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Abstract

Multiple sclerosis (MS) is a chronic and severe disease of the central nervous system characterized
by complex pathology including inflammatory demyelination and neurodegeneration. MS impacts
>2.8 million people worldwide, with most starting with a relapsing-remitting form (RRMS) in
young adulthood, and many of them worsening to a secondary-progressive course (SPMS) despite
treatment. So, there is a clear need for improved disease characterization. MRI is an ideal tool for
non-invasive assessment of MS pathology, but there is still no established measure of disease
activity and functional consequences. This project aims to overcome the challenge by developing
novel imaging measures based on brain diffusion MRI and phase congruency texture analysis of
conventional MRI. Through advanced modeling and analysis of clinically feasible brain MR, this
thesis investigates whether and how the derived measures differentiate MS pathology types and
disease severity and predict functional outcomes in MS. The overall process has led to important
technical innovations in several aspects. These include: innovative modeling of simple diffusion
acquisitions to generate high angular resolution diffusion imaging (HARDI) measures; new
optimization and harmonization techniques for diffusion MRI; innovative neural network models
to create new diffusion data for comprehensive HARDI modeling; and novel methods and a
graphic user interface for optimizing phase congruency analyses. Assisted by different machine
learning methods, collective findings show that advanced measures from both diffusion MRI and
phase congruency are highly sensitive to subtle differences in MS pathology, which differentiate
disease severity between RRMS and SPMS through multi-dimensional analyses including chronic
active lesions, and predict functional outcomes especially in physical and neurocognitive domains.
These results are clinically translational and the new measures and techniques can help improve

the evaluation and management of both MS and similar diseases.
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Chapter 1: Introduction

1.1 Overview of research

Multiple sclerosis (MS) is a chronic and severe disorder of the central nervous system (CNS)
characterized by inflammatory demyelination and neurodegeneration (1-3). There is still no cure.
MS is complex in both pathology and clinical manifestations. Most people begin MS with a
relapsing-remitting clinical form (RRMS) during young adulthood (4) and therefore MS is literally
a life-long disease. Without appropriate management, over half of the people with MS will suffer
from progressive functional decline including being wheelchaired or bed-bound (5-7). The
etiology of MS is not completely clear, and both environmental and genetic factors among others
may play a role (8). However, MS is seen primarily distributed in northern latitudes such as North
America, and Canada has one of the highest prevalence rates of MS in the world (9). Further, MS
is highly imbalanced in sex with >3X more presentation in women than men in many regions
globally (9). Development of a cure for MS individuals requires a clear understanding of disease

activity and the associated pathology, along with the ability to measure them non-invasively.

Focal lesions are hallmarks of MS pathology. There are different types of MS lesions which may
feature different degrees of pathologies that lead to different consequences. In addition, MS
pathology not only occurs as focal lesions but also presents in non-lesion areas such as normal-
appearing white matter (NAWM) and diffusely-abnormal white matter (DAWM) (10). While the
underlying mechanisms remain unclear, it is commonly considered that MS pathology is an
immune-mediated process that often varies between individuals, and between structures (4,8).
Immune processes cause a Vvariety of tissue damage including loss of myelin, and with

dysregulation of axonal membrane and eventual disruption of cellular activity, loss of axons (11).



With time, the resulting damages can worsen, leading to clinically significant increases in severity

and eventually transformation of disease phenotype.

For people with RRMS, the natural consequence of their disease is converting to the secondary
progressive form (SPMS) (1-3,12-14,8). A progressive functional decline characterizes SPMS for
which no effective disease-modifying therapy is available. In MS, progression frequently occurs
due to clinical relapses but also because of other factors, including age at diagnosis and subclinical
disease activities. Specifically, long-term disability in MS has been linked to the frequency of
lesion development and lesion load in early disease stages (15). Further, the presence and amount
of chronic active lesions, typically characterized by ongoing tissue damage, are associated with an
increased likelihood of disease progression (15,16). The conversion from RRMS to SPMS is
associated with a shift to reduced inflammatory activity despite progressive loss of mobility and
function (15,17). Current understanding of disease mechanisms suggest that the shift from an
inflammatory to progressive disease pattern in MS is accompanied by a notable degree of neural
degeneration such as axonal loss, as evidenced by the correlation between brain atrophy and
disease progression (3,15,18). However, the change in disease forms is not always clear clinically,
and when it becomes clear, irreversible damage may have occurred and it may be too late to
intervene. The availability of methods that help identify the pathological changes early would be

critical for early disease management.

Disease development will unavoidably lead to worsened functional performance (5).
Consequences of MS include negative impact to different functional areas such as physical

disability and cognitive impairment (19). There are different approaches developed for assessing



functional performance for people with MS, including clinical exams (e.g. Extended Disability
Status Scale, EDSS) and neuropsychological batteries (6,20). Nonetheless, many of these clinical
assessment tools may not be sensitive enough to detect subclinical changes, which typically occur
earlier than clinical manifestations (21). As such, robust assessment methods for early
identification of functional wellbeing would also be crucial for improving outcomes of MS

individuals.

Magnetic resonance imaging (MRI) serves as a pivotal tool in the diagnosis, monitoring, and
management of MS. Conventional MRI is instrumental in clinical imaging, including utilities in
quantifying the number and volume of MS lesions, and identifying new and existing lesion activity
(18,22,23). By direct observation or software assisted quantification, conventional MRI also offers
the ability to estimate the changes in gross neural structure in MS such as atrophy. However,
conventional MRI alone is limited by its ability to characterise specific processes of tissue
pathology (22). Moreover, while relationships between lesion load and functional outcomes have
been frequently documented in MS, the importance of specific lesion types such as chronic active
lesions and their compositional characteristics in pathology are not intuitive to detect using

conventional MRI, further confounding its use (24-26).

Advanced MRI has improved specificity to MS pathology and has the potential to overcome some
of the challenges mentioned above. While not routinely in clinical use, multiple advanced MRI
methods have been developed. Myelin water imaging and magnetization transfer imaging have
been investigated to quantify myelin integrity using measures such as myelin water fraction

(MWF) and magnetization ratio (MTR), highly applicable in MS (27,28). In addition,



susceptibility-weighted imaging is a method sensitive to iron accumulation and is useful for
inferring inflammatory activities as well as identifying chronic active lesions as detected by a
paramagnetic rim in MS (16,22,29). Diffusion MRI is capable of providing information related to
both myelin and axonal changes with competitive sensitivity and specificity (22,30,31). Assisted
by different modeling approaches, a range of advanced imaging measures can be developed using
clinically applicable diffusion MRI, which helps identify lesion formation and intra-lesion activity
(32,33). Further, in combination with physiological modeling, diffusion MRI measures have also
shown the likelihood of characterizing chronic active lesions in MS (33). Despite the promises,

robust MRI measures of whole brain pathology is still lacking in MS.

In addition to the above, advanced analysis of already acquired MRI data serves as an alternative
method for improved characterization of disease activity including those in MS. These types of
methods are under the scope of image postprocessing. With the focus of characterizing image
patterns and trends associated with individual people, these methods also have the option to take
advantage of the new artificial intelligence (Al) technologies such as machine learning/deep
learning. Texture analysis is a pattern recognition method. By assessing the distribution of voxel
signals voxels in an image, texture analysis methods can identify different tissue integrity
characteristics invisible to human eyes (34). Applied to MS, texture analysis measures based on
conventional MRI have shown the utility to assess pathological changes associated with de- and
remyelination (35,36). Phase congruency is one such texture analysis method. Unlike many other
methods, phase congruency extract image features using frequency domain information and
therefore is robust to variations in image intensity and contrast (37). Machine learning is an

approach that builds models automatically based on samples of data to learn patterns to enable it



to make predictions and classifications to unseen data (38). Combining with texture analysis
methods, machine learning has the power to improve the pattern recognition and disease
characterization abilities in various disorders including MS, in addition to their competitive ability

to handle high dimensional datasets (33,39,40).

The main goal of this project is to advance our understanding of the neuroscience mechanisms
underlying disease severity and brain function alterations in MS bolstered by innovations in data
science methods. To achieve this objective, | take advantage of recent advances in the fields
especially those on cutting-edge diffusion MR imaging, image processing and analysis such as
image texture analysis, and machine learning/deep learning. These processes are based largely on
archived data acquired from people with different types of MS as part of at least three well-

characterized clinical studies.

1.2 Hypothesis and Aims

Current MS research is challenged by the lack of connections between MRI-measured disease
activity and patient outcome. One critical factor is the lack of methods that reliably detect clinically
relevant information of MS pathology. | hypothesize that brain diffusion MRI and phase
congruency texture analysis will provide new micro- and macro-scale measures of MS pathology
that in combination with novel data science algorithms, will facilitate advanced classification of
injury patterns across brain areas, differentiation of phenotypes with different disease severity, and
correlation with functional outcomes in MS. Diffusion MRI has shown considerable potential in
assessing changes in tissue microstructure in numerous studies. Phase congruency, on the other

hand, can detect signal intensity patterns that are difficult to assess using conventual MRI but that



may be critical for additional probing of pathological and functional integrity. The overall goal of
this project is to establish methods that are sensitive to MS pathology, disease severity, and
functional changes based on innovative brain diffusion MRI and phase congruency analyses.
Specifically, this work will establish measures that detect tissue structural changes in both focal
MS lesions and non-lesion areas, particularly those associated with critical tracts of brain white
matter, to advance the specificity and clinical relationship of the methods. Moreover, this study
will apply novel data augmentation and model optimization procedures with diffusion MRI, and
integrate machine learning techniques into the analyses with both types of imaging where
applicable to improve the applicability of the techniques to clinical data. Collectively, this thesis

includes 3 specific aims:

Aim 1: Identify advanced imaging measures that are sensitive to pathological changes in MS based

on brain diffusion MRI and texture analysis along with machine learning.

Aim 2: Discover key imaging measures that differentiate disease severity between RRMS and

SPMS based on important brain diffusion MRI and phase congruency measures.

Aim 3: Assess the relationships of advanced imaging measures based on brain diffusion MRI &

phase congruency with functional outcomes in RRMS and SPMS participants versus controls.

