
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2024-01-11

Open or Closed? Measurement

Performance of Open- and Closed-Path

Methane Sensors for Mobile Emissions Screening

Billinghurst, Chandler Duran

Billinghurst, C. D. (2024). Open or closed? Measurement performance of open- and closed-path

methane sensors for mobile emissions screening (Master's thesis, University of Calgary,

Calgary, Canada). Retrieved from https://prism.ucalgary.ca.

https://hdl.handle.net/1880/117930

Downloaded from PRISM Repository, University of Calgary



 

 

UNIVERSITY OF CALGARY 

 

Open or Closed? Measurement Performance of Open- and Closed-Path Methane Sensors for Mobile 

Emissions Screening 

by 

Chandler Duran Billinghurst 

 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE  

DEGREE OF MASTER OF SCIENCE 

 

GRADUATE PROGRAM IN GEOGRAPHY 

 

CALGARY, ALBERTA 

JANUARY, 2024 

 

© Chandler Duran Billinghurst 2024 



ii 

 

Abstract 

 

Ground-based vehicle systems are being increasingly used by industry, regulators, and service 

providers in the upstream oil and gas sector to measure methane emissions. However, the suite of 

methane sensors affixed to these systems is non-standardized and existing literature displays a scarcity of 

direct comparisons regarding their measurement performance. Gaussian dispersion models are often used 

to supplement measured data and derive estimates of emission intensity in screening applications based 

on data measured by these sensors. Existing literature indicates these models perform with considerable 

uncertainty. As such, equivalence of performance between existing vehicle-based emission screening 

systems is difficult to assess. To address this issue, field-based controlled release experiments were 

conducted to compare concentration data from an open- and closed-path sensor deployed in tandem 

onboard a vehicle. Performance of a forward Gaussian dispersion model was assessed relative to 

measured data from both sensors. 801 transects were driven through methane plumes dispersed downwind 

of a controlled emission source at various measurement distances and driving speeds, as well as a range of 

atmospheric conditions. Measurement performance was predicated on three primary descriptors of 

concentration data: the maximum concentration within each plume (maximum enhancement), plume 

width, and plume area (total methane sampled within the plume). Results showed that the measurement 

performances of both sensors were not equivalent. Relative to the open-path sensor, the closed-path 

sensor reported maximum enhancements that were ~40% smaller on average and plume widths that were 

~42% larger on average, while measures of plume area displayed near 1:1 parity. Measurement 

discrepancies are largely explained by differences in sensor measurement frequency and intrinsic 

sampling mechanisms. Forward Gaussian dispersion model performance displayed uncertainties ranging 

from 12.3% to 1207.0%. The origin of this uncertainty is largely determined by generalizations of 

atmospheric stability and simplistic representations of downwind plume migration within the model.   
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Chapter 1: Introduction 

1.1 Introduction 

Reducing methane (CH4) emissions within the upstream oil and gas (O&G) sector is a critical 

component of Canada’s efforts towards climate change mitigation (ECCC, 2018). As of 2023, Faster and 

Further – Canada’s Methane Strategy presents the federal governments’ commitment to reaching a 75% 

reduction in upstream O&G CH4 emissions by 2030, relative to a 2012 baseline (ECCC, 2023). Provincial 

governments have introduced their own reduction targets as well, addressing sector-specific emissions, 

namely emissions originating from upstream O&G production. Alberta, a prime example as Canada’s 

largest O&G producing province, has committed to a 45% reduction in CH4 emissions by 2025 from a 

2014 baseline (Alberta Energy Regulator, 2023). The primary component of natural gas, CH4, stands out 

as a particularly potent greenhouse gas (GHG) due to an atmospheric warming potential 84 times greater 

than carbon dioxide when examined over a 20-year period (Myhre et al., 2013). In Canada, the O&G 

industry is responsible for approximately 44% of all anthropogenic CH4 emissions, ahead of agriculture 

and waste industries (ECCC, 2023). Emission reductions within the O&G sector are not only 

representative of an opportunity to mitigate adverse climate impacts, but also provide a financial incentive 

for O&G producers who wish to avoid regulatory penalties and retain product that is otherwise lost or 

unaccounted for.  

Progress towards Canada’s current reduction targets is based on component-level inventory 

estimates that are reported annually in the national inventory report (NIR). These reports are primarily 

reliant on data derived through self-estimation and self-reporting from industry actors (Mackay et al., 

2021). Here, uncertainty is recognized as a nontrivial concern when considering the technologies, 

methods and analyses deployed during the compilation of self-reported emission inventories. Recent field 

measurement studies in Canada have shown that actual emissions are often substantially higher than 

reported inventory estimates (Atherton et al., 2017; Johnson et al., 2017; Tyner & Johnson, 2021; Mackay 

et al., 2021) with current inventories underestimating emissions generally by a factor of 1.5 to 2 (Seymour 

et al., 2022). Here, a fundamental issue is raised stemming from the fact that current industry emission 
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reporting is not based in field measurement. In addition, no singular standardized emissions monitoring 

procedure exists in Canadian O&G emissions reporting. Different emission quantification methods 

applied at varying spatial and temporal scales therefore makes comparisons between monitoring 

approaches difficult (Mackay et al., 2021). Considered collectively, these uncertainties hold strong 

implications on industry and governmental capacity to actualize climate goals and commitments based on 

empirical data. In other words, how can regulatory bodies within various levels of government and 

industry be sure of the progress towards established climate targets? By extension, what degree of 

uncertainty is acceptable in achieving these targets? These questions remain largely unaddressed. 

Amidst this realization, regulatory updates at the provincial level are beginning to confront these 

issues. Proposed changes to the Alberta Energy Regulator’s (AER’s) Directive 060 are demonstrating a 

shift from present-day modelled emissions to measurement-based reports, as well as increasingly 

stringent leak detection and repair (LDAR) survey requirements (Seymour et al., 2022). This has outlined 

a need for the development of robust measurement-based emission quantification technologies. While no 

singular methodology or standardized suite of approaches for emission detection or measurement has 

been mandated within Canada, recent literature on emissions monitoring provides a good indication of 

emerging survey practices currently favored across North America (Fox et al., 2019). Over the past 

decade, stationary measurement from vehicle systems has been established as a common approach to 

detecting and measuring CH4 emissions at upstream O&G facilities, with the U.S. Environmental 

Protection Agency’s (EPA) “Other Test Method 33A” (OTM 33A) recognized as the most prominent 

configuration. Analysis of the OTM 33A method is well-documented in CH4 literature and its deployment 

in the compilation of bottom-up emission inventories has been widespread at both federal and state levels 

in the US (Brantley et al., 2014; Bell et al., 2017; Edie et al., 2020; Shaw et al., 2020; Heltzel et al., 

2022). However, a suite of mobile vehicle-based sampling technologies, also referred to collectively as 

mobile ground labs (MGLs), has been introduced over recent years as well, gaining increasing popularity 

in both academic and regulatory settings. These techniques are attractive due to their relatively low cost, 
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low computational requirements, and high sampling frequency of individual leak sources (Hutchinson et 

al., 2016; Caulton et al., 2018; Lavoie et al., 2021). Perhaps their key advantage over stationary methods 

is the ability to characterize CH4 leak distributions in large areas over relatively shorter temporal scales 

(Caulton et al., 2018; Lavoie et al., 2021). As a result, MGL sampling configurations have attracted 

considerable interest amongst research institutions across North America. Some configurations have even 

been advanced onwards into pilot programs, working alongside some of the largest O&G producers in the 

continent (AER, 2020). It appears that these mobile approaches are likely to emerge as a favored 

preference for governments and producers who wish to quantify their CH4 emissions through 

measurement-based methods. 

While MGL approaches to CH4 emission detection and quantification are garnering interest from 

various groups, related literature has been clear in outlining their present limitations. Emission estimates 

using MGL measurements seem to currently underperform relative to other established techniques, 

outlining a critical need for improved sampling and data processing procedures to better constrain 

uncertainty (Caulton et al., 2018). Inferring point source leak intensities (the rate at which CH4 being 

emitted from a given source) from atmospheric concentration data is a multifaceted task that involves 

technological, methodological and analytical components – all of which have the potential to introduce 

bias and uncertainty into release rate quantification estimates. For example, literature has indicated that 

physical variables such as distance from the leak source, source release height, atmospheric stability, etc. 

impose significant challenges on the accuracy of release rate estimates from an MGL (Atherton et al., 

2017; Raznjevic et al., 2022; Lavoie et al., 2021). Though external environmental factors introducing 

uncertainty to emissions quantification are generally understood within the body of MGL literature, 

additional sources of uncertainty inherent to the MGL technology class itself have remained unaddressed. 

Regardless, research motivations and technological development has led to the introduction of 

governmental programs such as Alberta’s Alternative Fugitive Emissions Management Program (Alt-

FEMP), which have encouraged the deployment of emerging LDAR approaches in a regulatory context, 
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with a wide variety of MGL adaptations developed by research groups around the world (Goetz et al., 

2015; Lan et al., 2015; Atherton et al., 2017; Payne et al., 2017; Caulton et al., 2018; Weller et al., 2018; 

O’Connell et al., 2019; Takriti et al., 2020; Gao et al., 2022). While this has initiated growth within the 

field of LDAR, it has also generated a considerable degree of variation between emerging MGL 

configurations, making equivalency across MGL platforms difficult to gauge. Various combinations of 

vehicle types, survey methodologies, atmospheric dispersion models (ADMs) and sensor types have 

created a landscape where MGL performance remains poorly understood despite increasing interest from 

research and regulatory bodies.  

CH4 sensor type represents one of the most fundamental components onboard an MGL as it 

relates to emission quantification uncertainty. The range of sensor manufacturers, sampling frequencies 

(Hz) and sensing mechanisms present within MGL literature have demonstrated measurements displaying 

different minimum detection limits, ambient CH4 characterizations and peak concentration levels across 

studies (Crosson, 2008; Yacovitch et al., 2015; O’Connell et al., 2019; Takriti et al., 2020). These 

differences present significant implications on CH4 emission quantification, as CH4 sensors represent the 

principal interface for the collection of atmospheric CH4 concentration data. Variations in such 

measurements have significant implications for emissions quantification. As MGL sampling continues to 

scale upwards into regulatory and commercial applications, an understanding of CH4 sensor performance 

onboard mobile platforms is crucial and represents a fundamental first step forward. Sensor performance 

has a direct impact on regulatory compliance by industry operators, as well as federal and provincial 

governments’ abilities to accurately quantify their progress towards established climate goals. A method 

for implementation of MGL emissions quantification that identifies best practices and is supported by 

empirical observations and modelling is needed (Caulton et al., 2018).  

The objective of this thesis is to evaluate the measurement performances of two popular CH4 

sensing technologies commonly deployed onboard MGLs: (i) a closed-path cavity ring-down 

spectrometry (CRDS) sensor and (ii) an open-path analyzer – both of which have been deployed in 
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existing MGL literature but have eluded quantitative performance evaluation. Briefly, closed-path CRDS 

sensors (hereafter referred to as closed-path sensors) sample atmospheric CH4 by drawing air into an 

enclosed measurement chamber via an internal pump and a length of intake hosing. Open-path sensors 

sample atmospheric CH4 by allowing CH4 molecules to advect freely through an exposed laser path 

without the need for internal housing or an intake apparatus. A priori understanding of these two 

predominant sensor types and their respective sampling mechanisms suggests that these technologies 

likely display incongruencies in the data they record when characterizing CH4 emissions onboard an 

MGL. It can be plausibly assumed that closed-path sensors produce a smoother response in concentration 

profiles when transecting CH4 plumes, thereby down biasing concentration measurements relative to 

open-path systems due to concentration averaging and sample dilution effects. If such an assumption is 

correct, these performance characteristics could have implications on the input data used to detect, 

localize, and quantify CH4 emissions from O&G sources. Considering the volume of total emission 

sources in the Canadian upstream O&G sector, seemingly miniscule variances in sensor performance 

have the potential to translate into estimates that underpin emissions inventories.  

To address the issues presented above, the methodology implemented in this thesis involved 

deploying both an open- and closed-path sensor onboard an MGL to sample CH4 in a semi-controlled 

experimental setting. This allowed both sensors to simultaneously sample CH4 from plumes generated at 

known release rates from a single point emission source at a known location upwind. CH4 concentration 

data were collected by both sensors simultaneously over the course of 11 controlled release testing (CRT) 

campaigns, allowing for a quantitative assessment of each sensor’s performance relative to the other. The 

CRT methodology presented in this thesis drew influence from existing CRT literature while expanding 

on a diversity of variables absent in previous CRT research (Rella et al., 2015; Atherton et al., 2017; von 

Fischer et al., 2017; O’Connell et al., 2019; Zhou et al., 2021). Measurement performance attributes 

belonging to the respective sensors were assessed through a series of statistical procedures that compared 

a selection of key CH4 concentration variables returned by both sensors. Ensuing results were used to 
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draw conclusions regarding the measurement performances attributed to each sensor, thereby providing 

suggestions for the suitability of open- and closed-path sensors onboard MGL platforms in upstream 

O&G settings.  

1.2. Background  

1.2.1. Measurement Technologies  

An essential application of technologies for detecting and quantifying CH4 involves the 

identification and monitoring of CH4 emissions from upstream O&G equipment. Certain equipment types 

are known for their propensity to leak CH4, prompting the enforcement of regular LDAR inspections in 

various jurisdictions. The focus of the technologies discussed herein centers on the leak detection aspect 

of LDAR, delineated into two primary technology groups: component-level instruments and screening 

instruments. The key distinction between these groups lies predominantly in their temporal and spatial 

coverage scales. 

Typically referred to as handhelds, most component-level technologies, with optical gas imaging 

(OGI) cameras being the most prevalent, necessitate close-range inspections (on the order of meters) of 

individual components within O&G sites to pinpoint unintentional CH4 emission sources. However, given 

that the majority of components at a given site are not emitting, inspecting a large volume of components 

through OGI to identify a small number of emission sources proves time-consuming, inefficient, labor-

intensive, and consequently expensive. 

The recent advent of CH4 screening technologies responds to the imperative to streamline OGI 

leak inspections, minimizing the time field crews spend scrutinizing non-emitting equipment components 

and enabling a more efficient location of emitting infrastructure. In contrast to handhelds, CH4 screening 

technologies can be deployed on various measurement platforms, operating at standoff distances from 

emission sources, ranging from a few meters to hundreds of kilometers. Examples from the literature 

encompass rotary wing drones (Golston et al., 2018; Yang et al., 2018), fixed-wing drones (Barchyn et al., 

2017; Smith et al., 2017), piloted aircraft (Lavoie et al., 2015; Kuai et al., 2016; Schwietzke et al., 2019), 
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satellites (Jacob et al., 2016; Hu et al., 2018; Lauvaux et al., 2022; Irakulis-Loitxate et al., 2022), and 

ground vehicles – frequently trucks (Atherton et al., 2017; von Fischer et al., 2017; Caulton et al., 2019; 

O’Connell et al., 2019; Barchyn & Hugenholtz, 2020; Riddick et al., 2023).There is a broad range of 

differences among screening technologies when considering factors such as individual detection limits, 

emissions rate estimation errors, susceptibility to adverse weather, spatial resolution and cost (Fox et al., 

2019). For example, piloted aircraft surveys offer excellent survey speeds and spatial coverage, but are 

limited by their high cost of acquisition, maintenance, licensing, short measurement time, and regulatory 

requirements for routine operation. Smaller-scale airborne methods such as drones are susceptible to 

many of the same regulatory issues and possess practical limitations in physically supporting certain 

sensing equipment. Satellites outrival all other screening technologies in spatial coverage, require little to 

no investment after initial launch, and can collect continuous data over many years (Schneising et al., 

2014). However, pixel resolutions of 0.14 km2 to 100 km2 often constrain their ability to resolve CH4 

emissions at the site level, making individual source attribution virtually impossible (Fox et al., 2019; 

Jacob et al., 2022). Additionally, satellite platforms are highly susceptible to obscuration from cloud cover 

and variations of surface reflectivity, making effective data retrieval only possible during a fraction of 

their total deployment period.  

A detailed description of each screening configuration beyond MGLs would be lengthy and is 

outside the scope of this thesis. However, it is important to understand that many of the differences 

between screening technology deployments exhibit strong implications on individual technology 

readiness and regulatory or commercial use. As a result, some configurations are currently attracting 

greater interest than others. While screening technologies often allow for a more comprehensive 

characterization of upstream CH4 emissions as opposed to handheld deployments, many recent studies 

use, or advocate complimentary use of both classes within a survey and highlight a need for continued 

development within even the most prominent screening options (Fox et al., 2019; Robertson et al., 2020; 

Zhou et al., 2020; Lavoie et al., 2021). 
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1.2.2. MGL Survey Methods  

MGL configurations have gained considerable interest over recent years as viable screening 

deployments in regulatory, commercial, and research-based settings. The body of LDAR literature 

surrounding upstream O&G emissions demonstrates a clear uptick in MGL studies since 2015, outpacing 

many other well-established platforms (Figure 1.1). The deployment of vehicle-based survey methods by 

prominent O&G producers in exploratory programs also suggests heightened interest in MGL systems – 

during the 2-year duration of the Government of Alberta’s Alt-FEMP, 9 alternative LDAR programs were 

approved, 6 of which involved the use of MGLs for the purpose of upstream monitoring (AER, 2022). As 

versatile platforms used in local- to regional-scale emissions surveys, MGL systems display a number of 

advantages over handheld instrumentation and other existing screening technologies. For one, 

comprehensive emission detection campaigns can be conducted using public road networks, negating 

reliance on on-site access and extensive operational permits. This is also a feature that bypasses the need 

for coordination with facility operators, providing enforcement agencies and independent researchers with 

the benefit of an independent sample (Fox et al., 2019). As previously mentioned, MGL screening 

deployments are also able to cover large areas at high speeds, allowing for rapid surveillance of 

anomalous CH4 concentrations over large regions. MGLs also have the added benefit of being able to 

survey emissions over a range of distances relative to leaking infrastructure, allowing campaigns to be 

spatially flexible and far-reaching. In addition to these advantages, MGLs also exhibit more advanced 

readiness levels amongst other screening options (Fox et al., 2019), suggesting a possibility for wide-

spread implementation in the near future.  
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Figure 1.1: Frequency of LDAR publications organized by year and sensing platform (Vollrath, 2022). 

