consumption

for each CPU module when utilizing IRoP, CFM, and HEEP as the datacenter workload

placement algorithm. Additionally, it is important to note that the y-axis is normalized by

the maximum power consumption and is averaged by dividing the total power consumed

by the total number of CPUs, including the CPU modules that are powered off during the

simulation.

In summary, the Pareto front plot depicted in Fig. 6.9 indicates that as the slowdown

threshold increases, the power consumption decreases. With higher slowdown thresholds,

IRoP assigns workloads to CPUs with lower power consumption to mitigate high power costs,
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Figure 6.10: Impact of the number of workloads on the run-time of IRoP and OPT. The
number of CPU modules is fixed at 30.

while allowing for a more relaxed constraint on workload slowdown. Conversely, when im-

plementing stricter constraints for workload slowdown, CPU modules with higher processing

capacity are utilized to compensate for the slowdown caused by the high latency of remote

memory, albeit at the expense of the power efficiency of the placement algorithm. Overall,

both Fig.6.9 and Fig.6.8 collectively demonstrate how IRoP outperforms other baselines by

displaying flexibility and providing the datacenter owner with greater freedom to achieve

their objectives, from power conservation to minimizing the total workload slowdown, all

while adhering to the service level agreements, the slowdown threshold of each workload.

6.5 Run-time Complexity

In Section 4.1, we introduced a MILP model for workload placement. We combined this

model with the power consumption MILP model outlined in Section 4.3. Subsequently, we

formulated Problem 1, which, if correctly solved (e.g., using the Gurobi solver), yields the
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Figure 6.11: Impact of the number of CPU modules on the run-time of IRoP and OPT. The
number of workloads is fixed at 30.

most optimized results for our workload placement problem, ensuring bounded slowdown

while minimizing the power consumption of the DDC. However, as noted in [58], the one-

dimensional bin packing problem is known to be NP-Hard. Consequently, the proposed

MILP model is also NP-Hard, given that it is a variant of the multi-dimensional bin packing

problem. As a result, the time complexity of the main MILP model would be exponen-

tial, making it time-consuming to implement in real-world scenarios involving a substantial

number of CPU modules and workloads. To ensure the scalability and applicability of IRoP

to large-scale scenarios, we proposed an approximation algorithm that solves the workload

placement problem in polynomial time, formulated in Problem 2 and Algorithm 1. In Subsec-

tion 5.3.2, we conducted a theoretical analysis of the runtime complexity of IRoP, revealing

a polynomial complexity of O((n×m)3.5). In this section, to evaluate the theoretical anal-

ysis and performance of IRoP, we thoroughly tested both IRoP and the optimal solution of

Problem 1 (referred to as OPT), comparing their respective completion times.

Since we are dealing with a 2-dimensional bin packing problem, we aim to investigate the
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influence of each dimension (i.e., the number of CPU modules and requesting workloads) on

the completion time of IRoP and OPT. To begin, we set the number of CPU modules at a

fixed value of 30 and vary the number of workloads from 10 to 75. As depicted in Fig. 6.10,

an increase in the number of requesting workloads leads to an exponential escalation in the

completion time of OPT. It is important to note that the y-axis of the plot is presented in

a logarithmic scale.

Conversely, under the same scenario, in the same plot, it is observable that the comple-

tion time of IRoP exhibits a linear growth pattern, highlighting the scalable nature of the

proposed algorithm and proving the accuracy of the run-time complexity analysis provided

in Subsection 5.3.2. It is crucial to mention that we were unable to continue the experiment

with a larger number of workloads (more than 75) as OPT becomes too complex to solve

within a reasonable time frame using the Gurobi solver.

To investigate the impact of the number of CPU modules, we conducted tests on both

algorithms using a fixed number of 30 workloads while progressively increasing the number

of CPU modules from 15 to 150. Subsequently, we computed the completion time of IRoP

and CFM for each configuration. The final results are illustrated in Fig. 6.11.

It is evident that while OPT still demonstrates an exponential run-time behavior, the

increase in the number of CPU modules does not contribute to the complexity of the problem

in the same manner as the increase in the number of workloads. This observation can be

attributed to the fact that the CPU modules serve as the bins in a bin packing problem, and

a higher number of bins does not significantly impact the problem’s complexity; rather, it

provides more flexibility for the algorithm. Additionally, the higher the number of workloads,

the more challenging it becomes for an algorithm to solve the problem with the same number

of CPU modules. Moreover, as demonstrated, an increase in the number of CPUs has

a minimal effect on the completion time of IRoP, further validating the scalability of the

proposed algorithm.