1.3 Thesis Organization

To address the problem of missing tools and measures that link tissue structural changes to disease

activity and functional changes in MS, this thesis has taken a stepwise approach. Ranging from an



overview and literature review to method developments, evaluation, and application, and then to

conclusion, this thesis includes 7 chapters.

Chapter 1 introduces major topics concerning this thesis and provides a general highlight and
contextualization of the problem addressed by the investigations of the thesis. Background
information includes an overview of MS, the concerns of disease pathology, phenotypes and
severity, and functional performance, the challenges and potential of different types of MRI
especially that pertaining to MS, and the potential of image postprocessing techniques including
texture analysis such as phase congruency and machine learning as alternative methods of

advanced imaging investigations.

Chapter 2 gives a more thorough literature review of topics pertinent to this project. It provides
an overview of MS epidemiology, pathology, and clinical understandings, as well as current
knowledge and gaps on tissue pathophysiology and their relationship with function. The chapter
then gives an overview of a range of imaging technigues and outcomes, including the benefits they
offer and limitations they may have, that guide their current and potentially future use in the
research and clinical management of MS. The range of offerings by diffusion MRI and phase
congruency texture analysis are specifically explored in depth along with methods employed in
this project to advance their application such as machine learning/deep learning. A highlight of
these methods for their potential to enhance our study of the structural and functional relationships

is also included.



Chapter 3 outlines knowledge developments with regards to new methodologies implemented in
this thesis. These developments cover explorations made for both diffusion MRI and phase
congruency analyses. For diffusion MRI, | outline innovations in obtaining novel measures using
diffusion orientation distribution function and tractography models. Further, | present the
contributions of some of the orientation modelling approaches to harmonizing diffusion MRI data
between samples, and then provide an overview of a relevant experiment. This experiment
involves development of competitive neural network models for predicting new copies of diffusion
MRI data not typically acquired in clinical imaging such as diffusion scans with a high b-value.
Based on both the newly predicted data and original data, this study then shows the feasibility of
reconstructing high-quality diffusion metrics equivalent to those derived using purely original data
in high angular resolution diffusion imaging (HARDI) for advanced analysis of brain
microstructure. In addition, | also present a framework including a graphic user interface
established for improved understanding and investigation of phase congruency parameters. This
interface allows the identification of optimal settings needed for desired analysis of tissue

structural properties using conventional MRI in this project.

Chapter 4 presents the initial investigation and selection of advanced brain diffusion MRI and
textural phase congruency outcomes in the context of measurement sensitivity to MS pathology
associated with lesion formation and intra-lesion activity, assisted by a recognized, supervised
machine learning technique known as support vector machine. Experiments include comparisons
of lesions and NAWM regions of the brain, and lesion cores versus lesion rims. Regarding
diffusion MRI, this chapter involves the study of measures obtained through multiple modeling

approaches based on a single-shelled diffusion MRI acquisition with relatively high numbers of



diffusion acquisition directions (single-shell diffusion MRI). For phase congruency, outcomes are
calculated based on systemic tests of associated parameters from multiple mathematical functions.
In particular, the parameters are tuned in a way that the eventual phase congruency measures can
detect structural changes in a spatial scale range of MS lesions, and that the measures are sensitive
to local pattern changes in tissue structure according to experiments with known structural
characteristics. The tuning processes are done based on empirical heuristics or prior lab
experiences. The derived brain diffusion MRI and phase congruency outcomes are dimensionality

reduced by a recursive feature elimination method as part of the support vector machine modelling.

Chapter 5 goes one step further, which focuses on investigating the potential of the associated
brain diffusion MRI and phase congruency measures for differentiating disease severity, based on
data from new cohorts of people with RRMS and SPMS. For maximal understanding, this chapter
takes a systemic approach that includes investigations of disease pathology across the whole brain
at different scales. This involves analyses of whole-brain NAWM pathology using histogram
approaches, tract-based lesion and NAWM analysis, and along-tract analysis based on critical
brain white matter tracts commonly affected in MS: corpus callosum, cerebrospinal tracts, and
optic radiation tracts. Further, given the importance of chronic active lesions, this chapter has
developed a novel method for assessing the activity of these MS lesions based on diffusion MRI
followed by cohort comparisons between RRMS and SPMS. Furthermore, built upon
contemporary advances in Al, this chapter also employs new deep learning models developed in
tandem with this thesis to improve the calculation of several advanced diffusion MRI measures

using only single-shell diffusion data.



Chapter 6 represents the culmination of the development based on advanced diffusion MRI and
textural phase congruency methods. The overall goal is to assess whether and how the advanced
imaging measures under study predict functional outcomes of RRMS and SPMS participants. This
Chapter proceeds with the imaging measures that have shown significance in differentiating MS
phenotypes (Chapter 5), particularly measures out of the lesion and non-lesion areas of the
aforementioned brain white matter tracts. To further reduce potential ‘noises’ in the data, recursive
feature elimination processes are taken such that only imaging measures that are most relevant are
chosen for subsequent functional predictions. The prediction models are implemented based on a
different machine learning method, Ridge Regression, and the prediction is done for each of the
identified functional outcomes that span physical, neurocognitive, and affective domains. Similar
to the above, to minimize variances, only functional outcomes that show significant differences
between MS participants and matched controls are used in the prediction. Using a competitive
method, the strength of the prediction models is also compared quantitatively to maximize

understanding in each study group: MS, healthy control, and both.

Chapter 7 presents an overall summary of the investigations and research findings accompanied
by a discussion of the results with respect to current literature. Finally, limitations of the current

research are discussed, future steps are suggested, and significance is provided.

Overall, this project is expected to discover new knowledge and novel technologies for advanced

probing of MS pathology and function that can further enhance our disease evaluation and

management abilities for people with MS and similar diseases.
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Chapter 2: Literature Review

As listed in Chapter 1, this Chapter provides a detailed review of the literature directly associated
with this thesis project. The main topics include disease overview, pathology, measurement
methods from clinical, neuropsychological, and imaging perspectives, advancement of data

analysis methods along with artificial intelligence technologies, and summary.

2.1 Multiple Sclerosis

2.1.1 Overview

Multiple sclerosis (MS) is a severe and common disorder of the brain and spinal cord, affecting
>2.8 million people worldwide. The disease begins primarily at young adulthood, for many at 20-
40 years old, and has a notable sex bias. Depending on geographic locations, the female versus
male ratio ranges from 2:1 to 4:1 and this skew is observed to be increasing in some regions of the
world (4,9,41). Different opinions exist on the inciting cause of this disease. Common
considerations include environmental factors (e.g. place of residence prior to age 15, latitude, and
vitamin D levels), genetics (HLA haplotype, relationship risk factors), and the presence of
underlying infections (1). In general, MS is manifest with a range of symptoms including visual
dysfunction, loss of balance and coordination, cognitive decline, and mood dysfunction, making
MS diagnosis a process of elimination sometimes (26,42,43). In pregnant women, MS symptoms
sometimes exhibit a remission pattern likely attributed to the elevation of the hormone prolactin
during the period (44). Diagnostic tests include physical examinations for clinical outcomes,
cerebrospinal fluid analysis for cellular and molecular activity, and MRI for subclinical changes

such as lesions (22,42,45,46).
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MS presents with several phenotypes clinically, including primary-progressive (PPMS) and
progressive-relapsing (PRMS), besides RRMS and SPMS (8,15). The patterns of presentation
differ significantly between these forms, where progressive MS often demonstrates progressive
physical disability in the absence of acute attacks, while the relapsing forms typically show
intermittent development of neurological deficits with partial or complete recovery (Figure 2.1)
(15). Current therapies are most efficient in managing the inflammatory processes of MS as seen
primarily in RRMS; for PPMS and SPMS, treatment availability has improved with the promising
results of B-cell therapies and some immunomodulatory medications for active SPMS patients,
though for some managing symptoms is the main form of treatment (8,15,47-49). To improve the

management strategy and patient outcome, accurate understanding of tissue pathology is critical.
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Figure 2.1: Relapse and disability progression in RRMS and SPMS clinical courses. The greater

relative frequency of relapses in RRMS than SPMS phenotypes is seen alongside a difference in
persistence and severity of clinical disability. (Adapted from Filippi et al., 2018) (4).
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2.1.2 MS Pathology

Demyelination, axonal degeneration, and certain degrees of remyelination and gliosis mark the
key histological characteristics of MS pathology (2). Microstructural damages underlying much
disease activity in MS are mediated by inflammatory processes that involve different cell types
including atypical microglia and lymphocytes, and the inflammatory intensity varies depending on
disease course, occurrence of relapses, and the activity or type of lesions (1-3,50,51). Increased
inflammatory activity causes damages to myelin-forming oligodendrocytes (1-3). Myelin injury
in turn can cause axonal damage as well as dysregulation of axonal membrane components,
including ion channels which makes axons become more vulnerable to homeostatic changes and
subsequent injury (2,3,15). Axonal damage has also been suggested to occur through other

mechanisms other than demyelination, suggesting the complexity of the disease (3,52).

MS pathology is seen most prominently within lesions of the white and gray matter but also
extends into areas with no visible lesions such as the diffusely-abnormal (DAWM) and normal-
appearing white matter (NAWM) of the brain (10). The pathology is spatially and temporally
heterogeneous both within and across patients (42), presenting in different patterns including those
characterized by macrophage associated injury, antibodies and complement or apoptosis of
oligodendrocytes (Figure 2.2), and with lesion frequencies that vary by disease phenotype
(1,2,51,53,54), making disease activity and functional outcomes highly unpredictable. Focal
lesions may accompany temporary functional impairment during relapses as commonly seen in
RRMS presentations. Progressive forms of MS exhibit mostly continuous progression in disability
in conjunction with slow lesion growth leading to the formation of confluent lesions (1,18,55,56).