This plot shows the prevalence of vehicle-based systems or MGLs in studies. 

Within the variety of MGL configurations, there are two primary data acquisition methods – 

stationary methods and mobile methods, with the proposed research focusing on the latter. Stationary 

techniques typically involve two operational modes: (i) mapping surveys intended to locate elevated CH4 

concentrations relative to ambient levels, and (ii) measurement and/or characterization procedures to 

assess near-source concentrations and emission rates (Thoma et al., 2015). The EPA has established the 

stationary method of deployment under their widely utilized OTM 33A. Under this protocol, an MGL first 

surveys a field of interest for areas exhibiting heightened CH4 concentrations. Upon the identification of a 

CH4 plume, the vehicle is then positioned 20-200 meters downwind from a suspected emissions source 

for 20 minutes. This framework allows for the development of three possible assessment functions: (1) 

concentration mapping, which finds the location of unknown sources and assesses the impact of source 

emissions on local air quality, (2) source characterization, used to improve the understanding of known or 

discovered sources through the acquisition of secondary measures (typically achieved through the use of 

an OGI) and (3) emissions quantification (Thoma et al., 2015). Limitations of the OTM 33A method are 

both spatial and temporal. For one, positioning an MGL within a plume for the required 20-minute period 

may be unfeasible under conditions with high wind direction variability. This poses logistical challenges 

when attempting to characterize a given emissions source. Secondly, the time requirement for an effective 

OTM 33A site measurement can often be much greater than for mobile approaches. This constraint 
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introduces a limitation on overall coverage within a survey. Despite these drawbacks, stationary MGL 

methods such as OTM 33A have been widely utilized in a regulatory context across the US, contributing 

greatly to state level and federal CH4 inventories.  

While stationary MGL approaches have been well-established in a regulatory context, much of 

the advancement within the field of LDAR is currently focusing on mobile MGL deployments. To date, 

numerous research groups across North America have developed mobile MGL configurations, with work 

focusing primarily on the quantification of CH4 emissions in urban and upstream O&G settings (Lan et 

al., 2015; Yacovitch et al., 2015; Atherton et al., 2017; Caulton et al., 2018; O’Connell et al., 2019; Edie 

et al., 2020). Mobile varieties of MGL deployment represent alternative protocols capable of achieving 

many of the same goals within stationary approaches such as OTM 33A, but at a fraction of the time 

required and with less spatial constraints. Mobile methods capture many of the same assessment functions 

listed under OTM 33A, such as concentration mapping and emissions quantification, but do not require a 

stationary measurement period, allowing for continuous mobile measurement over the course of a survey.  

While MGL survey methods represent a popular and growing branch of alternative LDAR 

approaches, there are a number of limitations that should be considered when understanding their role in 

emissions monitoring. Unlike handheld measurements, mobile approaches typically cannot isolate 

specific emitting components and are generally less precise. This, coupled with rapid driving speeds, can 

create an elevated potential for false negatives when conducting an emissions survey. Literature has 

indicated that LDAR programs may be more comprehensive when MGLs are used in conjunction with 

more sensitive close-range methods for this reason (Mitchell et al., 2015; Fox et al., 2019; Lavoie et al., 

2021). Additionally, given the variety of MGL production in recent years, regulatory governance is 

currently lagging behind their development. This raises an issue of equivalence between various 

deployments, making measures of efficacy across the technology class difficult to measure. For example, 

an MGL such as the University of Calgary’s Portable Methane Leak Observatory (PoMELO) (Barchyn & 

Hugenholtz, 2020) is equipped with a CH4 sensor capable of sampling at a 10 Hz frequency, while many 
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others implement sensors that operate at 1-2 Hz (Goetz et al., 2015; Atherton et al., 2017; O’Connell et 

al., 2019; Edie et al., 2020; Robertson et al., 2020; MacKay et al., 2021). Existing MGL studies have also 

exhibited a wide range of sampling distances and number of plume transects required to characterize 

emissions. This kind of variation has led to a nontrivial degree of uncertainty within the suite of mobile 

MGL survey approaches. In fact, mobile MGL deployments operate with some of the largest uncertainties 

when considered against other technologies (Caulton et al., 2018), with plume attribution uncertainty 

ranging from 7.5 to 33% (MacKay et al., 2021) and a standard error of ±63% when considering emission 

rate estimation in a controlled setting (O’Connell et al., 2019). Some of this uncertainty arises within the 

accompanied ADMs used to model CH4 plume behavior and estimate emission release rates. Like MGLs 

themselves, there exists a wide range of ADMs suited for various sampling deployments. These models 

rely on algorithms that are highly variable and require a host of data inputs in order to achieve appropriate 

effectiveness.  

1.2.3. Atmospheric Dispersion Modelling  

Concentration mapping is useful in illustrating the spatial distribution of measured atmospheric 

CH4 levels within a survey, however, concentration data alone provide no indication of the source 

emission rate. For instance, two emissions with very different release rates may theoretically produce 

similar concentration readings depending on an MGL’s distance from the source, elevation of the source, 

or the atmospheric conditions under which the emissions are occurring. Additional attributes associated 

with a target emission source are therefore often needed to sufficiently characterize CH4 emissions. In 

response, MGLs such as the University of Calgary’s PoMELO carry a number of technologies in addition 

to CH4 sensors – principally a global navigation satellite system (GNSS), which provides the location of 

detected CH4 elevations relative to surrounding O&G infrastructure, and an anemometer detailing wind 

conditions and plume migration as a result. To derive release rate estimates, additional data management 

steps within an ADM are required following the collection of data onboard an MGL. Numerous ADMs 

are available, with suitability depending on the survey method and available data. Commonly used ADMs 
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include the EPA’s American Meteorological Society/Environmental Protection Agency Regulatory Model 

(AERMOD) and the lagrangian statistical model known as WindTrax (Lan et al., 2015; Caulton et al., 

2018; Shaw et al., 2020). However, the most widely used suite of ADMs in developing mobile vehicle-

based estimates are Gaussian dispersion models (GDMs). Estimating release rate values based on MGL 

concentration data typically involves a variation of a GDM known as the inverse Gaussian dispersion 

model (IGDM). An IGDM uses wind data and downstream concentration measurements to calculate 

upwind emission rates (Rella et al., 2015). There are numerous variations of IGDMs, which differ based 

on variable inputs and data requirements, but all serve with the functionality of backtracking from a CH4 

concentration measurement to derive an estimated emission release rate from an upwind source. In most 

adaptations, this technique requires knowledge of the emission source height and distance from the 

vehicle, as well as an accurate assessment of the atmospheric stability and advective wind flow. Variables 

such as terrain, the physical arrangement of facility infrastructure and other physical obstructions have the 

potential to modify the wind field, thereby presenting bias within emissions measurement (Rella et al., 

2015). The base scenario for an IGDM assumes that there is only one emission source, however, in cases 

where multiple point sources are tightly clustered (<10m), some studies assess a site’s total emissions as a 

centralized point (Caulton et al., 2018). The performance of the IGDM is well-documented and shows 

considerable uncertainty when estimating upwind emission rates (Yacovitch et al., 2015; Caulton et al., 

2018; Shaw et al., 2020).  

The forward Gaussian dispersion model (FGDM) is a statistical model with inverse functionality 

compared to the IGDM. Where the IGDM uses measured concentration data to estimate upwind emission 

intensities, the FGDM uses emission intensity data to estimate the concentration of pollutants at a given 

downwind distance. The FGDM is an underrepresented asset within the domain of environmental impact 

assessment, particularly concerning O&G production. While analysis of the IGDM is prominent in the 

literature, the FGDM remains relatively under-discussed, leading to a lack of comprehensive 

documentation regarding its uncertainty and utilization frequencies. This oversight creates a notable 
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disparity in the acknowledgment and utilization of these two models within the O&G sector. Despite its 

limited mention in O&G literature, the FGDM holds significant potential as a tool for O&G producers, 

specifically in estimating the impact of source emissions on local air quality. This application is pivotal 

for O&G entities wishing to grasp the intricacies of their emission outputs. FGDM implementation can 

allow producers to gain insights into their environmental footprint, enabling proactive measures to 

mitigate potential regulatory penalties resulting from measurement audits. Its integration into the 

assessment toolkit offers a pathway for O&G companies to not only comprehend their emissions' local 

implications but also to preemptively strategize and rectify any potential non-compliance issues. 

Uncertainties associated with the FGDM are of limited mention within O&G literature and are often not 

evaluated against measured concentration data. This thesis investigates the performance uncertainty of the 

FGDM through a comparative analysis between modelled concentration estimates and empirical data.  

1.2.4. CH4 Sensor Type  

CH4 concentration data represents the most principal data requirement within a GDM. Maximum 

CH4 enhancement – the highest CH4 concentration value observed within a plume detection, minus the 

ambient CH4 level – and CH4 emission rate represent the only CH4-related inputs within an GDM. 

Therefore, it is recognized that differences in sampled atmospheric concentration data have strong 

implications on the estimated concentrations and emission intensities derived through an GDM. 

Theoretically, it would appear that MGL configurations should deploy sensors that best constrain 

uncertainty and most accurately quantify CH4 enhancements. However, there exists a gap within existing 

literature comparing sensor types onboard vehicle-based applications and a good deal of variability exists 

in the types of CH4 sensing equipment deployed onboard various MGL iterations. Sensor performance 

and appropriateness of deployment within a mobile application should be a strong consideration as 

uncertainties in sensor efficacy have the potential to significantly bias concentration data.   

The two most widely deployed sensor classes onboard MGL configurations are closed-path 

sensors and open-path sensors. Both display differences in the methods by which they sample CH4 
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molecules and their capacities to return concentration data. Closed-path sensors represent the most 

popular sensor type cited in MGL literature (Goetz et al., 2015; Atherton et al., 2017; Payne et al., 2017; 

Zavala-Araiza et al., 2018; O’Connell et al., 2019; Robertson et al., 2020; MacKay et al., 2021; Lavoie et 

al., 2021). Commonly implemented models include the Picarro G2301-I/G2201-i Isotopic Analyzers 

(Rella et al., 2015; Payne et al., 2017; O’Connell et al., 2019; Takriti et al., 2020) and the Los Gatos 

Research Ultraportable Greenhouse Gas Analyzer (LGR-UGGA) (Atherton et al., 2017; Shaw et al., 

2020; Takriti et al., 2020), amongst other similar versions. Closed-path sensors use an internal pump to 

draw air into a measurement chamber, usually through a desired length of tubing. Inside the cavity of the 

sensor, CRDS is used to analyze CH4 concentrations within the air sample. In CRDS, light from a 

frequency tunable laser is introduced into the sampling cavity, which contains two or more high 

reflectivity mirrors, at least one of which passes a small, but consistent fraction of incident light. The 

mirrors are oriented so that the input laser light is reflected within the cavity until it is dissipated due to 

non-reflection losses. A photo detector located behind the partially transmissive mirror determines in real 

time the amount of light passing the mirror (Payne et al., 2017). This allows a given concentration of CH4 

molecules within the cavity to be quantified. Closed-path instruments are very simple to deploy and are 

capable of sub-parts-per-billion accuracy. However, as Takriti et al. (2020) indicate, the precision of 

closed-path sensors like the Picarro G2201-i is such that numerous measurements are needed to obtain an 

accurate estimate of CH4 concentrations and, in some cases, this means the source signature of smaller 

CH4 enhancements cannot be accurately measured. Onboard MGL measurement platforms this issue can 

be exacerbated by high driving speeds. The time required for a single molecule to pass through the inlet 

length of tubing and exit the measurement chamber also introduces a lag in concentration measurements – 

this is known as rise time or response time (Takriti et al., 2020). An analyser’s rise time depends on tubing 

properties (length and diameter), the cavity volume and the flow rate of the sensor, and when an analyser 

is taking in a sample for less than the rise time, the final concentration will not be registered (Takriti et al., 

2020). This presents issues that can result in data loss or scenarios where measured concentration values 
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fail to synchronize with GPS/GNSS data collected onboard the MGL, thereby mapping concentration 

values that are incorrectly spatially referenced.  

Closed-path sensors typically operate with a sampling frequency much lower than exhibited by 

open-path sensors. MGL literature cites closed-path sensors with sampling frequencies typically ranging 

from 0.25 Hz (Takriti et al., 2020) to an upper limit of 2 Hz (von Fischer et al., 2017; Robertson et al., 

2020; Lavoie et al., 2021). Resultantly, the volume of concentration data returned is significantly less than 

what may be expected from open-path counterparts exhibiting typical sampling frequencies of 10 Hz 

(Caulton et al., 2018; Zhou et al., 2020; Heltzel et al., 2022). Lower sampling frequency introduces the 

potential for missed detections of emissions (false negatives). For example, if a truck system is driving at 

20 meters per second and a plume within the driving path is 20 meters wide, an open-path sensor with a 

measurement frequency of 10 Hz will be able to collect 10 concentration samples within the plume. A 

closed-path sensor measuring under the same conditions, but with a measurement frequency of 2 Hz or 

less, will return 2 concentration samples. This introduces a possibility for false negatives or an inability to 

sufficiently characterize CH4 concentration profiles when deploying a closed-path sensor onboard an 

MGL.  

Open-path sensors are less commonly deployed onboard MGL systems, operating with an ability 

to quantify CH4 concentrations without the use of an internal pump or a closed cavity. Models commonly 

presented within the literature include the LI-COR Li-7700 and the LI-COR 7500 (Crosson, 2008; 

Caulton et al., 2018; Zhou et al., 2020; Zhou et al., 2021). Where closed-path sensors require a pump to 

draw air into the analyser, open-path sensors allow air samples to pass directly through the measurement 

area. This means open-path sensors operate without rise time constraints and sample CH4 molecules 

immediately as they traverse the laser path. While open-path sensors sample with higher frequencies, 

collect a greater volume of data, and avoid the temporal and spatial lags associated with closed-path 

analyzers, they remain susceptible to factors that either absorb the laser light (dust particles, fog, 

precipitation) or obscure the mirrors (ice and dust coatings). This is a key difference with closed-path 
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sensors that are largely able to avoid these failures, providing a protected environment within the analyzer 

cavity. This thesis intends to investigate the differences in measurement performance between these 

sensor types in order to understand their applicability in measurement based LDAR surveys at upstream 

O&G sites.  

1.3. Research Approach and Working Hypotheses 

The objective of this thesis is to compare the performance of two CH4 sensor types when 

deployed in a controlled release setting onboard an MGL. These sensors are currently used by researchers 

for emissions quantification on vehicles, but deeper consideration of their fundamental differences has 

remained overlooked. Such consideration is crucial for ensuring the commensurability of collected data 

and determining whether biases influencing the outcome of subsequent calculations on these data are 

present. If Canadian regulators are to pivot towards measurement-based emission inventories, filling this 

knowledge gap is a fundamental first step in constructing inventories that are accurate and empirically 

derived. The research presented in this thesis sought to do so under the guidance of three main priorities.  

The first research priority was to collect a large volume of semi-controlled measurement data. 

Where existing CRT research has been comparatively limited in scope, experiments in this thesis tested 

the measurement capabilities of two commonly used CH4 sensors in tandem under a wide range of testing 

conditions in a semi-controlled experimental environment. CRT experimentation ensured a degree of 

accuracy and reproducibility that allowed for a comparison of sensor performance. The second research 

priority was to use empirical data and statistical analyses to quantify the differences in data collected by 

each sensor. Descriptive statistics were used to assess the agreement of CH4 data from both sensors and 

provide an evaluation of sensor performance under a range of sampling conditions. The third priority was 

to evaluate the performance of a FGDM relative to data from both sensors. By comparing model 

estimations to measured data, this priority examines the congruence of Gaussian estimates with measured 

data from each sensor. The literature indicates the Gaussian suite of dispersion modelling is the most 
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commonly used estimation method for emitted pollutants. This research priority represents a key 

objective if CH4 sensors and GDMs are to be used in tandem in a regulatory capacity.  

Research activities were governed by two null hypotheses both formulated based on a priori 

knowledge of the equipment and procedures implemented within this thesis: 

(a) No differences are observed in the concentration measurements of the CH4 sensors as a result 

of sensor-specific sampling mechanisms or environmental conditions. 

(b) No differences are observed between measured concentration data and forward Gaussian 

concentration estimates across sensor types as a result of variation in concentration data and 

dispersion metrics. 

The first hypothesis assumes that either sensor performs comparably with respect to the other – 

measurements are not biased by intrinsic sensing mechanisms and variations in environmental conditions 

do not introduce discrepancies between measured data from either sensor. The second hypothesis assumes 

that concentration estimates generated by the FGDM are analogous to measured data returned by either 

sensor. However, if disparities exist in the spatial data and Gaussian input parameters attributed to CH4 

concentrations measured by either sensor, it is plausible that the Gaussian concentration estimates will 

show disparity as well. 

 

 

 

 

 



 

 

Chapter 2: Methodology 

2.1. Overview 

 This chapter describes the methodology used to address the working hypotheses (§1.3). The 

methodology can be recognized as a combination of three sequential processes: 1) field measurement 2) 

data processing, and 3) statistical analysis (Figure 2.1). 

 

Figure 2.1: A breakdown of the sequential methodological processes presented in this thesis. 