Furthermore, in these small-scale tests, IRoP introduces approximately a 5% higher total

workload slowdown while increasing the power consumption by about 7% compared to OPT.
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These values remain significantly below the theoretical bound computed in Subsection 5.3.1.

Moreover, for large-scale tests, the run-time of IRoP remains under 30 seconds, a satisfactory

performance within the testing environment.

In conclusion, our practical run-time experiments validate the theoretical analysis pro-

vided in Subsection 5.3.2. Both the results depicted in Fig. 6.10 and Fig. 6.11 underscore the

linear increase in the completion time of IRoP, alongside the exponential behavior observed

for OPT under the same settings and scenarios. Notably, increasing the number of workloads

exhibits a greater impact on the completion time of both algorithms compared to the number

of CPUs. Also, the outcomes produced by IRoP closely resemble those generated by OPT,

with the workload slowdown and power consumption staying within 5% and 7%, respec-

tively, proving the accuracy of bounds computed in Subsection 5.3.1. Lastly, the completion

time of IRoP remains under 30 seconds when simulating a large-scale DDC environment, a

performance that is deemed satisfactory.
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Chapter 7

Conclusion and Future Works

In this chapter, we provide a summary of the discoveries and invaluable contributions made

throughout the course of this thesis. Then, we discuss potential future directions for further

research, including the extension of the power consumption model, orchestration develop-

ment, and improving the performance of IRoP by utilizing machine learning techniques. By

providing a review of the outcomes drawn from this research and illustrating the exciting

potential for future work, this chapter serves as a road-map for the continued advancement

of resource allocation in disaggregated datacenters and its potential impact on power con-

sumption and carbon emissions.

7.1 Conclusion

Throughout this thesis, the central objective has been to develop a workload placement

algorithm that optimizes the overall slowdown of all workloads within the DDC while mini-

mizing the power consumption of DDC resources. To achieve this, we began by examining

the slowdown characteristics of workloads, understanding the impact of remote memory la-

tency on workload completion time, as well as the influence of CPU processing capacity (i.e.,

CPU module frequency) on execution time. Subsequently, by modifying the Linux Kernel

swap routine, we introduced an artificial delay to simulate remote memory. This allowed us
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to evaluate different popular workloads in our simulated DDC environment, assessing the

proposed function that approximates the impact of remote memory on workload slowdown.

Furthermore, we utilized Linux modules to assess the proposed function for approximating

the impact of CPU frequency on workload slowdown. By combining these two slowdown

characteristics, we developed a comprehensive function that estimates workload slowdown

based on the CPU frequency and assigned remote memory ratio.

In terms of estimating the power consumption of DDC resources, we initially determined

that servers account for the majority of power consumption in a datacenter, contributing up

to 80% of the total power usage. Our investigation highlighted CPU modules as the primary

contributors to this power consumption, representing as much as 90%, as indicated by re-

cent literature. Subsequently, we conducted a thorough review of CPU power consumption

models proposed in the literature, eventually selecting a state-of-the-art model that precisely

replicates the power consumption patterns of CPU modules within a datacenter. This chosen

model was then seamlessly integrated with the CPU utilization formula. Lastly, we selected

three distinct real-world CPU modules currently available in the market for utilization within

our simulated disaggregated datacenter.

Using the derived slowdown function and the power consumption model, we formulated a

complete MILP model (Problem 1) with all the necessary constraints, including the workload

slowdown threshold and the trade-off between slowdown and power consumption. As the

proposed model was inherently NP-Hard, we introduced an approximation algorithm that

effectively emulates the optimized model. In our evaluations, we found that the proposed

algorithm outperforms other baselines provided by recent literature across various relevant

scenarios and settings. Thus, this thesis successfully presents an algorithm that effectively

balances the trade-off between power consumption and total workload slowdown, while ad-

hering to the threshold for the slowdown of each workload.
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7.2 Limitations of Our Work

In this subsection, we discuss the limitations and assumptions that were considered to make

the defined problem approachable.

• Offline Profiling: In this thesis, we profiled various popular workloads in an offline

environment. This means that for IRoP to be deployed in a real-world scenario, each

workload should first be profiled in a DDC, which is a challenge for larger workloads.

Interested researchers can explore online profiling methods or integrate ML/AI methods

to tackle this challenge, as mentioned in the following section.

• Trusting Environment: We assume that the datacenter owner and clients can com-

pletely trust each other. For example, if a client allows a maximum slowdown of 5%

(i.e., ∆ = 5%), we assume that the datacenter owner respects this agreement and sets

IRoP to follow the exact SLAs.