Nonetheless, the lack of clear association between patterns of lesion development and functional
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loss may suggest the importance of investigating the seemingly lesion-free regions, such as the
anatomically critical NAWM areas including the corpus callosum and corticospinal tracts. Indeed,
strong evidence indicate that microstructural changes within non-lesion regions have significant
functional consequences (10). As such, understanding the exact patterns of tissue damage
associated with different disease phenotypes such as RRMS and SPMS would be critical for

improved disease evaluation and treatment for people with MS.
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Figure 2.2: Immunologic patterns of acute white matter lesions. Shown are three types of tissue
damage underlying lesion pathogenesis: T-cell infiltration and macrophage injury (Type 1),

mediation of immune interactions by antibody and complement (Type II), and dysfunction and
apoptosis of oligodendrocytes (Type I11) (Adapted from Reich et al., 2018) (8).

2.2 RRMS and SPMS

RRMS is the most common form of MS, accounting for 85% of the initial MS diagnoses, and
RRMS and SPMS are two disease course classifications on a continuum of disease activity and
accumulation (1,2,7,57). RRMS is characterized by ongoing inflammation and frequent active
lesion development during relapses, much more than the progressive MS forms (57). In addition,
given the heterogeneity of RRMS from mild to severe presentations, it is thought that many RRMS
cases may go undiagnosed (50,57). With a diagnosis, people with RRMS also face a number of
uncertainties including the temporal onset and debilitating effects of future relapses, and the

likelihood of transition to the hardly manageable SPMS phenotype. SPMS is diagnosed following
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an initial diagnosis of RRMS presenting with relentless decline in function. Patients who
commence with RRMS vary in the duration of relapses, time between relapses, and timing of
progression to SPMS. About 15% of those with RRMS experience only one incident of relapse
without further disease worsening while in others, they may begin to experience continuous
functional decline after a single relapse attack (57). Approximately 65% of those with RRMS will
develop SPMS after 10 to 20 years of disease presentation (51,57,58). Clinically, relapse frequency
is a primary classifier of RRMS disease activity, and the conversion from RRMS to SPMS marks
the beginning of progressive disability although the conversion point is often far from being clear

(2,14).

Mechanisms underlying the ongoing disability and the shift from a relapsing to progressive
presentation in MS are not fully understood despite the link between disability accumulation and
relapse-associated worsening and progression independent of relapse activity (17,51,59). Ongoing
pathological processes including axonal degeneration and oxidative injury are commonly
considered to be drivers of disease progression, but disability outcomes have also been attributed
to lesion load and the frequency of chronic active lesions in people with MS (15,16,24,60). The
lack of knowledge on disease progression mechanisms limits the ability to discover new measures
and new effective therapies for MS patients. Given the unique association between RRMS and
SPMS, further understanding of the pathological characteristics of these phenotypes and the
patterns of abnormalities that differentiate them would be invaluable. Achieving this goal would

require competitive in vivo measures of disease outcome for people with MS.
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2.3 Methods for assessing disease outcome in MS

2.3.1 Clinical Assessments

Different measures exist for assessing clinical outcomes of MS. Common measures of function
include expanded disability status scale (EDSS) and multiple sclerosis functional composite
(MSFC) assessments (45,61). The EDSS primarily focuses on the presence of physical disabilities
(6). With a score range of 0 to 10, the EDSS assessment covers several functional systems
including cerebral, brainstem, cerebellar, pyramidal, visual, sensory, bowel and bladder function,
and other systems. A score of 0 represents no disability, 1-3 reflect mild to moderate impairment
of one or two functional systems, 4-5.5 reflect changes in mobility and more severe functional
impairments, 6 indicates the requirement for unilateral or bilateral support for ambulation, 8 refers
to bed- or wheelchair-bound with some independence, and 10 indicates death due to MS. People
with RRMS generally rank lower in this scale (1 — 4.5) than those with SPMS. Notably, the EDSS
score faces multiple challenges, such as its accuracy in measuring changes over a short time period,
repeatability across raters, and completeness in function representations (50,62). The MSFC is a
combined measure of physical and cognitive function and is expected to provide more accurate
assessments of disease outcomes than EDSS (63). This assessment includes three components: 25-
foot walk for assessing lower limb function, 9-hole pegboard test for upper limb function, and

paced auditory serial addition test (PASAT)-3 for cognitive function.

2.3.2 Neuropsychological Assessments

Various neuropsychological evaluations are available for characterizing the cognitive and affective
outcomes of MS people, such as fatigue, executive function, and depression for the latter (24—

26,53,64,65). Similar to physical functions, affective states and executive functions wane with the
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progression of disease severity (25). The number of assessments is more expansive than the above
as made available through the minimal assessment of cognitive function in MS (MACFIMS) and
the brief international cognitive assessment for MS (BICAMS) (66,67). Among these
neuropsychological batteries, the brief visuospatial memory test and symbol digit modalities test
are specifically used to assess information processing and working memory abilities (26,50,62).
Common tests of affective symptoms include Beck’s depression inventory and modified fatigue
impact scale to assess function in the associated domains (65,66,68). In addition to accurate
functional assessment, understanding the underlying mechanisms causing functional alterations is

also crucial for MS individuals, where the availability of robust imaging methods is fundamental.

2.3.3 Imaging Assessments

MRI is an exquisite tool that allows non-invasive detection of multiple types of tissue structural
changes in people with MS. Most conventional MRI methods can provide information sensitive to
the anatomy and gross structural changes of MS individuals useful for clinical management and
trials, such as that of focal lesions (14,22). But these methods lack the ability to detect minute
changes in a tissue. Advanced MRI methods, based on competitive image acquisitions or post-
processing technologies, appear to be more specific to pathological alterations than conventional
MRI (Figure 2.3) (27,28,55,69). The sections below will give a brief overview of methods related

to these entities.
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Figure 2.3: Conventional brain MRI from an MS patient. The images represent T1-weighted, T2-
weighted, and T2-FLAIR MRI (left to right) offering in vivo visualization of neural changes such
as atrophy and lesions (arrows). Lesions are visible with differential proximity to corticospinal
fluid (CSF) and cortical regions supporting potential inference of functional outcomes.

Conventional imaging

T1-weighted (T1-w) imaging is based on T1 relaxation achieved by short echo times (TE) and
short repetition times (TR). T1-w contrast is brighter in tissues with more fat content. The CSF
regions appear dark while white matter regions appear bright, with gray matter regions having an
intermediate look. T1-w images are useful in detecting brain volume changes, and presence of
tissue loss as observed with T1-w hypointense lesions (black holes) that generally indicate myelin
and/or axonal loss, or oedema (42,50). On T1-w images, myelin and axonal loss decreases the fat
content of a tissue, and oedema increases the water content. Both changes increase the T1
relaxation time and so decrease T1-w signal (22,70). The presence of chronic black holes have
been found to be related to patient disability, and the number of black holes is predictive of EDSS

score after 10 years of disease development (71).
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With use of gadolinium (Gd) contrast, the T1-w (T1-Gd) images serve as an ideal method for
detecting acute inflammation associated with MS lesions. Lesion enhancement in T1-Gd imaging
suggests acute inflammatory activity that disrupts the blood brain barrier (BBB). This process
causes the gadolinium to infiltrate lesioned regions resulting in a hyperintense appearance on T1-
Gd MRI (14,22). The enhancement will resolve with resolution of BBB disruption at future
timepoints. In T1-w MRI, these lesion areas may change from hypo- to iso-intense, and such a
change in image intensity is believed to indicate tissue repair (22,70). Axonal loss can lead to

persistent signal hypointensities in T1-w MRI, particularly in chronic lesions (70,72).

T2-weighted (T2-w) images show an almost opposite appearance to T1-w images given the
hyperintense (bright) appearance of lesions instead. The contrast of T2-w MRI depends on the
water content. It is highly sensitive to white matter lesions, and the changes therein may arise from
different pathological processes including demyelination, axonal loss, inflammation, and gliosis
(50). T2-w MRI appearance of lesions endures beyond that of T1-w, spanning from acute to
chronic stages, making this sequence an ideal option for assessing lesion load. According to the
literature, lesion load of MS patients at disease onset predicts long-term disability accumulated at
15 — 20 years, but the lesion measure is not as sensitive to neuropsychological changes (14,24). T2
lesion load is generally higher in SPMS than RRMS so T2-w MRI is often highly regarded in
assessing treatment impact in MS (22). One caveat of T2-w imaging is the superfluous appearance
of hyperintense paraventricular lesions with the cerebrospinal fluid (CSF) due to the bright
intensity of both structures, which makes it difficult to distinguish between the two without aid of

a different anatomical contrast (70).
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T2 fluid-attenuated inversion recovery (FLAIR) images are like T2-w except for their use of CSF
signal suppression. This makes FLAIR images more effective than T2-w MRI in detecting
periventricular lesions and other ventricle-adjacent inflammatory activities as they appear distinct
from the CSF-filled structures (72—74). The increased discernibility of lesions in FLAIR MRI also
makes it highly useful for assessing cortical and juxtacortical lesions that are believed to play a
key role in MS-led dysfunction (22). Finally, the FLAIR sequence is a critical component in many

lesion segmentation methods in research or clinical use (46,75).

Advanced Imaging

Advanced MRI may provide stronger relationships to disease activity than conventional MRI due
to increased microstructure specificity (13,23,76-78). There are various advanced MRI methods
under development, including myelin water fraction and magnetization transfer ratio commonly
used to characterize myelin content (70). Susceptibility weighted imaging (SWI) is often employed
to detect iron accumulation, which is related to oxidative stress due to production of free radicals,
and an indicator of “iron-laden activated microglia” (29,79). SWI is also used to identify phase
rim lesions, which show strong associations with chronic active lesions that in turn are considered
a symbol of disease progression in MS (16,79). Magnetic resonance spectroscopy measures the
composition of a tissue, including the presence of subcellular metabolic structures such as N-acetyl
aspartate and glutamate, as indicators of neuroaxonal damage (70). Diffusion-weighted imaging
has shown tremendous potential to detect microstructural changes in different tissues including
nerve fiber tracts (70,80,81). There have been several technical advances in diffusion imaging,
which have also led to the derivation of multiple new measures that may enhance our

understanding of structure-function relationships. Likewise, various promising image post-
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processing methods exist. One such example is image texture analysis. In this project, I will focus
on both brain diffusion-related MRI and MRI texture analysis as two complementary advanced

imaging approaches to probe MS pathology.