Field sampling and data acquisition consisted of 11 individual CRT campaigns carried out at the 

Carbon Management Canada (CMC) Field Research Station between August 2022 and April 2023. CRT 

campaigns involved metered release of compressed natural gas (consisting of 88.44 to 92.88% CH4 by 

volume) from a stack at a known location over a range of release rates. At each release rate, an MGL 

carrying both sensors collected concentration measurements by transecting CH4 plumes downwind of the 

release stack. Field data collection was followed by a series of data processing steps to clean, discretize, 

and organize the raw measurement data. This ensured that files containing CH4, spatial, and atmospheric 

data were synchronized and displayed in a format allowing for 1:1 comparison between sensors. Data 

processing also included an analysis of the measurements in the context of estimates from forward 

Gaussian dispersion modeling. The final process consisted of a series of statistical analyses to evaluate 



19 

 

and characterize CH4 concentration data from each sensor, as well as the performance of the FGDM with 

respect to measured data belonging to both sensors. 

2.2. Field Measurement: Controlled Release Testing  

2.2.1. Site Description  

The CMC facility (50o27’01 N, 112o07’14 W) is located ~20 km southwest of Brooks, AB. The 

topography of the site is flat, covered by short grasses (Figure 2.2). Accordingly, aerodynamic surface 

roughness is relatively constant across the site, where Z0 ranges from 0.03 m to 0.005 m in summer and 

winter months, respectively (Wieringa et al., 2001). The facility is situated between two gravel access 

roads to the west and east, as well as a paved highway on the northern edge. There are a number of 

inactive wells surrounding the facility, as well as two active O&G facilities along the edges of the site. 

This was an important feature to consider as it introduced the potential for multiple external plume 

presences during the CRT campaigns. CRT campaigns were conducted under a range of atmospheric 

conditions. However, by design, precipitation was virtually zero across all testing days due to the 

performance capacity limitations of the open-path sensor under conditions of rain, snow, etc. 

 

Figure 2.2: Topography of the CMC site (captured in August, 2022). 
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2.2.2. Equipment  

Atmospheric CH4 concentration data were collected using the University of Calgary’s PoMELO – 

a vehicle-based CH4 sensing platform. As an integrated system, PoMELO collects measurements 

describing a host of variables including CH4 concentration, wind, and spatial positioning. These data 

streams feed into proprietary algorithms to detect CH4 emissions in upstream O&G settings. The 

PoMELO system uses 3 instruments to collect CH4 emissions data simultaneously with atmospheric and 

spatial data – these are a high performance open-path CH4 sensor (LICOR LI-7700 CH4 Analyzer), a 

GNSS, and a 2D sonic anemometer (RM Young 86000) (Figure 2.4). Data streams from these sensors are 

fused in real-time using proprietary firmware, including corrections to wind speed and direction from 

vehicle motion and aerodynamics. A high-performance closed-path CH4 sensor (LICOR 7810 

CH4/CO2/H2O Trace Gas Analyzer) with an internal pump rate of 250 sccm and an accompanying 

Samsung tablet were additionally housed onboard the truck but operated independently of the integrated 

equipment described within the PoMELO system. The closed path system could not be integrated into the 

PoMELO firmware, so the data were collected separately by its onboard data acquisition system. As a 

result, the data streams from both CH4 sensors were manually synchronized using a time offset. 

 

Figure 2.3: Sensing equipment onboard the PoMELO system: (A) RM Young 86000 2D sonic 

anemometer;(B) GNSS; (C) LICOR LI-7700 CH4 Analyzer. 
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The closed-path sensor was situated inside the truck (Figure 2.5, Panel C). A length of Teflon 

tubing was attached to the sensor with a Swagelok, extended to the exterior of the vehicle next to the 

open-path sensor, and secured with tape (Figure 2.5, Panel A). This was required to draw atmospheric 

CH4 into the CRDS chamber. The length and diameter (20’3” × 11/64”) of the hosing remained consistent 

across all CRT campaigns except one, February 26th, 2023, in which a shorter and wider hose was used 

(8’2” × 3/8”).  

 

Figure 2.4: Closed-path sensing configuration housed within the MGL: (A) Teflon intake hosing secured 

to the roof mounting rack; (B) view of the intake hosing passed to the cab of the MGL; (C) LICOR 7810 

CH4/CO2/H2O Trace Gas Analyzer with intake hosing attached housed onboard the MGL. 

Table 2.1 provides a description of the data outputs returned by each of the sensing configurations 

described above. Note that reference to the datasets from the PoMELO system and the open-path sensor 

can be understood interchangeably, as data collected by the open-path sensor is packaged within the 

integrated datasets returned by the PoMELO system. 
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Table 2.1: Summary of data outputs from the PoMELO system and the closed-path sensor. 

  

Measurement 

Frequency (Hz) Key Variables Data Output 

PoMELO System       

LI-7700 (Open-Path Sensor) 
10 

Methane concentration 

& time.   

Integrated .csv file (82 

Variables) 
GNSS 

10 

Lat/long coordinates & 

vehicle speed 

2D Sonic Anemometer 
10 

Wind speed & air 

temperature 

Closed-Path Configuration       

LI-7810 (Closed-Path Sensor) 
1 

Methane concentration 

& time.  

Standalone .csv file 

(22 Variables) 

 

Conducting a CRT campaign involved any number of releases of compressed natural gas at a 

known rate. At the CMC facility, CH4 was released at a fixed height (2.75 m) from a portable stack 

connected by hosing to a trailer that housed the tanks containing the compressed natural gas. An Alicat 

Mass Flow Controller MCR 2000SLPM-D was used to maintain constant release rates metered in m3/day. 

Gaussian dispersion modelling necessitated the stationary measurement of wind data next to the release 

stack – these data were collected by an RM Young 81000 3D sonic anemometer mounted on a 2.5 m 

tower. Figure 2.6 displays the controlled release equipment setup at the CMC facility.  
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Figure 2.5: CRT field setup showing deployed equipment: (A) stationary anemometer; (B) release stack; 

(C) Alicat Mass Flow Controller; (D) ambient heat exchanger; (E) gas trailer. 

2.2.3. Experimental Design 

CRT campaigns are defined as a testing day at the CMC facility in which any number of release 

experiments are conducted. A release experiment is defined as a set of downwind transect crossings of a 

CH4 plume originating from the release stack. Each release experiment was categorized by a specified 

emissions rate (m3/day) input by an operator into the flow controller. A transect crossing, 𝑡𝑐𝑖, is defined as 

one crossing of the suspected downwind plume path driven by PoMELO. A given release experiment 

consisted of 𝑛 transect crossings at a specified release rate. The experimental design implemented in this 

thesis dictated that each release experiment consisted of 𝑡𝑐𝑖 = 6. However, this number fluctuated 

between 𝑡𝑐𝑖 = 4 and 𝑡𝑐𝑖 = 8 on a per-trial basis during instances where trial stoppages occurred (for 

reasons either equipment or user-related) or instances where there was a perceived need for additional 

transect crossings. Once a target of 6 transect crossings had been completed within a given release 

experiment, PoMELO was driven well outside of the downwind plume path and parked to signal the end 

of each release experiment. An operator at the release stack would then be instructed via radio to adjust 
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the flow controller setting to a new CH4 release rate for the next experiment. The described experimental 

design was based on an existing procedure presented by O’Connell et al. (2019).  

2.2.4. CRT Procedure 

Before any equipment setup or experimentation was conducted, gas samples were collected onsite 

from the CMC gas trailer in order to analyze and document the CH4 composition within the tanks. This 

was done using a water displacement method where a small bucket was filled with water and a length of 

tubing from the gas trailer was inserted into the bucket. Gas was released from the hose directly into the 

water allowing bubbling to occur. An open-ended inverted syringe was then submerged into the water and 

placed next to the hosing outlet. As gas entered the bucket, bubbles were directed into the bottom of the 

syringe thereby displacing any water within the syringe. Once the water in the syringe was fully 

displaced, a cap was placed on the submerged syringe, isolating the gas sample. The syringe was then 

used to inject the sample gas into a vial with a rubber septum. These vials were sent to the University of 

Calgary Geoscience department for gas composition analysis, indicating the percentage of CH4 within the 

release gas composition. For days when water displacement sampling did not occur, gas composition 

records provided by CMC were consulted.  

Prior to arriving at the CMC site, the weather forecast detailing wind direction, temperature and 

precipitation was consulted. Forecasts provided an indication of the atmospheric variables that dictated 

the positioning of the equipment setup, the operating limits of the release equipment, and the available 

road networks PoMELO would be able to drive while transecting CH4 plumes downwind of the release 

stack. When a setup location was determined, CRT equipment was deployed as shown in Figure 2.5. 

Following setup, release experiments were conducted. To start, the flow controller was zeroed to ensure 

accurate metering of gas release from the trailer. An operator would then open a CH4 tank onboard the 

trailer and use the flow controller to set a desired release rate. After allowing the resulting plume to 

sufficiently disperse downwind from the release stack, the operator would communicate with a driver 

onboard PoMELO via radio. A release experiment would then commence with the local start time 
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documented by an operator. PoMELO was then driven through the suspected path of the downwind 

plume for a target of 6 transect crossings. For each transect crossing, software within the PoMELO 

system was able to indicate the detection (or non-detection) of a CH4 plume to the operator within the 

truck. Field notation was compiled detailing the number of plume detections (also referred to as true 

positives) and non-detections (also referred to as false negatives) observed within each release 

experiment. Individual plume transect crossings were conducted across a range of driving speeds, 

however a fundamental consideration for the PoMELO driver was to maintain a consistent speed within 

each plume transect crossing. At the end of the given release experiment, PoMELO was parked outside of 

the plume path and a local stop time was documented by an operator. This process was repeated as many 

times as possible throughout the course of a CRT campaign over a range of various emission rates. 

2.3. Initial Data Processing 

 Initial data processing procedures are defined as a series of quality control/assurance procedures 

to synchronized datasets from both CH4 sensors and extract key metrics. Initial data processing generated 

a considerable reduction in data volume – this involved removing extraneous data collected during 

periods that were not pertinent to ensuing analyses.  

2.3.1. Data Synchronization  

 Data synchronization is the alignment of the CH4 data collected by each sensor, as well as the 

alignment of allied measurement data (wind, location, etc.) collected by the PoMELO system and the 

stationary anemometer. Synchronization ensured the time stamps of CH4 data records were identical 

between both sensors, which was essential for comparative purposes. Early in the program, it was found 

that the internal clock of the closed-path sensor could not be adjusted to match the GNSS time of the 

PoMELO system, which is used to time stamp data records for the open-path sensor. As such, a manual 

technique was devised. Periodically throughout the course of a given CRT campaign, the GNSS time 

from PoMELO and the internal clock of the closed-path sensor were captured in an image. The 

corresponding times were entered into field notes at the end of each campaign. In all campaigns, the time 
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offset was consistent: 6 hours, 53 minutes and 12 seconds. This offset was used to adjust the time stamps 

in the closed-path data records using customized scripting in R programming software (R Core Team, 

2023). The closed-path data records were then merged with the open-path data records and associated 

measurements collected by PoMELO.  

2.3.2. Ambient CH4 Concentration  

 Ambient CH4 concentration was determined from the time series of both CH4 sensors. Ambient 

concentrations were a fundamental parameter that served as a reference for the detection, segmentation, 

and peak enhancement of plumes recorded in the data records of each sensor. A plume detection, or a true 

positive, is defined as a sustained period of consecutive concentration measurements wherein the 

magnitude of the measured CH4 concentration is greater than the ambient concentration of CH4. Existing 

CH4 literature outlines several methods for establishing ambient CH4 concentrations. Common approaches 

include empirically-derived singular concentration thresholds (Caulton et al., 2019; Brandt et al., 2016; 

Frankenberg et al., 2016), percentile thresholds for concentration values (Barchyn & Hugenholtz, 2022; 

Shaw et al., 2020; Edie et al., 2020) and ratio thresholds between CH4 and other atmospheric gasses 

(O’Connell et al., 2019; Atherton et al., 2017). However, this thesis defines ambient CH4 concentrations 

through the calculation of a rolling median across open- and closed-path time series concentration data. A 

rolling median is typically used to smooth and analyze time series data. It operates by calculating a 

median value within a specified window or interval of data points and moves this window incrementally 

across a given dataset. Preliminary analysis demonstrated that a rolling median was able to establish an 

ambient baseline that was largely unaffected by outliers (i.e., plume detections) but remained responsive 

to longer-scale variations in ambient CH4 concentrations. A rolling median also provided a suitable level 

of uniformity between the open- and closed-path datasets, returning an ambient CH4 baseline that 

appeared to be reasonable for both sensors when plotted against raw concentration data. Recall the open-

path sensor recorded concentration measurements at 10 Hz. Resultantly, an open-path time series 

collected over 𝑥 time period would be expected to return 10x the amount of concentration data as a 1 Hz 
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closed-path sensor sampling within the same time period. Therefore, to achieve a uniform degree of 

smoothing between both sensor’s datasets, the size of the window for the rolling median executed within 

an open-path dataset needed to be 10x greater than the window of the rolling median executed on the 

closed-path dataset. As a result, the rolling median applied to the open-path datasets operated with a 

window size of 601 while the rolling median applied to the closed-path datasets used a window size of 61.  

2.3.3. Data Segmentation  

Data segmentation was used to isolate data based on the release experiments and then to isolate 

detected plumes in the CH4 times series for each isolated release experiment. Segmentation was applied to 

CH4 time series from both sensors as well as wind data measured by the stationary anemometer.  

To start segmentation, the local start/stop times of each release experiment were matched to the 

synchronized time records of the CH4 sensors and the stationary anemometer. The result was wind and 

CH4 data segmented by release experiment. Next, each detected plume in the CH4 release experiment time 

series was segmented, along with corresponding wind and allied measurements recorded by the PoMELO 

system. Plume detections and non-detections were determined by two criteria: (i) field notation and, (ii) 

visual analysis of CH4 time series data. Field notation collected during release experiments provided the 

first indication as to the number of detections/non-detections within a release experiment. Discrepancies 

between the number of transect crossings and the number of observed detections indicated the presence of 

non-detection events. Similar to Riddick et al. (2023), release experiment CH4 timeseries were then 

plotted visually in order to confirm the number of detections and non-detections within a release 

experiment. The nature of the CRT experimental design allowed plume detections to be discrete and 

pronounced within each CH4 time series, thereby allowing the identification of non-detections to be 

equally explicit.  

Detected plumes were segmented by applying customized scripting developed in R (R Core 

Team, 2023) to each release experiment CH4 time series. The plume segmentation script operated by 

identifying the initial concentration measurement and the final concentration measurement within each 
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detected plume. This was achieved by referencing concentration measurements from each CH4 sensor 

with respect to their individual ambient concentrations. The initial concentration measurement within a 

plume detection was defined as the last data point where the ambient and measured CH4 concentrations 

were equal prior to the increase of measured concentrations above the established ambient levels derived 

from Section 2.3.2. Conversely, the final concentration measurement was defined as the first data point 

where a “return to baseline” was observed – the point at which measured and ambient CH4 concentrations 

became equal once again (Figure 2.7). Time stamps associated with the initial and final concentration 

measurements within each plume detection were then used to crop allied wind data from the stationary 

anemometer time series, thereby generating a corresponding segment of wind data for each plume 

detection.  

Periods of plume non-detection (false negatives) were segmented using visual analysis and field 

notation. Where boundaries for plume detections were discrete and well-defined, the boundary time 

signatures for non-detections were less apparent. Where non-detections were identified, the time series 

intervals between the neighboring detections were cropped and output as non-detection periods. The 

initial and final timestamps for each non-detection period were then used to crop allied wind data from 

the stationary anemometer time series, thereby generating a corresponding segment of wind data for each 

plume non-detection.  
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Figure 2.6: An isolated open-path plume segment. Concentration data is represented by a black line 

segment. The initial concentration point is depicted in red, and the final concentration point is depicted in 

blue. These points delineate the areas for plume segmentation relative to an ambient CH4 baseline. 

2.3.4. Spatial and Temporal Correction for Closed-Path Data 

Following segmentation, it was found that plume segments from the closed-path time series were 

spatially offset relative to the corresponding segments from the open-path time series. This is caused by a 

temporal lag introduced by several features of the closed-path sensor, including its measurement 

frequency, intake tube length, and intake pump flow rate. This lag is understood as the difference in time 

between the point where a CH4 molecule enters the intake hosing and the point at which the same CH4 

molecule is registered by the closed-path sensor. Recall the closed-path flow rate remained constant 

across all experiments (250 sccm) and the intake hosing dimensions were 20’3” × 11/64” for all 

experiments except for those conducted on the February 26th, 2023, campaign (8’2” × 3/8”). Lab testing 

with compressed CH4 cannisters revealed that the lengthier intake tubing was associated with a 13.88-
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second lag (standard deviation of 0.20 seconds), while the shorter tubing was associated with a 5.50-

second lag (standard deviation of 0.18 seconds).  Corrections were applied during data processing to 

address this lag. The correction consisted of a shift in the spatial coordinates and time series indices of the 

plume segments from the closed-path sensor. The shift involved matching starting coordinates of each 

closed-path segment to the starting coordinates of each corresponding open-path segment. Spatial 

correction was favored over temporally-based correction because it was reasoned that the lab-observed 

time lags were likely not transferrable to the closed-path sensor when deployed in a CRT setting onboard 

a moving MGL. It was posited that variation in driving speeds and wind conditions were likely to 

influence these temporal lags, though the degree to which these variables did so was unable to be 

quantified. Given the accuracy of the spatial equipment onboard the PoMELO system and the processing 

speed of the open-path sensor, it was decided that plumes detected by the open-path sensor could be 

treated as the nearest approximation of ground truth. Closed-path plume segments could therefore be 

corrected using their open-path counterparts as a spatial reference. Spatial correction negated the potential 

for closed-path plumes to be resituated improperly as a result of lab calculated lags that were incorrectly 

applied to data measured outside of lab conditions. It should be noted that once spatial correction had 

been applied, the magnitude of the measured concentrations, the frequency between consecutive 

concentration measurements, and the spatial distribution of measurements within each closed-path plume 

segment remained unaltered. 