• Cache Interference: We assume that all of the workloads are independent and there

is no communication between them. Also, we assume a completely and ideally isolated

setup. Therefore, we ignore cache interference between different co-located workloads.

In our experiments, we profiled workloads independently and did not consider running

them simultaneously to see how this might change the formulations.

• Isolation of CPU Frequency and Remote Memory: When characterizing work-

load slowdown, we assume that the impact of CPU frequency on slowdown is completely

independent of the impact of remote memory ratio on slowdown. When scaling CPU

frequency or changing the remote memory ratio, we conducted our experiments inde-

pendently of each other. Therefore, we have not considered any relationship between

these two factors in our slowdown model.
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7.3 Future Works

The contents of this thesis not only make a significant contribution to the domain of resource

allocation within disaggregated datacenters but also lay down a pathway for driving subse-

quent progress in the realms of data center optimization and management. Future research

directions could include:

• Extending IRoP to support the power consumption of other resources: In

this thesis, we model the power consumption of CPU modules in a Disaggregated Data

Center (DDC) environment. While CPUs are responsible for 85% of the total power

consumption of DDCs [45], other resources can be included in the future and make IRoP

more accurate.

• Orchestration Development: Adding an agent to monitor the slowdown of workloads

and perform re-allocation is an interesting extension of our work for volatile environ-

ments which improves the scalability of IRoP.

• Investigating IRoP in real-world DDCs: Our evaluations replicate the environment

of a large-scale DDC and the promising results exhibited by IRoP in this context under-

score the potential. However, conducting practical implementation and testing of IRoP

within a real-world DDC is essential for gaining invaluable insights into its real-world

performance and effectiveness. This step would not only allow for the refinement and

optimization of IRoP, but also significantly contribute to a deeper understanding of how

it influences power consumption and workload slowdowns in real-world DDC scenarios.

• Profiling other vital workloads: We evaluated three workloads in this thesis based

on the fact that they are all using an iterative approach that requires multiple accesses

to the memory. However, we can use the same emulated DDC environment to test

and evaluate other workloads under different circumstances. Then, we can revise the

workload models to enhance IRoP accuracy and performance.

• Utilizing AI and machine learning methods: To effectively handle incoming work-
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load requests, we can leverage the latest advancements in machine learning (ML) and

artificial intelligence (AI) to forecast future loads. By integrating machine learning

techniques into IRoP, it would be capable of resource allocation not solely based on the

present job batch, but also utilizing predicted data regarding upcoming workloads and

their associated demands. This enhancement can further optimize the performance of

IRoP.
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[47] Thomas Rauber, Gudula Rünger, Michael Schwind, Haibin Xu, and Simon Melzner.

Energy measurement, modeling, and prediction for processors with frequency scaling.

The Journal of Supercomputing, 70:1451–1476, 12 2014.

[48] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. AIFM:

High-Performance, Application-Integrated far memory. In Proc. USENIX OSDI, 2020.

[49] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos: A disseminated,

distributed OS for hardware resource disaggregation. In Proc. USENIX OSDI, 2018.

[50] Tensorflow. Tensorflow benchmarks: A benchmark framework for tensorflow.

[51] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin, Steven

Hand, Mor Harchol-Balter, and John Wilkes. Borg: The next generation. In Proc.

EuroSys, 2020.

[52] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,

Michael D. Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. Semeru:

A Memory-Disaggregated managed runtime. In Proc. USENIX OSDI, 2020.

[53] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Yiying Zhang, Wenguang Chen, Ravi

Netravali, Miryung Kim, and Guoqing Harry Xu. Canvas: Isolated and adaptive swap-

ping for multi-applications on remote memory, 2022.

[54] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-optimized distributed b+tree

index on disaggregated memory, 2021.

[55] David P Williamson and David B Shmoys. The design of approximation algorithms.

Cambridge university press, 2011.

[56] Peter Wilson. The memoir class for configurable typesetting, 2016.

101



[57] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Nimble page man-

agement for tiered memory systems. In Proc. ACM ASPLOS, 2019.

[58] Abdolahad Noori Zehmakan. Bin packing problem: Two approximation algorithms,

2015.

[59] Georgios Zervas, Hui Yuan, Arsalan Saljoghei, Qianqiao Chen, and Vaibhawa Mishra.

Optically disaggregated data centers with minimal remote memory latency: Technolo-

gies, architectures, and resource allocation [invited]. Journal of Optical Communications

and Networking, 10(2), 2018.

[60] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and Ming

Zhang. Congestion control for large-scale rdma deployments. 2015.

102