2.4 Diffusion MR imaging

Diffusion MRI detects the random movement properties of water molecules. Quantifying water
movement along different orientations in a specified time period can inform tissue directional
information, which along with assessment of the degree of restriction in diffusion can give insight
into the overall architecture of a tissue such as neural tracts (72,82-84). The magnitude and
orientation of water movement are critical considerations in the acquisition of diffusion MRI and
in building models to estimate the diffusion signal. The models vary in both design and
implementation; however, they generally provide metrics that reflect unique combinations of
diffusion magnitude and orientation, which serve as an integral estimation of tissue microstructure

at millimeter and sub-millimeter scales.

2.4.1 Diffusion Tensor Imaging (DTI)

DTl is a modelling approach based on diffusion imaging acquired at a minimum of six directions
regarding the presence and properties of structures that restrict the movement of water (85). The
DTI measures have shown considerable potential in MS assessment (86). Signal modeling in DTI
uses a second order tensor that reflects the relative magnitude of diffusion in perpendicular
directions (82-84). The tensor defines three perpendicular axes of diffusion to form an ellipsoid
with primary, secondary, and tertiary diffusion axes based on the relative magnitude of diffusion,

with the primary axis (longest axis of the tensor) oriented in the direction of greatest diffusion.
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Underlying the tensor model in DTI is the assumption of a single dominant diffusion orientation
with the probability of diffusion displacement in other directions, defined by a Gaussian
distribution centered at the primary axis of the diffusion tensor. The magnitudes of each axis,
eigenvalues of the tensor, are used to calculate scalar diffusion metrics that describe the magnitude
and/or alignment of diffusion, ranging from a spherical distribution such as that associated with
CSF to a linear ellipsoid distribution, as typically seen in the white matter (Figure 2.4)

(73,76,82,87,88).

Figure 2.4: Tensor representations of diffusion orientation and magnitude. Diffusion Tensor
Imaging represents distributions of diffusion according to second-order tensors that characterize
the oriented distribution of diffusion according to three perpendicular axes (green, blue, pink).
Isotropic distributions (A) have roughly equal magnitudes of diffusion across the three axes and
typically reflect diffusion patterns in CSF regions while anisotropic distributions (B) have unequal
diffusion magnitudes with one direction possessing a magnitude greater than the second and third
perpendicular orientations resulting in oriented net diffusion typically presenting within uniform
white matter structures.

DTI provides several common parameters. Fractional anisotropy (FA) describes the alignment of

diffusion in a single orientation (anisotropic), and mean diffusivity (MD) gives the average
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diffusion magnitude for the three perpendicular axes of the tensor (84). Other metrics include axial
diffusivity (AD) that gives the magnitude of diffusion along the primary diffusion axis, and radial
diffusivity (RD) that gives the average diffusion along the perpendicular axes. These parameters
have demonstrated various importance in correlating with neural tract properties. FA represents
fiber coherence and is a promising measure of tissue damage in NAWM and MS lesions (89). RD
correlates with myelin integrity; MD detects early microstructural changes prior to lesion
development (90-93); and AD is sensitive to changes in axonal density particularly in tracts of
high density and parallel orientations. While with considerable potential, these DTI metrics are not
without limitations. FA is noted to have varied responses to microstructure damage as it is a
combined measure of neurite dispersion and density which can vary independently. Likewise, the
AD and RD can change with the complexity of the underlying tissue architecture, limiting their

ability to directly estimate myelin and axonal densities, respectively (94,95).

Another major limitation of DTI is its Gaussian distribution assumption which leads to the
modelling of only one major fiber orientation in each voxel. Prior studies have reported that many
(30%-90%) voxels in the brain are associated with crossing fibers, which require the
representation of multiple diffusion directions in each voxel, a reality that cannot be handled by
tensor models (96). Many diffusion MRI investigations have focused on traditional DTI
descriptors such as FA and MD. However, due to the limitation of the tensor model in dealing with
complex microstructures, these metrics are considered nonspecific as they respond similarly to
different microstructure patterns (55,90,92,97). Various evidence support the investigation of new
diffusion models to enhance the measurement of complex structures (98-101). One potential

diffusion MRI technique that may serve this purpose is high angular resolution diffusion imaging
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(HARDI), a method that densely samples the diffusion signal to improve modelling accuracy and

specificity to nerve fiber properties (76,102,103).

2.4.2 High Angular Resolution Diffusion Imaging

HARDI samples the diffusion signal at a greater orientational density than what is needed for DTI
to more accurately capture the orientation variations in the diffusion signal (Figure 2.5) (102,104).
Originally developed to solve the problem of detecting multiple fiber orientations in a single voxel,
the acquisition methods of HARDI have expanded to include Q-Ball imaging, diffusion kurtosis
imaging, and diffusion spectrum imaging, all of which involve dense orientation samplings, and
at times, multiple diffusion weightings (i.e. multi-shell HARDI) (105-107). Single-shell HARDI
involves acquiring diffusion imaging with many sampling orientations at a single b-value
weighting, the parameter that modulates sensitivity to the magnitude of diffusion in imaging,
though multi-shell HARDI acquisition can significantly improve the modelling of the diffusion
signal, but it also costs extra scanning time (99). Due to their detailed representation of the
diffusion signal, HARDI methods have led to the development of various new analytic techniques
that improve upon DTI. These analytic methods fall into two broad categories: 1) Model-free and
2) Mixture models. Model-free methods rely on mathematical descriptors of the diffusion signal
over the sphere, and compartment models make assumptions about diffusion properties in unique

compartments such as free water and intra-axonal regions.
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Figure 2.5: Diagram of High Angular Resolution Diffusion Imaging (HARDI) orientation
distribution functions (ODF). HARDI models aim to retain sensitivity to local oriented variations
in diffusion magnitude (low=yellow, medium=orange, high=red) and capture the complexity of
multiple diffusion orientations often using ODFs. Isotropic (A) diffusion distributions can result
from mostly equal diffusion magnitudes in all orientations like CSF or can be deciphered with
HARDI techniques to relate to the overlap of multiple fiber orientations or unique fiber
architectures like fanning fibers identified by orientational modeling of local “hot spots” (orange).
Anisotropic (B) diffusion distributions can be related by HARDI techniques to multiple underlying
fiber architectures ranging from highly cohesive (highly focal hot spots - red) to dispersed with
acquisition schemes supporting delineation of additional properties such as axonal density or
diameter.

Model-free methods focus on reconstructing g-space to describe the probability of diffusion across
a given distance and direction from the point of origin. These methods have been used primarily
for the advancement of tractography techniques given their ability to refine the detection of
diffusion in multiple orientations within a single voxel (99,100). Diffusion orientation distribution
function (dODF) models are one example of such modeling and are designed to capture the
probability of diffusion along individual orientations (88,98,100). Some fiber ODF (fODF) models
have been developed to support the detection of neural fiber orientations, where the 3D fiber

orientations can be tracked between voxels to produce likely trajectories of major neural tracts
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through tractography (103,108). The mean apparent propagator method is another model-free
approach that attempts to characterize information from the ensemble average propagator (EAP)
(109). The EAP describes the average displacement by diffusion in a voxel over the acquisition
time (109). This approach supports the estimation of diffusion behaviours as that measured under

slightly modified conditions like alternate b-values (110).

Mixture models are also known as compartment models that assume the presence of multiple
compartments, each with unique diffusion behaviours and different contributions to the signals
observed within a voxel (111). These models attempt to model the diffusion signal as different
volumes of water undergoing diffusion with different spatial restrictions within each compartment.
Many HARDI models take such a compartmental approach, but they vary in the complexity of
properties to be estimated and assigned to each compartment (77). In neurological tissues, models
generally derive estimates for three compartments: intra-axonal, extra-axonal, and isotropic
diffusion. As the development is ongoing in this field, the underlying assumptions about diffusion
have also been changing , which may involve the number and properties of the compartments, and
the methods through which they are derived (77,112). Among some of the promising compartment
models are neurite orientation dispersion and density index (NODDI) and ActiveAx (77,78,113—
115). Both models take advantage of HARDI and multi-shell techniques in signal sampling, in
conjunction with optimization search methods. NODDI is based on a three-compartment model
that models intra-neurite diffusion with dispersed sticks, extracellular hindered diffusion with a
symmetric tensor, and isotropic diffusion with a spherical tensor. This provides measures of
intracellular volume fraction, which relate to the density of neurites and integrity of myelin,

isotropic volume fraction, and orientation dispersion index of neurites. ActiveAx is similarly based
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on a three-compartment model, with neurites modelled by parallel cylinders with a fixed diameter,
extracellular hindered diffusion by a zeppelin, and isotropic diffusion by a spherical tensor.
Therefore, ActiveAx indices include the intracellular volume fraction, neurite density, and average
neurite diameter. ActiveAx has not been applied to MS, but studies using HARDI models have
found increases in axonal diameter within MS lesions (116,117). The NODDI studies have
identified decreased ODI and NDI in MS lesions and increased ODI and decreased NDI in the
NAWM (118,119). There is also evidence showing correlations of ODI with demyelination in MS

and MS-like spinal cord lesions (23,36).

While model-free HARDI methods are generally compatible with both single- and multi-shell
HARDI schemes, compartment models typically improve by modelling with multi-shell data. For
compartment models, multiple parameters must be investigated for each compartment, so multi-
shell diffusion data is better posed for the multiple equations used to derive solutions for outcome
parameters. Single-shell data supplied to such models is typically considered underdetermined
because there are not enough equations available to solve the parameters. In this regard, model-
free HARDI methods can be used to overcome the limitations (110,120). This can include
predicting the diffusion signal at alternate gradient directions, or predicting different b-values.
Another caveat of compartment models is that the calculations underlying these models are time
intensive: it can take hours to days to conduct the model fitting per brain volume depending on the
resolution of the images. To improve efficiency, one useful option is accelerated microstructure
imaging via convex optimization (AMICQO). This method employs linear optimization to increase
the speed of calculations and, importantly, it offers quality microstructure-specific parameters

similar to those from both NODDI and ActiveAx (121). The AMICO tool has been further
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developed as AMICOXx to support the modeling of crossing fibers beyond methods established

specifically for the compartment models (122).