2.4. Secondary Data Processing Procedures 

 This subsection outlines two procedures conducted on measured CRT data that served to i) 

manipulate the measurement frequency of the open-path sensor and, ii) derive modelled CH4 

enhancement estimates from open- and closed-path sampling inputs. Respectively, these procedures 

represent open-path resampling and forward Gaussian dispersion modelling.  
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2.4.1. Resampling of Open-Path Plume Time Series 

A priori knowledge suggested that differences in open- and closed-path plume characteristics 

could arise as a result of differing measurement frequencies belonging to each sensor. To isolate and 

quantify the influence of measurement frequency, control and treatment populations were derived from 

the 10 Hz open-path CH4 data. The control group was represented by the unaltered open-path time series 

described in §2.3.3. The treatment group consisted of open-path time series resampled to 1 Hz. 

Resampling was performed as follows: each series of 10 consecutive CH4 concentration points were 

averaged into single points and every 10th allied wind and spatial data record was retained while all others 

were omitted. Plume segmentation as previously described in §2.3.3 was then performed on the 

resampled data. The result was a treatment population of simulated 1 Hz plume segments with 1/10th their 

original data volume. This provided an ability to isolate and quantify the influence of measurement 

frequency on select plume segment characteristics. This comparative analysis is outlined in §2.5.4. 

2.4.2. Forward Gaussian Dispersion Modelling  

 The FGDM used in this thesis is defined in Equation 1 where, 𝐶(𝑥, 0, 𝑧) is the estimated 

downwind maximum enhancement (g/mol) observed at the plume centerline – this represents the 

enhancement of the greatest magnitude within a plume. 𝑄 is the source emission rate (g/s), 𝐻 is the height 

of the release stack (m), 𝑈 is average windspeed (m/s), 𝑧 is the height of the sensor relative to the ground 

(m), 𝑒 is Euler’s constant, 𝜎𝑧 is the vertical dispersion parameter (m), and 𝜎𝑦 is the lateral dispersion 

parameter (m). Variables 𝐻 and 𝑧 were fixed values, 1.85 m and 2.2 m respectively. All inputs other than 

the vertical and lateral dispersion parameters were directly obtained from open- and closed-path CH4 time 

series and segmented stationary anemometer datasets. Deriving 𝜎𝑦 and 𝜎𝑧 required additional procedures.  

𝐶(𝑥, 0, 𝑧) =  
𝑄

𝑈

1

2𝜋𝜎𝑦𝜎𝑧
𝑒

(
−(𝑧−𝐻)2

2𝜎𝑧
2 )+

𝑒
(

−(𝑧+𝐻)2

2𝜎𝑧
2 )

 [1] 
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 The lateral and vertical dispersion parameters associated with each iteration of the FGDM were 

calculated within precursory calculations handled through customized scripting in R (R Core Team, 2023) 

prior to forward Gaussian modelling. These dispersion parameters represent inputs within the FGDM that 

provide an estimation of the degree to which an emitted pollutant may be dispersed along horizontal and 

vertical axes at a defined location downwind of an emission source. These parameters are defined by 

several data inputs including, i) wind speed (m/s) at the release stack, ii) the downwind measurement 

distance from the release stack (m), iii) emission rate at the release stack (g/s), iv) the height of the release 

stack, and v) solar insolation (W/m2). Deriving the necessary dispersion parameters followed two steps: i) 

determining Pasquill-Gifford stability classes for each model iteration, and ii) using Pasquill-Gifford 

stability classes to guide the selection of formulas for vertical and horizontal dispersion parameters within 

the Briggs-McElroy-Pooler lookup table (Briggs, 1973).  

  Pasquill-Gifford stability classes are categorically determined based on i) the intensity of solar 

radiation and, ii) the magnitude of the average wind speed for a given model iteration. Wind data was 

measured during CRT campaigns from the stationary anemometer and solar insolation data was retrieved 

from the NASA Power Project data access viewer (NASA, 2023). Pasquill-Gifford stability classes were 

assigned to each iteration of the FGDM following the EPA Key to Solar Radiation Delta-T (SRDT) 

Method for Estimating Pasquill-Gifford Stability Categories (EPA, 2000) (Appendix A). The stability 

classes were then used to reference the appropriate lateral and vertical dispersion formulas presented 

within the Briggs-McElroy-Pooler table (Appendix B). Incorporating the sampling distance for each 

plume segment, the Briggs-McElroy-Pooler formulas provided the lateral and vertical dispersion 

parameters that were then input to the FGDM for each iteration of the model. The FGDM shown in 

Equation 1 was used to generate downwind maximum enhancement estimates that paired with each open- 

and closed-path maximum enhancement.  
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2.5. Statistical Analysis  

2.5.1. Key variables 

 Statistical analysis presented within this thesis was conducted on select variables that were 

decided to most suitably provide quantitative insight on the measurement performance of both CH4 

sensors onboard an MGL. The primary variables examined include: i) maximum enhancement within a 

plume segment, ii) width of a plume segment, and iii) area underneath the distribution curve of a plume 

segment. Here, the distinction between a plume and a plume segment holds significance. Where the 

existence of a given plume within the PoMELO driving path is objective, either sensor’s measured plume 

segment is subjective and dependent on the sampling characteristics belonging to the given sensor. By 

extension, it can be understood that the evaluation of sensor performance is subjective and pertains to the 

performance of either sensor relative to the other. This is in opposition to the notion that sensor 

performance is, or can be, objectively evaluated in actuality relative to physical characteristics of the 

plume itself. As a result, the analyses conducted on the variables presented above provide quantitative 

evaluations of relative performance for either sensor. These variables are defined below.  

An enhancement is a variable that defines the magnitude of a measured CH4 concentration within 

a plume relative to the corresponding ambient CH4 concentration. The maximum enhancement is the 

enhancement within a plume segment that exhibits the greatest magnitude. Maximum enhancement is a 

variable that allows for relative comparison of plume segment magnitudes belonging to both sensors in 

cases where they may display incongruent ambient concentrations. Maximum enhancement emerges as a 

primary descriptor of plume segment magnitude throughout the analytical procedures presented in this 

thesis.  

The plume segment width serves as a parameter delineating the breadth of a specific plume 

segment along the PoMELO driving route. It delineates the spatial extent of a plume segment in meters, 

providing insights into the spatial distribution of CH4 concentrations across the plume. This allows for an 

assessment of the spatial attributes inherent in each plume segment. 
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Plume segment area is defined as the total concentration of CH4 underneath the distribution curve 

of a given plume segment – units are defined as ppmv•m. This serves as an approximation of the total 

amount of CH4 observed within a plume segment. von Fischer et al. (2017) implement a similar metric in 

which area is reported as the excess CH4 concentration (enhancements) summed over the width (m) of a 

given plume. However, differences in measurement frequency between sensors in this thesis prohibit a 1:1 

analysis of plume area from each sensor’s original data using this approach. An increased volume of 

open-path data relative to the closed-path datasets would introduce an inherent upward bias in segment 

area values for the open-path sensor. In response, this thesis calculates plume segment area using a 

trapezoidal area approach. Instead of summing enhancement values across the width of each plume, each 

segment is divided into trapezoidal columns between consecutive concentration pints along an x-axis of a 

CH4 time series (Figure 2.8). The sum of trapezoidal areas returns a plume area value that remains 

unbiased by differences in data volume, thereby facilitating uniform comparison between open- and 

closed-path segments. The formula for plume segment area is presented in Equation 2 where 𝑝𝑎 is plume 

area, 𝑛 is the number of trapezoidal columns underneath a plume segment curve, 𝑥𝑖 is the width value 

associated with the current enhancement value, 𝑦𝑖, and 𝑥𝑖−1 is the preceding width value associated with 

the preceding enhancement value, 𝑦𝑖−1 

𝑝𝑎 =
1

𝑛
∑

(𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑖−1 + 𝑦𝑖)

2

𝑛

𝑖=1

 [2] 
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Figure 2.7: Closed-path CH4 enhancement distribution curve divided into trapezoidal units. Areas are 

quantified between each recorded enhancement value (as highlighted in blue) and summed across the 

duration of the plume to return total plume area as described in Equation 2. 

The following sections describe the statistical procedures used to describe the relationships 

between these variables belonging to the various measured, modelled, and resampled plume segment 

datasets. 

2.5.2. Comparison of Measured Plume Segment Characteristics  

 Statistical analysis began with a set of descriptive statistics that examined the three key variables 

described in the previous section: i) plume segment maximum enhancement, ii) plume segment width, 

and iii) plume segment area. These statistics were derived from two sampling populations: i) plume 

segments measured by the open-path sensor and, ii) plume segments measured by the closed-path sensor. 

These populations were exclusively comprised of data records where a 1:1 correspondence or exact match 

was observed between the plume segments from the open-path sensor and from the closed-path sensor. 

This consolidated measured data from the two CH4 sensors across a total of 717 plume transect crossings 

where both sensors registered plume detections.  

 Comparison between the open- and closed-path plume segment variables described above was 

performed using a two statistical approaches: mean absolute difference (MAD) and ordinary least-squares 
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(OLS) regression. MAD is a statistical measure that quantifies the average magnitude of differences 

between values from each dataset. This is calculated by finding the absolute value of differences between 

variables in the open- and closed-path plume segment populations. These values are then averaged 

between the populations. MAD provides insight into the typical amount of deviation between individual 

plume segment variables, offering an indication of the variability between measured open- and closed-

path data. MAD is shown in Equation 3 where 𝐴𝐷𝑖 is the absolute difference between a given pair of 

open- and closed-path plume segment variables, 𝑥𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1 is a key variable value from the open-path 

plume segment population and, 𝑥𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2 is a key variable value from the closed-path plume segment 

population. 

𝑀𝐴𝐷 =  
1

𝑛
∑ 𝐴𝐷𝑖

𝑛

𝑖=1

 

where: 

𝐴𝐷𝑖 =  |𝑥𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1 − 𝑥𝑖,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2| 

OLS regression models were fit between the measured open- and closed-path plume segment 

populations in order to quantify the magnitude and direction of the relationship for key plume segment 

variables. The OLS model used in this thesis is presented in Equation 4 where 𝑦𝑐𝑙𝑜𝑠𝑒𝑑−𝑝𝑎𝑡ℎ is the 

estimated closed-path variable, 𝑥𝑜𝑝𝑒𝑛−𝑝𝑎𝑡ℎ is the observed open-path variable, 𝑥 is the linear estimator, 

and 𝑒𝑖 is the residual term. 

𝑦𝑐𝑙𝑜𝑠𝑒𝑑−𝑝𝑎𝑡ℎ = �̂�𝑥𝑜𝑝𝑒𝑛−𝑝𝑎𝑡ℎ + 𝑒𝑖 

where: 

𝑒𝑖 = �̂�𝑥𝑜𝑝𝑒𝑛−𝑝𝑎𝑡ℎ − 𝑦𝑐𝑙𝑜𝑠𝑒𝑑−𝑝𝑎𝑡ℎ 

[3] 

[4] 
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The relationship described by OLS modelling was additionally assessed by calculating the 

standard deviation of residual terms. This was used to quantify the typical amount of deviation of 

individual measured points relative to the OLS regression line. Residual standard error allowed for an 

indication of the parity between measured data points relative to the OLS fitted values. Residual standard 

deviation was calculated following Equation 5 where 𝜎𝑒 is the standard deviation of residuals, 

𝑥𝑜𝑝𝑒𝑛−𝑝𝑎𝑡ℎ𝑖
 is an open-path variable, and 𝑦𝑐𝑙𝑜𝑠𝑒𝑑−𝑝𝑎𝑡ℎ𝑖

 is a closed-path variable. 

𝜎𝑒 = √
∑ (𝑥𝑜𝑝𝑒𝑛−𝑝𝑎𝑡ℎ𝑖

− 𝑦𝑐𝑙𝑜𝑠𝑒𝑑−𝑝𝑎𝑡ℎ𝑖
)2𝑁

𝑖=1

𝑁 − 1
 

2.5.3. Quantification of Variability for Individual Measurements 

 This section describes the procedure used to quantify the variability associated with individual 

measurements from each CH4 sensor. Recall that the sampling procedure in this thesis dictated that each 

CH4 release experiment would require a total of 6 downwind plume transect crossings. Rather than 

capturing a singular “snapshot” measurement of each downwind plume, the practice of repeat transects 

allowed for a quantification of the variability in plume segment attributes by supplying a greater data 

volume. Variability of individual measurements was quantified by calculating the standard deviation of 

key variables (maximum enhancement, plume segment width and plume segment area) within each 

individual release experiment. The observed variation within each release experiment provided a 

quantification of the uncertainty and precision attributed to each sensor’s singular measurements at a 

given release rate. 

2.5.4. Measurement Frequency Influence on Plume Segment Variables 

 A priori knowledge of the CH4 sensors in this thesis indicated that differences in measurement 

frequency attributed to each sensor would likely exhibit a non-zero influence on the plume segment 

variables (maximum enhancement, width, and area) measured by either sensor. Recall that in order to 

quantify this influence, a treatment population of resampled 1 Hz plume segments was generated from the 

[5] 
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existing open-path plume segments. These groups were methodically designed to control for sampling 

frequency, ensuring that any observed differences between the groups could be attributed solely to 

variations in sampling frequency.  

 These differences were quantified using the same statistical methods presented in §2.5.2 – these 

are MAD, OLS regression and standard deviation of residuals. However, in addition to MAD, mean 

absolute percentage difference (MAPD) was calculated between the populations as well – this is a matric 

used to quantify the average difference between the original and resampled data as a percentage. MAPD 

is shown in Equation 6 where 𝐴𝑃𝐷𝑖 is the absolute percentage difference between an open-path variable 

(𝑥𝑜𝑝𝑒𝑛−𝑝𝑎𝑡ℎ𝑖
) and a corresponding resampled variable (𝑥𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝑖

).  

𝑀𝐴𝑃𝐷 =
1

𝑛
∑ 𝐴𝑃𝐷𝑖

𝑛

𝑖=1

 

Where: 

𝐴𝑃𝐷𝑖 = |
𝑥𝑜𝑝𝑒𝑛−𝑝𝑎𝑡ℎ𝑖

− 𝑥𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝑖

𝑥𝑜𝑝𝑒𝑛−𝑝𝑎𝑡ℎ𝑖

| × 100 

2.5.5. Assessment of Forward Gaussian Dispersion Modelling Estimates 

 Evaluation of forward Gaussian modelling estimates relative to measured data considered 4 

sampling populations derived in §2.4.2: i) measured open-path plume segments, ii) forward modelled 

open-path plume segments, iii) measured closed-path plume segments, and iv) forward modelled closed-

path plume segments. This allowed for two sets of analysis between i) open-path measured and open-path 

modelled populations, and ii) closed-path measured and closed-path modelled populations. Maximum 

enhancements were thereby assessed between populations following the same calculations mentioned in 

§2.5.2 – these were MAD, OLS regression, standard deviation of residuals. However, additional analyses 

followed the Yacovitch et al. (2015) procedure for quantifying uncertainty inherent to the Gaussian 

dispersion model. Yacovitch et al. (2015) use factor error from their modelled and measured values in 

[6] 
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order to assign 95% confidence intervals on their Gaussian estimates. While Yacovitch et al. (2015) used 

this procedure to evaluate the uncertainty inherent to an IGDM, their method was adapted to evaluate 

uncertainty inherent to the FGDM used in this thesis. This section follows the methods presented by 

Yacovitch et al. (2015) in order to illustrate the procedures followed in this thesis.   

Firstly, factor error (Equation 7) was calculated between the respective measured and modelled 

datasets where 𝐸𝑓𝐺  is factor error, 𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 is the Gaussian-derived estimate of emission rate and 

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the emission rate measured in Yacovitch et al. (2015).  

𝐸𝑓𝐺 =
𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
 

Yacovitch et al. (2015), then plotted factor error as a cumulative probability function – this is presented in 

Figure 2.9 where the cumulative probability function for factor error is shown in blue and confidence 

intervals at α/2 = 0.025 and (1 - α/2) = 0.975 are depicted in red.  

 

Figure 2.8: Cumulative probability function for the distribution of factor error (blue). The red lines 

indicate the lower and upper 95% confidence bounds where, y = 0.025 and y = 0.975 (Yacovitch et al., 

2015). 

The intersection points of the factor error curve and the confidence interval lines indicate the factor error 

associated with the upper and lower bounds of the 95% confidence interval. These intersection points in 

[7] 
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Figure 2.9 are shown as 𝑥 = 0.300 and 𝑥 = 2.99 (Yacovitch et al., 2015). Equation 8 shows that 95% of 

factor error lies between these values: 

0.300 <  
𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
< 2.99 

Yacovitch et al. (2015) rearrange Equation 8 to demonstrate the 95% confidence limits on their measured 

values: 

0.333(𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑) < 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < 3.34(𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑) 

This indicates that 95% confidence intervals can be assigned at 33.4% and 334% of a measured value – in 

other words, uncertainty of the IGDM used in Yacovitch et al. (2015) ranges from 33.4% to 334%. The 

same procedure was followed to quantify the uncertainty inherent to the FGDM used in this thesis.

[8] 

[9] 
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Chapter 3: Results 

 

3.1. Sampling Conditions 

Sampling conditions are defined as the settings under which data collection took place – they are 

bucketed into two primary groups: i) environmental conditions and ii) test conditions. Environmental 

conditions are variables that were uncontrolled within the sampling procedure that affect plume dynamics 

– these are aspects such as wind speed, temperature and wind direction. Testing conditions describe the 

range of variables that were able to be controlled within the sampling procedure – these include CH4 

release rate, driving speed and measurement distance from the release stack. 