2.4.3 Tractography

Tractography is another method out of diffusion imaging. It tracks diffusion orientations from
voxel to voxel to generate digital streamlines that represent possible neural tract configurations in
vivo (123-125). Different methods exist to derive the orientation information for tractography,
including the original approaches with orientations derived from the Gaussian DTI primary
eigenvector, and current models utilizing HARDI ODF outputs sampled over the sphere
(88,98,100,101). HARDI ODF approaches are superior to DTI models for resolving multiple fiber
orientations within individual voxels, which can occur in Kissing, crossing, and even fanning fiber
configurations (80,102,126). The range of tractography models is further expanded by the various
settings used in defining the different interpolation methods for orientations between voxels; such
settings include maximum angles of curvature between tracking steps, step sizes within voxels,
and seeding methods for initiating tracking algorithms. Tractography has been predominantly used
to segment white matter tracts for tract-specific analysis, but different analytic methods have been
developed to assess structural connectivity and identify anatomic localizations of diffusion
metrics. Many tools have been built around tractography with a range of applications. For tract-
based analyses where the contribution of distinct tracts is important, new tools have been
developed to improve the automaticity and accuracy of tracking (127). Definitions of tract
trajectories have been made available through extensive evaluations and have been incorporated

into deep learning tools such as TractSeg (Figure 2.6) (128,129).
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Figure 2.6: Diffusion tractography of the corpus callosum. TractSeg deep learning methods
support tracking of multiple cerebral tracts using grey matter connections and likely neural
trajectories with a probabilistic tracking algorithm. These methods support segmentation of
different neural tract regions that coordinate different functional outcomes.

The utility of tractography in analysing white matter tracts has been shown in many diseases such
as MS where white matter is a major target (123,125,130-133). In conjunction with tractography,
the analytic tools in diffusion imaging may also enable the measurement of additional parameters
along specific white matter tracts for improved understanding of disease activity (80,115,133,134).
One critical aspect of tractography that is applicable in this project is developing a means to
understand how orientation information relates to MS pathology, given the evidence that tissue
pathology disrupts tractography (125,131,135). One approach is the use of tractography in
connectomics where anatomical connectivity is inferred based on frequencies of streamline
connections between two ROIls and the pathways taken by multiple connections, as measured by

streamline abundance and endpoint counts. While this approach provides a global perspective of
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neural integrity, the local quantitative potential of tractography has been explored using streamline
counts (fiber density index). Fiber density index (FDi) as one of the tractography metrics has been
successfully used to assess tractography responses to pathology and microstructural damage
(125,131,135). Along-tract statistics is another method for investigating tract-associated changes,
which may reveal pathologies not readily detectable with voxel-based analyses (Figure 2.7) (80).
With the potential to detect diffusion orientation-based microstructural changes, tractography
methods may provide new insight into the mechanisms and evolving patterns of MS pathology

(81,131,135).
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Figure 2.7: Processing pipeline for along-tract statistics in corpus callosum segments. The
procedure involves initial tract segmentation (left), grouping of streamline vertices through
correspondence mapping (middle), and along-tract projection of investigated measures onto a
mean tract geometry (right). This method supports localization of pathological changes that occur
in vivo and comparisons of projected measurements between health and disease to investigate the
extent of neural damage.
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2.5 Phase Congruency as a new Texture Analysis Method

2.5.1 Texture Analysis

Texture is a characteristic defined by the distribution patterns of signal intensity within an image.
It can be qualitatively described as organizations of homogeneous to heterogeneous compositions
whose component may vary in size, contrast, and other properties. Texture analysis refers to the
approach used to uncover features associated with textures, with many approaches providing
quantitative measures of texture properties or distributions (136,137). Within images, natural or
MRI-based, texture measures can differentiate regions based on their unique patterns and signal
qualities (34,136). The features form the building blocks capable of characterizing texture patterns
and differentiating regions of interest in many image types and analyses. These features are not

easily detectable by visual inspection and so require specialized computation technigues to assist.

Figure 2.8: Examples of texture properties in natural and MRI images. Larger coarse textures of
rocks (A) are contrasted with finer textures of the coffee (B1) neither with regular patterning. In
contrast, orientation and linearity features characterize another texture with local variations (B2).
In the T2-weighted MR image of an MS brain (C), lesion appear to have heterogeneous intensities
and smooth boundaries with surrounding regions (C1) while sharp texture transitions define
structural divisions between the NAWM and CSF, each with mainly smooth textures (C2).
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Quantitative methods are required for advanced characterization of texture. Common quantitative
texture techniques reported in the literature include statistical, transform/frequency-based, model-
based, and morphological, which can provide different texture measures useful in medical imaging
for a range of applications (136,137). In the literature, statistical and transform/frequency-based

methods are most frequently used.

Statistical texture methods can generate features from second order statistics such as those from
the grey level co-occurrence matrix (GLCM) technique, where the texture patterns are derived
based on spatial arrangement of the signal intensity in images (138). The GLCM method has
specifically been successfully employed in tandem with random forest and support vector machine
(SVM) machine learning techniques to differentiate normal-appearing and pathological white and

gray matter tissues within individuals and between time points (40,139).

Model-based approaches seek to estimate parameters that describe the texture of a signal where
the parameters can in turn be applied together with a range of analyses including regression and
classification (137). Markov random fields is one such method that models image signals as a
function of local surrounding patterns with a general additive model and that has been applied to
model de- and re-myelination patterns in a lysolecithin mouse model of multiple sclerosis (39).
Morphological texture analysis methods are otherwise rarely used in the imaging setting because
they work typically by identification of a fundamental structure whose presence or spatial pattern
is expected to indicate qualities of an analyzed region (137). Such fundamental structures are

typically difficult to identify even for natural images that are often less complicated than medical
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images, though methods associated with edge detection have played a role in some region

segmentation approaches (140).

2.5.2 Spatial Frequency Based Texture Analysis

The spatial domain representation of images allows us to observe how signal intensity varies over
space within which they are bound. The frequency domain displays how the signal is distributed
amongst fundamental waveforms of different frequencies at different phases in their periods. Phase
in a sense refers to the location of a point within the cycle of a periodic function. Different methods
are available to transform signals between time or spatial domains and the frequency domain.
These transform methods employ different basis functions whose frequencies comprise the signal
representation in the frequency domain. The Fourier transform serves as a foundation for many of

these methods.

The Fourier transform operates with imaginary orthogonal sine and cosine basis function pairs to
form a complex-valued frequency transform (141). In addition to temporal signals, the Fourier
transform can be applied to images with varying dimensionalities including 2D and 3D images
associated with MRI by using multiple convolutions for each dimension. The fundamental
implementation of the Fourier transform is intended to represent continuous periodic signals and
therefore is limited by its inability to locally characterize frequency compositions, describing when
or where they occur (141). The Fourier transform power spectrum has further shown considerable
potential to characterize tissue structure alignment and different other properties of MS pathology

as seen in animal models of de- and remyelination supported by linear regression (36,142,143).

F(p) = fjooof(t)e‘iz””tdt = ffooof(t) [cos(2mut) — i sin(2mut)]dt (2.1)
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The short-time Fourier transform (STFT) was developed to address the localization limitation of
the Fourier transform by applying a fixed window shape fixed in time to provide signal localization
(144,145). This localization can support analysis of unstationary data, having locally varying
frequency compositions such as that within MRI. According to the Fourier uncertainty principle,
as the width of the window in the time domain is narrowed, frequency resolution decreases while
a wider time window decreases temporal resolution but increasing frequency resolution (141). The
implementation of the STFT using a fixed Gaussian window is intended to optimize the balance
between resolution in the signal and frequency domains and is referred to as the Gabor transform
(144).

STFT{f (D}, 0) = X(t,w) = [ . f(O)w(t —T)e ™ dt (2.2)

The wavelet transform similarly provides windowed frequency transforms for localized signal
analysis; however it improves upon the STFT by supporting multiresolution analysis (141).
Wavelets are waveforms that encode bandpass filters in the frequency domain where they can be
modulated by a windowing function. Wherein the STFT uses constant bandwidth and positionally
fixed signal windows, wavelet transforms implement convolution of varied window sizes to
provide multiresolution analyses that similarly support signal localization (141). Following the
Fourier uncertainty principle as mentioned above, wavelet analyses typically employ large
windows in high frequency regions to improve spatial localization of high-frequency regions while
smaller windows in low-frequency areas supporting detection of the corresponding low-resolution
spatial signal changes. The scalings and transformations of the mother wavelet are what define the

wavelet transform. Wavelet implementation with a Gaussian window similar to the Gabor STFT
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optimizes the balance between resolution in both signal and frequency domains and is termed the
Morlet wavelet, or Gabor wavelet when specifically references the Morlet wavelet using the
complete complex basis functions instead of solely the real component (144,146). Phase

congruency uses the Gabor wavelet to support analysis of the phase component of the signal.

WTy{x}(a,b) = (x,Yap) = [, x(O)Wa(t) dt (23)

The Stockwell transform advances upon the Gabor wavelet by providing a global representation
of phase information and may therefore be referred to as a phase-corrected Morlet wavelet
(146,147). It overcomes the STFT limitations regarding the Fourier uncertainty principle by
performing multiresolution analysis with scalable gaussian windows correlated to the banded
frequencies, similar to the wavelet transform (146,147). By provide globally-referenced phase
information, The Stockwell transform improves upon the continuous wavelet transform by
providing globally-referenced phase information using the Fourier transform (146). Modifications
of this transform have been developed to reduce its computation complexity and improve its
applicability to different analytic task. A fast implementation of the Stockwell transform has
shown promise for predicting head and neck squamous cell cancers with different tendencies for
metastasis using a Bayesian network classifier (148). Further, the polar Stockwell transform has
been successfully employed to classify pathological tissue types within MS patients using a

random forest model (149).

Se(t, f) = [ x(0)|fle ™ CTF g2 T g (2.4)
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Overall, texture analysis methods have proven to be useful in identifying tissue structural changes
in different diseases such as MS based on an array of MRI contrasts, including conventional

imaging (34,35,40,150).

The phase congruency method employed in this thesis is developed on a modification of the
discrete Gabor wavelet transform, though with innovations to improve the computational
complexities; similar implementations may be sought with the Stockwell transform. Phase
congruency has shown promise in applications to analyze medical imaging including
discriminating the presence and type of lung disease based on chest radiographs with linear
discriminant analysis (151). The concepts underlying spatial frequency analyses and the phase

congruency approach will be explored with further detail.

2.5.3 Phase Congruency

Phase information obtained from transformation of images into the frequency domain have been
found to retain more pertinent structural information than the corresponding magnitude
information. In isolation, phase components of the signal have been found to support independent
image reconstruction and capture the dominant portion of image features. The interaction of phases
of different frequencies at any point in an image contribute to notable features central to image
perception including edge geometries. Specifically, the Local Energy Model suggests the regions
where phases of multiple frequency components are most in phase are where most features are
observed (152). The points at which frequency components are maximally in phase can result in
different feature appearances such as sharp transitions in intensity associated with square waves

or indicating peak points of local gradient intensity (Figure 2.9).
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Figure 2.9: Alignments of phase characterize a range of feature types. Points of phase alignment
across multiple frequencies are noted in A) a square wave at the points of the step ups and downs
notable for sharp transitions in images and in B) a triangular wave at the peak and trough.

Phase congruency is a frequency-based texture analysis technique based on the local energy model
that focuses on representing features according to the degree to which the frequency components
are in phase (37,153,154). In association with structural edge features, phase congruency can also
be classified as a structural texture method. Compared to many other local energy technigues,
phase congruency is unique as it is highly robust to variations in image contrast and illumination,
a common challenge in medical imaging (154,155). It further offers high spatial localization of
features at different scales by employing a high pass filtering approach to the addition of frequency

filters (156).

Phase congruency in its application to image processing is a spatial frequency technique calculated
based on how phases calculated from wavelet filters are distributed around their average. A

sensitive measure (PC,) of this distribution is obtained by combining both the cosine and sine
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phase deviations of local Fourier components weighted by their amplitudes across frequency filters
scaled to different central frequencies. This formulation was found to improve feature localization
beyond original formulations based solely on cosine deviations and is not based on the overall
signal magnitude making it invariant to brightness and contrast. The measure is then refined by
subtracting the estimated noise contribution (T') according to the Rayleigh distribution, weighting
(W (x)) with a sigmoid curve according to the range of frequencies (s(x)) contributing to the
calculation, and then summed over multiple orientations. As phase congruency is applied to
varying architectures of phase associated with gradients or steps, these characteristics of features
can be described by the weighted mean phase (¢(x)) to offer more characterization of feature
properties.

Yn W(x)[An(x) [COS(¢n(x)— <7>(x))—‘51n(¢n(x)‘ ‘7’("))”_TJ
YnAn(x)+e

PC,(x) = X (2.5)

Kovesi’s phase congruency implementation uses the discrete Log-Gabor wavelet to provide
spatially localized analysis that better fit patterns in the statistics of natural images relative to the
Gabor wavelet (157). Log-Gabor wavelets are also implemented on the basis that spatial filters of
the visual system may be symmetric in the logarithmic frequency domain, and beyond Gabor
wavelets, supporting wider bandwidth filters and removing the contribution of the average signal
intensities (DC component) (157). Gaining these properties trade off with the optimal balance
between frequency and spatial widths offered by the Gaussian window with Log-Gabor wavelets

having a positively skewed distribution in the linear frequency domain.

To address the loss of the optimal trade-off between frequency and spatial localization offered by

Gaussians, Kovesi empirically determined the relationships between Log-Gabor filter widths and
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spatial localization (156). It was determined filter bandwidths between 1 and 3 octaves offered
optimal spatial localization. The choice of filter bandwidth in turn influences other steps of

parameter selection to define filter bank properties including frequency and orientation coverage.

(—(log(f/fo))z)
g(w) = e \2(log(a/fp))?

(2.6)
When working with images, the transform space is a function of both frequency and orientation.
The windowing and tiling of filters across orientations can be performed using uniformly-spaced

gaussians organized in a rosette with appropriate angular widths determined by their bandwidth

and correspondingly, their standard deviation (gg) (157).

—(9—90)2>

G(£0) = G(w) e< 205 (2.7)
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Figure 2.10: A visualization of frequency-shifted and oriented Gaussian filters. A) The Gabor
function shows a symmetric Gaussian distribution in the linear frequency axis while log Gabor
show this pattern on the log frequency axis which corresponds to a positively-skewed distribution
on the linear frequency axis. (Adapted from Field, 1987) (157). B) Gaussian filters are tiled in a
‘rosette’ formation in the frequency domain to provide optimal coverage of the spectrum. The
combination of filters shifted in the frequency domain and tiled in across orientations forms filter
banks for image processing and analysis (Adapted from Kovesi, 1996) (156).
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To provide coverage of the full frequency spectrum, filters with constant octave bandwidth (f) are

defined by maintaining the ratio between the standard deviation of the window (o) and the filter
central frequency (f,) for each wavelet filter (n; = %) (158). This constructs filters that are wider
0

for high frequencies and narrower for lower frequencies to benefit frequency localization.
Modulating the overlap of adjacent wavelet filters varies the net sensitivity and its balance across
the full spectrum to different frequency scales. This balance is controlled by identifying a multiple
of central frequencies that defines the spacing between adjacent filters and the resulting sum of
their sensitivities to specific frequencies for a given octave bandwidth. Finally, to balance
orientational sensitivities based on the angular filters, a ratio between the angular separation of
filters and the standard deviation of the window can be imposed to scale according to filter

positions (156).

Following calculation of phase congruency in multiple orientations across different frequency
scales, the contribution of noise (T') to each calculation is removed then the resulting values are
further processed with multiplication by a weight (W (x)) that penalizes values based on the
distribution of frequency responses. The noise contribution is calculated as a function of the filter
responses at the highest frequency using the median or mode ([Ag]) according to the Rayleigh
distribution for non-negative random variables (156). They are then scaled based on the influence
of spatial width on the estimated noise response according to the scaling between successive
central frequencies (m) (156). The weighting for frequency spread is performed on the basis that
phase congruency is more notable when present over a wide range of frequencies. To this end, the
range of frequencies contributing to phase congruency is determined by a width (s(x)) function

based on relative filter responses normalized by the number of wavelet scales analyzed. A sigmoid
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curve is then applied to differentially weight narrow and wide widths modulated by the steepness

(g) and shift (c).
YnAn(x)
W(X) :m S(X) :%(ﬁ) (29)

Notably, phase congruency requires the declaration of multiple parameter values best suited for
target analyses. Phase congruency use of the discrete Log-Gabor wavelet requires definition of the
number of wavelet scales where each serves as a filter of certain frequency components whose
responses are used in the calculations. Most studies have resorted to manual optimization;
however, that is difficult to translate across studies and is time consuming; there is strong evidence
showing the possibility of automatic optimization of the model parameters for both natural and
MR images (159). However, as parameters are tuned, the interpretation of measured outcomes will
change accordingly, so there is a need for robust and straightforward approaches to optimize the

method to promote its applications.

Given its ability to detect the resonance points of image phases, phase congruency analysis outputs
multiple feature characteristics including phase congruency for each assessed orientation, the
summed phase congruency across all orientations, weighted mean phase, and the feature
orientations. The phase congruency method is highly sensitive to the ‘edge and corner’ features of
tissue structures and may be an ideal candidate to detect visually silent pathologies in the NAWM
of MS patients, the tissue type showing strong relevance to the progression of the disease. Phase
congruency has demonstrated the potential to differentiate lung diseases including cancers. It is

not highly used in the study of MS, though it has been previously explored in this lab to detect
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lesions in brain white matter, characterize NAWM damage differentiating RRMS and SPMS
subtypes, and detect gray matter abnormalities (151,160,161). Phase congruency will be employed
not to expand on diffusion MRI but to explore its potential to provide complementary information

for the analysis of MS.

2.6 Data Analysis Augmentation with machine learning

Machine learning is an area of Al aiming to support decision making using computerized
algorithms. Based on patterns and trends learned from existing data, machine learning can predict
outcomes for new unseen data central to a variety of data science activities. In particular, machine
learning has been instrumental in supporting various imaging driven tasks ranging from data
acquisition to data pre- and post-processing. Specifically related to this thesis, data post-processing
and analysis would be the focus of interest. In this direction, the following paragraphs will briefly
introduce the most relevant components including the common formats and associated applications
of machine learning, and its potential for optimizing feature selection processes. Given the
complexity of MS pathology and the high number of variables expected to be generated in disease

characterization, integration of the associated machine learning techniques would be encouraging.

2.6.1 Common Formats of Machine Learning

Supervised and unsupervised modelling highlight two common options of machine learning (38).
Supervised learning works with labeled data. The goal is to establish a relationship between input
and output data based on the known labels for each. In this regard, the output is modelled as a
function of the patterns measured from the input variables or images. With this approach, the

predicting variables are typically selected based on prior hypotheses about the relationship with
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the outcomes being investigated. Unsupervised learning comes into play when there is no labeled
data available. In other words, this method is used to detect patterns and trends within data that are
not previously known or completely understood. In medical applications, supervised learning is
commonly used because labels are often available, it generally performs better than unsupervised
learning, and it can be implemented through various approaches (162). The description here

involves 2 main types: statistical machine learning and neural networks/deep learning.

2.6.2 Statistical Machine Learning

This method is also known as classical machine learning that refers to learning from existing or
user engineered variables at input. Regression and classification are supervised machine learning
paradigms used to model data, with the goal of predicting continuous or categorical outcomes. A
range of statistical machine learning methods exist. Linear models are a fundamental machine
learning approach as represented by the regression-related techniques, where ridge regression
specifically aims to improve model generalizability in relating continuous variables. Other
techniques include random forest models, which employ ensemble learning to improve model
performance, and support vector machines, which identify multidimensional hyperplanes that
separate identified groupings underlying the data (163-165). This thesis makes use of different

machine learning algorithms to characterize MS pathology and regress functional outcomes.