A total of 164 unique release rates were sampled, ranging from 5 m3/day to 900 m3/day (Figure 

3.1, Panel A.) Measurement distances downwind from the release stack ranged from 81.96 to 1010.38 m 

(Figure 3.1, Panel B). Plume transects were recorded under driving speeds ranging from 1.30 m/s to 24.07 

m/s (Figure 3.1, Panel C), air temperatures ranging from -9.93oC to 32.42oC (Figure 3.1, Panel D), and 

wind speeds ranging from 0.51 m/s to 19.52 m/s (Figure 3.1, Panel E). Solar insolation data is presented 

in Table 3.1 alongside corresponding Pasquil-Gifford atmospheric stability classes observed on each 

testing day. Gas sampling analysis indicated that the CH4 composition within the release gas ranged from 

88.44% to 92.88% by volume. Gas composition results are presented in Appendix C.  
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Figure 3.1: Summary of environmental and sampling conditions across all 11 CRT campaigns. 

Summaries of conditions: (A) release rates, (B) downwind sampling distances, (C) transect driving 

speeds, (D) air temperatures, and (E) wind speeds.  
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Table 3.1: Summary of Pasquill-Gifford stability classes, solar insolation and wind speed data recorded 

across all CRT campaigns (n = 11). Solar insolation data retrieved from the NASA Power Project data 

access viewer (NASA, 2023). 

Sampling 

Date 

Solar Insolation (W/m2) Average Wind Speed Range (m/s) P.G. Stability Classes 

22-Aug-22 241.12 1.151 - 4.181 B & C 

23-Aug-22 143.36 1.296 - 3.328 B & C 

24-Aug-22 197.01 1.525 - 3.722 B & C 

13-Sep-22 110.59 3.042 - 4.949 C 

14-Sep-22 171.46 3.122 - 6.184 C & D 

15-Sep-22 178.02 3.445 - 5.004 C 

31-Jan-23 65.09 0.508 - 1.824 B 

07-Feb-23 63.66 1.780 - 7.447 C & D 

26-Feb-23 106.15 2.278 - 19.523 C & D 

02-Mar-23 164.01 0.963 - 10.317 B, C & D 

20-Apr-23 121.98 1.904 - 5.569 B, C &D 

 

3.2. Measured Data and Sensor Performance 

3.2.1. Plume Detections  

 The total number of transect crossings conducted was 801. This resulted in 763 plume detections 

(true positives) for the open-path sensor, and 729 for the closed-path sensor. The total number of paired 

plume detections was 717. Paired detections are defined as plume transect crossings in which both sensors 

simultaneously observed true positives. The closed-path sensor recorded 72 plume non-detections (false 

negatives) over 801 plume transects – this translates into a 91.011% true positive rate (8.988% rate of 

false negatives). The open-path sensor recorded 38 false negatives, which equates to a 95.256% true 

positive rate (4.744% rate of false negatives). Both sensors combined for a total of 22 paired non-

detections – instances where both sensors recorded false negatives within the same transect crossing. 

These results are presented in Figure 3.2. Generally, paired instances of false negatives were more 

common during low release rates and higher temperatures (Table 3.2).  
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Figure 3.2: Summary of plume detection true positives and false negatives according to release rate. (A) 

true positives (orange) and false negatives (black) recorded by the closed-path sensor; (B) true positives 

(orange) and false negatives (black) recorded by the open-path sensor. Transects (n = 717) for both 

populations. 

Table 3.2: Summary of environmental and testing conditions associated with false negative transects for 

both the open- and closed-path sensors. 

Paired False Negatives, 𝑛 = 22  
Sampling 

Distance (m) 

Driving Speed 

(m/s) 

Wind Speed 

(m/s) 

Air 

Temperature 

(oC) 

Release Rate 

(m3/day) 

Mean 327.485 10.613 2.985 16.465 185.682 

Median 250.965 9.741 2.810 25.062 87.500 

σ 184.535 4.499 1.662 13.246 189.316 

Closed-Path False Negatives, 𝑛 = 72 

Mean 409.382 10.679 5.051 13.316 229.105 

Median 322.878 9.141 4.937 4.830 115.000 

σ 252.558 6.325 2.837 11.856 206.864 

Open-Path False Negatives, 𝑛 = 38 

Mean 392.644 10.746 4.609 12.946 202.750 

Median 325.363 10.036 3.187 4.529 116.500 

σ 253.111 4.955 3.310 12.753 183.706 

 

3.2.2. Ambient CH4 Concentrations 

 Across all 11 CRT campaigns, the open- and closed-path sensors consistently displayed 

incongruent ambient CH4 concentrations. The open-path sensor recorded a mean ambient CH4 

concentration of 2.072 ppmv with a standard deviation of 0.0078 ppmv. The closed-path sensor presented 
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a mean ambient CH4 concentration of 2.039 ppmv, with a standard deviation of 0.0067 ppmv. MAD 

between the open- and closed-path ambient concentration populations was 0.0648 ppmv. Ambient data 

across CRT campaigns are presented in Table 3.2. Differences in ambient baselines are small yet 

sustained – this appears to be related to sensor calibration. The offset is assumed to be consistent across 

concentrations and is therefore interpreted to have a negligible effect on sensor-to-sensor comparisons of 

CH4 enhancement. 

Table 3.3: Summary of ambient CH4 concentrations returned by both CH4 sensors across all CRT 

campaigns (n = 11). 

 
Open-Path Closed-Path 

Date Mean Ambient 

Concentration 

(ppmv) 

Ambient Concentration 

Standard Deviation 

(ppmv) 

Mean Ambient 

Concentration 

(ppmv) 

Ambient Concentration 

Standard Deviation 

(ppmv) 

2022-08-22 2.056 0.00475 2.030 0.00351 

2022-08-23 2.085 0.03189 2.004 0.05194 

2022-08-24 2.099 0.00510 2.081 0.00401 

2022-09-13 2.091 0.00237 2.082 0.00193 

2022-09-14 2.071 0.00400 2.053 0.00080 

2022-09-15 2.167 0.00274 2.110 0.00225 

2023-01-31 2.193 0.01150 2.092 0.01264 

2023-02-07 2.108 0.01159 2.014 0.01209 

2023-02-26 2.124 0.00632 2.015 0.00416 

2023-03-02 2.118 0.00255 2.023 0.00145 

2023-04-20 2.119 0.00320 2.014 0.00219 

 

3.2.3. Plume Segment Maximum Enhancement 

Across the test suite of paired plume segments (𝑛 = 717), mean maximum enhancement was 

1.753 ppmv for closed-path segments and 2.935 ppmv for open-path segments. The MAD between the 

populations was 1.195 ppmv. As both sensors were deployed simultaneously under the same conditions, 

this suggests that the discrepancy in maximum enhancement values may be due to intrinsic sensor 

mechanisms.  

The linear OLS model fit between measured values from both sampling populations returned a 

linear estimator with a slope of 0.602. The linear estimator describes both the direction and the magnitude 
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of the relation between the open- and closed-path sampling populations (Figure 3.3, Panel A). There is a 

positive relation but the slope of the line is shifted below the parity line because the open-path sensor 

recorded higher maximum CH4 enhancements than the closed-path sensor. Residuals from the linear 

model produced a standard deviation of 0.707 ppmv. The heteroscedasticity of the residuals displayed in 

Figure 3.6 (Panel B) shows that this variability is not consistent across the range of maximum 

enhancement values. Generally, results indicate that the difference in the maximum CH4 concentration 

enhancement between sensors increases as the magnitude of the enhancements become larger.  

 

Figure 3.3: (A) Summary of maximum enhancement values recorded by the open- and closed-path 

sensors. These data are fitted with an OLS linear estimator (blue). A dashed black line has been added to 

visualize a slope describing 1:1 parity. (B) Distribution of residual values associated with the linear OLS 

estimator with a red line representing a zero residual value. 

3.2.4. Plume Segment Width and Area 

Across the test suite of open- and closed-path plume segments (𝑛 = 717), the closed-path sensor 

recorded an average plume segment width of 125.527 m, while the open-path sensor recorded an average 

plume segment width of 88.162 m. The MAD between the populations was 38.069 m. The OLS model fit 

between open- and closed-path plume segment widths shows a positive relationship and a slight upward 

bias favoring the closed-path sensor, which is denoted by the non-zero y-intercept (Figure 3.4, Panel A). 
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However, the relation approximates the parity line with a slope of 1.170. The standard deviation of 

residuals for the model was 27.962 m. Figure 3.4 (Panel B) shows that the distribution of these residuals 

are more homoscedastic in comparison to the maximum enhancement residual plot in Figure 3.3 (Panel 

B). This suggests that the discrepancies in segment width values are likely more systematic, highlighting 

a tendency for the plume segments derived from the closed-path sensor data to be consistently wider. 

These findings suggest that the observed differences in segment widths are likely the result of intrinsic 

sensor attributes. Further discussion on sensor measurement frequency and precision is warranted as a 

result. 

 

Figure 3.4: (A) Summary of plume segment width values recorded by the open- and closed-path sensors. 

These data are fitted with an OLS linear estimator (blue). A dashed black line has been added to visualize 

a slope describing 1:1 parity. (B) Distribution of residual values associated with the linear OLS estimator 

with a red line representing a zero residual value. 

In contrast to plume segment width, the areas of plume segments recorded by both sensors 

displayed nearly a 1:1 relation. Mean plume segment area was 52.410 ppmv•m for the open-path sensor 

and 52.663 ppmv•m for the closed-path sensor. The MAD was 6.103 ppmv•m. The differences in 

maximum CH4 enhancements coupled with plume segment widths noted earlier appear to even out for 

plume area, resulting in near parity. This is confirmed by the linear estimator generated by the linear OLS 
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model fit between the two populations = 0.983 (Figure 3.5, Panel A). Residuals from the linear model 

reported a standard deviation of 17.567 ppmv•m. While the standard deviation suggests significant 

variation within the model, Figure 3.5 (Panel A) and the residual distribution in Figure 3.5 (Panel B) 

suggest this value is inflated by outliers. With the exception of outliers, the distribution of residuals 

displays higher homoscedasticity relative to the maximum enhancement residual plot presented in Figure 

3.3 (Panel B). This suggests that the variance of the residuals is not influenced by increasing fitted values.  

 

Figure 3.5: (A) Summary of plume segment area values recorded by the open- and closed-path sensors. 

These data are fitted with an OLS linear estimator (blue). A dashed black line has been added to visualize 

a slope describing 1:1 parity. (B) Distribution of residual values associated with the linear OLS estimator 

with a red line representing a zero residual value. 

3.2.5.  Quantifying Measurement Uncertainty: Repeat Transects 

 Singular transect crossings are able to provide a “snapshot” of an emission profile resulting from 

an emission source; however, the behavior of CH4 plumes is highly variable and not sufficiently captured 

within a single passing (Atherton et al., 2017; Caulton et al., 2018;). Repeated transects downwind of an 

emission source provide the ability to quantify the variability of plume characteristics, allowing for a 

better understanding of the uncertainty associated with individual measurements (Caulton et al., 2018). 

This section references the testing populations outlined in §2.5.3 and quantifies the uncertainty of 
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measurements recorded within each release experiment. The results presented here draw on populations 

of open- and closed-path release experiments where a total of 6 transect crossings were conducted (𝑛 =

91) for each experimental release rate. The standard deviation of plume segment maximum enhancements 

and widths were calculated for each open- and closed-path release experiment where 6 transect crossings 

were conducted. These values are depicted graphically in Figure 3.6 (Panels A and B). The mean standard 

deviation value for closed-path maximum enhancements was 0.887 ppmv, and for the open-path sensor, 

1.456 ppmv. The mean standard deviation for closed-path plume segment widths was 29.984 m, and for 

the open-path sensor, 22.802 m. These findings indicate that the variability in the measurements returned 

by different sensor types is not uniform (plume segment area was excluded due to high parity between 

populations). For a singular plume segment width measured by the closed-path sensor, variability is 

approximately 1.435 times greater than the variability shown by the open-path sensor; variability for a 

singular maximum enhancement value measured by the open-path sensor is approximately 1.641 times 

greater than the variability expressed by the closed-path sensor. These findings display the importance of 

sampling procedures that conduct multiple transects as opposed to one. These findings dually quantify 

discrepancies in the variability and uncertainty of individual measurements belonging to the two sensor 

types.  



50 

 

 

Figure 3.6: (A) A pair of box plots displaying the distribution of standard deviation values for plume 

segment widths recorded by both sensors within discrete release experiments. (B) A pair of box plots 

displaying the distribution of standard deviation values for maximum enhancements recorded by both 

sensors within discrete release experiments. 

3.2.6. Spatial Offsets in Closed-Path Plume Segments 

 This subsection presents results describing the spatial offset distances between the originally 

segmented closed-path plume segments described in §2.3.3 (𝑛 = 717) and the spatially corrected closed-

path plume segments described in §2.3.4 (𝑛 = 717). The mean offset distance between these two 

populations is 169.07 m, with a standard deviation of 87.191 m. The frequency distribution of the 

described offset distances is presented in Figure 3.7.  

In §2.3.4, it was explained that the spatial offsets presented here originated from intrinsic 

mechanisms belonging to the closed-path sensor – specifically the time required for CH4 molecules to 

traverse the intake tubing and enter the CRDS chamber. This is primarily affected by the sensor’s 

sampling frequency, flow rate, and properties of the tubing (length and diameter). The only modifiable 

parameter is the tube properties. Recall that during the February 26th, 2023, CRT campaign, a shorter 

length of tubing with a larger diameter was connected to the closed-path sensor. This allows additional 

insight to be gained by subdividing offset distance values into two populations: i) offsets associated with a 
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shortened intake hosing segment, and ii) offsets associated with a longer intake hosing segment. Offset 

distances recorded on the February 26th campaign (𝑛 = 96) reported a mean value of 112.116 m, while all 

other offset distances (𝑛 = 705) reported a mean of 176.733 m. This suggests that shorter lengths and 

larger diameter of the intake hosing decreases the transit time for a CH4 molecule between plume entry 

and measurement within the CRDS chamber. This translates to a shorter spatial offset relative to all other 

plume segments captured on the remaining CRT campaigns.  

 

Figure 3.7: (A) Frequency distribution of offset distances (m) between pairs of original and spatially 

corrected closed-path plume segments. (B) Frequency distribution of offset distances (m) between 

original and spatially corrected closed-path plume segments differentiated by hosing length. 

 Offset distances were positively correlated with driving speeds during plume transect crossings 

(Figure 3.8). Fit with a linear OLS model, the linear estimator is shown to be 15.135, and the adjusted R2 

value is 0.573. This indicates that approximately 57.31% of the variance in closed-path offset distances is 

explained by driving speed alone. Adjusted R2 is an appropriate indicator in this instance because the 

predictive relation between driving speed and offset distance is examined. It is intuitive that driving speed 

may account for the majority of the variance in the closed-path offset distances because increased driving 

speeds indicate a greater distance travelled over shorter time intervals. Figure 3.8 additionally confirms 
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that the majority of offset distances associated with the shortened intake hosing are smaller than offset 

distances associated with longer intake hosing applied at similar driving speeds.  

 

Figure 3.8: Closed-path offset distances plotted against driving speeds, fit with a linear OLS model. 

Offset distances associated with the shortened intake hosing length (February 26, 2023, CRT campaign) 

are shown in red. Offset distances associated with the standard intake tubing length used on all other CRT 

campaigns are depicted in blue. 

3.3. Effects of Sensor Measurement Frequency  

 This subsection presents results associated with the statistical analyses outlined in §2.5.4 and 

quantifies plume segment characteristics as a function of sensor measurement frequency on the basis of 

three key variables: i) plume segment maximum enhancement, ii) plume segment width, and iii) plume 

segment area. Recall that the sampling populations compared in this subsection are: i) a control group 

consisting of plume segments measured by the open-path sensor at a 10 Hz measurement frequency and, 

ii) a treatment group consisting of resampled open-path plume segments that simulate sensor performance 

at a 1 Hz measurement frequency. Again, each group consists of plume segments where 𝑛 = 717. 

3.3.1. Plume Segment Maximum Enhancement  

The open-path plume segment population displayed a mean maximum enhancement value of 

2.935 ppmv, while the resampled plume segment population showed a mean value of 1.805 ppmv. The 
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MAD between the two populations was 0.744 ppmv, and the MAPD was 57.16%. This indicates that 

sampling frequency alone accounted for a 57.16% difference in maximum enhancement values. A linear 

OLS model was fit between the values presented by both populations and returned a linear estimator, 

characterizing the slope of the model = 0.737. The standard deviation of residual values was 0.589 ppmv. 

Figure 3.9 (Panel A) presents a scatterplot of the measured and resampled maximum CH4 enhancements 

along with the linear OLS model. There is similarity between Figure 3.9 (Panel A) and Figure 3.3 (Panel 

A) – both instances show that maximum enhancements from the 10 Hz populations are generally larger, 

however this tendency is not as strong in the resampled figure. Figure 3.9 (Panel B) shows that the 

distribution of residual values are heteroscedastic, much like the residuals presented in Figure 3.3 (Panel 

B) – variability increases as maximum CH4 enhancements increase. Resampling open-path data revealed a 

relation between maximum CH4 enhancement values similar to the relation between measured open- and 

closed-path maximum CH4 enhancement values. However, the variation between the measured 

populations remains greater than the variation shown between measured and resampled maximum CH4 

enhancement populations. While measurement frequency is shown to account for a 57.16% difference in 

maximum CH4 enhancement values, this suggests that there are variables other than measurement 

frequency influencing the discrepancies between open- and closed-path maximum CH4 enhancements.  
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Figure 3.9: (A) Summary of maximum enhancement values recorded by the open-path sensor and from 

the 1 Hz resampled plume segment population. These data are fitted with an OLS linear estimator (blue). 