2.6.3 Support Vector Machine

Support vector machines (SVMs) can be used for both classification and regression tasks, though
the focus in this thesis centers on classification. The method is aimed at separating classes using a

hyperplane embedded within a multidimensional feature space (Figure 2.11) (166). This is
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implemented with the goal of optimizing the tolerance of classification to local variations around
the decision plane due to noise, and therefore sample points closest to the hyperplane are identified
as support vectors (166). The separation of sample points from different classes across the
hyperplane is called the margin, and the SVM hyperplanes are designed to maximize these margins
to improve generalization to new samples. The identified hyperplane is defined by normal vectors
(weights — w) and a separation from the origin (bias — b), which show how it splits each feature
dimension to obtain its discriminative ability. The optimization of hyperplane separations can be
tuned for specific data samples and investigations by adjusting the permissibility of the hyperplane
to misclassifications through regularizations (165,166). Instead of a hard-margin approach aimed
at eliminating all errors during training, a soft-margin approach allows tuning of regularization
parameters to allow more errors in the training samples to improve model generalizability (166).

wix + b =0 (2.10)
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Figure 2.11: Support vector machine (SVM) classification. SVMs assign weights to modelled
features to define multidimensional hyperplanes (purple) that separate different classes of data (red
and blue) based on key data samples (support vectors). Here a linear SVM is shown however
nonlinear hyperplanes support classification amidst more complex distributions. Soft-margin
classifications allow for errors close to the hyperplane while optimizing the separation of classes.
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The use of a linear hyperplane is most beneficial when the classes are linearly separable based on
the selected features. This implementation is employed in this thesis to facilitate more direct
interpretation of the coefficients relative to input features. Where this is not a clear linear
separability based on input features, SVMs can employ kernel functions to map samples from the
original input feature domain to a higher dimensional space (¢ (x)) in which linear separability
may be better achieved (166). The hyperplane in these transformed dimensions may reflect as
nonlinear in the original feature space. Routinely investigated kernels include the linear,
polynomial, Gaussian/radial basis function (RBF), Laplacian, and sigmoid kernels (166).

wigp(x) + b =0 (2.11)

2.6.4 Neural Networks and Deep Learning

Deep learning is a subset of machine learning based on the concept of neural networks in the brain,
so the methods are also known as artificial neural networks. This type of method aims to train
weights of successive layers to learn patterns in an increasingly abstract way, and therefore they
are particularly useful for learning complex relationships among data. Once the algorithms are
trained, they will be used to predict outcomes similarly to that in statistical machine learning. The
neural networks can be shallow or deep depending on the application. Based on cutting-edge
technologies in this field such as convolutional neural networks (CNNSs), deep learning has shown
enormous promise in a range of tasks in the realm of image processing and analysis, including
classification of disease pathology and subtypes (167,168). In addition, with limitations in imaging
time in clinical settings, neural network models including CNNs have been developed to predict
unacquired images based on subsampled imaging data. In this way, both predicted and initially

acquired can be modelled together to provide desired outcomes but without the cost of extra
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acquisition time. The strategy has been shown to be particularly useful in augmenting diffusion

MRI data as seen in this thesis (169).

2.6.5 Feature Selection Assisted by Machine Learning

In addition to the above, machine learning approaches can also help reduce the dimensionality of
features used in modeling processes. Multiple methods are available to reduce feature
dimensionality, including recursive feature elimination (RFE) (165). This method works by
iterative identification of the best-performing subsets of predictors. Machine learning methods
typically construct models by assigning weights to different features, commensurate with their
contribution to model performance. These weight coefficients rank the importance of each feature
in the associated machine learning tasks. Regarding RFE, it works on the premise that more
important features will have larger weights. By removing the lowest-ranked features gradually, the
subset of features contributing the most to the best overall model performance is retained (165).
This method is versatile and can be implemented in tandem with many machine learning methods

with appropriate modifications, including use cases in this thesis.

2.7 Summary

MS is a complex disease characterized by different pathological changes leading to different
disease severity and functional deficits among individuals. Conventional MRI alone is insufficient
to overcome these challenges. Advanced MRI improves upon conventional MRI, particularly
regarding its specificity to tissue pathology, but there is still a lack of established methods in MS
evaluation and management. Diffusion MRI is a promising method for detecting microstructural

properties, and various new imaging and modeling techniques have emerged that may improve the
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power of diffusion imaging. MRI texture analysis appears to be a competitive pattern recognition
method. It is compatible with conventional MRI and with phase congruency, it also seems to be
robust to the variations in image contrast and signal intensity. Currently there are different
measures of functionality in people with MS. However, clinical measures are often limited by their
sensitivity to early or short-term changes. MRI is highly capable of detecting subclinical MS
activities but methods that predict functional outcome are yet to be discovered. Machine learning
has shown tremendous potential in various image processing and analysis tasks. Combining
machine learning with advanced brain diffusion MRI and phase congruency methods may prove
to be a valuable approach for improved study of both disease activity and functional outcomes for
people with MS. To this end, different new develop and innovation activities have been

implemented and are summarized in Chapter 3 of this thesis that follows.

47



Chapter 3: Technical Developments and Innovations Associated

with This Thesis

As mentioned in previous Chapters, diffusion imaging is one of the most promising advanced MRI
methods for characterizing tissue microstructural properties. However, the DTI method is limited
by its ability to resolve crossing fiber diffusivities as commonly seen in the brain. The HARDI
methods aim to overcome this challenge by offering more specific and sensitive measures than
DTI. But it is not always practical to acquire diffusion datasets that support HARDI analysis in
clinical imaging due to time constrains. Further, regarding diffusion MRI datasets acquired using
different protocols or different scanners, direct combination that is necessary in testing impactful
hypotheses is likely not feasible without standardization. Regarding phase congruency, despite its
novelty and robustness to variations in imaging contrast and brightness, this method involves up
to a dozen variables. Manual refinement as done with prior implementations is time consuming
and subject to the availability of effort and expertise. To this end, several advances have been made
in this thesis to innovate the analysis and use of these methods. The new areas range from
innovative use of single-shell diffusion MRI to data optimization, harmonization and creation for
diffusion MRI. For phase congruency, the areas involve both parameter optimization and interface

implementation as detailed in this Chapter below.

3.1 New Developments Associated with Diffusion MRI

3.1.1 Advanced Analysis of Diffusion MR Imaging Using HARDI-like Models

Diffusion MRI forms a critical part in MS research, and DTI measures are sensitive to a broad

range of pathological changes in MS. But the specificity of DT is limited in comparison to HARDI
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outcomes due to the adoption of multi-compartmental modelling of the latter. Unfortunately,
HARDI data acquisition is time-consuming especially regarding multi-shell HARDI and is limited
in many study protocols. My research in this direction is to provide mitigation strategies that
minimize the issue related to simple diffusion MRI acquisitions. Specifically, this research treats
the acquired data as single-shell HARDI and then fits multi-shell models to the single-shell
HARDI through algorithm investigations and adjustments. To be able to use this approach, the
number of diffusion orientations is suggested to be >45, which fits directly to our own datasets
applied (111). In this way, competitive measures of neurite properties such as orientation
dispersion index (ODI) equivalent to HARDI can be derived that are otherwise impossible based
on simpler acquisitions alone. In this thesis, diffusion analyses by modelling with single-shell
HARDI is validated using a 45-directional b=1000 s/mm? dataset in Chapter 4 with encouraging
results found in the associated study scenarios. With development, single-shell HARDI methods
may support advanced analysis of changes in tissue microstructure as expected during

demyelination and neurodegeneration in MS.

3.1.2 Novel Metrics Derivation Based on Advanced Diffusion Orientation Modelling

In the literature, diffusion orientation modelling approaches have been developed alongside
diffusion compartment models (88,98,100). These orientation modeling methods have been
applied primarily to support tractography-based segmentation of neural tracts. The orientation
information in tractography is rooted in the direct relationships between magnitudes of diffusion
in different orientations drawn from raw acquisitions and is therefore somewhat susceptible to
changes in tissue structure properties (95). As these magnitudes may change in response to MS

pathology, they would reflect the presence of pathology instead of the fundamental anatomy.
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Therefore, my hypothesis is that pathology changes will reflect alterations in eigenvector
orientations that will be deflected from the ground truth. DTI tractography based on the primary
eigenvector is expected to be particularly susceptible to these pathology-driven deflections, which
in turn would result in discontinuous tracking between voxels. Example consequences include
premature or inaccurate terminations or improbable trajectories. Further exploration of the above
hypotheses is also prompted by the encouraging results obtained from the existing DTI
tractography outcomes including fiber density index (FDi) (Chapter 4), based on a common
tractography algorithm known as fiber assignment by continuous tractography (FACT)
(131,135,170). The purpose of my new development is to originate a robust and automatic analytic
approach related to the FDi. In the FACT algorithm, several tracking criteria are set manually
including maximum deflection angles, FA stopping criteria, and step sizes which variably
influence FDi. Eventually, my effort has led to the use of apparent fiber density (AFD) which is
completely model-free in its derivation from the fODF (171). As a more data-centric version of

FDi, the AFD is used in the thesis after Chapter 4.

In addition, inspired by the orientational aspect of FDi and the possibility of generating ODI using
single-shell diffusion MRI, | have focused on the development of another orientation-related
measure, which is relatively independent of the long model-fitting procedures of HARDI
compartment models. This endeavour starts by modelling the diffusion orientation distribution
function (dODF) which reflects the probability of a water molecule being displaced along a certain
orientation. The dODF was calculated using a spherical harmonics approximation (100,172). |
have discovered that by calculating the probability of diffusion in any of the sampled orientations

and fitting these probabilities to a normal distribution, the energy of the probabilities (3 In(p?)),
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namely, ODF energy, can be calculated. This parameter is fast to calculate and can serve as a novel
measure of orientational complexity localized per voxel, which is evaluated in Chapters 4, 5, and

6 of the thesis.

3.1.3 Diffusion Harmonization

Common to many clinical studies, the imaging data may not always be acquired from the same
machine or using the exact same protocol, leading to comparison issues. In this project, some of
the patient cohorts involve different studies, where diffusion MRI were acquired using slightly
different protocols. To improve the quality of the analyses, two diffusion datasets as part of
Chapter 5 were investigated for harmonization employing the linear rotationally invariant spherical
harmonics (RISH) method (173,174). This method performs voxel-wise correction of dataset
differences based on spherical harmonic features. For optimal outcome, two harmonization steps
regarding b-value and angular resolution, respectively, were performed prior to application of the
RISH method. This method will be employed in Chapter 5 to test feasibility of using two study
datasets. Most other methods available in the literature are limited to harmonization applications
on data after processing and deriving measurements while the methods mentioned herein address
this challenge by directly working with ‘raw’ data. Therefore the current approaches can be
translated into clinical settings where acquisitions using different protocols or scanner systems are

common.

B-value Regression

The basis of b-value harmonization stems from the modelling of diffusion signals with a

monoexponential decay. This approach corresponds to the gaussian distribution model of diffusion
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in DT1 and is believed to be a good fit for data within the b-value bounds of 500 s/mm?and 1500
s/mm? (Figure 3.1) (106,175). Based on the Stejskal-Tanner equation:

S = S,ebP, (3.1)

| can then regress the initial diffusion data to new data of different b-values within the above range
(176). Despite the large span of the acceptable b-value range, at 1000 s/mm?, this study limits the
application of this technique to a b-value difference of 200 s/mm? given b-values of 800 s/mm?

and 1000 s/mm? from the 2 datasets tested here, falling in the middle of the bounds.
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Figure 3.1: Monoexponential and Kurtosis modeling of diffusion signal attenuation. A gaussian

monoexponential model (Diffusion fit) has a limited good-fit range to measured data relative to
Kurtosis models (Kurtosis fit). (Adapted from Steven et al., 2014) (175).
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Angular Resolution Adjustment

High angular resolution is a major benefit of HARDI analyses because it supports a more nuanced
analysis of local variations in the diffusion signal. While new information cannot be added to
diffusion MRI once acquired, modelling the diffusion signal with spherical harmonics allows
artificial enhancement of diffusion angular resolution. This approach is employed in some
tractography algorithms which use the dODF to support tracking between voxels at multiple angles
with a finer sampling than original acquisitions. Just as this supports smoother tracking, for
diffusion acquisitions with low angular resolution, | propose that it may improve the numerical
stability of HARDI modeling. In contrast to tractography approaches which employ increased
angular sampling of the dODF, the spherical harmonic representation supports an inverse
calculation whereby the original diffusion signal can be resampled (Figure 3.2) (100). Not only
does this approach target improved model stability, it also supports data harmonization by allowing
different datasets to be resampled to identical gradient orientations. Further exploration of the
spherical harmonic modelling of the dODF indicated that it supported an inverse calculation that

recovers the original diffusion signal with arbitrary angular resolution.
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Figure 3.2: Spherical harmonic approximation of the diffusion signal. Spherical harmonic
modelling was employed to resample a 23-direction diffusion signal (left) to a 45-direction
diffusion signal (right).
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3.1.4 Robust Neural Network Models for Data Creation in Diffusion MRI

The fitting of HARDI models to single-shell diffusion datasets is promising but also considered
underdetermined because the number of data points measured is lower than the number of variables
to be solved. In Chapter 4, this limitation was side-stepped by fitting simpler HARDI models that
appeared to be compatible with the single-shell diffusion data. To take advantage of the improved
specificity offered by multi-shell HARDI models, my goal here was to develop novel deep learning
neural network models such that new diffusion datasets can be predicted using existing datasets.
In this way, complete fitting of truly multi-shell HARDI models becomes possible based on both
the initial and predicted datasets. This approach is used in Chapters 5 and 6, done by predicting

the b=2000 s/mm? diffusion data using the corresponding b=1000 s/mm? acquisition (Figure 3.3).
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Figure 3.3: Diagram of spherical coordinates defining diffusion acquisition schemes. Shown are
an example scheme of a diffusion MRI dataset acquired as a single b=1000 s/mm? shell (A), which
is used to predict a second shell with a higher b-value of b=2000 s/mm?. Together they form a
multi-shell HARDI dataset (B).
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Together with lab mate (Mr. Murray), two neural network models were established. The initial
model was developed based on an architecture known as a multi-layer perceptron (MLP). After
refinement, the MLP model was integrated into a CNN model. Both models were trained and
validated step-wise to optimize hyperparameters, based on multi-shell brain diffusion MRI scans
from healthy subjects as part of the Human Connectome Project (HCP) datasets freely available
online (177). The final model architectures were obtained by training and testing again using local
2-shell brain diffusion MRI data acquired from people with MS. The results of this work were
published as a manuscript with myself as a co-first author (Murray and Oladosu et al., Magnetic
Resonance Imaging, April 2023) (169) (Figure 3.4). These methods can be applied to simplify the
diffusion MRI acquisitions in clinical settings where full data coverage costing double time and
resources would otherwise be required to obtain comprehensive HARDI outcomes, thereby

advancing the disease monitoring and measurement abilities in clinical practice.
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Figure 3.4: High b-value diffusion MRI prediction network. This multilayer perceptron (top) and
convolution neural network (bottom) show the fundamental structures of the developed neural
networks for predicting b=2000s/mm? diffusion data. (Adapted from Murray and Oladosu et al.,
2023) (169).
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3.2 A Novel Framework for Optimizing Textural Phase Congruency Analyses

Clinical management of MS primarily engages with conventional MRI such as T1-weighted, T2-
weighted, and T2-FLAIR MRI, so it is important to investigate phase congruency by starting with
these imaging sequences. However, while promising, phase congruency presents with some
challenges in its use for image analysis, including: 1) the large number of parameters involved,;
and 2) the expertise and effort needed to fine-tune the parameters. To overcome the limits, | have
implemented a graphic user interface that allows fine tuning of all key phase congruency
parameters intuitively (Figure 3.5). The following sections introduce three optimization areas as
part of my new development, along with the theory and conceptualization of phase congruency

that is critical for its understanding and use.

3.2.1 Conceptualization and Workup

Initial tools to implement phase congruency have been provided within MATLAB by the initial
author of the methods (Peter Kovesi) in an online code repository (178). Phase congruency has
been mainly applied for image segmentation or feature identification in 2D images. To align phase
congruency measures with the structure of MRI data, this thesis developed a custom 3D python
implementation of phase congruency based on available scripts on 3D with C++ and on 2D with
python by others (158,179). 3D phase congruency supports balancing of information from multiple
horizontal and vertical orientations. For conventional display purposes, outcomes of phase

congruency in this thesis are shown axially.

Phase congruency calculation requires the setup of multiple parameters to define the wavelet

frequency filter banks employed in analysis and how the calculations are subsequently processed.
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Parameters to construct the filter banks include the width and separation of filters in the linear
frequency scale, the minimum wavelength (maximum frequency) and number of filter scales to
cover the desired frequency range, and the number of filter orientations. In phase congruency
computation, the penalty for frequency spread is modulated by a sigmoid curve with gain (scale)
and cutoff (shift) parameters, and the method for identifying and processing noise information.
Default settings have been proposed in the original implementation; however, the study-specific
parameters are typically set based on visual appearance heuristics of calculated outcomes (159).
Certain optimization methods such as maximal contrast between regions of interest have been
proposed to improve the quality of output but the value of these settings varies according to study
goals (159). In this thesis, the goal was to assess local structural differences, contrasting
segmentation or feature identification done in prior studies. The thesis purpose here also entailed
the generation of feature maps out of conventional MRI scans to enhance the detection of “hidden”

patterns concealed in the investigated images.

Given the number of parameters required by phase congruency in the calculation process, |
undertook a thorough investigation of the relationships between the parameters and how each of
them influenced phase congruency outcomes. Collectively, phase congruency was conceptualized
as the result of variations in several key settings including spectral coverage, spectral sensitivity,

and modulation of frequency spread (Figure 3.5).
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Figure 3.5: Phase Congruency calculations and parameter tunings. Phase congruency calculations
are dependent on multiple parameter settings that vary the sensitivity to phase information from
different spectral regions, the penalty for frequency spread, and the coverage for different feature
orientations. Here plots for the frequency spread sigmoid and spectral sensitivity illustrate the
combined influence of most phase congruency parameters.

3.2.2 Anqgular Resolution of Phase Congruency Measurements

To provide an unbiased isotropic representation of phase congruency, the filter bank includes
frequency assessments across multiple orientations. For this reason, enough orientations must be
sampled for either 2D or 3D phase congruencies to reduce orientational bias. As this work uses
3D phase congruency analysis, | had the orientation sampling approach innovated by using a
convenient 23-direction diffusion gradient sampling scheme available from the Measures of

Corpus Callosum Function dataset. The diffusion gradient scheme in terms of imaging is designed
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to provide uniform orientational coverage of the spherical sampling space. This approach replaced
the need for selection of several orientations in a spherical grid-like approach to save time for
measurement collection (158). Based on diffusion MRI results, a minimum of ~20 directions are
needed to properly capture variations in the diffusion signal for reconstruction of DTI, so the use
of this 23-direction scheme targets a minimum sufficiency in the orientation sampling scheme for
phase congruency outcomes (180). Moreover, this scheme supports minimization of variations in
angular spacing between orientations. Following the calculation of phase congruency, Gaussian
windows are applied at each identified orientation with their bandwidths adjusted to balance
orientational coverage and sensitivity. The standard deviation of the Gaussian is defined according
to a ratio of 1.2 between the average oriented filter angular separation and the standard deviation

of the Gaussian as identified by Kovesi for balanced orientational weighting (156).

3.2.3 Spectral Modulation

Spectral modulation involves the balancing of multiple parameters to provide full coverage of the
frequency spectrum for an image of given size and an appropriate balance of sensitivity across the
frequency range. This aspect of phase congruency is primarily modulated by the minimum
wavelength, the number of filter scales used per orientation, the width of those scales in the
frequency domain and their separation de