A dashed black line has been added to visualize a slope describing 1:1 parity. (B) Distribution of residual 

values associated with the linear OLS estimator with a red line representing a zero residual value. 

3.3.2. Plume Segment Width and Area 

The mean width of the measured open-path plume segments was 88.162 m, and the mean width 

of the resampled open-path plume segments was 95.541 m. The MAD was 19.027 and the MAPD was 

15.91%, indicating that sampling frequency accounted for a 15.91% difference in plume segment width. A 

linear OLS model was fit between the values presented by both populations and returned a linear 

estimator characterizing the slope of the model = 0.822. The y-intercept in Figure 3.10 (Panel A) and 

residuals presented in Figure 3.10 (Panel B) indicate a slight bias towards larger resampled widths. The 

standard deviation of residual values was 23.476 m.  
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Figure 3.10: (A) Summary of plume segment width values recorded by the open-path sensor and from the 

1 Hz resampled plume segment population. These data are fitted with an OLS linear estimator (blue). A 

dashed black line has been added to visualize a slope describing 1:1 parity. (B) Distribution of residual 

values associated with the linear OLS estimator with a red line representing a zero residual value. 

As was observed between the measured populations in §3.4.2, the area values between the open-

path and resampled populations display significant parity. For the open-path segments, the mean area 

value was 52.411 ppmv•m, and for the resampled plume segments, 48.602 ppmv•m. The MAD was 3.074 

ppmv•m and the MAPD was 18.43%. This indicates that the effect of sampling frequency alone 

accounted for a 18.43% difference in plume segment area. The linear estimator presented in Figure 3.11 

(Panel A) reports a slope of 0.991 indicating near parity between the two area populations. The residuals 

were homoscedastic and displayed a standard deviation of 0.439 ppmv•m (Figure 3.11, Panel B). These 

results indicate that differences in sensor measurement frequency do not introduce any meaningful 

differences when observing plume segment area.  
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Figure 3.11: (A) Summary of plume segment area values recorded by the open-path sensor and from the 1 

Hz resampled plume segment population. These data are fitted with an OLS linear estimator (blue). A 

dashed black line has been added to visualize a slope describing 1:1 parity. (B) Distribution of residual 

values associated with the linear OLS estimator with a red line representing a zero residual value. 

3.4. Forward Gaussian Dispersion Modelling 

  This section presents the results of statistical analyses outlined in §2.5.5, quantifying plume 

segment characteristics based on a single variable: maximum enhancement. The subsection compares 

sampling populations as follows: i) plume segments measured by the open-path sensor, ii) forward-

modeled plume segments derived from open-path plume segment inputs, iii) plume segments measured 

by the closed-path sensor, and iv) forward-modeled plume segments derived from closed-path plume 

segment inputs. Analyses were performed only between populations derived from the same sensor type 

(i.e., between i) and ii), and between iii) and iv)). Each population mentioned in this subsection consisted 

of 𝑛 = 717 plume segments. 

As reported in §2.3.2, the open-path population displayed a mean maximum enhancement of 

2.935 ppmv. This is compared against the mean maximum enhancement value reported by their forward 

modelled counterparts, 1.045 ppmv. MAD between measured and modelled open-path plume segments 

was 1.820 ppmv. The linear estimator fit between these populations is presented graphically in Figure 
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3.12 (Panel A), revealing a slope of 0.188. This indicates a positive correlation with measured open-path 

maximum enhancements being consistently larger than the modelled estimates. OLS regression between 

the two populations reported a residual standard deviation of 1.106 ppmv (Figure 3.12, Panel A2).  

Results presented between the closed-path population and their forward modelled counterparts 

display more parity. The mean maximum enhancement for measured plume segments was 1.752 ppmv, 

and for modelled maximum enhancements, 0.998 ppmv. MAD between these populations was 1.199 

ppmv. The linear estimator converges closer to the parity line as well with a slope of 0.269 (Figure 3.12, 

Panel B) – modelled values tend to be approximately 1/4th the magnitude of the measured enhancements. 

As was the case for the open-path populations, the relationship is positive but the discrepancy between 

measured and modelled values is smaller. The OLS regression for these populations presented a standard 

deviation of residual values equalling 1.026 ppmv – the distribution of residual values is shown in Figure 

3.12 (Panel B2).  

These results show that that the FGDM consistently underestimates maximum enhancement 

values relative to open- and closed-path measured data. Homoscedascity from the residual plots shown in 

Figure 3.12 (Panels A2 and B2) additionally indicate that Gaussian estimates become less reliable with 

increasing magnitudes of maximum enhancement. This suggests that unless correction is applied to 

Gaussian estimates or adjustments are made to the model itself, forward modelling may not be a reliable 

predictor of downwind maximum enhancements.  
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Figure 3.12: (A) Summary of maximum enhancement values recorded by the open-path sensor and 

maximum concentration values estimated by the FGDM. These data are fitted with an OLS linear 

estimator (blue). A dashed black line has been added to visualize a slope describing 1:1 parity. (B) 

Summary of maximum enhancement values recorded by the closed-path sensor and maximum 

concentration values estimated by the FGDM. These data are fitted with an OLS linear estimator (blue). 

A dashed black line has been added to visualize a slope describing 1:1 parity. (A2) Distribution of 

residual values associated with the linear OLS estimator in Panel A with a red line representing a zero 

residual value. (B2) Distribution of residual values associated with the linear OLS estimator in Panel B 

with a red line representing a zero residual value. 
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 Error within the FGDMs was assessed by assigning confidence intervals on estimated values as 

conducted in Yacovitch et al. (2015). This was done by calculating the factor error between measured 

maximum enhancement values and their corresponding Gaussian estimates (Equation 7). As in Yacovitch 

et al. (2015), distributions of factor error were used to generate cumulative distribution functions (CDFs) 

in which the fraction of error falling between 
𝛼

2
 and (1 −

𝛼

2
) as defined by a 95% confidence interval could 

be examined. Figure 3.13 shows the CDF plots for factor error belonging to open- and closed-path 

estimated maximum enhancement values, with red lines defining the upper and lower confidence bounds 

where, 𝑦 = 0.025 and 𝑦 = 0.975.  

 

Figure 3.13: (A) Plot showing the CDF curve for factor error between open-path maximum 

enhancements and forward modelled maximum enhancements (black) and 95% confidence bounds where, 

y = 0.025 and y = 0.975 (red). (B) Plot showing the CDF curve for factor error between closed-path 

maximum enhancements and forward modelled maximum enhancements (black) and 95% confidence 

bounds where, y = 0.025 and y = 0.975 (red). 

In Figure 3.13 (Panel A), the intersection points between 𝑦 = 0.025 and 𝑦 = 0.975 (red lines) 

were determined to be 0.042 and 3.533 ppmv respectively, thereby indicating:  

0.042 <
𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑  

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
< 3.533 [10] 
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where 𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 represents a Gaussian estimated maximum concentration value and 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

represents a corresponding measured maximum concentration value. Rearranging the equation above, it is 

shown that 95% confidence intervals on the measured maximum CH4 concentration can be written as: 

0.283(𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑) < 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < 24.07(𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑) 

For the closed-path dataset, the intersection points between 𝑦 = 0.025 and 𝑦 = 0.975 (red lines) were 

determined at 0.085 and 8.097 ppmv respectively, thereby indicating:  

0.085 <
𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
< 8.097 

Which can be rearranged to express 90% confidence intervals on the true measured maximum 

concentration as: 

0.123(𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑) < 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < 11.764(𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑) 

These results indicate that relative to open-path maximum enhancements, FGDM estimate 

uncertainty is anywhere from 28.30% to 2407.00% of the measured value. Relative to closed-path 

maximum enhancements, the uncertainty is anywhere from 12.30% to 1176.00% of the measured value. 

This means that a hypothetical 2 ppmv maximum enhancement generated by the FGDM is assigned 

confidence intervals of [48.054 ppmv; 0.566 ppmv] when compared against open-path maximum 

enhancements. Relative to closed-path data, the confidence intervals are more narrow [23.527 ppmv; 

0.246 ppmv]. Both results indicate considerable uncertainty within forward modelled Gaussian estimates, 

however, uncertainty is better constrained when estimated values are referenced against closed-path data. 

This result is likely a function of the closed-path sensor’s tendency to record maximum enhancements 

that are smaller in comparison to the open-path sensor. Collectively, these results indicate that the 

Gaussian model used in this thesis will routinely underestimate maximum enhancements, providing 

highly uncertain estimates. The asymmetric error bars presented in Equations 11 and 13 indicate that the 

[12] 

[13] 

[11] 
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model will routinely underestimate maximum enhancement values by a significant margin, but it will 

very rarely overestimate them. 
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Chapter 4: Discussion 

4.1. Overview  

 Results showed that the measurement performance of the open- and closed-path sensors used in 

this thesis were not equivalent. Relative to the open-path sensor, the closed-path sensor reported 

maximum enhancement values that were consistently smaller and segment width values that were 

consistently larger. Resampling analysis showed that these differences were largely explained by 

differences in the measurement frequencies possessed by both sensors. Attributes related to the closed-

path sensor such as intake tubing length and response time additionally resulted in plumes segments that 

were spatially offset relative to open-path plume segments. Despite these differences, both sensors 

displayed considerable parity when plume segment area (i.e., total CH4 sampled) was analyzed. The 

detection of true positives was comparable between both sensors and differentiation of individual false 

negatives between open- and closed-path populations did not display any differentiating environmental or 

testing conditions. However, cases where both sensors recorded false negatives in tandem were correlated 

with lower release rates and greater air temperatures. Performance of the FGDM was assessed – 

uncertainty associated with this model was high. It was found that the FGDM used in this thesis 

consistently underestimated maximum enhancement values relative to the data measured by both the 

open- and closed-path sensors. This section provides explanatory context for these results and explores 

the implications of open- and closed-path sensor use in LDAR applications. Limitations of the research 

presented in this thesis are also discussed.   

4.2. Plume Detection 

Over a total of 801 plume transect crossings, the open-path sensor registered 763 plume 

detections for a true positive rate of 95.256%; the closed-path sensor registered 729 detections for a true 

positive rate of 91.011%. The open-path detection results are commensurate with previous testing of the 

PoMELO system where single-blind experiments indicated that the system had a 90% probability of 

detection for emission rates under 0.2 m3/day (Barchyn & Hugenholtz 2020). A higher rate of true 

positives presented in this thesis is likely a function of larger release rates – the observed detection 
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performance of the open-path sensor in this thesis did not deviate from what was to be expected. 

However, the CRT experimental design used in this thesis was developed with the intention of generating 

as many true positive plume detections as possible – wind conditions were consulted prior to test 

scheduling, the release point was selected relative to available road infrastructure, communication 

between the PoMELO and release operator was ongoing, etc. Under these conditions, a high rate of true 

positives as observed was to be expected. Insight on sensor performance is therefore better gained by 

placing focus on the transect crossings in which the sensors were unable to detect plumes down wind of 

the stack – recall that the open-path sensor recorded 38 false negatives and the closed-path sensor 

recorded 72, 22 of which were recorded by both sensors within the same transect. This translates to a 

4.744% rate of false negatives for the open-path sensor and an 8.988% rate of false negatives for the 

closed path sensor. Analysis of these false negatives provides an indication as to the conditions under 

which the detection performance of both sensors may be suboptimal.  

Table 3.2 presented in §3.2.1 separates false negatives into individual categories and provides 

statistics that describe the sampling and environmental conditions experienced during these transects. 

Median values for release rate, sampling distance, driving speed, wind speed and air temperature fail to 

reveal any discrepancies in the conditions for individual false negatives between the open- and closed-

path sensors. This suggests an absence of consistent differentiating conditions for false negatives between 

the two sensor types. An initial assumption would rather have been that increased driving speeds may 

plausibly bias towards a greater number of false negatives for the closed-path sensor given its lowered 

measurement frequency and averaging behaviors. These conditions would have plausibly caused the 

closed-path sensor to miss quick increases in CH4 concentrations (Atherton et al., 2017; von Fischer et al., 

2017). It is recognized that separate unpaired false negative cases belonging to either sensor are relatively 

uniform in their associated environmental and testing conditions.  

 However, differentiation is present when considering the paired plume false negatives against 

individual false negative cases. Release rates are considerably lower in the paired false negative 
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populations and air temperatures are markedly higher. Increased air temperatures exhibit greater diffusion 

effects on plumes generated at the release stack. These are plumes that are generally more buoyant and 

dispersed along a vertical axis, as well as along a horizontal driving plane. In addition to generating 

gradual plume profiles, increased CH4 buoyancy introduces the potential for a large proportion of CH4 

within a plume to be concentrated at an elevations that are higher than the sampling inlet of both sensors. 

In effect, increased air temperatures may have generated instances where both sensors passed underneath 

the majority of the emitted CH4 resulting in a false-negative – this is acknowledged as a limitation of 

MGL performance in several studies (Robertson et al., 2020; O’Connell et al., 2019; Atherton et al., 

2017). Lower release rates are an intuitive finding associated false negative in the paired population. In 

experiments with smaller release rates, there is simply less CH4 to be measured. Even if the conditions 

described above were not so, lower release rates introduce a probability that CH4 plumes in the MGL 

driving path are less pronounced and thereby more easily missed by a given sensor. These conditions 

combine to generate plumes that are buoyant, vertically elevated, exhibit wider lateral dispersion, are 

weakly concentrated and more readily undetected at closer sampling distances.  

4.3. Differences in Plume Segment Characteristics 

 Differences in plume segment characteristics were observed between the open- and closed-path 

plume segment populations. Recall that the MAD between measured plume segments from both sensors 

was 1.195 ppmv and 38.069 m when considering maximum enhancement and width respectively. 

Resampling was conducted on open-path plume segments in order to quantify the degree to which these 

absolute differences could be attributed to sensor measurement frequency alone. When resampled 1 Hz 

plume segments were referenced against the 10 Hz open-path segments, it was found that the MAD for 

maximum enhancement values was 0.744 ppmv, and the MAD for plume widths was 19.027 m. It was 

shown that resampling effectively accounted for 57.16% of the differences in maximum enhancement 

values and 15.91% of the difference in width values. However, these differences were not of the same 

magnitude shown between the measured data from either sensor – this is additionally reflected in the 
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linear OLS estimators for maximum enhancements (0.602 between measured populations; 0.737 between 

resampled and measured populations) and widths (1.166; 0.822). The following sections explore 

explanations that attempt to reconcile differences in measured plume segments recorded by both sensors 

in this thesis. 

4.3.1. Effects of Sensor Measurement Frequency  

 Results from resampling analysis indicate that the measurement frequencies of both sensors 

largely account for differences in measured plume segment maximum enhancement and width to varying 

degrees. Resampling results showed that measurement frequency alone was unable to account for the 

entirety of the observed differences in plume segment characteristics, but provided an indication of the 

degree to which measurement frequency did account for these differences. A discussion of measurement 

frequency and its accompanying effects is warranted.  

 The observed discrepancies in maximum enhancement values are likely explained by two features 

associated with different measurement frequencies between sensors – these are i) temporal resolution, and 

ii) concentration averaging. The temporal resolution of the open-path sensor is 10-times greater than that 

of the closed-path sensor. This translates to a greater volume of concentration measurements over any 

given time interval. A sensor with a higher measurement frequency displays the ability to detect more 

rapid fluctuations in the concentration of CH4 observed within a plume. This means that sudden 

fluctuations in CH4 concentrations are more readily captured in comparison to a sensor with a lower 

measurement frequency. 10 Hz appears to be the upper limit for measurement frequency when referenced 

against existing mobile leak detection literature (Lavoie et al., 2021; MacKay et al., 2021; Edie et al., 

2020; Robertson et al., 2020; O’Connell et al., 2019; Caulton et al., 2019; Weller et al., 2018; Thoma et 

al., 2015). Even at driving speeds, results show that such a frequency is sufficient in detecting CH4 

concentration fluctuations over relatively small distances. It is reasonable to infer that the differences in 

measured maximum enhancement values stem partially from the closed-path sensor’s inability to capture 

such fluctuations as a result of lower measurement frequency. This is exacerbated at high driving speeds 
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where a closed-path sensor may be able to capture only 1-2 measurements within a plume – effectively, 

lower temporal resolution may cause a sensor to “miss out” on much of the detail within a given plume’s 

concentration profile. With respect to maximum enhancement values, this means a closed-path sensor 

may fail to characterize instantaneous periods of greater enhancement relative to a 10 Hz open-path 

sensor.  

In addition to the temporal resolution of the sensors, the closed-path sensor implements a 1-

second averaging of intake CH4 in order to derive 1 Hz concentration measurements (LICOR, 2023). This 

is to say that the closed-path sensor does not capture momentary “snapshots” of atmospheric CH4 every 

second. Rather, air is continually drawn in by the sensor’s pump and CH4 concentrations are recorded as 

the average of CH4 concentrations within the sampling chamber over a given 1-second interval. 

Resampling of 10 Hz data confirmed that averaging consistently dampens the recorded CH4 

concentrations measured by the sensor. Averaging does not entirely account for the magnitude of the 

discrepancy between open- and closed-path maximum enhancements, but it does ensure that a systematic 

downward bias exists for closed-path maximum enhancements relative to those measured by the open-

path sensor. Temporal resolution paired with concentration averaging ensures that a lesser volume of data 

is registered by the closed-path sensor and averaged values are downward biased as a result. It appears 

that the closed-path sensor may only display maximum enhancement values greater than the open-path in 

few instances where an increase in CH4 concentrations is missed by the open-path but captured by the 

closed-path. In such a case, consecutive concentrations surrounding this increase would additionally need 

to be equal to or greater than those measured by the open-path sensor in order to overcome the downward 

bias introduced by concentration averaging. Results presented in this thesis indicated that these scenarios 

were rare.  

 Differences in inter-sensor plume segment width can also be partially explained by measurement 

frequency – this is mainly a result of the averaging behavior inherent to the closed-path sensor. Where 

rapid increases/decreases in CH4 concentrations may be present at the tails of a given plume profile, the 
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averaging behavior of the closed-path sensor smooths these fluctuations. As opposed to the abrupt 

changes in CH4 concentration displayed by the open-path sensor, the closed-path sensor averages these 

changes over longer time intervals. Recall that spatial data was inherited by the closed-path timeseries 

from open-path data based on a shared time variable. Inherited spatial data is thereby associated with 

these broader time intervals and closed-path plume segments are characterized by a greater width as a 

result – in effect, the rise and fall of CH4 concentrations within a plume segment are more gradual. Note 

that the differences in plume segment width are not inherently a symptom of measurement frequency, 

rather the effects of sensor measurement frequency influenced the placement of spatial data within the 

closed-path datasets. However, the averaging behavior of the closed-path sensor paired with its inability 

to collect spatial data made such differences in plume segment width inescapable. Variability in plume 

segment width as a function of sensor type is a nontrivial discrepancy with the potential to bias plume 

detections depending on how plume detections are defined. von Fischer et al. (2017) describe a set of 

plume detection criteria that consider the spatial duration of CH4 enhancements in order to separate plume 

detections from ambient periods. A single closed-path Picarro G2301 measuring at 2 Hz with an 

unspecified length of intake hosing was used in von Fischer et al. (2017). Controlled release testing was 

performed in order to determine an averaged plume duration for natural gas leaks emitting at ≤40 L/min. 

It was found that leaks at this emission rate typically generated elevated CH4 readings occurring on spatial 

scales of < 160 m. von Fischer et al. (2017) use this criterion in their field sampling to exclude elevated 

readings in excess of 160 m, stating that they were unlikely to originate from natural gas infrastructure. 

von Fischer et al. (2017) address uncertainty and instances of false negatives as a result of their detection 

parameters but make no connection to the sensor type used in their work. These findings underscore the 

need for closed-path systems capable of collecting integrated spatial data alongside concentration 

measurements. If averaging effects are unable to be reconciled in this way, it appears that the closed-path 

sensor is fundamentally different in its capability to spatially characterize concentration data as a function 

of measurement frequency. At the very least, future reporting of plume segment characteristics should be 

prefaced by a recognition of uncertainty introduced by the type of sensor deployed.  
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When the selection of CH4 sensing equipment dampens the magnitude of measured concentration 

data and influences the dispersion of spatial data within plume segments, sensor type is effectively 

influencing the efficacy of LDAR surveillance. For example, in upstream O&G site assessments, results 

suggest that use of a closed-path sensor will record CH4 concentrations of a smaller magnitude relative to 

an open-path sensor. This introduces error in potentially classifying leaks as less severe by extension. 

Consequently, this disparity would hinder necessary follow-ups and interventions due to perceived lower 

concentrations, thereby impacting the accuracy and urgency of mitigation efforts in environmental 

monitoring and regulatory compliance. If emission inventories are to transition towards measurement-

based reporting, dampened CH4 concentrations as a function of sensor type dually introduce the potential 

to lower reported CH4 emissions from O&G infrastructure. This plausibly results in instances where the 

magnitude of upstream O&G emissions is downplayed and progress towards emission reduction targets is 

inaccurately assessed. Results presented in this thesis emphasize the need for side-by-side evaluation of 

CH4 sensing equipment before they are deployed in any regulatory capacity. The results show that the 

notion of assumed equivalence between various CH4 sensing equipment is false and that analysis of 

measurement performance is a crucial aspect to consider prior to any widespread deployment of any one 

selected CH4 sensing instrument.  

4.3.2. Effects of Sensor Response Time and Dilution 

It can be theorized that incongruencies in the measured plume segment characteristics introduced 

by differences in measurement frequency are additionally compounded by effects of rise time and dilution 

within the intake hosing and sensing cavity of the closed-path sensor.  

Response time is defined as the time required for a sensor to reach a specified percentage of its 

final output value in response to step changes in the input CH4 concentrations (Takriti et al., 2020). 

Response time is thereby recognized as a measure of how quickly a sensor can detect and respond to 

changes in the concentration of CH4 being measured. The closed-path sensor in this thesis operates with a 

response time (𝑇10 − 𝑇90) of ≤ 2 seconds when operating in its standard configuration as in this thesis (Li-
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Cor, 2023). The open-path sensor operates with a near-zero response time. In addition to the averaging 

behavior described in the previous section, response time has the potential to introduce dampened 

responses in CH4 concentration data because it requires a longer period for the sensor to settle at the ‘true’ 

concentration value (Takriti et al., 2020). As a result, the measured data may reflect an undershoot of 

plume segment characteristics, specifically maximum enhancement. In effect, the ‘true’ concentration of a 

maximum enhancement within a plume segment may never be reached, even if the deviation from the 

‘true’ concentration is very small.  

The issue of response time is additionally compounded (and partially accounted for) by dilution 

effects in the closed-path intake hosing and sensing cavity. Dilution effects refer to changes in the 

concentration of CH4 within the sensor due to the continual reintroduction of air into the sampling cavity. 

Where response time introduces the challenge for a closed-path sensor to “keep up” with changes in CH4 

concentration along a driving path, these changes are exacerbated by a continuous mixing of air/CH4 

within the closed-path intake hose and measurement chamber. When a closed-path sensor is deployed on 

a moving platform, dilution is primarily a function of the sensor’s measurement cavity volume, intake 

pump rate, enhancement duration (aka plume segment width) and the transit speed of a plume transect 

crossing (Atherton et al., 2017; von Fischer et al., 2017). These components are highly variable between 

individual mobile MGL studies and, while they are often communicated, they are rarely discussed further 

with respect to their influence on the collected data. For example, Atherton et al. (2017) deploy a 1 Hz 

closed-path sensor and acknowledge the importance of accounting for dilution when interpreting 

concentration measurements. However, they do not discuss intrinsic sensor characteristics that are 

understood to manipulate dilution and observed concentration data such as sensor pump rate, cavity 

volume, measurement frequency or averaging behavior. Data presented by O’Connell et al. (2019) is 

corrected for intrinsic closed-path sensor mechanisms that serve to dampen CH4 measurements such as 

averaging filters and dilution, but do not discuss factors that contribute these characteristics such as 
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driving speed or sampling duration. This makes comparisons between studies difficult to assess when 

attempting to examine the full range of influences on measured concentration data.   

4.4. Plume Segment Area 

Despite pronounced differences in plume segment maximum enhancements and widths between 

the open- and closed-path datasets, plume segment area values displayed considerable agreement. Over 

717 paired plume segments, the MAD between the open- and closed-path populations was 6.103 ppmv•m 

and the linear OLS model fit to the data returned a linear estimator of 0.983 – near 1:1 parity. Residual 

values associated with the model were also considerably more homoscedastic than in the case for 

maximum enhancement populations and displayed much less variance. It appears that the differences in 

plume segment maximum enhancement and width are reconciled when plume segment area is derived 

using the trapezoidal area formula presented in Equation 2. Resampling analysis additionally showed that 

the relationship between open- and closed-path plume segment areas remained relatively unaffected by 

the differences in sensor measurement frequency. The MAD between the open-path and resampled plume 

segment areas was 3.074 ppmv•m and the linear OLS model fit between these populations was 0.991. 

Considering these findings, it can be suggested that, while there are clear differences in the concentration 

profiles of the measured plumes according to sensor type, both sensors effectively account for the same 

volume of CH4 within each plume segment. If the objective of an LDAR surveillance program is to 

quantify the total amount of CH4 present within proximity to a site, results from this thesis suggest that 

either sensor type is suitable. This sort of quantification displays value in surveillance applications that do 

not attempt to localize emission sources or instances where the magnitude of enhancements from a 

specified point source are not a primary focus. A use case is presented in Riddick et al. (2023) where an 

MGL equipped with a closed-path ABB LGR-ICOS GLA132 ultra-portable CH4 sensor (1 Hz 

measurement frequency) was driven over 2260 km in a screening-grade survey to assess regional 

variability in CH4 emissions from agricultural practices and natural source (lakes and wetlands) in 

addition to upstream O&G production. Results from Riddick et al. (2023) are presented against emission 
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factors that do not account for regional variability in atmospheric CH4. While the CH4 profiles from each 

of the observed emission sources would have been considerably different had the Riddick et al. (2023) 

survey been conducted with an open-path sensor, results form this thesis suggest that the amount of CH4 

sampled would have shown a high degree of concordance. 

4.5. Spatial Offsets in Closed-Path Plume Segments 

Results presented in §3.2.6 show that the observed spatial offsets between closed-path and open-

path plume segments are a result of three factors: i) the driving speed at which a plume transect is 

conducted, ii) the length and diameter of the intake hosing on the closed-path sensor, and iii) the response 

time inherent to the closed-path sensor. As reported in §3.2.6, MGL driving speed explains a sizeable 

proportion of the variance in spatial offset distances. This is an intuitive finding as elevated driving speeds 

increase the displacement of an MGL along the driving path over a given time interval. Therefore, when 

spatial data is assigned to the closed-path time series, the positioning of plume segments are further along 

the driving path relative to the segments recorded by the open-path sensor. Note that this is not necessarily 

a function of the closed-path sensor’s CH4 measurement performance. Rather, it is the closed-path 

sensor’s inability to collect spatial data. However, even if the closed-path sensor was capable of recording 

spatial data alongside CH4 concentrations, a spatial offset would theoretically still be observed due to 

response time, as well as the time required for CH4 molecules to transit the intake hosing. Results showed 

that the length of the intake hosing influenced the magnitude of the spatial offsets observed in the closed-

path data. The hosing used on the February 26, 2023, CRT campaign was shorter and had a greater 

diameter than the hosing segment deployed in all other campaigns, and it was shown to effectively reduce 

the magnitude of spatial offsets relative to the ones associated with the lengthier hosing deployed at 

similar driving speeds. This is an intuitive finding because when the time required for CH4 to transit the 

intake hosing is reduced, the displacement of an MGL will be less over a given time interval as a result. 

This transit time affects the placement of spatial coordinates within the closed-path data. The use of intake 

hosing is inescapable for a closed-path sensor deployed onboard a moving vehicle as in this thesis. 
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Theoretically, the spatial offset introduced by intake hosing could be eliminated entirely if an equipment 

configuration allowed for the closed-path sensor to be mounted on the exterior of the truck. However, this 

was not feasible given the available materials and the characteristics of the MGL used in this thesis. 

Additionally, even if it was possible to mount the closed-path sensor on the exterior of the truck and no 

intake hosing was required, the response time inherent to the closed path sensor (≤ 2 seconds) discussed 

in §4.3.2 would remain. This is to say that even if the temporal and spatial influences of the intake hosing 

were eliminated, some magnitude of spatial offset would still be observed within the closed-path data as a 

result, though to a lesser extent. While intake hosing could theoretically be abandoned, closed-path 

response time represents an inherent barrier to immediate CH4 measurement as exhibited by the open-path 

sensor. Additionally, the response time attributed to closed-path sensors is variable depending on the 

model deployed and the configuration of the sensor. Closed-path sensors deployed in existing literature 

(Rella et al., 2015; Yacovitch et al., 2015; Weller et al., 2018; O’Connell et al., 2019; Takriti et al., 2020) 

exhibit response times ranging from <8 to <2 seconds. The LI-7810 used in this thesis is capable of 

various settings that manipulate the length of the response time – for example, the ‘high altitude’ 

configuration on the LI-7810 increases the response time to ≤ 3 seconds. When deployed at highway 

driving speeds, differences in rise time may not introduce spatial offsets as drastic as those exhibited by 

intake hosing, but nonetheless represent an offset that requires consideration. O’Connell et al. (2019) 

acknowledge the manipulation of concentration data as a factor of both response time and intake hosing 

and correct their data accordingly. However, O’Connell et al. (2019) do not mention the possibility of the 

resultingly miscategorized spatial data that would have resulted had the correction not been applied.  

 It is worth acknowledging that “spatial offsets” are a relative concept similar to plume segment 

width and maximum enhancement. The offsets reported in this thesis are only considered as “offsets” 

because of the ability to reference open- and closed-path data against one another. This is to say that 

offsets do not refer to the distance between closed-path plume segments and the ground truth position of 

plumes within the driving path – instead these are offsets measured relative to the positioning of open-
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path plume segments. However, this distinction is relatively immaterial when concentration measurement 

and mapping is conducted in real-world scenarios where a single sensor is deployed. In such cases, single-

sensor measurements are the sole basis for assessment. As some degree of measurement bias is virtually 

inescapable, uncertainty should be a main consideration behind the interpretation of collected 

concentration data, as well as the selection of a sensor in a given leak detection application.  

The spatial positioning of measured plume segments is a fundamental component in leak 

detection applications that deploy source term estimation (STE) algorithms to pinpoint the location of an 

emission source (Hutchinson et al., 2016). While these procedures are beyond the scope of this thesis, 

source localization is a developing extension of LDAR that has often relied on MGL survey methods 

(Hutchinson et al., 2016; Atherton et al., 2017; Caulton et al., 2019). The suite of STE algorithms is 

characterized by many techniques that are heavily dependent on the quality of data available – spatial data 

being a key requirement (Hutchinson et al., 2016). If discrepancies in the spatial positioning of 

concentration measurements go unaccounted for, the efficacy of source localization LDAR procedures 

will likely exhibit considerable error as a result (Hirst et al., 2013). STE optimization methods (Srinivasan 

& Ramamritham, 2008), neural networks (Sun et al., 2011), and model-based prediction (Fahad et al., 

2015) all serve the purpose of spatially defining emission sources and rely heavily on spatial information 

as a primary data requirement. Failing to acknowledge the uncertainty associated with the spatial 

positioning of measured CH4 concentrations holds significant implications on the performance of STE 

algorithms. Implications resulting from a failure to account for such uncertainty are additionally 

magnified in scenarios where multiple leak sources are present within a survey and possess unknown 

locations and emission intensities.  

Results from this thesis suggest that spatial offsets in closed-path concentration data can best be 

reduced by introducing the shortest and widest length of intake hosing possible. Given the response time 

of the sensor and the driving speeds at which plume transects were conducted, this appears to be the best 

equipment-based approach for a closed-path sensor operating without the ability to collect spatial data on 
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its own. Alternatively, calibration as shown in O’Connell et al. (2019) can be used to retroactively correct 

for such factors during data processing. However, these procedures may not be feasible in the absence of 

sensor evaluation through CRT validation or in long-scale surveys exhibiting a high degree of spatial, 

atmospheric and methodological variability. An ideal closed-path sensing configuration would operate 

dually with the ability to collect spatial data and apply real-time corrective calibration to concentration 

measurements and allied spatial data considering response time, hosing length and driving speed of the 

MGL.  

4.6. Forward Gaussian Dispersion Model Performance 

Performance of the FGDM has largely eluded uncertainty analysis within the body of existing 

O&G literature. Uncertainties for the IGDM are largely understood (Brantley et al., 2014; Goetz et al., 

2015; Lan et al., 2015; Caulton et al., 2019; Edie et al., 2020; Shaw et al., 2020) but analysis specific to 

the FGDM has remained often unaddressed. The decision to analyze FGDM performance in this thesis 

was rooted in this knowledge gap. The majority of existing literature that includes Gaussian modelling 

has focused on the IGDM because upwind emission intensity is an attractive metric for O&G producers 

who wish to prioritize onsite follow-ups for leak inspection. Inverse modelling allows such prioritization 

to be achieved from concentration data collected at standoff distances from emitting infrastructure, 

effectively screening leaking infrastructure in a hierarchical manner according to estimated emission 

severity. Emission intensity is understood as perhaps the most principal metric for assessing the 

environmental impact of upstream O&G emissions and, as such, the literature has presented robust 

analyses on models that achieve emission intensity estimates. Inverse modelling has been often used in 

regulatory contexts and continues to be implemented as the dispersion modelling standard in much of the 

literature surrounding O&G emissions. The popularity of the IGDM has been sustained despite high 

uncertainty associated with the model – Yacovitch et al. (2015) report IGDM model uncertainty as high as 

334% of measured emissions. High uncertainties attributed to inverse Gaussian modelling coupled with 

ample coverage within the literature motivated a departure from analysis on the IGDM. Additionally, the 
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data collected by both the sensors deployed in this thesis consist entirely of downwind concentration data. 

This provided the opportunity to easily conduct a 1:1 assessment of FGDM performance against 

measured data. 

Performance of the FGDM was also analyzed because it presents practical use cases for O&G 

producers who wish to assess their exposure to risk of regulatory penalty. For example, fuel flaring and 

vent volume data is reported by Albertan O&G producers annually and is made publicly available on sites 

such as Petrinex and OneStop. A proactive O&G producer could insert this data to a series of forward 

models to estimate the intensity of CH4 concentrations within a given radius of emitting infrastructure. 

These estimated concentrations could be used to preemptively predict the measured concentrations that a 

regulatory LDAR survey may possibly observe at given downwind distances and on available road 

infrastructure surrounding a site. If forward modelling indicates a high concentration of fugitive CH4 

within a probable LDAR survey route, an O&G producer is aware of the possibility for increased 

concentrations triggering a follow-up and possible regulatory penalty. Forward modeled CH4 

concentration estimates can also provide an indication of the exposure to emissions experienced by the 

public in communities surrounding O&G infrastructure. The AER uses public feedback regarding health 

concerns and odor complaints from the public in order to prompt site inspections (AER, 2023). Nuisance 

complaints resulting in regulatory follow-up can be avoided if producers have detailed knowledge of their 

emission outputs and use forward modelling to approximate the local impact of their downwind emissions 

on the public.  

Results presented in §3.4 showed that the FGDM used in this thesis performed with considerable 

uncertainty and consistently underestimated the measured downwind maximum enhancements recorded 

by the open- and closed-path sensor. Where the open-path sensor recorded a mean maximum 

enhancement value of 2.935 ppmv, the corresponding FGDM returned a mean maximum enhancement 

value of 1.045 ppmv – MAD between the two populations was 1.823 ppmv. Where the closed-path sensor 

recorded a mean maximum enhancement value of 1.735 ppmv, the corresponding FGDM returned a mean 
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maximum enhancement value of 0.998 ppmv; MAD between the two populations was 1.199 ppmv. 

Residual analysis additionally indicated that the variance between measured and modelled maximum 

enhancement values increased as maximum enhancements became larger. Analysis of factor error 

presented in §3.4 showed the uncertainties attributed to the FGDM in this thesis are also much larger than 

those reported for IGDMs in existing literature. Work by Yacovitch et al. (2015) reports some of the 

highest IGDM uncertainty with uncertainties ranging from 33.4% to 334% of measured emission rates. 

The FGDM used in this thesis reported uncertainties ranging from 28.30% to 2407% of measured 

maximum enhancement values.  

Uncertainty attributed to the FGDM used in this thesis can be explained by a number of likely 

factors. The suite of Gaussian models in general operates on a number of large assumptions and 

generalizations regarding the downwind transport of emitted pollutants. For one, atmospheric stability and 

downwind dispersion are effectively captured within just two variables – recall these are the lateral and 

vertical dispersion parameters. Neither the lateral or vertical dispersion parameters used in the Gaussian 

model deployed in this thesis account for turbulent mixing or directional changes in the wind field. 

Second, derivation of these parameters within the EPA’s SRDT (Appendix A) and Briggs-McElroy-Pooler 

lookup tables (Appendix B) is very generalized. The classes of atmospheric stability as outlined in 

Appendix A break atmospheric stability into 6 possible categories and the only required inputs for 

defining a given class are wind speed and solar insolation. This provides an overgeneralized 

conceptualization of the complex and often random nature of atmospheric dynamics. Other dispersion 

models such as large eddy simulation (LES) outlined in Caulton et al. (2018) are much more thorough in 

their classification of plume dispersion behavior. LES models incorporate temperature and density 

profiles that account for turbulent fluxes and the vertical transport of heat and scalars such as emitted 

pollutants. Turbulent flows within the atmospheric boundary layer are also characterized within LES 

models through the consideration of turbulent kinetic energy production and dissipation which allows 

LES models to more accurately quantify the impact atmospheric stability on turbulence. AERMOD is 



77 

 

another commonly used dispersion model that implements Pasquill-Gifford stability classes similarly to 

Gaussian dispersion models but includes a more robust array of additional parameters to characterize 

atmospheric stability including Monin-Obukhov length and turbulence indicators such as the K-theory 

turbulence model (Cimorelli et al., 2005). This is to say that the suite of available Gaussian models, 

whether they are forward or inverse, implement a number of large assumptions and translate to a 

considerable amount of uncertainty as a result.  

Uncertainty was also likely introduced by an insufficient characterization of plume behavior at 

the point of exit from the release stack. Under the ideal gas law, the decrease in pressure between the 

compressed cylinders and the hosing apparatus resulted in significant temperature decreases within the 

released gas – even during CRT campaigns on exceptionally hot days, ice was observed along segments 

of the hosing connected directly to the gas trailer’s release valve. While the ambient heat exchanger 

attempted to mitigate this temperature drop by conditioning the gas to the ambient air temperature, it is 

likely that this was not sufficiently achieved especially at larger release rates. The result would have been 

plumes that are less diffuse upon exit of the release stack than would be expected by the FGDM. Larger 

temperature correction equipment could be used in future work to mitigate the issue. Further uncertainty 

was also likely introduced as a function of input parameters to the model that were not derived from data 

measured onsite during CRT campaigns. For one, solar radiation data was gathered from a secondary 

source compiled from satellite data (NASA, 2023). These data represent an average of radiative data with 

a spatial resolution of 1.0° latitude by 1.0° longitude using the WGS84 grid reference system. It is 

understood that this data is broadly generalized over a large region. Dispersion behavior would have been 

more accurately captured if onsite measurement was used instead. In addition, effective stack height was 

input to the model as the height of the release stack (2.75m) – initial momentum of the gas and plume rise 

following release from the stack was not accounted for because it was unable to be measured. As gas was 

released from the stack (in some cases at comparatively high release rates), the exit velocity of the gas 

likely resulted in a vertical rise contributing to an effective stack height that was much greater than the 
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2.75m input to the model. As a result, the model was more likely to mischaracterize the concentration 

observed at the downwind measurement distance and receptor height. Finally, Gaussian models like the 

FGDM used in this thesis provide time averaged representations of plume behavior whereas the 

downwind concentration measurements collected by either sensor represent instantaneous plume data. In 

the context of maximum enhancements, time-averaged values are likely to be dampened and generated 

from smoother plume profiles when compared against instantaneous measured data. It is not unreasonable 

to assume that the Gaussian estimates presented in this thesis would have been more congruent with 

measured data had the concentrations from either sensor been time averaged across transects.  

The Gaussian model presented in Yacovitch et al. (2015) demonstrates some of the largest 

measurement uncertainties presented within the literature, yet these are much lower than those presented 

in this thesis. This is mainly because the work by Yacovitch et al. (2015) implemented an iterative 

dispersion approach with data from their downwind plume intercepts. Yacovitch et al. (2015) ran 50 

model iterations when examining each individual emission rate estimation - each iteration considering 

different downwind measurement distances along their measured wind fetch. The upwind location of their 

expected emission source and the intensity of their metered emission rate were then estimated by scaling 

simulation results to match the magnitudes of their experimental data. Estimations of emission rate were 

then derived from the line of fit between their estimated and measured values. In effect, each model 

derivation was assigned its own scaling factor derived from an ensemble of 50 model iterations. In this 

thesis, the FGDM was not iterative – instead each maximum enhancement estimate was assessed 1:1 

against its corresponding individual measurement. However, future work could apply the slope of the 

OLS regression models presented in §3.4 to Gaussian estimates in order to achieve similar scaling 

correction as in the iterative procedure described by Yacovitch et al. (2015). Yacovitch et al. (2015) also 

derive stability classes more rigorously. Using the Stability Array (STAR) program, Yacovitch et al. 

(2015) implement the Beychok (2005) “Objective Definition of Stability Class”. This is a method for 

defining stability classes that includes solar elevation angle, percent cloud coverage and cloud ceiling 
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height. While this method defines stability classes from A to F as similarly shown in this thesis, it is 

understood that this method is inclusive of a broader range of variables that more adequately encapsulate 

atmospheric behavior within a given Gaussian model iteration.  

4.7. Limitations 

A number of limitations are acknowledged within this thesis. These limitations include 

methodological and analytical components that implicate the transferability of results to analogous studies 

or future studies conducted outside of a CRT environment.  

 Results presented in this thesis should firstly be tempered with the consideration that measured 

data was collected within a semi-controlled environment. Within the CRT experimental design, the 

coordinates of the release stack were known, the rate of CH4 emission from the release stack was metered 

and atmospheric conditions were constrained in order to generate instances in which the greatest number 

of downwind plume detections could occur. CRT campaigns were only conducted on days where wind 

conditions were deemed to be suitable for sufficient downwind transport of plumes over available road 

infrastructure and on days where temperatures were favorable for the operation of CRT equipment. Such 

controls likely biased the rate of true positive plume detections recorded by both sensors. Due to the 

considerations measured above, the downwind locations of plumes were reliably approximated, and the 

expected intensity of the measured concentrations were able to be referenced against the known emission 

rate at the release stack. These conditions are rarely met in real-world LDAR applications. Outside of a 

CRT setting, it should be expected that the frequency of true positive plume detections is generally lower. 

However, the purpose of this thesis was to i) assess the measurement performance of two sensor types 

relative to one another, and ii) assess the equivalence between measured concentration data and forward 

Gaussian modelled estimates. These research goals were best achieved in a setting where as much control 

could be placed on sampling conditions as possible. For example, a high volume of false negatives would 

have diminished the sample size used to compare plume segment measurements between sensors. 
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Additionally, an experimental design where parameters such as emission source location, emission source 

intensity and wind speed were unknown would not have allowed for Gaussian modelling.   

 CRT experimentation as conducted in this thesis also generated downwind plumes that were 

discrete, well-defined and easily identifiable within CH4 concentration time series. This allowed a 

customized plume detection algorithm to be applied to the measured data with high efficacy. CRT 

experimentation executed in this way additionally introduced the benefit of the detection algorithm to be 

verified by clear and immediate visual analysis of the measured CH4 time series. However, outside of a 

CRT environment, it is unlikely that the same plume detection algorithm would have been as effective. In 

real-world LDAR deployments, plumes are generally more convoluted, and the presence of plumes 

cannot be identified with the same confidence as in CRT experimentation. Therefore, alternative detection 

algorithms should likely be used – the literature provides numerous examples of such algorithms applied 

in field measurement beyond CRT experimentation (von Fischer et al., 2017; Atherton et al., 2017; Edie et 

al., 2020). Additionally, the PoMELO system alerts the driver when CH4 enhancements are encountered – 

this allows field notation to be compiled detailing the exact number of detections recorded within a 

release experiment. It is unclear if sensing configurations other than PoMELO provide the same feedback 

and therefore the validation of plume detections may not be supplemented by the same detail of field 

notation.  

 Another fundamental limitation involves the sensors used in this thesis. The terms “open-path 

sensor” and “closed-path sensor” are used to refer to the specific models deployed in this thesis – these 

are the LI-7700 and the LI-7810. As such, the presented results are related to the performance of these 

specific sensors. While many of the fundamental sampling mechanisms and measurement behaviors 

inherent to the sensors used in this thesis (i.e., concentration averaging, rise time, dilution effects, intake 

hosing, etc.) are present in other analogous models, the measurement performance of open- and closed-

path sensors other than the ones used in this thesis cannot be explicitly stated. Implementing the entire 
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array of available CH4 sensors would have been cost prohibitive and logistically unfeasible given the time 

constraints placed on this research.  

The open- and closed-path sensors were additionally not calibrated prior to the commencement of 

CRT testing – the effects of this are observed in §3.2.2 where incongruent ambient concentrations are 

observed. However, this discrepancy did not impact the analysis as all metrics (i.e., maximum 

enhancement, width and area) were derived relative to each sensor's individual ambient baseline. Recall 

that maximum enhancement was calculated by subtracting ambient concentrations from elevated 

concentrations, enabling a direct 1:1 comparison of maximum enhancements between sensors. Thus, 

despite the differing baselines, the statistical analysis allowed for meaningful comparisons between inter-

sensor measurements. 
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Chapter 5: Conclusion 

 

5.1 Summary of Results and Hypotheses 

 Measured data collected within the 11 CRT campaigns suggest a considerable degree of variation 

in the concentration data associated with the open- and closed-path sensors. Key variables including 

plume detection maximum enhancement and width were shown to be incongruent between open- and 

closed-path plume populations despite being deployed simultaneously. This was understood to largely be 

a result differences in the sampling mechanisms belonging to the open- and closed-path sensors. 

Resampling analysis showed that measurement frequency has a considerable impact on both the 

magnitudes of maximum enhancements and plume widths. Dampening of closed-path concentration data 

was shown to be a function of measurement frequency, along with dilution and averaging effects inherent 

to the closed-path sensor. Spatial characteristics related to the concentration data measured by each sensor 

were also shown to be incongruent. It was found that closed-path response times and the length of intake 

tubing drastically influenced the spatial positioning of concentration data for closed-path plume segments. 

While the influence of intake tubing is able to be accounted for in data treatment and response time is 

well characterized by sensor manufacturers, this is an aspect that is not always addressed in the literature. 

Despite these differences, plume detection areas recorded by both sensors were exceptionally congruent 

relative to other indicators of sensor performance. This suggests that both sensors may display similar 

efficacy in LDAR applications that attempt to characterize regional variability in total emitted CH4. These 

findings directly address working hypothesis (a), presented in §1.3. The results presented in this thesis 

demonstrate that the measurement performance of open- and closed-path sensors are consistently different 

in a controlled release setting. It has been confirmed that the observed differences in measurement 

performance are accounted for by sensor-specific sampling mechanisms.  

 Hypothesis (b) is addressed by the findings and discussion presented on FGDM performance 

relative to measured data from the open- and closed-path sensors. While the Gaussian concentration 

estimates showed less error relative to the closed-path sensor, this finding expresses limited practical 
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implications. It was shown that the FGDM significantly underpredicted measured concentration values 

from both sensors. It was discussed that Gaussian models operate with a number of atmospheric and 

emission assumptions that serve to generate considerable error and uncertainty in their estimates. While 

Gaussian models are widely used, other varieties of dispersion models are able to better address aspects of 

plume dispersion that are largely generalized by Gaussian models.  

5.2. Future Work 

As communicated by Caulton et al. (2018), a method for implementation of MGL emissions 

surveillance that identifies best practices and is supported by empirical observations and modelling is 

needed. To this end, there is much value to be gained from future work that continues to collect emissions 

data in a controlled release setting. CRT campaigns that include more than one emission source and 

emission sources with unknown locations would provide a more robust assessment of both sensor types 

that is more reflective of real-world LDAR applications. There is immense value in continued testing of 

various CH4 sensors in tandem onboard MGLs – a suggestion for future work would include similar CRT 

research as presented in this thesis with as many sensor models as possible. An understanding of each 

available sensor’s uncertainty and measurement performance relative to others provides valuable 

information to producers and regulators who wish to proceed with measurement-based surveys. With such 

an understanding, differences in measurement performance can be thereby reconciled and biases in 

measured data can be avoided. This would allow regulatory LDAR applications to remain flexible in the 

range of sensors deployed. This is in opposition to a singular prescriptive set of LDAR equipment 

requirements. Respective sensor measurement performance relative to forward Gaussian modelling could 

additionally be bolstered by future CRT campaigns that deploy a variety of sensors other than the LI-7700 

and LI-7810 used in this thesis. This would demonstrate whether or not the observed underestimations 

and uncertainties associated with the FGDM presented in this thesis are consistent relative to data 

measured by other sensors. 
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Future work could deploy both an open- and closed-path sensor in tandem outside of CRT 

settings at actual upstream O&G sites. Existing literature displays a definitive gap in studies that 

implement more than one sensor type onboard an MGL in both controlled release and field settings and 

evaluate measurement performances relative to each sensor. Dual deployment of both sensors onboard an 

MGL over a robust testing period would provide valuable information on the ways in which both sensors 

characterize upstream CH4 leaks, thereby identifying issues, errors, and uncertainties that are unable to be 

observed in CRT settings.  
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Appendix A: EPA Key to Solar Radiation Delta-T (SRDT) Method for Estimating Pasquill-Gifford 

Stability Categories (EPA, 2000) 
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Appendix B: Briggs-McElroy-Pooler Stability Class Lookup Table (Briggs, 1973) 



 

 

Appendix C: Gas composition results for CRT campaigns on: September 13th-15th, 2022; February 26th, 

2023; March 2nd, 2023; April 20th, 2023. 

            

# Peak Name

(VOL %)

Collection Date Average STDDEV

1 He 0.0000 0.00

2 H2 0.0017 0.00

3 Ar 0.0000 0.00

4 O2 0.2418 0.00

5 N2 0.9092 0.01

6 CO 0.0000 0.00

7 CO2 0.0360 0.00

8 C1 92.53 1.59

9 C2 6.46 1.27

10 C3 0.54 0.19

11 iC4 0.07 0.02

12 nC4 0.10 0.04

13 neopentane 0.00 0.00

14 iC5 0.02 0.00

15 nC5 0.06 0.08

16 nC6 0.21 0.44

September 13-15, 2022

All fills from Whitehorn:

 # Peak Name #4

(VOL %)

Averages STDDEV

1 He 0.01 0.00

2 H2 0.00 0.00

3 Ar 0.04 0.00

4 O2 0.55 0.00

5 N2 2.05 0.01

6 CO 0.00 0.00

7 CO2 0.66 0.00

8 C1 88.44 0.03

9 C2 6.82 0.01

10 C3 1.34 0.00

11 iC4 0.16 0.00

12 nC4 0.19 0.00

13 neopentane 0.00 0.00

14 iC5 0.04 0.00

15 nC5 0.03 0.00

16 nC6 0.01 0.00

26-Feb-23

All fills from White Horn



 

 

              

 

 

# Peak Name

(VOL %)

All fills from Whitehorn:

Averages STDDEV

1 He 0.00 0.00

2 H2 0.00 0.00

3 Ar 0.00 0.00

4 O2 0.24 0.00

5 N2 0.91 0.01

6 CO 0.00 0.00

7 CO2 0.04 0.00

8 C1 92.88 0.01

9 C2 6.41 0.01

10 C3 0.49 0.00

11 iC4 0.07 0.00

12 nC4 0.09 0.00

13 neopentane 0.00 0.00

14 iC5 0.02 0.00

15 nC5 0.02 0.00

16 nC6 0.01 0.00

02-Mar-23

# Peak Name

(VOL %)

Averages STDDEV

1 He 0.06 0.00

2 H2 0.00 0.00

3 Ar 0.00 0.00

4 O2 0.29 0.00

5 N2 1.28 0.01

6 CO 0.00 0.00

7 CO2 0.65 0.00

8 C1 90.30 0.01

9 C2 6.12 0.01

10 C3 1.27 0.01

11 iC4 0.15 0.00

12 nC4 0.18 0.00

13 neopentane 0.00 0.00

14 iC5 0.04 0.00

15 nC5 0.03 0.00

16 nC6 0.00 0.00

20-Apr-23

All fills from Whitehorn


